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Introduction

In this paper, we investigate whether financial markets are informative about ex-

change rates. We completely characterize how the absence of arbitrage imposes

restrictions on exchange rate dynamics for a wide class of economies. Euler equa-

tions imply how expected currency depreciation rates and exchange rate risk relate

to stochastic discount factors (SDFs) of domestic and foreign households. The mar-

ket structure (completeness, integration, intermediation) as well as the nature of

asset risks across countries shape these relations. We develop evidence about the

latter, establishing a financial disconnect: financial asset returns are only weakly

related to exchange rates. Taking empirics and theory together, we conclude that,

depending on market structure, implications for exchange rates are either sharp but

counterfactual or very limited.

We consider an environment with a domestic and a foreign representative household,

each of which is trading a given set of assets in its own currency. These assets could

be the same, have some overlap or be completely distinct across households. Each

household has an SDF, and its Euler equation prices the assets that it trades. Our

main assumption is lack of arbitrage in international markets, that is, for portfolios

of domestic and foreign assets. While simple, this condition captures the essence

of many theories of financial markets. For example, it arises when one or both

households can invest in all assets, or when an intermediary is able to access all

assets.

Restrictions on the behavior of the exchange rate come from the structure of the

domestic and the foreign set of assets, and their relation with the exchange rate.

We introduce a taxonomy of shocks affecting asset returns to characterize these
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restrictions. Specifically, we delineate globally and locally traded shocks. Globally

traded shocks can be replicated separately by portfolios of domestic assets in domestic

currency and portfolios of foreign assets in foreign currency. Local shocks are the

remaining sources of variation in asset returns. The depreciation rate can be exposed

to these two types of shocks as well as experience variation that is unspanned by asset

returns.

In this setting, two results characterize entirely the restrictions on the behavior of the

exchange rate. The first one disciplines shocks to the depreciation rate — exchange

rate risk — while the second constrains the expected depreciation rate.

The first result states that the projection of the log depreciation rate on global shocks

coincides with the projection of the difference of the logs of foreign and domestic SDFs

on the same shocks,

Et(∆st+1|ϵϵϵGt+1) = Et(m
∗
t+1 −mt+1|ϵϵϵGt+1).

This general condition nests in particular the well-known complete market relation

∆st+1 = m∗
t+1−mt+1. The latter relation is the source of many international macroe-

conomics puzzles, such as the cyclicality puzzle of Backus and Smith (1993) and the

volatility puzzle of Brandt, Cochrane, and Santa-Clara (2006). Our general result

offers a path to overcome these puzzles by imposing weaker restrictions.

The second result characterizes departures of the expected depreciation rate from

uncovered interest parity (UIP). The important requirement for this restriction in

our setting is that the depreciation rate is spanned by a combination of domestic and

foreign assets in their respective currencies. If this condition holds, we show that UIP

deviations consist of two components. One is the standard complete market result of
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an FX risk premium. The other one reflects differences in how foreign and domestic

investors price risk. Just like with the first result, this offers flexibility in matching

the expected depreciation rate, a quantity which the complete markets framework

struggles to replicate without aggravating the volatility and cyclicality puzzles.

Our two results highlight the importance of relations between foreign and domestic

assets: presence of globally traded shocks for the first one, spanning of the depreci-

ation rate for the second one. These relations can arise in a market structure where

some assets are traded in common by both households or, even absent any inte-

gration, if different assets have related risks. As the next step of our analysis, we

investigate specific implications of the two results for a variety of such settings.

We first study the role of different forms of market integration. We consider situations

in which markets are not only incomplete, but also in which domestic and foreign

investors have access to different sets of assets. As long as one investor can trade

the risk-free bond of the other country, the exchange rate becomes spanned by asset

returns — specifically by the carry trade — and the FX risk premium coincides with

complete markets. However, such an economy is still relatively flexible in terms of

cyclicality and volatility of exchange rates. The critical feature that leads to puzzles

with these quantities is when both investors can access the risk-free bond of the

other country, an economy studied in Lustig and Verdelhan (2015). In this case,

the exchange rate itself is a globally traded shock — both investors can engage in

the carry trade — and hence becomes tightly connected to SDFs. If both investors

can also trade the same risky assets, this can only bring the exchange rate closer to

complete markets. In contrast, if all assets but one risk-free bond are traded by both

investors, restrictions on the exchange rate can remain weak.
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Second, we study the role of the nature of risks in the financial markets of each

economy. To do so, we remove any direct form of market integration, and concentrate

on a setting in which intermediaries trade and enforce the absence of arbitrage on

international markets. In these economies, the exchange rate can exhibit significant

risk that is not spanned by asset returns. This unspanned risk can justify an FX risk

premium independent from those determined by local SDFs. In addition, exchange

rate risk is connected to the household SDFs only through the presence of globally

traded shocks. For example if the domestic and foreign economy are driven by the

same global cycle, this global shock will drive both SDFs and the exchange rate,

and they will be connected. However, if the two economies are each driven by their

own set of shocks, the connection is broken; SDFs and the exchange rate can be

arbitrarily related. As such, intermediated economies can lead to realistic exchange

rates, but exactly when financial markets impose no discipline.

Motivated by the intermediated model, we turn to the data to quantify the relations

between asset returns and exchange rates. Equivalently, we ask how much an econo-

metrician, even in a complete market economy, can hope to learn about the exchange

rate from observing other asset returns. We study all G10 countries relative to the

U.S. between 1988 and 2022. In terms of asset returns, we use various stock indices

(market, value, growth, industries) and government bonds of different maturities.

First, we find consistent evidence that asset returns do not span exchange rates.

Regressing depreciation rates on all asset returns of the home and foreign country

lead to R2s below 50%, statistically and economically far from the perfect relation

necessary to discipline the FX risk premium. Still, if global shocks are important,

exchange rate shocks could be determined by the difference of SDFs. Here again, the

evidence does not suggest these restrictions are empirically relevant. Using canonical
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correlation analysis, we find that the most correlated portfolios across country have

at most a correlation of 0.8, already a tenuous notion of globally traded shocks. And,

even if one is willing to consider those portfolios as globally traded, they only explain

a very small fraction of the variation in exchange rates.

Overall, these results suggest that financial markets are not very informative about

exchange rates. In market structures that impose discipline on exchange rates, the

same puzzles as in the complete market setting arise. Conversely, market structures

that accommodate realistic exchange rates do not pin down much about them. One

interpretation of these results is negative: the enterprise of focusing on macro Euler

equations or on data on other financial assets is unlikely to lead to sharp conclusions

about exchange rates. But there is also a more positive take: some theories, in

particular centered on intermediated markets, can yield realistic exchange rates. One

just has to dig deeper into what determines the activity and trading choices of these

intermediaries to get at exchange rate determination.

1 Setup

We are interested in restrictions on the behavior of exchange rates coming from

properties of other asset returns. To answer this question, we introduce a general

framework and derive two sets of restrictions, on the risk (variance-covariance) of

exchange rate depreciation and the expected exchange rate depreciation.

There are two countries, which we refer to as Home and Foreign. Denote St the

nominal exchange rate at date t equal to the number of units of home currency for

one unit of foreign currency. All along the paper, lowercase letters represent logs.
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For example, st is the log exchange rate. We also denote with a tilde demeaned

variables, that is, shocks. For example, ∆̃st+1 = ∆st+1 − Et∆st+1.

1.1 Assets

We consider various sets of assets that investors can have access to: domestic, foreign,

or combinations of the two. Within these asset sets, investors can form arbitrary

portfolios. Specifically, we start from a collection of assets with log returns rrrt+1 =

(r1,t+1, . . . , rN,t+1). The corresponding set of assets contains all feasible portfolios,

{rp,t+1|∃wwwt ∈ RN : www′
tιιι = 1, rp,t+1 = log (www′

t exp (rrrt+1))}.

To maintain tractability, we follow Campbell and Viceira (2002) and approximate

the log portfolio excess returns relative to a risk-free rate rft:

rp,t+1 − rft = log
(
www′

te
rrrt+1−rftιιι

)
≈ www′

t(rrrt+1 − rftιιι) +
1

2
www′

t diag(ΣΣΣt)−
1

2
www′

tΣΣΣtwwwt, (1)

where ΣΣΣt is the variance-covariance matrix of log returns. This approximation allows

us to represent portfolios returns as linear combination of log returns. Importantly,

it is stable by recombination, leading to the same result when applied in two steps

or all at once for a portfolio of portfolios.

