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Abstract

Despite a heated debate on the complexity of financial regulation, a comprehensive

framework to study regulatory complexity is lacking. We propose one inspired by the

analysis of algorithmic complexity in computer science. We use this framework to

distinguish different dimensions of complexity, classify existing measures, develop new

ones, compute them on two examples—Basel I and the Dodd-Frank Act—and vali-

date them using novel experiments. Our framework offers a quantitative approach to

the policy trade-off between regulatory complexity and precision. Our toolkit is freely

available and allows researchers to measure the complexity of any normative text and

test alternative measures.
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The regulatory overhaul that followed the global financial crisis has triggered a hefty

debate about the complexity of financial regulation. Haldane and Madouros (2012), for

instance, articulate the view that bank capital regulation has become so complex as to

be counter-productive and likely to favor regulatory arbitrage. The Basel Committee on

Banking Supervision is aware of the issue, and considers that there is a trade-off between

the simplicity and the precision of regulation (Basel Committee on Banking Supervision

(2013)). In the United States, similar concerns have led to the exemption of smaller banks

from several provisions of the 2010 Dodd-Frank Act.1

While there is a widespread concern that regulation has become too complex, “regulatory

complexity” remains an elusive concept. Debates about the complexity of different rules and

contracts have come up in other contexts, such as structured products (Célérier and Vallée,

2017), securitizations (Ghent et al., 2017), loan contracts (Ganglmair and Wardlaw, 2017),

compensation contracts (Bennett et al., 2019), or corporate taxes (Zwick, 2021). A growing

number of papers propose measures and theories of the complexity of rules, but they focus

on different dimensions of complexity and a unifying framework is lacking. We propose such

a framework and develop a toolkit including measures of complexity, validation experiments,

and normative analyses. We show that with these ingredients one can approach the trade-off

studied by the Basel Committee on Banking Supervision (2013) in a quantitative manner.2

We hypothesize that a regulation can be seen as an algorithm: it is a sequence of in-

structions that are applied to an economic agent and return a regulatory action. Previous

1See Gai et al. (2019) for a comprehensive discussion of the policy issues at stake, and Calomiris (2018)
for the case of the United States.

2To encourage further work within the same framework, we make the toolkit we developed available online:
https://github.com/cogeorg/RegulatoryComplexity_Public. The replications files for this paper are
available here: https://ufile.io/7al4cyzg.
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research has used this analogy and focused on adapting some measures of algorithmic com-

plexity to the study of law (see, e.g., Li et al. (2015)). We go further and use this approach

to distinguish between different dimensions of complexity, derive six measures of regulatory

complexity in a unified model of regulation, test the validity of these measures experimen-

tally, compute them on a large scale regulatory text (the Dodd-Frank Act), and include them

in a normative model of the trade-off between precision and complexity.

We first use our framework to formally define measures of regulatory complexity, and dis-

tinguish between the different dimensions of complexity that can be captured. In particular,

we make a distinction between: (i) “problem complexity”—a regulation is complex because

it aims at imposing many different rules on the regulated entities, independently of the lan-

guage used; (ii) “psychological complexity”—a regulation is complex because it is difficult

for a human reader to understand; and (iii) “computational complexity”—a regulation is

complex because it is long to implement. We relate these different dimensions to empirically

observable quantities, namely the occurrence of mistakes in the regulatory process, and the

effort necessary to understand and apply the regulation. These quantities can be seen as “ex

post” measures of regulatory complexity.

In many applications such ex post measures are not available, and as a proxy it is nec-

essary to use “ex ante” measures based on the content of regulatory documents. Most

measures that have been proposed rely on linguistics and only cover psychological complex-

ity. To derive measures of problem complexity as well, we use the approach developed by

Halstead (1977) for measuring algorithmic complexity. As we detail in Section 1, this ap-

proach represents an algorithm as a sequence of “operators” (e.g., +, −, logical connectors)

and “operands” (variables, parameters), and the measures of complexity aim at capturing
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the number of operations and the number of operands used in those operations. In the con-

text of regulation, these measures can capture the number of different rules (“operations”)

in a regulatory text, whether these rules are repetitive or different, whether they apply to

different economic entities or to the same ones, etc. We show that within this model we can

encompass three measures of regulatory complexity that have already been proposed in the

literature, and go on to define three new ones.

As a proof of concept, we show how to measure the complexity of a regulation in practice

by considering the design of risk weights in the Basel I Accords. This regulation is a suitable

testing ground because it is close to being an actual algorithm. We compare two different

methods: (i) We write a computer code corresponding to the instructions of Basel I and

measure the algorithmic complexity of this code directly; and (ii) We analyze the text of the

regulation and classify words according to whether they correspond to what would be an

operand or an operator in an algorithm, and compute the same measures, this time trying to

adapt them from the realm of computer science to an actual text. In particular, we observe

that the measures of “problem complexity”, which in principle should not depend on the

language used, are indeed very close in the text and the algorithm versions.

An important gap in the existing literature on regulatory complexity is the validation

of complexity measures: how does one show that a proposed measure indeed captures some

dimension of complexity? Here again the parallel with algorithms suggests an answer. The

literature in computer science tests the validity of different measures of algorithmic com-

plexity by testing their ability to forecast mistakes made by programmers or the time they

need to code the program (see, e.g., Canfora et al. (2005)). We apply the same idea to the

context of regulation. We give participants to an experiment different regulatory instruc-
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tions consisting in (randomly generated) Basel-I type rules, and the balance sheet of a bank.

They have to compute the bank's risk-weighted assets. We analyze how di�erent measures

of complexity explain whether a participant returns a wrong value, and the time taken to

give a correct answer. In both cases we also test whether a given measure has explanatory

power beyond the mere length of the regulation. We �nd that only two of the �ve measures

we propose (other than length) pass this test, suggesting that our experimental design is a

powerful touchstone to test the validity of new measures. Interestingly, these are the two

measures meant to capture problem complexity, which validates the idea that this is indeed

a dimension not captured by length alone. All the material is online and can be directly

used to validate any measure of regulatory complexity based on the text of a regulation, not

only ours, thus opening the path to comparing the performance of di�erent measures within

a uni�ed framework.

To show that our approach can be adopted at scale, we apply our text analysis approach

to the 2010 Dodd-Frank Act. Because the Dodd-Frank Act covers many di�erent aspects

of �nancial regulation, by doing so we created a large dictionary of 5,872 operands and 429

operators. We expect that a large fraction of words found in other texts will already be

in our dictionary. To show this, we look at the fraction of words in each of the 16 titles

of the Dodd-Frank Act that would have already been included in a dictionary obtained

using only the other 15 titles. We �nd that, on average across all titles, 88% of operands

and 96% of operators would have already been in this counterfactual dictionary. We make

this dictionary available online, so that interested researchers can compute our measures on

other regulatory texts and collaboratively enrich the dictionary. In addition, this dictionary

can serve as a training sample for identifying operands and operators in longer texts using
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machine learning.

Finally, we show how building on our approach could eventually lead to a quantitative

model of the trade-o� between the precision and the complexity of regulation mentioned

in Basel Committee on Banking Supervision (2013). To explore this possibility, we build a

simple model of a bank capital regulation relying on risk buckets, as in Basel I. We can use

our measures and the experimental estimates to compute the complexity cost of additional

buckets, and hence study the optimal trade-o� between these costs and the bene�ts of

additional precision. More generally, this example shows that our measure can be used in

normative models of regulation. For instance, in the context of a model this allows us to

compare a complex regulation achieving the �rst-best to a simpler one that still achieves a

high level of welfare.

We review the literature on measures of regulatory complexity in the next section, where

we show how di�erent measures �t into our framework, or explain why they do not.3 As

mentioned above, a growing number of papers have studied the complexity of various �nancial

products and contracts more generally. We provide a unifying framework for these di�erent

applications, to the extent that they consider rules describing how to perform a certain

operation.4

A growing number of recent theory papers have implications for the complexity of reg-

ulation. Hakenes and Schnabel (2012) develop a model of \capture by sophistication" in

which some regulators cannot understand complex arguments and \rubber-stamp" some

3We do not include measures of algorithmic complexity more generally, and refer the interested reader to
Zuse (1990), and Yu and Zhou (2010) for a more recent survey.

4For example, we have applied our framework to study the complexity of the OECD's blueprints on
the tax challenges arising from digitalization (Colliard et al., 2021). In contrast, our approach does not in
principle apply to the complexity of objects that are not rules, for instance �rm disclosures, where complexity
is probably better captured by stylistic or linguistic measures (e.g., Loughran and McDonald (2014)).
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claims made by the industry so as not to reveal their lack of sophistication. Oehmke and

Zawadowski (2019) develop a model in which regulatory complexity is in itself desirable (e.g.,

it allows for more risk-sensitivity), but regulators neglect that a more complex regulation

consumes the limited attention of agents, and crowds out other activities. In Asriyanet al.

(2021), a policymaker proposes a regulation that then needs to be accepted, e.g., by Par-

liament. Making the regulation more complex makes the regulation more complicated to

study, so that members of parliament will rely more on their prior regarding the regulator's

competence and less on their own understanding of the proposed regulation. Foarta and

Morelli (2022) also model the dynamics of legal complexity over time, and make predictions

regarding these dynamics. We hope that by proposing new measures of regulatory complex-

ity our paper will make it possible to test these theories, which to our knowledge has not

been done yet.5

There is a broader theoretical literature on complexity in product markets, developing

the idea that complexity can be used by �rms to \obfuscate" and gain market power (see in

particular Gabaix and Laibson (2006), Carlin (2009), and Ellison (2016) for a survey). The

economic mechanisms studied in this literature are not easy to transpose to the complexity

of regulation, although there is a similarity with the idea of \capture by sophistication". In

addition, Arora et al. (2009) argue that computational complexity creates a new form of

asymmetric information when one agent is able to solve a computational problem and the

other is not, an interesting example being the sale of derivatives. Carlinet al. (2013) �nd

support for this idea in a trading experiment, with adverse selection being larger for more

5Some empirical papers study the increase in the stringency or quantity of regulations. For instance,
Kalmenovitz (2023) shows that increased regulatory intensity leads to a signi�cant reduction in �rm-level
investment and hiring. Guti�errez and Philippon (2019) argue that the increase in regulation can account for
the decline in the elasticity of entry with respect to Tobin's Q since the late 1990s.
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complex assets.