We adapt this framework to an international setting by considering two sets of re-

turns: one in domestic currency H, another in foreign currency F . As an example, H

may include a domestic sovereign bond, or foreign equity index converted to domestic

currency.
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We denote the returns on the assets accessible by the domestic investors rrrt+1 =

(r1,t+1, . . . , rN,t+1), and assume this collection includes a risk-free asset with return

rft in home currency known at time t. Furthermore, we assume that asset returns

are log-normal, that is rrrt+1 are multivariate normal, MVN(µµµt,ΣΣΣt). Similarly, the

returns of the assets accessible by the foreign investor are rrr∗t+1 in foreign currency,

log-normal of size N∗, and contain a foreign-currency risk-free rate of r∗ft .

Global and local shocks. Intuitively, returns are affected by a collection of

shocks, some of which are local to each economy, ϵϵϵt+1 or ϵϵϵ∗t+1, while others are com-

mon to both, i.e., global shocks, ϵϵϵGt+1. This notion corresponds to

r̃rrt+1 = PPPϵϵϵt+1 +PPPGϵϵϵGt+1, (2)

r̃rr∗t+1 = PPP ∗ϵϵϵ∗t+1 +PPP ⋆GϵϵϵGt+1. (3)

To make this representation operational, we specify how to construct the local and

global shocks.

Definition 1. Local and global shocks are a collection (ϵϵϵt+1, ϵϵϵ
∗
t+1, ϵϵϵ

G
t+1) such that:

1. Shocks to asset returns in each country can be represented as a combination of

global shocks and local shocks of that country (equations (2) and (3)).

2. Global shocks can be constructed as innovations to portfolios of assets in each

country: ϵϵϵGt+1 = AAAGr̃rrt+1 = AAA⋆Gr̃rr∗t+1

3. Local shocks can be replicated by portfolios of assets in their respective countries,

ϵϵϵt+1 = AAAr̃rrt+1 and ϵϵϵ∗t+1 = AAA∗r̃rr∗t+1, such that (ϵϵϵt+1, ϵϵϵ
∗
t+1) ⊥ ϵϵϵGt+1.
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These shocks are unique up to rotation and rescaling and form bases in the respective

economies. Importantly, one can go from asset returns to the shocks and from the

shocks to asset returns. That is (ϵϵϵt+1, ϵϵϵ
G
t+1) is the basis in H, and (ϵϵϵ∗t+1, ϵϵϵ

G
t+1) is the

basis in F . In practice, the notion of global shock in Definition 1 is quite restrictive as

it requires perfectly correlated portfolios in H and F . In section 2.3 we discuss how

a notion of approximate global shocks, from strongly but not perfectly correlated

portfolios, can also be relevant.

1.2 Stochastic discount factors.

We specify valuation mechanisms for each set of assets, H and F, separately.

Assumption 1. The domestic (log) stochastic discount factor (SDF) mt+1 prices all

assets in H, i.e., it satisfies the Euler equation

∀rt+1 ∈ H : Et [exp(mt+1 + rt+1)] = 1. (4)

Similarly, the foreign log SDF m∗
t+1 prices all assets in F :

∀r∗t+1 ∈ F : Et

[
exp(m∗

t+1 + r∗t+1)
]
= 1. (5)

For now, we do not take a stand on the origins of these discount factors. In some

applications, the discount factors represent optimal decisions of domestic and foreign

households. For example with CRRA utility, we would havemt+1 = −γ log(Ct+1/Ct),

with Ct being aggregate domestic consumption, and γ a coefficient of risk aversion.

In other applications, the discount factors are simply a representation of the risk-

return relation among assets. For example, the SDF could be constructed from asset
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returns as mt+1 = λλλ′
trrrt+1, with λλλt ∈ RN , in the spirit of Hansen and Jagannathan

(1991).

We focus on situations with log-normal SDFs. The Euler equations imply that ex-

pected excess returns are proportional to the covariance with the stochastic discount

factors. In our log-normal setting, this corresponds to:

∀rt+1 ∈ H : Et(rt+1) +
1

2
vart(rt+1) = rft − covt(mt+1, rt+1), (6)

∀r∗t+1 ∈ F : Et(r
∗
t+1) +

1

2
vart(r

∗
t+1) = r∗ft − covt(m

∗
t+1, r

∗
t+1). (7)

Our assumptions so far ensure that each of the domestic and foreign set of asset

returns have standard and tractable properties. Importantly, note that none of them

involves explicitly the exchange rate. Next, we turn to the connection between

domestic and foreign asset returns.

1.3 Exchange rate depreciation

Recall that st is the log of the nominal exchange rate, and therefore ∆st+1 is the

nominal depreciation. Specifically, ∆st+1 > 0 means that home currency loses its

purchasing power of foreign currency, that is more units of home currency are need

to buy one unit of foreign currency. Conversely, ∆st+1 < 0 corresponds to the home

currency appreciation. Financial markets are concerned with exchange rate depreci-

ations and appreciations, not the level of the exchange rate, as foreign currency asset

returns are increased by the exchange rate depreciation when expressed in home

currency terms.
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The financial markets cares about both the expected exchange rate depreciation,

Et∆st+1, and the exchange rate depreciation risk, ∆̃st+1 = ∆st+1 − Et∆st+1, as

they affect expected return and risk of foreign currency-assets. To streamline the

discussion, we represent the depreciation rate generically as follows:

∆st+1 = Et(∆st+1) + vt+1 + ut+1, (8)

where the innovation vt represents variation in the depreciation rate spanned by

financial assets, vt+1 = E(∆̃st+1|̃rrrt+1, r̃rr
∗
t+1), and ut+1 is the unspanned innovation,

covt(vt+1, ut+1) = 0.

We can use Definition 1 to represent vt+1 in terms of global and local shocks:

vt+1 = SSSGϵϵϵGt+1 +SSSϵϵϵt+1 +SSS∗ϵϵϵ∗t+1 (9)

for some conformable matrices SSSG, SSS and SSS∗ and ut+1 ⊥ (ϵϵϵGt+1, ϵϵϵt+1, ϵϵϵ
∗
t+1).

1.4 Connecting domestic and foreign markets

We are interested in how international financial trade restricts the properties of

exchange rates. We focus on a simple implication of this activity: the absence of

arbitrage. Lack of arbitrage in international markets arises in a very large class of

models. It is always satisfied in theories with frictionless asset markets in which all

investors can purchase all assets (e.g., Colacito and Croce, 2011). It is also a feature

of many theories with frictions in which some, but not all investors can access all

asset markets. In particular theories focusing on the role of intermediaries often

assume that representative households in each country are limited in their access to
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markets, while financial intermediaries can access all assets and would not be limited

in exploiting arbitrage opportunities (e.g., Gabaix and Maggiori, 2015, Itskhoki and

Mukhin, 2021).

We consider the set of international portfolios I: combinations of positions in do-

mestic and foreign assets ultimately converted to the domestic currency.1 Fol-

lowing our notations, international portfolios are generated by the set of assets

řrrt+1 = (rrrt+1, rrr
∗
t+1 + ∆st+1) = (r1,t+1, . . . , rN,t+1, r

∗
1,t+1 + ∆st+1, . . . , r

∗
N∗,t+1 + ∆st+1).

That is, assets that are contained in H and F with returns converted in domestic

currency are jointly contained in I.

Assumption 2. There are no arbitrage opportunities in the set of international

portfolios I.

In our log-normal setting, the main implication no arbitrage is that if a portfolio has

no risk, it must earn the risk-free rate of return:

∀rp,t+1 ∈ I, vart(rp,t+1) = 0 ⇒ Et(rp,t+1) = rf,t. (10)

Discussion of assumptions. What do Assumptions 1 and 2 involve? Assump-

tion 1 is merely a definition of the sets H and F . If there exists a domestic asset

that does not satisfy the Euler equation (6), it is not part of the set H, and thus

our propositions below have less information to work with. Theories of convenience

yield, financial frictions and segmented markets are isomorphic from the point of

view of Assumption 1 in that they all limit the scope of sets H and F . We discuss

this further below.

1Our conclusions are unchanged if we focus on international arbitrage in foreign currency.
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Assumption 2 requires that there is no arbitrage in the set of assets I, which at

least includes assets in H and F converted into domestic currency. Set I can also be

arbitrarily richer than this without changing our results below. However, in contrast

to the first assumption, Assumption 2 is restrictive. The propositions below rely on

no arbitrage within the set of assets I, and thus would not generally hold if pure

arbitrage strategy within the set of assets I are either made infeasible or costly due

to e.g. financing, leverage or regulatory constraints. As we will see, in some contexts,

Assumption 2 has limited content. We strengthen this assumption below from exact

no arbitrage to the lack of large profitable trading opportunities.

We discuss below various example with integrated versus intermediated financial

markets. In the case of integrated markets, the sets H and F overlap in terms of

physical assets. For example, a home-currency risk free bond is available to agents

abroad as one of the risky assets after converting into foreign currency. In such

situation, it is the agents with SDFs mt+1 and m⋆
t+1, who price assets in H and F

respectively, can themselves be engaged in international arbitrage, that is ensure no

arbitrage opportunities within the set I.

In contrast, the sets H and F may have no overlap, and then the absence of inter-

national arbitrage must be ensured by intermediaries who have access to assets in I.

In this case, we may introduce an additional SDF mI
t+1 of intermediaries that prices

all assets řt+1 in I, e.g. such that mI
t+1 = λλλI′

t řrrt+1 for some λλλI
t ∈ RN+N⋆

. However,

specifying such SDF is not required by our propositions that rely on the lack of exact

arbitrage. Furthermore, for the same reason our propositions do not require us to

specify which of the two cases — integrated or intermediated — we are in.

Lastly, we use the approximation in (1) and the log-normality assumption to derive
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simple analytical expressions. Our results hold more generally without relying on log-

normality or the approximation in (1), but this comes at the cost of more complex

higher order expressions, as we describe in the appendix.

1.5 Two international portfolios

We consider arbitrage trading strategies with two international portfolios.

Carry trade. One zero-cost portfolio, often referred to as carry, entails taking long

and short positions in related assets:

Rcarry,t+1 = Rt+1 −R∗
t+1 · St+1/St. (11)

Traditionally, the traded assets are taken to be domestic and foreign risk-free (one-

period) bonds. But carry does not have to be limited by that. For instance, Lustig,

Stathopoulos, and Verdelhan (2013) consider long-term bonds. More generally, one

could use any pair of assets that are close to each other, e.g., corrt(rt+1, r
∗
t+1) ≈ 1.

The key characteristic of the carry trade is that it exposes the arbitrageur to currency

risk:

Lemma 1. The conversion from foreign to home returns in the carry portfolio in-

troduces exposure to currency risk, r̃carry,t+1 = r̃t+1 − r̃∗t+1 + ∆̃st+1.

Proof. We map the zero-cost portfolio (11) into the log approximation of a funded
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portfolio in equation (1) by adding a position in the risk-free asset:

Rp,t+1 ≡ Rcarry,t+1 +Rf,t = Rt+1 −R∗
t+1 · St+1/St +Rf,t.

The portfolio Rp,t+1 corresponds to the weights w1 = 1 in the domestic risky asset

Rt+1, w2 = −1 in the foreign risky asset converted to USD, R∗
t+1 · St+1/St, and

w3 = 1 in the domestic risk-free asset with wwwt = (w1, w2, w3)
′. These weights lead to

an expression for the log gross return relative to the risk-free rate Rp,t+1/Rf,t:

rcarry,t+1 ≡ rp,t+1 − rft

= rt+1 − r∗t+1 −∆st+1 + covt(rt+1 − r∗t+1 −∆st+1, r
∗
t+1 +∆st+1). (12)

Thus, the shocks to the exchange rate have an impact on the portfolio performance.

■

Differential carry. That carry is exposed to currency risk prompts us to consider

another zero-cost portfolio, labeled as differential carry, which is long one unit of the

domestic asset, and short one unit of the foreign asset, financed at the respective

risk-free rates:

Rdiff,t+1 = (Rt+1 −Rft)− (R∗
t+1 −R∗

ft) · St+1/St. (13)

Intuitively, this portfolio does not introduce additional currency exposure because, in

contrast to carry, only the foreign excess return is converted to USD. We demonstrate

this formally in the following lemma.

Lemma 2. The conversion from foreign to US returns in the diff portfolio does not
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introduce additional exposure to currency risk, r̃diff,t+1 = r̃t+1 − r̃∗t+1.

Proof. We map the zero-cost portfolio (13) into a funded portfolio to use the ap-

proximation of equation (1):

Rp,t+1 ≡ Rdiff,t+1 +Rf,t = Rt+1 − (R∗
t+1 −R∗

ft) · St+1/St.

The portfolio Rp,t+1 corresponds to the weights w1 = 1 in the domestic risky asset

Rt+1, w2 = −1 in the foreign risky asset converted to USD, R∗
t+1 ·St+1/St, and w3 = 1

in the foreign risk-free asset converted to USD, R∗
ft ·St+1/St, with wwwt = (w1, w2, w3)

′.

These weights lead to an expression for the relative log return:

rdiff,t+1 ≡ rp,t+1 − rft

= rt+1 − rft − (r∗t+1 − r∗ft)− covt(r
∗
t+1,∆st+1) + covt(r

∗
t+1, rt+1 − r∗t+1). (14)

Thus, only the covariance of the foreign return with the exchange rate has a material

impact on portfolio performance, not the shocks to the exchange rate. ■

The disappearance of exchange rate risk for the diff returns is in part due to our port-

folio approximation. In Appendix Section B, we confirm that this approximation is

very tight empirically. We compare the excess returns on various stock portfolios and

sovereign bonds in their origin currency and in converted currency. The correlation

between the two monthly series is always around 99.9%.
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2 The general asset market view of exchange rates

In this section, we characterize the restrictions on the behavior of the exchange rate

imposed by the absence of international arbitrage. We show that Assumptions 1

and 2 impose two sets of necessary restrictions on the depreciation rate: one on the

shocks to the depreciation rate ∆̃st+1 = vt+1 + ut+1, and another on the expected

depreciation rate Et∆st+1. Appendix XX shows that these restrictions are sufficient

as well.

We demonstrate that in the complete-markets setting these two sets of restrictions

lead to the well-known asset market view of exchange rates and the puzzles that

come with it. Sections 3 and 4 spell out the implications of these restrictions for a

much larger set of market structures and revisit the puzzles in light of these results.

2.1 Exchange rate shocks

Risks that are present in both domestic and foreign assets — what we call global

shocks — must be priced in a consistent way once adjusting for the conversion of

currency. The following proposition formalizes this intuition.

Proposition 1. Under Assumptions 1 and 2, ∀rt+1 ∈ H, r∗t+1 ∈ F : r̃t+1 = r̃∗t+1

E(m̃∗
t+1 − m̃t+1|r̃t+1) = E(∆̃st+1|, r̃t+1). (15)

In words, if a domestic and a foreign portfolio returns are perfectly correlated, then

the projection of the difference of SDF shocks on these returns must coincide with
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the projection of the depreciation rate shock on these returns. Perhaps surprisingly,

the proposition relies on the apples-to-oranges comparison of shocks to returns in

different currencies. Lemma 2 explains why that is a natural requirement and sets

the stage for the proposition’s proof.

Proof. Consider the log diff portfolio in equation (14). By Lemma 2, the portfolio

has no exposure to the asset return when r̃t+1 = r̃∗t+1, i.e., the shocks to foreign and

domestic return perfectly offset each other. We see immediately that the portfolio

has no risk, and as such must have expected returns equal to the risk-free rate.