Further from �nance applications, the experimental approach we use in Section 3 is

related to a literature that tries to measure the complexity of solving mathematical problems

for humans. In particular, Murawski and Bossaerts (2016) and Francoet al. (2021) ask

experimental participants to solve di�erent versions of the knapsack problem, and study how

their performance correlates with measures of the complexity of the problem and measures of

the complexity of di�erent algorithms used to solve it. Our approach is conceptually similar,

but the Halstead model we use is a more 
exible representation of an algorithm, allowing us

to apply our approach to entire regulatory texts and not only to well-identi�ed mathematical

problems and algorithms.

Finally, a literature in behavioral economics dating back to Rubinstein (1986) models

the strategies and decision procedures of economic agents as automata, and associates mea-

sures of the complexity of these automata (in particular, the number of states involved)

to the cognitive costs that following these strategies imposes on agents. Oprea (2020) uses

an experimental approach to measure the cognitive costs of following di�erent procedures

(\implementation complexity"), and shows that these costs correlate well with complexity

measures of the associated automata.6 Our approach di�ers in that we do not represent

regulation as an automaton. This is in principle possible but extremely costly to do on a

large scale text, so that we believe the Halstead representation of an algorithm is a more

promising approach for the study of regulatory complexity.

6See also Kendall and Oprea (2021) who study experimentally the computational complexity of inferring
the process that generated a particular data sequence.
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1 A unifying framework

Because the term \complexity" is used somewhat vaguely in the social sciences, di�erent au-

thors, policymakers, and industry participants have di�erent concepts in mind when referring

to \regulatory complexity". To clarify this issue, we �rst propose a model of the regulatory

process that emphasizes the parallel between regulation and code. We then use this model to

de�ne the di�erent dimensions of complexity and discuss how to measure them empirically.

Finally, we propose measures based on an extension of Halstead (1977) and review how the

di�erent measures proposed in the literature �t in our framework.

1.1 A model of the regulatory process

We start by formalizing the analogy between regulations and algorithms which then allows us

to draw from the computer science literature studying algorithmic and software complexity.7

Knuth (1973) describes an algorithm as:\a �nite set of rules that gives a sequence of

operations for solving a speci�c type of problem"and identi�es �ve features an algorithm

must satisfy. First, an algorithm must terminate after a �nite number of steps. Second,

each step of the algorithm must be precisely de�ned|be it verbally or through formal use

of mathematics or a programming language. Third, an algorithm has zero or more inputs,

taken from a well speci�ed set of objects. Fourth, it has one or more outputs|quantities

that have a speci�ed relationship to the inputs. Lastly, an algorithm should use su�ciently

simple operations so that it can be computed, in principle,\by someone using pencil and

7Software complexity is typically de�ned in reference to psychological complexity and Zuse (1990), for
example, de�nes it as the \psychological complexity of programs". This is echoed by the IEEE (1990), who
de�ne software complexity as \the degree to which a system or component has a design or implementation
that is di�cult to understand and verify" .
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paper."

Surprisingly, a formal de�nition of an algorithm beyond the informal characterization

provided above is not without di�culty, but for the purpose of our paper, the informal

description of an algorithm is su�cient. In the case of regulation, the \inputs" are the

characteristics of regulated entities (e.g., an individual �nancial institution, a market, or the

entire �nancial system), and the \output" a certain regulatory action (e.g., imposing a �ne

on a bank, imposing higher capital requirements, or simply allowing the bank to continue

operating). The regulation is a list of rules describing how to map a regulated entity with

certain characteristics to a certain regulatory action.

It is important to make a distinction between an algorithm and the problem it tries

to solve. As an example, consider the problem of sorting a deck of cards. There are dif-

ferent algorithms, or lists of operations, to solve this problem, e.g., theInsertionSort or

QuickSort algorithms. They all solve the same problem, take as input the deck of cards

that is to be sorted, and return as output the sorted deck of cards, but they can di�er in

their complexity. In the case of regulation, the problem is the mapping between regulated

entities and regulatory actions, and the regulation is a description of this mapping:

De�nition 1. A regulatory problem is a mapping' : x 7! y from a set of regulated entities

X to a set of regulatory actionsA .

In a world of unlimited cognitive ability of regulators and supervisors, the mapping'

would be su�cient to describe the regulatory process. The traditional literature on banking

regulation implicitly makes this assumption, and derives' as the optimal solution to a

contract theory or mechanism design problem. Similarly, in the realm of coding, one could
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posit a mathematical problem, show it has a solution, and simply assume that some code

exists to compute this solution. We depart from this assumption by considering that writing

down the actual rules or \code" and then implementing them is not trivial, and is actually

costly and error-prone. In the following, we write down a simple model of drafting and

implementing regulations (or code), that allows for errors at di�erent steps.

The �rst step of the regulatory process is thedrafting of a regulation. We de�ne a

\regulation" as a list of written rules that aim at solving the regulatory problem ' :

De�nition 2. A regulation F is a �nite sequence of elements taken in a vocabularyV. This

sequence of elements is interpreted through a languageL .

We assume that aregulator needs to draft the regulationF . This regulator is endowed

with a certain skill � D at drafting regulations, and may exert a certain quantity of costly

e�ort eD when drafting. The regulation is then a function of the regulatory problem the

regulator tries to solve, her skill, and her e�ort:

F = D('; � D ; eD ; L ; V): (1)

The second step of the regulatory process isinterpretation : one needs to read and in-

terpret the regulation F in order to apply it to a particular entity. Note that F is not a

mapping but simply a list of elements ofV, i.e., words. If this list is perfectly interpreted

according to the rules of languageL , it describes a mapping fromX to A . We denotef this

mapping corresponding to a perfect interpretation ofF .

In the context of coding, the code is interpreted by a computer and this interpretation

is usually correct. In the context of regulation, the interpretation is done by a human
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reader who may misunderstand the regulation. Such a reader may have a certain skill� I

at interpreting the text, and exerts a costly e�ort eI . The reader's interpretation of the

regulatory text is a new mapping fromX to A denoted ~f :

~f = I (F; � I ; eI ; L ; V): (2)

The last step of the regulatory process is to apply the mapping~f to a given entity x

and determine the regulatory action to take, a step we callsupervision. In the context of

coding, a computer would always, mechanically, associate the outputf (x) to the input x. In

the context of regulation, however, a human supervisor whose understanding of regulation

is represented by~f may not necessarily associate~f (x) to an entity x. Instead, we denote

f̂ (x) the action taken by the supervisor. We allow this action to depend on the supervisor's

skill � S and e�ort eS.

f̂ (x) = S(x; ~f ; � S; eS): (3)

At the end of this regulatory process, we reach a regulatory action̂f (x). In the absence

of mistakes at the drafting, interpreting, and supervision stages, this action is equal to' (x).

However, at each stage there is room for mistakes, with the consequence that ultimately the

wrong regulatory action may be taken,f̂ (x) 6= ' (x). Figure 1 summarizes our model of the

regulatory process and which mistakes can occur during this process.

[Insert Fig. 1 here.]
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1.2 Dimensions of complexity

We now de�ne di�erent dimensions of complexity based on how costly and prone to mistakes

are the di�erent stages of the regulatory process described in Section 1.1. An advantage

of this approach is that the di�erent dimensions of complexity we de�ne are measurable

empirically, based on the implementation of a certain regulation, and we call these measures

ex-postmeasures of regulatory complexity. The experiments described in Section 3 follow

this approach. In contrast, Section 1.3 de�nesex-antemeasures of regulatory complexity,

that are only based on the observation of a regulatory text and on ex ante principles.8

We give both \mistake-based" de�nitions of complexity as the propensity of making a

mistake in the regulatory process, and \cost-based" de�nitions based on the cost (in terms

of labor or mental e�ort) associated with each step of the regulatory process. Formally, we

always consider a regulationF associated with a correct interpretationf . We assume a given

entity x, and given types� D ; � I ; � S and e�ort levels eD ; eI , and eS.9

We �rst de�ne problem complexity:

De�nition 3. The mistake-based problem complexity of regulationF is given byPr[D(f; � D ; eD (f; � D );

L ; V) 6= f ]. The cost-based problem complexity of regulationF is given byeD (f; � D ).

In words, a regulation has a higher mistake-based problem complexity when the regulator

drafting such a regulation is more likely to make a mistake, so that the correct interpretation

of the draft is actually di�erent from what was intended. If we apply this de�nition to the
8The distinction of ex-ante and ex-post measures was prominent in the early literature on software

complexity. Weyuker (1988), for example, develops a framework of axioms within which to evaluate software
complexity measures without reference to speci�c code. See also Fenton (1994). For ex-post measures based
on experiments with coders see, among others, Zhang and Baddoo (2007) who study the performance of
di�erent widely-used measures of software complexity, including the McCabe (1976) measures we also use.

9In applications it is straightforward to extend the formalism of this section to a population of regulated
entities, regulators, readers, and supervisors, with types following a distribution.
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context of coding, we would say that, for example, factoring a number has a higher problem

complexity than sorting a vector, if we observed that a coder asked to program both tasks

is more likely to succeed at the latter than at the former. A regulation has a higher cost-

based problem complexity if we observe that the regulator spends more e�ort at drafting the

regulation.

Similarly, we de�ne psychological complexity:

De�nition 4. The mistake-based psychological complexity of regulationF is given byPr[I (F; � I ;

eI (F; � I ); L ; V) 6= f ]. The cost-based psychological coomplexity of regulationF is given by

eI (F; � I ).

In words, a regulatory text has a higher psychological complexity if it is more likely to

be misinterpreted by a reader, or if the reader has to exert more e�ort interpreting it. Note

that if two regulations F and F 0 have the same correct interpretation (f = f 0) then they

have the same problem complexity and hence any di�erence in psychological complexity

only comes from the way the regulatory text is drafted. If instead one compares texts

corresponding to di�erent regulatory problems, then di�erences in problem complexity also

generate di�erences in psychological complexity.

Finally, we de�ne computational complexity:

De�nition 5. Denoting ~f = I (F; � I ; eI (F; � I ); L ; V), the mistake-based computational com-

plexity of regulation F is given byPr[S(x; ~f ; � S; eS(x; ~f ; � S)) 6= f (x)]. The cost-based com-

putational complexity of regulationF is given byeS(x; ~f ; � S).

In words, a regulatory text has a higher computational complexity if the action taken

by a supervisor on a regulated entity is di�erent from the one actually dictated by the text.
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Note that texts with di�erent levels of psychological complexity will also have di�erent levels

of computational complexity as a consequence: one reason why a supervisor may reach the

wrong regulatory action is that he misunderstands the regulation in the �rst place.

We believe that these three dimensions of complexity capture some of the main ideas that

people have in mind when talking about the complexity of regulation. Regulatory complexity

may mean that the regulatory problem is complex, e.g., it deals with many di�erent aspects

of a bank's business, or foresees a large number of regulatory actions. We call this the

problem complexityof regulation. Problem complexity depends on' , but is independent

of which regulatory text F solves it. Regulatory complexity may also mean that an actual

text is complex, which may be due both to the complexity of the underlying problem'

and to the complexity of the particular text F . Following the computer science literature

(e.g., Zuse (1990)), we call this dimension thepsychological complexityof regulation, as it

re
ects the di�culty of understanding a particular solution to a problem. Finally, regulatory

complexity may mean that applying a regulation to a particular entity is di�cult. Imagine

for instance a regulation that exempts small banks from most rules. It could then be the

case that the regulatory text is complex, that applying it to large banks is costly, but that

applying it to small banks is simple. Thus, this dimension depends on the entity to which the

regulation is applied. Following again the computer science literature, we call this dimension

the computational complexityof regulation.

Finally, our formalization makes it clear that any notion of regulatory complexity is neces-

sarily relative to the regulated entities considered and the humans processing the regulation.

Depending on how a regulatory text is written, it might for instance seem more complex to

lawyers than to economists, or vice versa.
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A few papers have proposed ex-post measures based on how much e�ort regulated entities

spend on complying with regulations (computational complexity). For instance, Simkovic

and Zhang (2020) propose aRegulation Indexbased on the proportion of regulation-related

employees in di�erent sectors, as measured in the Occupational Employment Statistics data

from the U.S. Bureau of Labor Statistics. Kalmenovitz (2023) proposes fourRegIn indexes

of regulatory intensity, based on the number of forms required by Federal regulatory agencies

in the U.S., the number of completed forms they receive, and the associated time costs and

dollar costs. Calomiriset al. (2020) propose to measure the cost of regulation to U.S. �rms

by NetReg, a measure based on the mention of regulatory topics in transcripts of earnings

calls. Singla (2022) uses estimates of regulatory costs provided by U.S. regulatory agencies

themselves at the level of each industry.

1.3 Ex-ante measures of complexity

Ex-post measures of regulatory complexity are appealing because they are empirically grounded.

However, in policy applications in particular it is preferable to measure the complexity of a

proposed text before it is actually implemented. It is then necessary to complement these

ex-post measures with \ex-ante" measures, that can be directly computed based on any

regulatory text F . In this section we derive a number of ex-ante measures. We will study

in Section 3 to what extent these measures correlate with ex-post measures of regulatory

complexity and can hence serve to proxy them.

We now show how several ex-ante measures of regulatory complexity can be derived

by modeling a regulation like an algorithm in Halstead (1977). We consider regulation
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F as a sequence of \n-grams" (expressions of length n that are elements in a language)

F = f w1; w2:::wN g, from which we extract two sequences: a sequence ofNOR operators

and a sequence ofNOD operands, with NOR + NOD = N . The sets f o1; o2:::o� OR g and

f ! 1; ! 2:::! � OD g are the sets of all operators and operands that appear inF , where� OR is the

total number of unique operators, and� OD the total number of unique operands.

Using Halstead's de�nition, operands in an algorithm are \variables or constants" and

operators are \symbols or combinations of symbols that a�ect the value or ordering of an

operand". Consider, for instance, the following \pseudo-code" to compute the vector norm

of an n-dimensional vectorx = ( x1; x2:::xn ) which can be written as:

y = sqrt(x_1^2+x_2^2...+x_n^2) (4)

Here, the operators are =; sqrt; + ; ,̂ and the operandsy; xi ; 2. So we have� OR = 4, NOR =

2n + 1, � OD = n + 2, NOD = 2n + 2.

To better take into account some di�erences between regulations and generic algorithms,

we propose a slightly �ner partition than Halstead's. Already in Halstead's work, the as-

signment operator (the = sign in (4)) plays a di�erent role from other operators. Similarly,

a regulation will necessarily contain words that indicate a rule, an obligation, a permission,

etc. We call such words \regulatory operators". Operators that are not regulatory operators

fall into two categories: \logical operators" represent logical operations such as \if", \when",

etc., while \mathematical operators" represent operations like addition, product, subtrac-

tion, and so on. We denoteNR ; � R ; NL ; � L ; NM ; � M the number of total/unique regulatory

operators, total/unique logical operators, total/unique mathematical operators, respectively.
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We haveNR + NL + NM = NOR and � R + � L + � M = � OR .

We now derive six measures of complexity within our extended framework.

First, the simplest measure of regulatory complexity is the total number of wordsN in

a regulation, which we denotelength. This measure is used for instance in Haldane and

Madouros (2012).

Second, a popular measure in computer science is cyclomatic complexity (McCabe, 1976),

which is the number of di�erent paths an algorithm can follow. We denote itcyclomatic.

This is measured in practice by the numberNL of di�erent logical operators, as in, e.g., Li

et al. (2015).

Third, the quantity of regulations, denotedquantity , can be measured by counting the

total number of regulatory operators,NR . This corresponds to the RegData measure of

Al-Ubaydli and McLaughlin (2017), who count the number of words indicating a binding

constraint in the U.S. Code of Federal Regulations.10 A related example is Herring (2018),

who measures complexity through the number of di�erent capital ratios Global Systemically

Important Banks need to comply with.

Fourth and �fth, Halstead (1977) suggests two additional measures, new to the literature

on regulatory complexity. The three measures above depend on the actual textF and hence

cannot capture problem complexity, which is independent of the text chosen to solve the

underlying problem' . How can one obtain a measure of problem complexity, that depends

only on ' ? Halstead's answer to this question is to look at the shortest possible program that

can solve the problem, in the best possible programming language. De�ning this algorithm

10See also McLaughlinet al. (2021) for a recent study using this measure.
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is easy. For example, the shortest possible program to compute the vector norm is:

y = vecnorm(x_1,x_2...x_n) (5)

wherevecnormis a function returning the vector norm. This is the shortest possible program

because any program to compute the norm of a vector would need to specify the input, the

output, an assignment rule, and an operation (which in our example already exists in the

programming language).

More generally, for any problem, the shortest program would still contain a minimum

number of operands� �
OD that represent the number of inputs and outputs of the program. All

the operations transforming the inputs into outputs would already be part of the language

as a single built-in function. The number of operators is then� �
OR = 2. If one assumes

that the list of inputs and outputs never includes some unnecessary ones, then we also have

� �
OD = � OD . The volume of this minimal program, equal to 2 +� OD , is a measure of problem

complexity calledpotential volumeand denotedpotential.

Finally, an interesting question to ask is whether an algorithm is close to the short-

est possible algorithm. Adapting Halstead (1977), we de�ne thelevel of an algorithm as

level = potential=length. The measurelevel has an intuitive interpretation in the context

of regulatory complexity. If level is high (close to 1) this means that the regulation has a

very speci�c vocabulary|a technical jargon opaque to outsiders. Conversely, a low value of

level means that the regulation starts from elementary concepts and operations.

Sixth and last, by symmetry with potential we propose to also consider the number of

unique operators� OR , or operator diversity, denoteddiversity , as a measure of psychological
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complexity. Intuitively, there might be increasing returns to scale in always processing the

same operations, whereas a regulation that describes many distinct operations or relies on

di�erent types of logical tests could be more di�cult to understand.

For completeness, we brie
y review other ex-ante measures that have been proposed in

the literature but do not directly �t within our framework.

Kalmenovitz et al. (2022) propose a measure of regulatory fragmentation,RegFragmen-

tation, which relies on counting the number of di�erent regulatory agencies mentioned in

the Federal Register and relevant for the same industry. This measure is best interpreted

as a measure of computational complexity, the idea being that the overlap between di�erent

authorities makes compliance more costly. It can be included in our framework by counting

separately the operands corresponding to regulatory authorities.

Amadxarif et al. (2019) use a number of measures from the linguistics literature, in

particular average word length, the Maas' index of lexical diversity (Maas, 1972), and the

Flesch-Kincaid grade levelreadability metric (Kincaid et al., 1975). Katz and Bommarito

(2014) and Li et al. (2015) also useShannon's entropyas an alternative measure of lexical

diversity. All these measures do not rely on a partition of words between operands and

operators, and apply equally well to texts that have no normative or operational content.

These measures aim at capturing the complexity of the style used by an author, which can

be part of psychological complexity, rather than the complexity of the underlying ideas.

Boulet et al. (2011), Katz and Bommarito (2014), Liet al. (2015), and Amadxarifet al.

(2019) propose to analyze the network formed by di�erent legal texts or regulations that

reference each other. Network measures such as thein-degree(how often a legal text is cited

by other legal texts), out-degree(how often a legal text cites other legal texts), or di�erent
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network centralitiescan then be interpreted as measures of psychological complexity.11 These

network-based measures of complexity are quite di�erent from our approach because they

are based on references between di�erent legal texts in a corpus.

Table 1 summarizes the di�erent measures surveyed in this section. The table also serves

to illustrate how di�erent measures can be classi�ed according to the dimension of complexity

they capture, following Section 1.2. This is di�erent from other classi�cations we are aware

of (e.g., in Amadxarif et al. (2019)), which are based on how the di�erent measures are

computed. In particular, our classi�cation illustrates the special role of potential volume

and quantity, the only measures of problem complexity.

[Insert Table 1 here.]

2 Basel I

The Halstead measures we propose to use were initially designed for algorithms, in which

the classi�cation of elements into operands and operators is unambiguous. In this section,

we show that it is possible to meaningfully adapt these measures to regulatory texts. We use

as an example the 1988 Basel I Accords (Basel Committee on Banking Supervision (1988)).