Using the foreign and domestic Euler equations (6) and (7) to represent the domestic

and foreign expected returns, we obtain

covt(m
∗
t+1 −mt+1 −∆st+1, rt+1) = 0. (16)

This equation is equivalent to

cov(m̃∗
t+1 − m̃t+1 − ∆̃st+1, r̃t+1) = 0, (17)

which under log-normality implies equation (15). ■

Because Proposition 1 must hold for any risk that is both in the domestic and foreign

set of portfolios, it must also hold in terms of multivariate projections on all such

returns {r̃t+1} spanned by both H and F . By definition, such intersection of H and

F is the global shock, ϵϵϵGt+1. We thus have:

Corollary (to Proposition 1). The projection of the depreciation rate on global shocks
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coincides with the projection of the difference in the SDFs on global shocks:

E(m̃∗
t+1 − m̃t+1|ϵϵϵGt+1) = E(∆̃st+1|ϵϵϵGt+1). (18)

As we highlighted earlier, this condition is also sufficient. That means that despite

the different types of shocks affecting the depreciation rate, which are enumerated in

equations (8) and (9), only the global ones carry information about the relation be-

tween SDFs and the depreciation rate. Proposition 1 does not impose any restrictions

associated with either local shocks (ϵϵϵt+1, ϵϵϵ
⋆
t+1) or unspanned shocks uuut+1.

Complete markets: the cyclicality and volatility puzzles. As an example,

consider the case of complete financial markets. Financial markets are complete when

investors have access to the full set of Arrow-Debreu securities in both markets. In

this setting, one can construct returns such that r̃t+1 = r̃∗t+1 for any desired value of

r̃t+1. Select m̃
∗
t+1 − m̃t+1 − ∆̃st+1 as such value. Then Proposition 1 implies

m̃∗
t+1 − m̃t+1 = ∆̃st+1. (19)

Innovations to the depreciation rate must equal innovations to the difference of

stochastic discount factors, completely pinning down exchange rate shocks.

This result leads to two puzzles about the behavior of the exchange rate. First,

consider the variance of the depreciation rate:

vart(∆st+1) = vart(m
⋆
t+1 −mt+1)

= vart(m
⋆
t+1) + vart(mt+1)− 2covt(mt+1,m

⋆
t+1). (20)
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Brandt, Cochrane, and Santa-Clara (2006) argue that this equation creates a volatil-

ity puzzle, with the exchange rate being not volatile enough. Typical observed Sharpe

ratios on domestic assets imply highly volatile SDFs, much more so than exchange

rate depreciation. The mild correlation of macro quantities across countries suggests

that the SDFs are not correlated enough for the last term of equation (20) to offset

this high variance and obtain realistic exchange rate risk.

Further, changes in exchange rates must be perfectly correlated with relative marginal

utilities of the domestic and foreign households, that is, the home currency depre-

ciates in relatively good times for home investors. As first noticed in Backus and

Smith (1993), this implication is counterfactual to various measures of good times.

2.2 Expected depreciation rate

We turn to restrictions on the behavior of the expected depreciation rate. Unlike for

the shocks to the exchange rate, no arbitrage constrains expected depreciation if and

only if there is an exact arbitrage trade involving the exchange rate.

Proposition 2. If the exchange rate is spanned by asset returns, ∆̃st+1 =

E(∆̃st+1|̃rrrt+1, r̃rr
∗
t+1), then there exists rt+1 ∈ H and r∗t+1 ∈ F such that r̃t+1 =
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r̃∗t+1 + ∆̃st+1 and we have:

Et(∆st+1) = rft − r∗ft︸ ︷︷ ︸
UIP

− covt(mt+1,∆st+1)︸ ︷︷ ︸
Exchange rate risk premium

− 1

2
vart(∆st+1)︸ ︷︷ ︸
Siegel paradox

+ covt(m
∗
t+1 −mt+1 −∆st+1, r

∗
t+1)︸ ︷︷ ︸

Deviation from integrated markets

(21)

= rft − r∗ft − covt(m
∗
t+1,∆st+1) +

1

2
vart(∆st+1)

+ covt(m
∗
t+1 −mt+1 −∆st+1, rt+1).

The first line of the expression represents the standard expression for the (log) cur-

rency risk premium in frictionless markets. If there is no risk premium, uncovered

interest parity (UIP) implies that the expected depreciation rate offsets differences

in interest rates across the two countries, which is the first term. The second term

represents the risk premium. The third term reflects the convexity adjustment due to

the log transformation. The presence of the second line is novel to the literature. It

reflects the potential lack of integration, that is, the inability of the domestic investor

to value the foreign assets. The expression in lines three and four is an alternative

way to express the same result using the relation r̃t+1 = r̃∗t+1+∆̃st+1. The convexity

adjustment term has a different sign in accordance with the Siegel (1972) paradox.

Proof. Note that the spanning condition is equivalent to the existence of rt+1 ∈ H

and r∗t+1 ∈ F such that r̃t+1 = r̃∗t+1 + ∆̃st+1.
2 In other words, spanning of the

exchange rate is equivalent to saying that there is a pair of domestic and foreign

assets with identical shocks when converting to the same currency. The absence of

arbitrage implies that a portfolio long the domestic asset and short the converted

2Because H and F contain risk-free assets, it is possible that r̃t+1 = 0 or r̃∗t+1 = 0.
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foreign asset, aka the carry portfolio, must have 0 expected excess returns.

Consider then the log approximation of the carry portfolio in equation (12). This

corresponds, using equations (6) and (7), to:

rft − covt(mt+1, rt+1) = r∗ft − covt(m
∗
t+1, r

∗
t+1)

+ Et(∆st+1) +
1

2
vart(∆st+1) + covt(r

∗
t+1,∆st+1). (22)

Using the spanning relation, we can eliminate r∗t+1:

rft − covt(mt+1, rt+1) = r∗ft − covt(m
∗
t+1, rt+1) + covt(m

∗
t+1,∆st+1)

+ Et(∆st+1)−
1

2
vart(∆st+1) + covt(rt+1,∆st+1). (23)

Isolating the expected depreciation rate gives the first line of equation (21). Equiv-

alently, we can express everything as a function of r∗t+1. ■

The proposition relies on the depreciation rate being spanned by financial assets,

which corresponds to ut+1 = 0 in our decomposition, that is ∆̃st+1 = vt+1 =

E(∆̃st+1|̃rrrt+1, r̃rr
∗
t+1). If that is not the case, Et(∆st+1) is unconstrained.

Complete markets: the currency risk premium puzzle. Let us revisit the

case of complete markets. In this setting r̃rrt+1 and r̃rr∗t+1 span ∆̃st+1. In addition, the

market integration term is equal to 0 because of equation (19). Therefore, Proposi-
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tion 2 implies currency risk premium from the domestic and foreign perspectives:

Et(∆st+1) +
1

2
vart(∆st+1) = rft − r∗ft − covt(mt+1,∆st+1), (24)

Et(−∆st+1) +
1

2
vart(∆st+1) = r∗ft − rft − covt(mt+1,−∆st+1). (25)

This relation leads to the currency risk premium puzzle. The complete-market setting

does generate deviations from uncovered interest parity (UIP) via a risk premium for

currency risk. Standard international models struggle with generating the empirically

observed magnitude and cyclicality of the deviations simultaneously with addressing

the first two puzzles.

Using the Euler equations, we can express rft−r∗ft in equation (24) in terms of SDFs.

As a result,

Et(∆st+1) = Et(mt+1 −m∗
t+1).

The mean depreciation rate must equal the mean of the difference of stochastic

discount factors. Combining this equation with equation (19) we obtain the classic

“asset market view” result for exchange rates

m∗
t+1 −mt+1 = ∆st+1, (26)

which completely pins down the depreciation rate.

Interestingly, our derivation highlights that this result does not hinge on the classic

notion of market completeness. It is enough to be able to span m̃∗
t+1−m̃t+1 and ∆̃st+1

in each country to apply Propositions 1 and 2 and obtain the complete-market result

of equation (26). Such situations can arise in two cases.
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First, the set of assets in each country is dense enough for the required spanning to

hold. We can think of this situation as a limiting case of projecting m̃∗
t+1− m̃t+1 and

∆̃st+1 on more and more rich set of assets until the R2 of the projection converges

to 1.

Second, the set of shocks in the economy that drive m⋆
t+1−mt+1 and ∆st+1 is sparse

enough that there exist assets in both countries that allow to trade both the exchange

rate and the SDFs, even is the set of assets is not very dense. This situation may

occur in models where all equilibrium objects are driven by a few global macro shocks

ϵϵϵG, such as productivity, or monetary policy.

The value of our approach is that it allows to draw implications for the behavior

of the exchange rate away from the case of complete markets. In the following

sections, we study these implications for a variety of market structures. A first path

for Propositions 1 and 2 to be relevant is when some assets are present in both H

and F . We focus on these settings with some market integration in Section 3. The

other path is when the structure of shocks in the home and foreign economy is such

that potential arbitrage trades emerge between the two economies. We study these

economies with financial intermediaries in Section 4. Before this, we show briefly

how our results are robust to small deviations from the case of perfectly correlated

trades.

2.3 Limiting quasi-arbitrage

In many empirically relevant cases, there are no pairs of assets that perfectly offset

each other or perfectly span the exchange rate. In this section we offer one path
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to discipline the behavior of the exchange rate when we are close to pure arbitrage

strategies (perfect spanning) and there is an upper bound on how profitable such

strategies could be in equilibrium. Specifically, we consider a stronger set of restric-

tions than no arbitrage (Assumption 2), which limit the profitability of international

trades.

Assumption 3. (No quasi-arbitrage) There is an upper bound B on Sharpe ratios

in international markets:

∀rp,t+1 ∈ I,

∣∣∣∣Et(rp,t+1) +
1

2
vart(rp,t+1)− rf,t

∣∣∣∣ ≤ B
√
vart(rp,t+1) (27)

It is immediate to notice that Assumption 3 implies Assumption 2. In addition

this assumption restricts the Sharpe ratio of trades in international markets. Such

bounds have a long tradition in finance, going back to Ross (1976), Cochrane and

Saa-Requejo (2000), Kozak, Nagel, and Santosh (2020). Intuitively, they can be mo-

tivated by the view that if trades that are too profitable emerged in equilibrium, new

financial institutions would step in to take advantage of them. We assume that a sim-

ilar bound applies to the domestic and foreign SDFs, which implies
√
vart(mt+1) < B

and
√

vart(m∗
t+1) < B.

We revisit the two propositions of the previous sections under this condition. We

focus on some simple implications of the Sharpe ratio bound; Appendix Section A.1

provides a more complete treatment.

Proposition 3. Under Assumption 3, ∀rt+1 ∈ H, r∗t+1 ∈ F

∣∣∣∣∣covt
(
m∗

t+1 −mt+1 −∆st+1,
r∗t+1√

vart(r∗t+1)

)∣∣∣∣∣ ≤ 2B

√
1

ρ2
− 1, (28)
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where ρ = corrt(rt+1, r
∗
t+1).

Proposition 3 gives a precise notion of how strong the relation between domestic and

foreign assets must be to obtain the projection equation of Proposition 1. As the two

assets become perfectly correlated (ρ = 1), one can construct a risk-free diff portfolio

and the projection equation obtains exactly. Away from this perfect situation, there

is residual risk in the diff portfolio, which allows some deviations from the projection

result. When we turn to the data in Section 5, we will look for approximate global

shocks: portfolios in F with a very high correlation with portfolios in H.

Similarly, we can revisit Proposition 2 for when the exchange rate is not exactly

spanned.

Proposition 4. Under Assumption 3, ∀rt+1 ∈ H, r∗t+1 ∈ F such that ∆st+1 =

rt+1 − r∗t+1 + ϵt+1 with ϵt+1 uncorrelated with rt+1 and r∗t+1, then

∣∣∣Et[∆st+1] +
1

2
vart(∆st+1)

−
[
rf,t − r∗f,t − covt(mt+1,∆st+1) + covt(m

∗
t+1 −mt+1 −∆st+1, r

∗
t+1)

] ∣∣∣
≤ 2B

√
vart(∆st+1)

√
1−R2, (29)

where R2 is the R-squared of a regression of ∆st+1 on rt+1 and r∗t+1.

We see immediately that as we converge to spanning the exchange rate (R2 → 1),

this condition converges to Proposition 2. Intuitively, when spanning is not perfect,

there is risk remaining in the carry trade that attempts to hedge exchange rate risk.

This risk allows potential deviations from the standard risk premium formulation.

Equation (29) gives a quantitative sense to how close one is from perfect spanning.
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For example, obtaining a bound on risk premium 10 times tighter than for the case

of no spanning whatsoever (R2 = 0) necessits a R2 of 99%.

The loosest version of the bound occurs for the standard carry trade using only

risk-free assets. In this case, rt+1 = rft, r
∗
t+1 = r∗ft, and ϵ̃t+1 = ∆̃st+1.

Corollary (to Proposition 4). Under Assumption 3, deviations from uncovered in-

terest parity are bounded by:∣∣∣∣Et(∆st+1) +
1

2
vart(∆st+1)− (rf,t − r∗f,t)

∣∣∣∣ ≤ B
√
vart(∆st+1). (30)

This condition bounds the Sharpe ratio of the classic carry trade independently of

any spanning condition.

3 Integrated markets

In this section, we consider various forms of market integration, that is market struc-

tures in which at least some assets can be traded in common by domestic and foreign

household. In this interpretation of the model, the absence of international arbitrage

is a consequence of one of the households having access to these commonly traded

assets.

We characterize how, depending on the form of integration, various aspects of the

exchange rate dynamics are pinned down. In particular, the critical point at which

the exchange rate puzzles of complete markets start to occur is with bilateral inte-

gration of risk-free asset, because in this case both households can trade exchange

rate risk.
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3.1 Asymmetric integration: one risk-free bond

Consider a setting where only the foreign risk-free bond is tradeable by domestic and

foreign households. Such a cases often arises in the context of sovereign bonds of

emerging economies (H), which restrict participation in their market to the investors

of their domicile, but these investors are not prevented from trading US bonds (F ).

This case corresponds to H = {rft, r∗ft +∆st+1} and F = {r⋆ft}.

Proposition 1 requires exposure to a set of common risks, which does not apply in

this case. In contrast, Proposition 2 applies precisely because the domestic house-

hold has access to the carry trade (based on risk-free bonds). Specifically equation

(21) implies the same risk premium from the domestic perspective as in complete

markets, equation (24). However, its foreign counterpart in equation (25) does not

hold because the foreign household does not have access to the carry trade.

In this setting, the FX risk premium puzzle is unchanged, though only present from

the domestic perspective. No-arbitrage requirement does not impose any constraints

on the shocks to the depreciation rate. Therefore, there is full flexibility to match

the volatility and cyclicality puzzles.

3.2 Symmetric integration: two risk-free bonds

Opening bilateral trade in risk-free bonds immediately leads to more stringent re-

strictions on the behavior of the exchange rate. Assume now that domestic and

foreign investors can invest in the risk-free asset of the other country. Lustig and

Verdelhan (2015) focus on this setting, which corresponds to H = {rft, r⋆ft +∆st+1}

and F = {r⋆ft, rft −∆st+1}.
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In this case, shocks to the depreciation rate ∆̃st+1 are present both in H and F ,

and are the only shocks therein. As such, Proposition 1 applies with respect to this

shock, which leads to

∆̃st+1 = E(m̃∗
t+1 − m̃t+1|∆st+1), (31)

because the projection of the depreciation rate on itself is the depreciation rate.

Here ut+1 = 0 mechanically because the asset spanning the depreciation rate is the

depreciation rate itself, or, more precisely, the carry return on the strategy based

on risk-free assets. Therefore, the implication of Proposition 2 still coincides with

equation (24).

Interestingly, the combination of equations (24) and (33) implies that a simplified

version of equation (21) from Proposition 2 holds from the foreign perspective as

well:

Et(∆st+1)−
1

2
vart(∆st+1) = rft − r∗ft − covt(m

∗
t+1,∆st+1). (32)

As a result, if two of three equations (24), (32), and (31) hold, then the third one

holds as well. This conclusion parallels in a more limited way the complete-market

case, where the knowledge of two variables out of mt+1, m
∗
t+1 and ∆st+1 implies the

third one.