We focus on Annex 2, \Risk weights by category of on-balance-sheet asset". As we will

illustrate below, this is a natural starting point because this part of the regulation can easily

be described as an algorithm. This allows us to compute our measures based both on an

algorithmic representation of Basel I, and on the actual text. We then compare the results

obtained in both cases and conclude that our measures can be applied directly on the text.
11Amadxarif et al. (2019), for example, discuss the use of PageRank centrality, which measures how often

a node in a network is cited by nodes that themselves are cited often.
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2.1 Basel I as an algorithm

The Basel I Accords are a 30-page long text specifying how to compute a bank's capital ratio.

It maps di�erent asset classes to di�erent risk buckets, and di�erent capital instruments

to di�erent weights. The regulation then compares the risk-weighted sum of assets to the

weighted sum of capital, and the ratio has to be higher than 8%. As this succinct description

makes clear, Basel I is easily described as an algorithm. We write a \pseudo-code" that

implements the computation of risk-weighted assets described in the Annex 2 of the text,

i.e., our code maps a bank balance sheet to total risk-weighted assets under Basel I. We give

this program in Online Appendix OA.1. In this section, we brie
y explain the structure of

the program and give the associated complexity measures.

Annex 2 of the Basel I text is a list of balance sheet items associated with 5 di�erent

risk weights. For instance, in the 20% risk-weight category we have \Claims on banks

incorporated in the OECD and loans guaranteed by OECD incorporated banks". In our

code this is translated into:

IF (ASSET_CLASS == "claims" AND ISSUER == "bank" AND ISSUER_COUNTRY == "oecd") THEN:

risk_weight = 0.2;

We can easily identify the operands and operators in such a piece of code, and compute

our measures of complexity. For instance here the operands are the di�erent asset classes

(e.g., ASSET_CLASS), characteristics (e.g.,ISSUER_COUNTRY), values of these characteristics

(e.g., oecd), and risk-weights (e.g.,risk_weight , 0.2 ). The logical operators areIF , AND,

THEN, and we distinguish between the mathematical operator==and the regulatory operator

=. We thus obtain � OD = NOD = 8, � R = NR = 1, � L = 3, NL = 4, � M = 1, NM = 3. We
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conduct the same exercise for each of the 19 items covered by Basel I, and report the full

results in Online Appendix OA.2.

2.2 Text analysis and comparison

We now repeat the same analysis of the Appendix 2 of Basel I, but relying this time on

the actual text and not on our \translation" into code. A drawback of the text of Basel I's

Appendix 2 is that some words are left implicit. In particular, the mapping between di�erent

asset classes and their respective risk weights is only indicated by the layout of the page.

To circumvent this issue, we wrote a more explicit text in which each item ends with \shall

have an x% risk weight". This is the only modi�cation we made to the original text.12 We

then classify as \operands" the words or word combinations that have the same function

as operands in the program, more precisely economic entities (e.g., \bank" or \OECD"),

concepts (e.g., \maturity" or \counterparty"), and values (e.g., \one year"). We classify as

regulatory operators words that indicate an obligation or regulatory requirement, which are

\shall" and \have". Logical operators are words that correspond to logical operations, such

as \and" or \excluding". Mathematical operators are for instance \up to" and \above".

Using this approach, we classify 81 unique words out of the 86-word vocabulary used by the

text. The remaining words are used for grammatical reasons and do not really correspond

to operands or operators (e.g., \by", \on", \the"), hence we don't take them into account.

In the Online Appendix OA.2 we report the most frequent words in each category, as well

as the measures we compute for each item of Basel I.

We can now compute the correlations between the text-based measures and their algorithm-

12We report this modi�ed text in Online Appendix OA.1.
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based counterparts. Table 2 gives the correlation coe�cients.13 The correlation coe�cients

we obtain are quite high, perhaps with the exception ofdiversity , which shows that the text-

based analysis and the algorithm-based analysis are capturing similar patterns. Di�erences

arise between the algorithm and the text because the text version is sometimes ambiguous

or leaves some elements implicit. A good example is item (2a), which haslength = 43 in

the algorithmic version but length = 22 only in the text version. However, in both versions

this item stands out as one of the most complex according tocyclomatic, diversity , and

potential. More generally, the correlation is particularly high for measures of problem com-

plexity ( quantity and potential), which indeed should theoretically not depend on whether

the regulation is expressed in English or in code.

Overall, we conclude from this comparison that measures of regulatory complexity relying

on a text analysis can be a good proxy for the more theoretically founded measures based

on the algorithmic version. This supports our adoption of the text-based approach for a

full-scale regulatory text in Section 4.1. In addition, this analysis con�rms thatquantity

and potential are indeed capturing problem complexity, as they are less a�ected by a change

in the language used.

[Insert Table 2 here.]

3 Experiments

The purpose of ex-ante measures of complexity such as those studied in Sections 1.3 and 2

is that they can be computed at scale and used for empirical or policy applications. How-
13Formally the coe�cients are not de�ned for quantity . Sincequantity is constant in both the algorithm

version and the text version we adopt the convention that the correlation coe�cients are equal to 1.
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ever, these measures are necessarily somewhat arbitrary and one may wonder whether they

are good measures of regulatory complexity. The parallel with computer science suggests

a methodology to test the relevance of the di�erent measures: in computer science, com-

plexity measures are tested by asking di�erent programmers to write the same code. One

then checks whether the mistakes they make or the time they take to perform the task are

correlated with a measure of algorithmic complexity. We follow this idea and ask partici-

pants to an experiment to evaluate a regulatory action by computing regulatory quantities

based on di�erent regulations. For each regulation, we can compute the performance of the

participants, which gives us ex-post measures of complexity. We then test whether di�erent

ex-ante measures of regulatory complexity can explain the the variation in ex-post measures.

3.1 Design

For our experiments we continue to rely on the Basel I regulation, this time as a testing

ground. We generate a number of arti�cial \Basel-I like" instructions to compute risk-

weighted assets based on a balance sheet, where the instructions vary in the number of asset

classes to be considered, the di�erent conditions attached to each asset class, and the number

of di�erent risk-weights, so that they will also have di�erent ex-ante measures of regulatory

complexity.

There is obviously a lot of 
exibility and arbitrariness in writing arti�cial regulations.

In order to tie our hands and avoid introducing potential biases by manually writing them,

we generate a sample of randomized instructions for computing risk-weighted assets, all

following the template of Basel I, but with random variations. For instance, in our al-
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gorithmic version of Basel I (Online Appendix OA.1), the regulatory text \Cash items

in process of collection shall have a 20% risk weight"translates into a conditional state-

ment of the type IF-X-AND-Y-THENwith two conditions X: ASSET_CLASS == "cash"and

"CASH_COLLECTION == "in progress". A random variation could for instance consist in

changing the value ofASSET_CLASSto "loans" , and add new attributes such asISSUER,

DENOMINATION, and so on. Figure 4 shows the possible attributes for each asset class and

the values these attributes can take. Each randomly generated regulation consists of these

building blocks that are connected using a random number ofANDand ORstatements which

is no larger than the largest number of conditions in anyIF-THENclause in Basel I, which is

six.

[Insert Fig. 4 here.]

As a last step, we manually check that the instructions make sense, e.g., they do not

contain contradictory rules, and we make some minor manual changes to avoid ambiguities,

grammar mistakes, etc.14 At the end of this process, we obtain 38 regulations that we use in

our experiment. As shown in Table 3 below, there is signi�cant variation in all the complexity

measures across the di�erent regulations (in this section, all measures are computed based

on the actual texts seen by the participants to the experiment). A limitation of our sample

of randomly generated regulations is that several measures are quite correlated with each

other, as seen in Table 4. Such a high correlation is to be expected: there is a natural

correlation between the number of operands and operators, which we can also observe in the

Basel I instructions (Table OA.5).
14The Appendix C shows an example of such a randomly generated regulation. In addition, the replication

�les of this paper give:15 (i) the program used to generate the random regulations; (ii) the raw regulations
generated by the program; (iii) the �nal regulations we used in the experiment.
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[Insert Tables 3 and 4 here.]

In order to �nd participants able to read the regulations and compute regulatory quan-

tities, we asked the students of the MSc in International Finance of HEC Paris, class of

2020-2021, to volunteer for taking part in the experiment. The students had taken an

18-hour course on \Economics of Financial Regulation", which included in particular a de-

scription of the Basel I framework and a short example of how to compute risk-weighted

capital requirements. Importantly, the course did not discuss how to measure regulatory

complexity, so that there was no \priming" of the students.

Students were o�ered (i) 2 bonus points for completing the experiment, regardless of

performance and (ii) 1/3 bonus point for each correct computation. Since there were 9

computations in total, students could obtain up to 5 bonus points, compared to 100 points

for the �nal exam. This scheme served as an incentive to participate in the experiment

and try to get a correct answer. As a result, 125 out of 191 students participated in the

experiment. After excluding from the analysis 7 students who mistakenly took the test

several times, and whose answers are potentially a�ected by a learning e�ect, we have a

sample of 118 participants who give answers on 9 randomly selected regulations each, for a

total of 1,062 participant-question observations.

Given the sanitary situation in early 2021, our experiment was conducted online. Each

participant had to register on a website designed for conducting the experiment (https:

//regulatorycomplexity.org/ ).16 After an introductory page, the participant registers

and gives some background information. The participant is then shown a screen with expla-

16The interested reader can try the experiment anonymously by using the login \testaccount" and pass-
word \test".
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nations about the experiment and how to compute capital requirements. The next screen

is a \test-round", which is the same for all participants (Figure 2). The computer screen is

split vertically in two. On the right-hand side, there is a series of instructions that mimick a

Basel-I like capital regulation. On the left-hand side, there is a simpli�ed bank balance sheet

with details about the di�erent assets of the bank that correspond to the regulation. The

participant has to compute the risk-weighted assets of the bank following the instructions.

We record the answer given by the participant (and hence whether it is correct), as well as

the time taken to answer.