Equations (24) and (31) are also equivalent to the ones in Proposition 1 of Lustig

and Verdelhan (2015). Therefore, we concur with these authors that one can make

only limited progress on addressing the three exchange rate puzzles within such a
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market structure. Specifically,

vart(∆st+1) = vart(m
⋆
t+1 −mt+1|∆st+1) ≤ vart(m

⋆
t+1 −mt+1),

which potentially alleviates the volatility puzzle. Next, because the currency risk

premium is controlled by exactly the same equation (24) as in the complete-markets

case, partial integration with two risk-free bonds does not help in resolving the pre-

mium puzzle. As regards the cyclicality puzzle, the projection of the SDF difference

on the depreciation rate has a coefficient of one just like in the complete-markets case,

so in this respect partial integration is not helpful. Having said that, the correlation

between relative consumption growth rates in the domestic and foreign economies

and depreciation rate is less than perfect:

corrt(m
∗
t+1 −mt+1,∆st+1) =

covt(m
∗
t+1 −mt+1,∆st+1)√

vart(m∗
t+1 −mt+1) · vart(∆st+1)

≤
covt(m

∗
t+1 −mt+1,∆st+1)

vart(∆st+1)
= 1.

Next, we show that the restrictions of this setting continue to hold as more assets,

either domestic or foreign, are bilaterally traded. In contrast, richer forms of asym-

metric integration do not necessarily lead to such constraints. Thus, we conclude

that bilateral trading in risk-free bonds imposes the critical restrictions on the de-

preciation rate. That is because trading these bonds amounts to the ability for both

households to trade in exchange rate itself, which leads to the projection equation

(31).
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3.3 Symmetric integration: many assets

We allow for a broader set of assets to be traded by both domestic and foreign

households. This implies that H = span(rrrt+1) = span(rrr∗t+1 + ∆st+1) and F =

span(rrr∗t+1) = span(rrrt+1 −∆st+1). Because these sets include the risk-free bonds, the

exchange rate is sill spanned, ut+1 = 0. Proposition 2 implies the same risk-premium

result as in the complete-markets case, equations (24) and (25) .

In this setting, the domestic household has access to assets with returns rrr∗t+1+∆st+1,

where the first element is r∗ft+∆st+1. Therefore, this household can trade rrr∗t+1−r∗ft by

going long risky assets and shorting the risk-free asset. Thus, the domestic household

can trade the same risks as the foreign one. The household can also isolate currency

risk from all other risks by trading this way. The same logic applies to the foreign

household’s ability to trade domestic risks. Proposition 1 then applies to all traded

risks:

∆̃st+1 = E(∆̃st+1|∆st+1, rrrt+1, rrr
∗
t+1) = E(m̃∗

t+1 − m̃t+1|∆st+1, rrrt+1, rrr
∗
t+1). (33)

Therefore, projection of m∗
t+1 −mt+1 on the depreciation rate and asset returns has

a loading of one on the depreciation rate and zero on all other assets. While more

stringent than the condition with only risk-free assets (equation (31)), this relation

does not weaken the conclusions about cyclicality and volatility of exchange rate.

If anything, they bring the behavior of the depreciation rate closer to the complete

market case, as the risky returns span more and more states of the world.
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3.4 Symmetric integration for all assets but one risk-free

bond

Consider the setup of the previous section with the only exception that F does not

contain rft − ∆st+1, just like in section 3.1. Just like in the previous section, the

domestic household can trade foreign risks and isolate currency risk from all other

risks. The foreign household, however, can no longer separate out the currency risk

because rft −∆st+1 is inaccessible.

To see this consider the case of one risky asset in each country: H = (rft, r1,t+1, r
∗
ft+

∆st+1, r
∗
1,t+1 + ∆st+1), F = (r∗ft, r

∗
1t+1, r1,t+1 − ∆st+1). The foreign household can

trade the risks in r∗1,t+1 − (r1,t+1 −∆st+1). These risk are accessible to the domestic

household as well. But there is no trade that can isolate the currency risk for the

foreign household.

Proposition 1 then implies:

E(∆̃st+1|{r∗j,t+1}j∈J∗ , {rj,t+1 −∆st+1}j∈J)

= E(m̃∗
t+1 − m̃t+1|{r∗j,t+1}j∈J∗ , {rj,t+1 −∆st+1}j∈J), (34)

where J and J∗ are sets of domestic and foreign risky assets, respectively. Even

though the depreciation rate appears in the projection, there is no reason to believe

that the projected depreciation rate would be close to the actual one, in general.

This result reinforces the importance of bilateral trading of risk-free assets for the

emergence of the cyclicality and volatility puzzles. In particular, we see that it is not

so much the amount of integration that matters — here many assets are commonly
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traded — but whether both domestic and foreign households can gain exposure to

the exchange rate risk.

4 Intermediated markets

In this section, we remove all assumptions about integration: domestic investors

trade domestic assets while foreign investors trade foreign assets. It might seem that

such a setting would remove any constraint on the dynamics of the exchange rate.

But this is not necessarily the case: we maintain our assumption of the absence

of arbitrage opportunities in international markets. Intuitively, this implies that a

financial institution having access to both the domestic and foreign asset markets

should not be able to earn arbitrage profits. Such a condition often arises in models

where international financial trade is operated by financial intermediaries. While

their decisions might be affected by various frictions, it is often assumed that they

could enter in arbitrage trade. For example, a risk-based constraint such as Value-

at-Risk in Basel requirements does not penalize risk-free trades.

In such settings, restrictions on the behavior of the exchange rate might come from

relation between the risks of domestic and foreign assets. We consider various con-

figurations where it is and is not the case.

4.1 No global shocks

A first polar case occurs when the two economies are spanned by a distinct set of

shocks. While these shocks might be correlated, there is no redundancy between
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domestic and foreign returns. This corresponds to the condition:

rank(vart(rrrt+1, rrr
∗
t+1)) = rank(vart(rrrt+1)) + rank(vart(rrr

∗
t+1)). (35)

In such a situation, it is impossible to construct a pair rt+1 ∈ H, r∗t+1 ∈ F such that

r̃t+1 = r̃∗t+1, i.e., ϵϵϵ
G
t+1 does not exist. Therefore, Proposition 1 does not apply.

Shocks to the exchange rate can have an arbitrary variance and correlation with the

asset space: both ut+1 and vt+1 can be arbitrary large. As a result, there is nothing

connecting m∗
t+1 −mt+1 to ∆st+1. The cyclicality and volatility puzzles do not arise

in this setting.

While condition (35) is about the correlation structure of returns in each of the

countries, it connects naturally with the structure of shocks driving the home and

foreign economies. To see this, consider the case of the two economies being in

autarky on the real side (for example if the two countries consume different goods).

Suppose, all shocks to firm productivity and output in each country are driven by

vectors of shocks ϵϵϵt+1 and ϵϵϵ∗t+1 satisfying rank(vart(ϵϵϵt+1, ϵϵϵ
∗
t+1)) = rank(vart(ϵϵϵt+1)) +

rank(vart(ϵϵϵ
∗
t+1)). The lack of global real shocks implies the lack of global financial

shocks, i.e., condition (35) holds.

4.2 Global shocks only

Naturally, it is plausible that there are the same shocks affecting returns in each

of the two countries. The second polar case is when all shocks between the two
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economies are global, that is:

rank(vart(rrrt+1, rrr
∗
t+1)) = rank(vart(rrrt+1)) = rank(vart(rrr

⋆
t+1)), (36)

i.e., there is no ϵϵϵt+1 or ϵϵϵ
⋆
t+1. Such a situation would occur in a setting in which the two

economies are driven by the same set of shocks, although potentially with different

exposure to these shocks. For example, all variation could be driven by a global

financial cycle, with the U.S. more sensitive than other countries to this cycle.

In this case, Proposition 1 is applicable for any return because the same risks are

present in both economies. This implies that

E(m̃⋆
t+1 − m̃t+1|̃rrrt+1, r̃rr

⋆
t+1) = E(∆̃st+1|̃rrrt+1, r̃rr

⋆
t+1).

Furthermore, it is natural to assume that each economy’s stochastic discount factor

is spanned by the same global shocks. Such spanning occurs in many theories In this

case, the restriction boils down to:

m̃⋆
t+1 − m̃t+1 = E(∆̃st+1|̃rrrt+1, r̃rr

⋆
t+1) = vt+1. (37)

The projection of the exchange rate on asset returns, vt+1 is exactly equal to the

difference between stochastic discount factors. While this condition is reminiscent of

the projection relation with integrated risk-free asset markets, equation (31), the two

are very different because the projection is towards asset returns instead of towards

the exchange rate. Now it is a regression of the exchange rate depreciation on the

difference of log SDFs which yields a coefficient of 1. The unspanned component
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ut+1 is unbounded, and we have:

vart(∆st+1) = vart(m
⋆
t+1 −mt+1) + vart(ut+1) ≥ vart(m

⋆
t+1 −mt+1)

This result deepens the volatility puzzle. If economies are entirely driven by global

shocks, exchange rate volatility can only be larger than in the complete market case.