If the answer to the test-round is correct, the participant is noti�ed that he/she found

the correct answer. If the answer is wrong, the participant is told so. In both cases, the

participant is given an explanations on how to compute the correct answer, and then moves

to the second round. The second round is similar to the �rst one, except that the regulation is

drawn randomly from our set of randomly generated regulations. Moreover, the participant

doesn't receive any feedback on his/her answer. The experiment is then repeated for a total

of 10 rounds (including the �rst training round). The balance sheet displayed on the left-

hand side is constant across rounds and across participants. All the pages of the website are

reproduced in Online Appendix OA.3.

[Insert Fig. 2 here.]

3.2 Results on mistake-based complexity

The answers form a balanced panel with 118 participants, indexed byi , answering a series of

9 questions each, indexed byt. The t-th question for each participant corresponds to regu-
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lation Ri;t 2 f 1:::38g, which is randomly drawn from our 38 randomly generated regulation,

with draws being independent across questions and students. We denotecorrecti;t a dummy

variable equal to 1 if the participant i 's answer to questiont is correct. Following De�nition

5, correcti;t is a measure of mistake-based complexity for participanti and regulation Ri;t .

There is substantial variation across regulations. If one computes the proportioncorrectj of

correct answers for each regulationj , the average ofcorrectj is 68.61%, the standard devi-

ation is 16.78%, the minimum 37.50%, �rst quartile 58.62%, median 64.68%, third quartile

82.14%, and two regulations have the maximum of 100.00%.

Denoting � (Ri;t ) an ex ante complexity measure for regulationRi;t , in order to show

whether � is a useful ex ante measure of complexity we study its power to explain the

variation in correct. First, we evaluate the following probit model, at the participant-

question level, using both participant and question �xed e�ects:

Pr(correcti;t = 1) = �( � + �� (Ri;t ) + 
 i + � t ); (6)

where �( :) is the cdf of the standardized normal distribution. As our ex-ante measures are

all based on the classi�cation of words in the di�erent regulations into operands and di�erent

types of operators, we �rst check that operands and operators have statistically signi�cant

di�erent e�ects on correcti;t . For each regulationj we computelengthj the total length

of the regulation, as well asNOD;j ; NOR;j ; NR;j ; NL;j ; NM;j the total numbers of operands,

operators, regulatory operators, logical operators, and mathematical operators, respectively.

We also compute the numbers� OD;j ; � OR;j ; � R;j ; � L;j ; � M;j of unique terms in each category.

We then run the probit regression (6) on di�erent subsets of these variables, as shown in
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Table 5.

[Insert Table 5 here.]

Column (1) of Table 5 shows thatlength is negatively associated with correct answers,

and together with participant and question �xed e�ects explains 24:3% of the variation

of correcti;t across the 1,062 participant-question pairs (against 18.1% for a speci�cation

with �xed e�ects alone). In column (2) we split lengthj = NOD;j + NOR;j into its two

components and run the probit separately onNOD;j and NOR;j . Only the coe�cient on

NOD;j is statistically signi�cant, suggesting that total operands and total operators play a

di�erent role. However, perhaps due to the small sample size, we can reject the hypothesis

that the coe�cients on NOD;j and NOR;j are equal to each other in this regression at the

10% level only (p-value of 9.6%). Column (3) shows that the total number of unique words

is negatively associated with correct answers. Splitting again into unique operands and

operators in Column (4), we obtain that unique operands are negatively associated with

correct answers, whereas unique operators are positively associated. The di�erence between

the two coe�cients is statistically signi�cant, and remains so after controlling for lengthj

in Column (5) (p-value lower than 0.1% in both cases). Finally, in Column (6) we further

decompose unique operators into unique mathematical operators� M;j and unique logical

operators� L;j . We do not include unique regulatory operators as� R;j is equal to 1 for every

j . We �nd that the impact of unique mathematical operators is higher than that of unique

logical operators. The coe�cients on� M;j and � L;j are statistically signi�cantly di�erent

from each other and from the coe�cient on unique operands (all p-values are below 0.1%).

We conclude from this series of regressions that separating the words used in the various
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regulations into operands and di�erent categories of operators does indeed help explain the

variation of mistake-based complexity across regulations.

We now turn to testing our ex-ante measures. First, we run the probit regression (6) on

each of the six measures separately, across the 1,062 participant-question observations. In

these regressions, we expect a reliable measure of mistake-based complexity to be negatively

associated with correct answers, and the pseudo-R2 of the regression measures how much of

the variation of complexity across regulations is captured by the measure. The results are

reported in Table 6. Second, we run each regression again, addinglength as an independent

variable. As length is a natural and standard measure of complexity, a new measure is useful

only to the extent that it is able to explain the variation across regulations beyond what

is already captured bylength alone. Hence, we expect a good measure of mistake-based

complexity to be signi�cantly negatively associated withcorrect even after controlling for

length, and to lead to a higher pseudo-R2 than in the regression onlength alone.

[Insert Table 6 and 7 here.]

We observe that length, cyclomatic, quantity , potential, and diversity have the ex-

pected negative correlation withcorrect, while level does not. In addition, once we control

for length, we see thatquantity stands out, as it is the only measure that has the expected

negative correlation withcorrect and explains the variation across regulations beyondlength.

These results have natural interpretations.cyclomatic is a measure of psychological com-

plexity, like length, which may be why it does not capture much beyond what is already

captured by length. In contrast, quantity and potential are both measures of problem com-

plexity and were hence expected to capture a dimension not already re
ected inlength, and
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we indeed �nd this is the case forquantity . Actually, quantity has a large marginal e�ect

on correct: for a given length, participant, and question order, adding one rule (compared

to an average of 4.79) decreases the probability of a correct answer from a baseline of 68.6%

to 53.8%. Conversely, once controlling forquantity it seemslength is unrelated to correct.

diversity was introduced by symmetry withpotential, but it does not rely on any theoretical

foundation, and accordingly it performs poorly.level is given some theoretical foundations

in Halstead (1977), but it is expected to have a di�erent impact for more sophisticated and

less sophisticated participants, hence it's correlation withcorrect is a priori ambiguous.

We conclude from this analysis thatquantity seems to be the best ex-ante measure of

mistake-based complexity, and the only one to provide information beyondlength. For

robustness, in Online Appendix OA.4 we repeat the same analysis using OLS regressions of

the percentage of correct answers at the regulation level on the di�erent measures, and we

obtain very similar results.

3.3 Results on cost-based complexity

We repeat the analysis with cost-based complexity. For each participanti and questiont

answered by this participant, we know the time taken to answer, denotedtime i;t . According

to De�nition 5, we can consider the time taken for each regulation as a measure of cost-

based complexity. However, there are three issues that complicate the measurement: (i)

A participant may take an abnormally long or short time to answer because he or she

misunderstood the regulation. Hence, it is not clear whether wrong answers given after a

short time really re
ect a low cost-based complexity; (ii) Some participants may have \given
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up" on some regulations that looked more daunting, and given a random answer after a short

amount of time, making again such answers di�cult to interpret; (iii) A few correct answers

were given after a long time (the maximum being 958 seconds, or about 16 minutes). While

it is possible that it actually took that long to the participants to answer, it is likely that

they got distracted while completing the online experiment, in which case the actual e�ort

exerted may be vastly overestimated.

To address these issues, we restrict the sample to answers that we think are the least

likely to be a�ected by them. Starting with 1,062 observations, we keep only those 728 that

correspond to correct answers, which solves issues (i) and (ii). We then delete 6 observa-

tions for which time i;t is above 579 seconds (99 percentile of the initial distribution), which

alleviates (iii). There is still signi�cant variation in time i;t in this restricted sample: the

average is 132 seconds, the standard deviation 98, minimum 6, �rst quartile 59, median 107,

third quartile 180, and maximum 561 seconds. We then run an OLS regression oftime i;t on

di�erent measures of complexity, with participant and question �xed e�ects:

time i;t = � + �� (Ri;t ) + 
 i + � t : (7)

[Insert Tables 8 to 10 here.]

We verify that separating operands and operators helps explaining the variation oftime i;t

across regulations. Table 8 shows that this is the case. Column (2) shows that total operands

and operators have a di�erent impact ontime (p-value below 0.1%), Column (4) and (5) that

unique operands and operators have a di�erent impact, including when controlling forlength,

although the statistical signi�cance is weaker (p-values of 8.7% and 8.5%, respectively).
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However, and di�erently from the analysis of mistake-based complexity, we cannot reject the

hypothesis that unique logical operators and unique mathematical operators have the same

impact (p-value of 17.7%).

Table 9 shows that all the ex-ante measures of complexity except level have the expected

positive correlation with time. When controlling for length in Table 10, we see thatpotential

and to a lesser extentquantity are signi�cantly and positively correlated with time. In terms

of magnitude, for a givenlength, participant, and question rank, adding one extra unique

operand (compared to an average of 16.66) increasestime from an average of 132 seconds to

145 seconds.

For robustness, Online Appendix OA.4 shows the results obtained when aggregating

answers at the regulation level. Online Appendix OA.5 shows the results obtained with

several other �ltering choices, including keeping all observations, and winsorizing instead of

trimming outliers. In all cases we obtain qualitatively similar results, with the exception that

the impact of quantity , already weaker in the main speci�cation, becomes not signi�cant at

the 10% level in some speci�cations.

3.4 Discussion

The conclusion of our experimental analysis is that two of the �ve new ex-ante measures

we consider, namelypotential and quantity , seem to be good proxies for ex-post measures

of complexity, beyondlength. Interestingly, these are the two measures that were expected

to capture problem complexity, a di�erent dimension from the one captured bylength.

These two measures also seem to capture di�erent subdimensions of problem complexity:
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quantity is mostly related to mistake-based complexity, with an extra rule increasing the

probability of a mistake by 14.8 percentage points, whilepotential is mostly related to cost-

based complexity, with an extra unique operand increasing the time to provide a correct

answer by 13 seconds (controlling forlength in both cases). This suggests that more generally

making a regulation easier to understand does not necessarily make it less costly to process,

and conversely.

While we believe these results are interesting in their own right, our main conclusion is

broader: this methodology inspired by the validation of algorithmic complexity measures in

computer science provides a powerful touchstone for testing novel measures of regulatory

complexity. Indeed, out of �ve measures we tested, only two pass the test. Reassuringly

for our methodology, these two measures are also the ones that were expected to perform

the best ex ante. As we provide the texts of the regulations we used and the results of the

experiments online, other researchers have a tool to test any other text-based measure of

complexity and compare it to the �ve we considered.

4 Applications

In this section we discuss the two main possible applications of our approach, and develop

tools for these applications. The �rst one is to apply our ex-ante measures of complexity

on various regulatory texts, either in the context of an academic study on the impact of

regulatory complexity on economic outcomes, or as part of a policy process to keep track

of the complexity of new proposed regulations. Our ex-ante measures can be applied at

scale on a variety of texts, provided that one has a su�ciently rich dictionary of operands
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and operators. We explain in Section 4.1 how we developed such a dictionary. The second

application is to use our measures in the context of a normative model of regulation, which

could eventually be used by policymakers to quantify the trade-o� between the complexity

of regulation and other objectives. As a proof of concept, Section 4.2 builds a simple model

of the trade-o� pointed out by the BCBS between the risk-sensitivity and the simplicity of

capital requirements.

4.1 A dictionary for positive analysis: The Dodd-Frank Act

To build a dictionary of operands and operators and prove that our measures can be imple-

mented at a larger scale, we compute our complexity measures for the di�erent titles of the

2010 Dodd-Frank Act. There are two reasons for this choice. First, the Dodd-Frank Act is

one of the key regulations introduced after the �nancial crisis. It has triggered a lot of debate,

in particular regarding its perceived complexity. Second, the Dodd-Frank Act touches upon

a wide range of issues in �nance, so that by classifying the words of the Dodd-Frank Act we

created a comprehensive dictionary that can be used for a broad range of other regulatory

texts.

The scale and scope of the Dodd-Frank Act also creates three new challenges compared

to the more limited example of Basel I.

First, a lot of operands in the Dodd-Frank Act are \n-grams", expressions made of n

distinct words. For instance, \Consumer Financial Protection Bureau" should be considered

as one operand, not four distinct words. To take this into account, we read the entire Act

and manually made a list of all such n-grams (for details see Online Appendix OA.6). We
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classi�ed each n-gram into a category, and then removed them from further counts. That

is, we made sure that \Consumer Financial Protection Bureau" is counted only once as an

operand, not once as an operand and then again as four distinct words.

Second, some words in the text can sometimes be used as an operand and sometimes as

an operator. The most prominent example is the word \is". In principle, \is" could be a

regulatory operator (as in, e.g., \the risk-weight is 20%"). However, it could have a merely

grammatical function to indicate the passive voice (e.g., \at the time at which each report is

submitted", Sec. 112 (b)). We classify such ambiguous words in the category \other", and

hence don't count them in our di�erent measures.17

Third, the Act uses a lot of external references. As an example, Section 201 (5) reads \The

term \company" has the same meaning as in section 2(b) of the Bank Holding Company Act

of 1956 (12 U.S.C. 1841(b)) [...]" How should one deal with such a case? A possible solution

would be to include the text referenced in the example as being implicitly part of the Act.

However, with such an approach we would quickly run into the \dictionary paradox" (every

reference refers to other texts). Instead, and more consistent with the Halstead approach, we

consider that if a legal reference is mentioned it is part of the \vocabulary" one has to master

in order to read the Act, similar to a program calling a pre-programmed function. The role

of legal references is ambiguous, they are sometimes used as operators and sometimes as

operands. Thus, we include them in the \other" category.

These di�culties required us to classify the words manually. After classifying words in

the 16 Titles of the Dodd-Frank Act plus its introduction, we created a dictionary containing:

17There is necessarily some judgement involved in this decision. One could consider other possibilities,
such as estimating the fraction of occurrences in which \is" is a regulatory operator, an operand, etc., but
we believe these estimates would not necessarily carry over to other regulatory texts, thus running against
the objective of building a reusable dictionary.
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429 operators (230 logical operators, 161 regulatory operators, 38 mathematical operators),

5,872 operands, as well as 2,799 \other" words (2,450 legal references, 222 function words,

and 127 ambiguous words). Table 11 shows the top 10 words in each category as well as the

number of occurrences. Similarly to what we did in Section 2.2, we then compute di�erent

measures for the di�erent titles of the Dodd-Frank Act, and the entire act separately. The

results are reported in Table 12.

The objective of building this dictionary is that it can be used on other regulatory texts.

To test whether the dictionary is rich enough, we conduct the following exercise. For each

title i between 1 and 16 of the Dodd-Frank Act, we create an alternative dictionary based on

all the words classi�ed outside of titlei . We then treat title i as a new regulation, and count

what percentage of words we are not able to classify based on the alternative dictionary. In

addition, we also count the proportion of these unclassi�ed words that are actually operands,

operators of di�erent types, and other words. As shown in Table 13, on average across all

titles we are able to retrieve 86% of all words. Moreover, many of the words we cannot �nd

are in the \Other" category and would not be used in the complexity measures anyway. We

also �nd more than 96% of operators of all categories, so that measures relying on operators

(cyclomatic and diversity) seem the easiest to compute on other texts without having to

expand the dictionary.

[Insert Tables 11, 12, and 13 here.]

We made the dictionary of all the classi�ed words in the Dodd-Frank Act available online.

In addition, the code for the dashboard we used is available, and can be used to manually

enrich our dictionary with words from other regulatory texts. Moreover, for regulatory texts

37



with too many unclassi�ed words our dictionary can be used to train a supervised machine

learning algorithm to classify words into operands and operators.

4.2 Normative analysis: \balancing risk-sensitivity and simplic-

ity"

To use our approach for normative purposes, we extend the framework of Section 1 by assum-

ing that the regulator designing the regulation has a model of the economy that associates

an entity x and a regulatory actiony to some measure of social welfareU(x; y). For a given

regulation ' associating each possible entity to a regulatory action, the welfare achieved by

the regulation is:

W0('; x ) = U(x; ' (x)) : (8)

In a standard microeconomic model of regulation, we would solve for the' � (x) that

maximizesW0('; x ), and this would de�ne the optimal regulation. We extend this standard

case by taking into account that while ideally regulation' associatesx to ' (x), the possibility

of mistakes at the various steps studied in Section 1 implies that the actual regulatory action

may bef̂ ('; x ) 6= ' (x). More precisely, we assume that, for a givenx, with probability p̂('; x )

the regulation is correctly implemented and̂f ('; x ) = ' (x), whereas with the complementary

probability f̂ ('; x ) contains a random mistake following some distribution. In addition, we

denotet̂('; x ) the total e�ort (e.g., hours of work) spent on supervising entityx, and denote

w the cost per unit of e�ort. We can then de�ne a social welfare function that takes into
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account the costs of complexity:

W('; x ) = p̂('; x )U(x; ' (x)) + (1 � p̂('; x ))E[U(x; f̂ ('; x )) jf̂ ('; x ) 6= ' (x)] � wt̂('; x ): (9)

Note that the choice of ' a�ects the probability p̂('; x ) of a mistake, the distribution of

f̂ ('; x ) in case of a mistake, and the total e�ort t̂('; x ). In particular, according to our

de�nitions in Section 1, a more complex regulation' means that the probability of a mistake

and the e�ort costs are higher. Hence, there is potentially a trade-o� between having a

regulation \close" to ' � and generating regulatory mistakes and costs.

We illustrate this approach with a simple model of risk-sensitive capital requirements.

The intense policy debate on the complexity of capital requirements led the Basel Committee

to publish a discussion paper on the trade-o�s between \risk sensitivity, simplicity and

comparability" (Basel Committee on Banking Supervision, 2013). Nine years later, the right

trade-o� remains elusive, in particular due to the lack of a normative framework to think

about regulatory complexity. We sketch how our framework could eventually serve such a

normative purpose and be used to think about the optimal level of complexity.

Assume a bank invests in assets that have a certain \asset class"x ,! U [0; 1], and

denotey the minimum level of capital the bank must have. In Online Appendix OA.7, we

derive for illustration a simple function U(x; y) in a model of bank risk-shifting, such that

capital regulation can improve welfare.18 We consider the following family of bank capital

18In future research going beyond this proof of concept, one should use a quantitative model of the economy
rich enough to accommodate di�erent regulations. This is precisely where the literature on bank capital
requirements is heading. See for instance Begenau and Landvoigt (2021), or the BIS' \Financial Regulation
Assessment: Meta Exercise" (https://www.bis.org/frame/ ) for a meta-analysis of the quantitative impact
of capital requirements.
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regulations:

if x < �x1 then y � E �
1

else if x < �x2 then y � E �
2

...

else if x < �x I � 1 then y � E �
I � 1

else y � E �
I

where y is the amount of equity the bank is required to have for an asset belonging

to classy, the �x i are thresholds chosen by the regulator, theE �
i are capital levels chosen

by the regulator, and I is the number of risk buckets considered by the regulator. We

denoteW0(I ) = E[U(x; y)] the expected economic welfare if the regulation above is perfectly

implemented, with theE �
i chosen optimally. The Appendix shows that this welfare increases

in I . This captures in a stylized way the bene�ts of risk-sensitivity, the �rst leg of the

trade-o� described in Basel Committee on Banking Supervision (2013).

The second leg, simplicity, the opposite of complexity, can be captured by our complexity

measures. In the regulation above, the logical operators are \if", \else", and \then",� is a

regulatory operator, and< is a mathematical operator. The operands arex, y, the �x i , and

the E �
i . We have� R = 1 and NR = I , � L = 3 and NL = 3( I � 1), � M = 1 and NM = I � 1,

� OD = 2I + 1 and NOD = 4I � 2. Given the numberI of intervals used, we can then easily

compute the measures using the formulas in Table 1 and see how they vary with the number

of asset classesI .

For illustration, we then use the estimates of Section 3 to translate the measures into the

probability p̂(I ) with which the regulation is applied without mistake and the total e�ort

t̂(I ). More speci�cally, we use the estimates from speci�cation (3) in Table 6 and (4) in
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Table 9 to compute, for everyI :19

p̂(I ) = �(2 :877� 0:507quantity (I )) (10)

t̂(I ) = 4 :055 + 7:965potential(I ): (11)

We can now quantitatively measure how increasing the number of distinct asset classes

a�ects W0(I ) (welfare absent costs of complexity), ^p(I ), t̂(I ), and welfareW(I ) (including

the costs of complexity). Figure 3 displays the results for the particular welfare function

derived in Online Appendix OA.7.20 In particular, while W0(I ) is strictly increasing in I , we

obtain that W(I ) is bell-shaped and for more thanI = 3 risk-buckets the costs of complexity

outweigh the bene�ts. Hence, the policymaker can compute the optimal trade-o� between

\risk-sensitivity" and \simplicity".