In terms of cyclicality, the conclusions are mixed. The presence of unspanned volatil-

ity can weaken the correlation of the exchange rate with volatility. However, because

of the projection result (37), one cannot weaken the exposure of the depreciation

rate to the difference in the SDFs.

4.3 Global and local shocks

We can characterize the set of admissible exchange rate processes using the repre-

sentation in equations (2) and (3). Suppose that the domestic and foreign stochastic

discount factors can be written as combination of the same shocks:

m̃t+1 =MMMϵϵϵt+1 +MMMGϵϵϵGt+1 (38)

m̃⋆
t+1 =MMM⋆ϵϵϵt+1 +MMM⋆GϵϵϵGt+1. (39)

An exchange rate process satisfies the implications of Proposition 1 if and only if its

spanned innovation vt+1 in equation (9) is such that

SSSG =MMM⋆G −MMMG. (40)
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In other words, Proposition 1 constrains the projection of the exchange rate on global

shocks to coincide with the projection of the difference of stochastic discount factors

on global shocks. It does not impose any constraints on either local-shock loadings

or the presence of unspanned risk.

This result offers a clear path towards a resolution of the puzzles on exchange rate

shocks. If the volatility of the global component of the difference in SDFs, (MMM⋆G −

MMMG)ϵGt+1 is small enough, there is enough room for the exchange rate to load on

local shocks or unspanned shocks while respecting a realistic level of exchange rate

volatility. These additional sources of variation can weaken the correlation of the

exchange rate with the difference of SDFs. This correlation can even be negative,

depending on the loadings on local shocks SSS and SSS⋆. As such, the cyclicality puzzle

could be satisfied as well.

To illustrate this possible reversal, consider the following simple example with one

global shock and one local shock for the home country, i.e., ϵ⋆ = 0. Intuitively, this

correponds to situation where there is a global cycle, and a U.S.-specific cycle. In

this case,

covt(m
⋆
t+1 −mt+1,∆st+1) = (M⋆G −MG)SGvart(ϵ

G
t+1)−MSvart(ϵt+1).

If the U.S. suffers more than the rest of the world in a global recession, M⋆G < MG,

equation (40) implies that the dollar must appreciate, SG < 0. Such a narrative

coincides broadly with the “exorbitant duty” articulated in Gourinchas and Rey

(2022). However, there is no restriction on the behavior of the exchange rate during a

U.S.-specific recession. In particular, the dollar might depreciate during such events,

S > 0. On balance, if S is large relative to SG, then unconditionally, the exchange
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rate will be negatively correlated with the difference of SDFs, solving the cyclicality

puzzle.

4.4 The FX risk premium

So far, in this section, we have focused on implications for the shocks to the exchange

rate. What does this setting say about expected depreciation? To make progress

in both the spanned and unspanned cases, we use Proposition 4, which relies on

no quasi-arbitrage. We focus on a pair of returns that gets as close as possible to

spanning: r̃t+1 = (M⋆G −MG)ϵGt+1 + Sϵt+1 and r̃⋆t+1 = −S⋆ϵ⋆t+1. With these returns,

we have ∆̃st+1 = r̃t+1 − r̃⋆t+1 + ut+1. Substituting in with the local and global shocks

Proposition 4 implies:

∣∣∣Et(∆st+1)−
[
rft − r⋆ft − covt(mt+1,∆st+1)−

1

2
vart(∆st+1)

]
+ (M⋆ − S⋆)S⋆vart(ϵ

⋆)− (M + S)S⋆covt(ϵ, ϵ
⋆)
∣∣∣

≤ 2B
√

vart(ut+1) (41)

When the exchange rate is spanned, ut+1 = 0, the only path to rationalize deviations

of the FX risk premium from the complete markets formula is a specific pattern

of conditional correlation of the exchange rate and SDFs along local shocks. This

pattern can be very stringent: in the example of the previous section without foreign

local shocks, the deviation from integrated markets term is always 0.

Unspanned risks offer a more flexible path to solve the FX risk premium puzzle. The

presence of these risks simply restricts the currency risk premium to a range instead
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of a specific value. The size of this range is such that the traditional carry trade with

risk-free assets does not generate Sharpe ratios that are too large.

5 Empirical Analysis

In this section we investigate whether a broad collection of asset returns is informa-

tive about properties of the exchange rate. We limit the asset set in each country

to sovereign bonds and various stock portfolios of that country. There are two inter-

pretations of this choice. First, we ask the empirical question, irrespective of market

structure, of how much one can hope to learn about the behavior of exchange rates

from knowledge of the price of other assets in their origin currency. Second, staying

close to the model of Section 4, we are quantifying the restrictions imposed on the

behavior of the exchange rate in economies in which only intermediaries participate

in international markets.

We first demonstrate that exchange rates appear to have a large component ut+1

unrelated to the returns of other traded assets. Then, we provide methods to char-

acterize global shocks. Both of these exercises lead to the conclusion that, for the

data we consider, other assets do not impose strong restrictions on the behavior of

exchange rates.

5.1 Data

We consider countries corresponding to G10 currencies between 2/1988 and 12/2022.

We consider Germany as the representative country for the euro. Prior to the intro-

duction of the euro, we use the German Deutschemark and splice these series together
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beginning in 1999. Our analysis focuses at the monthly frequency. We obtain ex-

change rates from WM/Reuters. Government bond yields are from each country’s

central bank websites. Monthly bond returns are computed from bond yields using a

second-order Taylor approximation. We obtain equity indices from MSCI. For each

country, 10 different industry indices and 3 different style equity indices (Large +

Mid Cap, Value, Growth) are sourced. Risk-free rates are calculated by dividing the

1-year yield by 12.

5.2 Is the exchange rate spanned?

Motivated by Proposition 2, we ask whether the depreciation rate is spanned by

combination of domestic and foreign asset returns. We implement regressions of the

form:

∆st+1 = α + β′rrrt+1 + β⋆′rrr⋆t+1 + ut+1. (42)

Here the residual ut+1 is a direct estimate of the unspanned component of the de-

preciation rate in equation (8).

We report the adjusted R2 of these regressions. Exact spanning corresponds to an

R2 of 1. Furthermore, Proposition 4 highlights that R2 is an appropriate measure of

economic distance to the case of perfect spanning.

Table 1 reports the results. We always report the results for the combination of assets

in the United States and another country. Each column in the table corresponds

to a given country. Each row reflects a particular combination of assets used in
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the regression. Broadly speaking, we consider bonds and equities separately and in

combination. Within each asset class, we zoom in on various individual contributions.

Major asset classes do not span exchange rates. When looking at all assets together,

the R2s range from 25% for Switzerland to 45% for Canada (in each case combined

with the U.S.). Most of the explanatory power comes from the equity side. For ex-

ample in the case of Canada, the combination of market, value, growth and industry

returns explain 42% of variation in the depreciation rate. While the market alone

gets to some substantial amount of variation — 27% for Canada —, the addition of

industry returns is particularly informative. Consistent with the evidence in Cher-

nov and Creal (2023), bond returns only explain a modest amount of variation in

exchange rates: between 0.2% and 7% for the 10-year bond alone, and between 7.2%

and 14% for the combination of bonds at all maturities.

We refer to the observation that asset returns do not span changes in exchange rates

as the financial exchange rate disconnect. While the R2s we obtain from regressions

on asset returns are meaningfully larger than their counterpart with real quantities,

these magnitudes are much too small for leading to meaningful theoretical implica-

tions. Taking the strictest definition of absence of arbitrage, only a value of 1 leads

to the relevance of Proposition 2. Even with the looser approach of Proposition 4,

even the largest numbers we measure only imply a bound for the expected depre-

ciation that is
√
1− 0.45 = 67% of the bound with an R2 of 0, not much tighter.

Thus, observing the properties of returns on other assets is not informative about

the expected currency depreciation rates.