[Insert Fig. 3 here.]

The method we outline here is only a proof of concept, but to our knowledge this is the

�rst proposal o�ering policymakers a quantitative approach to the trade-o� between regula-

tory complexity and other policy objectives. The actual implementation of this approach for

policy would require policymakers to complete two additional tasks: (i) develop quantita-

tive models of regulation, rich enough to estimate the welfare impact of di�erent regulatory

19In each case the constant term is the sum of the constant in the regression, the average participant �xed
e�ect, and the average question �xed e�ect.

20In addition to the parameters discussed above, we assume that conditionally on a mistake being made
f̂ ('; x ) is uniformly distributed over [0 ; 1]. In addition, we assume� = 0 :025; � = 0 :01; p = 0 :05; w = 0.
The e�ort costs then play no role in the graphs, but obviously a higher w would make W(I ) decrease more
quickly in I .
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alternatives; (ii) run richer and more robust experiments to have a more precise view of the

costs of psychological complexity for di�erent audiences.21

5 Conclusion

We propose a comprehensive framework, inspired by the computer science literature, to

analyze regulatory complexity. Our framework allows us to distinguish di�erent dimensions

of regulatory complexity, derive six measures of regulatory complexity that can be applied to

large scale regulatory texts, conduct a validation test that can be applied to any text-based

measure, and study the trade-o� between the costs and bene�ts of more complex regulations

in a normative model.

The present work is only a �rst step in applying this new approach to the study of

regulatory complexity, and is meant as a \proof of concept". We believe our �rst results are

encouraging and highlight several promising avenues for future research.

First, our dictionary will allow other interested researchers to compute complexity mea-

sures for other regulatory texts and compare them to those we produced for Basel I and

the Dodd-Frank Act. One can for instance compare the complexity of di�erent regulatory

topics, di�erent updates of the same regulation, di�erent national implementations, etc. A

rich database of the complexity of di�erent regulations could eventually be used in empirical

studies aiming at testing some of the mechanisms that have been proposed in the theoretical

literature.
21More speci�cally, the type of experiment we consider in Section 3 should ideally be reproduced with

regulations actually under discussion, and with participants closer to the actual audience of regulatory texts
(bankers, lawyers, regulators, etc.).
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Second, the experiments we conducted and the validation criteria we propose allow in-

terested researchers to test any alternative text-based measure and compare it to the six

measures considered in this study. They could also serve as a useful benchmarking tool for

policymakers drafting new regulations.

Finally, the measures of complexity we propose can be computed also on models of

regulation, opening the possibility for policymakers to conduct the trade-o� between the

precision and the complexity of regulation under the guidance of a quantitative model.
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A Tables

Table 1: Summary of Measures of Regulatory Complexity.

Name Source Formula Complexity Dimension Approach

Length e.g., Haldane and Madouros (2012)N Psychological Ex-ante
Cyclomatic complexity McCabe (1976) NL Psychological Ex-ante
Quantity of regulations Al-Ubaydli and McLaughlin (2017) NR Problem Ex-ante
Potential volume This paper and Halstead (1977) 2 +� OD Problem Ex-ante
Operator diversity This paper � OR Psychological Ex-ante
Level This paper and Halstead (1977) 2+ � OD

N Psychological Ex-ante

RegFragmentation Kalmenovitzet al. (2022) - Computational Ex-ante

Average word length e.g., Amadxarifet al. (2019) - Psychological Ex-ante
Lexical diversity Maas (1972) - Psychological Ex-ante
Readability metric (Kincaid et al., 1975) - Psychological Ex-ante
Shannon's entropy e.g., Katz and Bommarito (2014) - Psychological Ex-ante

PageRank Amadxarifet al. (2019) - Psychological Ex-ante
Network Centralities Boulet et al. (2011) - Psychological Ex-ante

Regulation Index Simkovic and Zhang (2020) - Computational Ex-post
RegIn Kalmenovitz (2023) - Computational Ex-post
NetReg Calomiriset al. (2020) - Computational Ex-post
Regulatory costs Singla (2022) - Computational Ex-post

Table 2: Correlation coe�cients between the measures based on the algorithmic represen-
tation of Basel I and the measures based on the text of Basel I.

Pearson Spearman

length 0.76 0.84
cyclomatic 0.41 0.64
quantity 1 1
potential 0.82 0.8
diversity 0.4 0.48

level 0.39 0.43
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Table 3: Summary statistics on complexity measures - sample of 38 randomly generated
regulations.

mean sd min max

length 31.82 12.46 10.00 57.00
cyclomatic 5.32 3.58 1.00 13.00
quantity 4.79 1.19 2.00 6.00
potential 16.66 5.45 7.00 28.00
diversity 4.24 0.94 3.00 7.00
level 0.55 0.09 0.39 0.70

Table 4: Pairwise correlations between complexity measures, sample of 38 randomly gen-
erated regulations.

Panel A: Pearson Correlation Coe�cients
length cyclomatic quantity potential diversity level

length 1 0.89 0.87 0.92 0.8 -0.7
cyclomatic 0.89 1 0.68 0.72 0.63 -0.79
quantity 0.87 0.68 1 0.82 0.7 -0.69
potential 0.92 0.72 0.82 1 0.83 -0.4
diversity 0.8 0.63 0.7 0.83 1 -0.43
level -0.7 -0.79 -0.69 -0.4 -0.43 1

Panel B: Spearman Rank Correlation Coe�cients

length cyclomatic quantity potential diversity level

length 1 0.89 0.85 0.91 0.83 -0.69
cyclomatic 0.89 1 0.75 0.7 0.67 -0.86
quantity 0.85 0.75 1 0.8 0.69 -0.65
potential 0.91 0.7 0.8 1 0.86 -0.39
diversity 0.83 0.67 0.69 0.86 1 -0.45
level -0.69 -0.86 -0.65 -0.39 -0.45 1
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Table 5: Correlation of mistake-based complexity with operands and operators .
This table reports the coe�cients, t-statistics (in brackets), and Pseudo-R2, of probit re-
gressions ofcorrecti;t over di�erent counts of total and unique operands and operators, with
participant and question �xed e�ects.

(1) (2) (3) (4) (5) (6)

length = NOD + NOR -0.037*** -0.044*** -0.042***
(-7.95) (-3.83) (-3.59)

NOD -0.062***
(-3.94)

NOR 0.006
(0.22)

� OD + � OR -0.065***
(-7.27)

� OD -0.144*** -0.070*** -0.093***
(-7.44) (-2.60) (-3.32)

� OR 0.451*** 0.559***
(4.04) (4.77)

� M 1.103***
(6.30)

� L 0.396***
(3.22)

Pseudo-R2 0.243 0.246 0.232 0.253 0.266 0.283

Table 6: Correlation of mistake-based complexity with ex-ante measures of com-
plexity . This table reports the coe�cients, t-statistics (in brackets), and Pseudo-R2, of
probit regressions ofcorrecti;t over the six ex-ante measures of complexity separately, with
participant and question �xed e�ects.

(1) (2) (3) (4) (5) (6)

length -0.037***
(-7.95)

cyclomatic -0.095***
(-6.23)

quantity -0.507***
(-9.34)

potential -0.078***
(-7.59)

diversity -0.243***
(-4.34)

level 4.061***
(6.52)

Pseudo-R2 0.243 0.217 0.277 0.237 0.198 0.221
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Table 7: Correlation of mistake-based complexity with ex-ante measures of com-
plexity, controlling for length.This table reports the coe�cients, t-statistics (in brackets),
and Pseudo-R2, of probit regressions ofcorrecti;t over length and each of the �ve other mea-
sures of complexity separately, with participant and question �xed e�ects.

(1) (2) (3) (4) (5) (6)

length -0.037*** -0.055*** 0.005 -0.030*** -0.065*** -0.031***
(-7.95) (-5.69) (0.62) (-2.75) (-7.85) (-5.16)

cyclomatic 0.068**
(2.13)

quantity -0.554***
(-5.92)

potential -0.017
(-0.70)

diversity 0.438***
(4.16)

level 1.275
(1.55)

Pseudo-R2 0.243 0.248 0.277 0.244 0.260 0.246

Table 8: Correlation of cost-based complexity with operands and operators . This
table reports the coe�cients, t-statistics (in brackets), and adjustedR2, of OLS regressions
of time i;t over di�erent counts of total and unique operands and operators, with participant
and question �xed e�ects. The sample is restricted to correct answers withtime � 579.

(1) (2) (3) (4) (5) (6)

length = NOD + NOR 3.388*** 0.654 0.597
(14.39) (1.01) (0.92)

NOD 7.102***
(8.04)

NOR -3.193**
(-2.09)

� OD + � OR 6.886***
(15.27)

� OD 8.452*** 7.272*** 7.601***
(8.30) (4.69) (4.85)

� OR -3.309 -4.550
(-0.55) (-0.75)

� M -13.953
(-1.51)

� L -1.296
(-0.20)

R2
a 0.445 0.461 0.462 0.464 0.464 0.465
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Table 9: Correlation of cost-based complexity with ex-ante measures of com-
plexity . This table reports the coe�cients, t-statistics (in brackets), and adjustedR2, of
univariate regressions oftime over the six ex-ante measures of complexity separately, with
participant and question �xed e�ects. The sample is restricted to correct answers with
time � 579.

(1) (2) (3) (4) (5) (6)

length 3.388***
(14.39)

cyclomatic 9.338***
(10.18)

quantity 32.996***
(13.80)

potential 7.965***
(15.39)

diversity 39.316***
(12.28)

level -265.538***
(-6.90)

R2
a 0.445 0.363 0.433 0.465 0.403 0.308

Table 10: Correlation of cost-based complexity with ex-ante measures of com-
plexity, controlling for length. This table reports the coe�cients, t-statistics (in brackets),
and adjustedR2, of regressions ofcorrect over length and each of the �ve other measures of
complexity separately, with participant and question �xed e�ects. The sample is restricted
to correct answers withtime � 579.

(1) (2) (3) (4) (5) (6)

length 3.388*** 5.371*** 2.234*** 0.556 2.946*** 4.183***
(14.39) (10.46) (4.39) (0.88) (6.81) (12.74)

cyclomatic -8.084***
(-4.33)

quantity 13.072**
(2.56)

potential 6.807***
(4.79)

diversity 6.899
(1.22)

level 165.462***
(3.44)

R2
a 0.445 0.461 0.450 0.465 0.445 0.455
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Table 11: Top 10 words in each category, entire Dodd-Frank Act.

Operands Operators

Regulatory Logical Mathematical

COMMISSION 1573 SHALL 3595 AND 9352 ADDING 267
PERSON 920 AMENDED 651 OR 8928 ADDITIONAL 125
BUREAU 788 REQUIRED 548 ANY 4007 TOTAL 101

CORPORATION 771 ESTABLISHED 282 AS 2646 MINIMUM 86
INFORMATION 731 ESTABLISH 247 OTHER 1546 EXCEED 70

DATE 692 REQUIRE 220 NOT 1128 OVER 69
STATE 607 PRESCRIBED 219 AFTER 906 ADDED 68

APPROPRIATE 569 DETERMINES 212 INCLUDING 761 INCREASE 48
REPORT 564 PRESCRIBE 202 EACH 687 MAXIMUM 41

AUTHORITY 552 DETERMINE 181 WITH RESPECT TO 678 MINIMIZE 28

Table 12: Complexity measures of the 16 titles of the Dodd-Frank Act.

Title length cyclomatic quantity potential diversity level

1 10581 2271 729 1389 190 0.13
2 16388 4479 852 1559 212 0.10
3 7269 2052 335 889 130 0.12
4 1938 466 117 444 94 0.23
5 3539 828 163 784 107 0.22
6 7662 1960 503 1040 157 0.14
7 32055 8195 2195 2127 231 0.07
8 3852 882 263 634 119 0.16
9 26319 5826 1614 2533 277 0.10
10 31872 7938 1916 2724 277 0.09
11 3277 764 220 674 113 0.21
12 780 155 49 248 42 0.32
13 575 141 31 152 32 0.26
14 16126 3389 866 2068 237 0.13
15 2013 376 106 549 76 0.27
16 68 22 3 32 14 0.47
Entire Act 164314 39744 9962 5874 429 0.04
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Table 13: Fraction of words found in each title of the Dodd-Frank Act, using dictionaries
built from the other titles only.

Title All Operands Operators Other

Logical Regulatory Mathematical

1 0.89 0.89 0.92 1.00 0.88 0.84
2 0.92 0.94 0.98 0.97 0.93 0.81
3 0.83 0.93 1.00 0.96 1.00 0.66
4 0.93 0.92 0.98 1.00 1.00 0.91
5 0.87 0.84 1.00 0.97 1.00 0.90
6 0.86 0.90 0.98 0.98 0.92 0.73
7 0.80 0.83 0.95 0.98 0.80 0.70
8 0.94 0.95 1.00 1.00 1.00 0.88
9 0.77 0.81 0.93 0.94 0.95 0.60
10 0.75 0.81 0.91 0.93 0.90 0.55
11 0.90 0.91 0.97 0.97 1.00 0.84
12 0.95 0.95 1.00 1.00 1.00 0.95
13 0.87 0.89 1.00 1.00 1.00 0.80
14 0.77 0.80 0.90 0.84 0.95 0.64
15 0.85 0.84 0.98 0.97 1.00 0.85
16 0.91 0.87 1.00 1.00 . 0.91
Average 0.86 0.88 0.97 0.97 0.96 0.79
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B Figures

'

f 6= 'f = '

~f = f = ' ~f 6= f ~f 6= '

f̂ (x) = ~f (x) = ' (x) f̂ (x) 6= ~f (x) f̂ (x) 6= ' (x) f̂ (x) 6= ' (x)

Problem
Complexity

Psychological
Complexity

Computational
Complexity

Drafting

Interpretation

Supervision

Figure 1: How problem- psychological- and computational complexity a�ect the likelihood
of correctly solving the regulatory problem' for a given entity e. If the regulation is drafted
incorrectly, then f 6= ' . If a correct regulation is interpreted incorrectly, then~f 6= f . Lastly,
if a mistake is made at the supervision stage then̂f (x) 6= ~f (e).
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Figure 2: Online experiment - Test round.

Figure 3: Frequency of correct implementation, e�ort spent, social welfare without com-
plexity costs, and social welfare with complexity costs, as functions of the numberI of risk
buckets.
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C Example of a randomly generated regulation

We report here one of the random regulations generated by our algorithm. We �rst report

the raw output and then the \translated" text that students saw in the experiment.
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Online Appendix to \Measuring Regulatory

Complexity"

This Online Appendix provides additional material omitted from the main text.

OA.1 Two representations of Basel I risk-weighted as-

sets

In the following, we provide a description of the Basel I regulation in the form of a stylized

algorithm and compare it side by side with the actual text of the regulation. We use pseudo

code that simply captures the logical 
ow of the instructions in Basel I. To compute the Hal-

stead measures for each item we consider the code contained between two \ASSETCLASS

==" (excluding this expression). This section reports the text we used to compute the

complexity measures in Table OA.4.
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OA.2 Complexity of Basel I - Descriptive statistics

This section gives additional descriptions of the measures we computed on the Basel I rules,

both the algorithmic version and the text version.

We report the measures computed on the algorithmic version of Basel I in Table OA.1.

In addition, Table OA.2 gives the pair-wise correlation coe�cients between the di�erent

measures, across the 19 regulatory instructions. We report both the Pearson and Spearman

correlation coe�cients. Since each item between (1a) and (5h) contains by construction

exactly one regulatory instruction, the measurequantity is always equal to 1 and its cor-

relation with other measures is unde�ned. The measureslength, cyclomatic, and level are

highly correlated with each other, whilepotential and diversity are less correlated and thus

potentially bring information not captured before.

Turning to the text version, we �rst report the top 5 words in each category in Table OA.3.

We then report the measures computed for each item in Table OA.4, and the correlations

between the di�erent measures across items in Table OA.5. We observe that the text-based

measures tend to be less correlated with each other than the algorithm-based measures.
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Table OA.1: Complexity measures of the 19 items of Basel I (algorithmic version).

Regulation length cyclomatic quantity potential diversity level

1a 8 2 1 6 4 0.75
1b 24 6 1 12 6 0.5
1c 20 5 1 11 6 0.55
1d 16 4 1 9 6 0.56
2a 43 11 1 14 7 0.33
3a 68 17 1 14 6 0.21
3b 26 7 1 12 6 0.46
3c 34 9 1 14 8 0.41
3d 44 11 1 15 7 0.34
3e 12 3 1 8 5 0.67
4a 20 5 1 11 6 0.55
5a 12 3 1 8 5 0.67
5b 20 5 1 12 7 0.6
5c 22 6 1 12 6 0.55
5d 16 4 1 10 5 0.63
5e 21 6 1 9 5 0.43
5f 13 4 1 7 5 0.54
5g 16 4 1 10 6 0.63
5h 5 2 1 4 3 0.8

Total 440 114 19 54 10 0.12
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Table OA.2: Pairwise correlations between complexity measures, across the 19 items of
Basel I (algorithmic version). quantity is not included, as it is constant across items.

Panel A: Pearson Correlation Coe�cients

length cyclomatic potential diversity level

length 1 1 0.81 0.6 -0.93
cyclomatic 1 1 0.8 0.58 -0.94
potential 0.81 0.8 1 0.9 -0.83
diversity 0.6 0.58 0.9 1 -0.67
level -0.93 -0.94 -0.83 -0.67 1

Panel B: Spearman Rank Correlation Coe�cients

length cyclomatic potential diversity level

length 1 0.99 0.94 0.78 -0.93
cyclomatic 0.99 1 0.92 0.76 -0.95
potential 0.94 0.92 1 0.89 -0.79
diversity 0.78 0.76 0.89 1 -0.65
level -0.93 -0.95 -0.79 -0.65 1

Table OA.3: Top 5 words in each category in Basel I (text version).

Operands Operators:
Regulatory Logical Mathematical

risk weight 19 have 19 and 12 up to 2
claims 15 shall 19 other 6 above 1
banks 10 or 5 all 1
OECD 10 outside 4 over 1
central 9 excluding 2
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Table OA.4: Complexity measures of the 19 items of Basel I (text version).

Regulation length cyclomatic quantity potential diversity level

1a 5 0 2 5 2 1
1b 16 2 2 12 3 0.75
1c 12 2 2 9 4 0.75
1d 16 1 2 13 3 0.81
2a 22 3 2 18 5 0.82
3a 21 2 2 17 4 0.81
3b 14 1 2 9 3 0.64
3c 26 3 2 13 5 0.5
3d 18 3 2 14 5 0.78
3e 8 0 2 8 2 1
4a 15 2 2 13 3 0.87
5a 7 0 2 7 2 1
5b 13 1 2 11 4 0.85
5c 17 3 2 12 6 0.71
5d 10 0 2 10 2 1
5e 12 3 2 9 4 0.75
5f 15 5 2 10 6 0.67
5g 12 2 2 9 4 0.75
5h 7 1 2 5 4 0.71

Total 266 34 38 69 14 0.26
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Table OA.5: Pairwise correlations between complexity measures, across the 19 items of
Basel I (text version). quantity is not included, as it is constant across items.

Panel A: Pearson Correlation Coe�cients
length cyclomatic potential diversity level

length 1 0.65 0.88 0.63 -0.62
cyclomatic 0.65 1 0.48 0.89 -0.69
potential 0.88 0.48 1 0.44 -0.24
diversity 0.63 0.89 0.44 1 -0.72
level -0.62 -0.69 -0.24 -0.72 1

Panel B: Spearman Rank Correlation Coe�cients

length cyclomatic potential diversity level

length 1 0.71 0.93 0.64 -0.42
cyclomatic 0.71 1 0.56 0.89 -0.64
potential 0.93 0.56 1 0.47 -0.1
diversity 0.64 0.89 0.47 1 -0.67
level -0.42 -0.64 -0.1 -0.67 1
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