The flipside of this conclusion is that the unspanned component of the depreciation

rates, ut+1, is large. In the context of models of intermediated markets analyzed
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in section 4, that offers more flexibility in capturing realistic properties of exchange

rates and addressing the currency puzzles.

5.3 Identifying global shocks

In this section we quantify the importance of global shocks ϵGt+1, which play the key

role in Proposition 1. We do so using two empirical approaches. The undirected

approach uses canonical correlation analysis (CCA) to identify these shocks from the

asset return data. The directed approach starts from candidates for global shocks

such as global macro and financial variables proposed in the literature.

5.3.1 Undirected approach

The CCA procedure finds a US and a foreign portfolio of asset returns consisting

of rrrt+1 and rrr⋆t+1, respectively, such that they have the highest correlation possible

in sample. Next, conditional on finding this pair, the procedure looks for the next

maximally correlated pair of portfolios that are orthogonal to their first pair. And

so on.

According to Definition 1, global shocks would manifest themselves as innovations

to portfolios with perfect correlation. In that case, Proposition 1 implies that pro-

jections of the depreciation rate and the difference in the SDFs on the global shocks

coincide. In the data, even the largest correlation could be less than 1. According

to Proposition 3, proximity of this correlation to 1 measures the proximity of the

depreciation rate to the prediction of Proposition 1.
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Table 2 reports the results. Each column represents a foreign country. For a given

country, each row reports the canonical correlation between the assets of that country

and the US assets, reported in order of importance, starting from the largest.

The values of the largest correlations range from 64% for New Zealand to 90% for

Canada. In some cases lower ranked correlations are similar to the largest one, like

for Canada or the UK. In other cases, the magnitude of correlation drops off quickly,

e.g., for New Zealand or Norway.

Strictly speaking, the evidence suggests that there are no global shocks amongst the

assets that we consider. Proposition 1 then implies that we cannot connect variation

in depreciation rates to that of the difference in the SDFs. Now consider Proposition

3, which explicitly allows for less than perfect correlation. We can see from equation

(28) that a correlation value of 1 takes one back to Proposition 1. Consider now a

seemingly small departure from 1 to 0.9 as in the case of Canada. The expression in

equation (28) implies that this value moves the constant scaling 2B from 0 to 0.5.

As a result, the upper bound on the departure between the depreciation rate and

the SDF difference is equal to the maximal Sharpe ratio. This bound will grow as

correlation drops further, indicating that there is not much one can say about the

connection between the shocks to exchange rates and those to the SDFs.

We can be more generous with interpreting the evidence in Table 2 and assign a value

of 1 to each estimated correlation that is above a certain threshold. We consider the

value of 60% as such a threshold. We denote the matrix of foreign portfolio weights

by www⋆; if there is only one global shock, this is a vector. We ask how much variation

in the depreciation rate is explained by global shocks. We implement regressions of
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the form:

∆st+1 = α + βG′(www⋆′rrr⋆t+1) + εt+1. (43)

The R2 of such a regression is the fraction variance in exchange rate explained by

global shocks. Because we assume that the corresponding domestic portfolio is per-

fectly correlated with its foreign counterpart, we do not include it in the regression.

The regression residual is a direct estimate of the contribution of local and unspanned

shocks to the depreciation rate, εt+1 = SSSϵϵϵt+1 +SSS⋆ϵϵϵ⋆t+1 + ut+1.

Combining with the results of regression (42), we can decompose variation in the de-

preciation rate into the contribution of global, local, and unspanned shocks. Specif-

ically, we have var(SSSGϵϵϵGt+1) = var(βG′(www⋆′rrr⋆t+1)) for global shocks, and var(SSSϵϵϵt+1 +

SSS⋆ϵϵϵ⋆t+1) = var(εt+1)− var(ut+1) for local shocks. Figure 1 reports these quantities as

fraction of the variation in depreciation rate; the contributions mechanically add up

to 1.

For all currencies, at least half of the variation in exchange rates is unspanned by asset

returns — the financial disconnect we have already noted. Global shocks contribute

very little to variation in the depreciation rates. The contribution is of the order of a

few percentage points, with the exception of Australia and Canada with contributions

around 25%. These estimates should be seen as an upper bound on the role of global

shocks; remember that estimated global shocks include any pair of portfolios with

correlation above 60%, far from the strict Definition 1.
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5.3.2 Directed approach

Given a candidate variable Xt+1 for a global shocks, we look for rt+1 and r⋆t+1 which

are maximally correlated with Xt+1. To be completed.

Just like the financial disconnect leads to weak restrictions about the expected depre-

ciation rate, the small role of global shocks implies weak restrictions about exchange

rate risks. SDFs estimated from other asset returns can at most explain 25% of

shocks to exchange rates. Again, the flipside of this conclusion is that models based

on intermediation have the flexibility to replicate the empirical properties of the ex-

change rate. For example, in the economy of Section 4.3, we saw that having sizable

exposure to local shocks relative to global shocks is necessary to resolve the cyclical-

ity puzzle. The exposure of the depreciation rate to local shocks is always at least of

similar magnitude as to global shocks, and often much larger.

6 Conclusion

In this paper, we propose a general framework to understand how much financial

markets determine the behavior of exchange rates. Our theory accommodates many

settings: complete or incomplete markets, arbitrary forms of market integration,

or situations in which international financial trade happens through intermediaries.

We characterize restrictions on the behavior of exchange rates due to the absence

of arbitrage. These restrictions can be simply summarized by two conditions that

share the simplicity of the complete market result while having richer implications.

We use these results to study many different market structures. We find that in
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settings in which financial markets are informative about the exchange rate, they

lead to the same counterfactual implications as in complete markets. In contrast,

some structures, such as intermediated markets, do not impose much restrictions on

exchange rates at all. This lack of structure is driven by two properties of the data.

First, there is a financial exchange rate disconnect: depreciation rates are not that

correlated to asset returns. Second, few shocks are globally traded, and they explain

even less of the variation in exchange rates.
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Figure 1: Decomposition of exchange rate innovations
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N otes: The figure reports the fraction of variance in exchange rates explained by globally traded
shocks, local shocks, and shocks that are not spanned by asset returns. Each bar is a different
country’s currency relative to the U.S. dollar.
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Table 1: Spanning of depreciation rates by asset returns – R2

Dependent Variable AU CA DE JP NO NZ SE CH UK

Bonds

10Y 0.25 0.33 7.49 5.36 4.73 1.05 4.79 4.01 0.92

All Maturities 7.23 7.89 15.72 10.15 13.66 5.67 13.95 11.52 13.65

Stocks

Mkt 21.67 26.56 6.96 4.44 11.24 16.56 16.20 12.34 12.71

Mkt + Value/Growth 21.60 27.98 6.75 5.06 12.47 17.16 15.91 12.71 13.68

Mkt + Value/Growth + Ind. 35.07 41.61 18.55 22.78 29.41 24.53 24.00 19.61 26.88

Bond + Equity 36.74 45.05 26.79 29.13 36.64 27.95 30.62 25.28 33.80

N 419 395 419 419 406 419 414 419 419

Notes: The table reports the adjusted R2 of a regression of the depreciation rate on various subsets

of asset returns, as in equation (42). Domestic asset returns are in domestic currency; foreign asset

returns are in foreign currency. Each column is a different country’s currency relative to the U.S.

dollar. The first row uses only 10-year bonds, while the second entertains maturities between 2 and

10 years, obtained from various central banks. The next three row successively add various stock

portfolios: the market (a combination of large and mid-cap stocks), value and growth portfolios,

and 10 industry portfolios, all from MSCI. The final row considers all assets simultaneously.
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Table 2: Maximally correlated shocks across asset markets

AU CA DE JP NO NZ SE CH UK

Rank 1 75.27 89.82 83.07 75.01 79.47 64.31 78.33 82.95 85.87

Rank 2 65.0 85.06 74.17 64.43 63.49 53.95 65.72 62.62 78.7

Rank 3 61.16 83.44 66.7 58.71 57.14 41.73 59.57 60.41 73.55

Rank 4 57.04 78.79 64.9 51.31 45.86 35.98 55.55 56.12 68.02

Rank 5 51.01 76.82 52.8 46.81 41.74 31.44 49.63 52.32 65.85

Rank 6 41.67 70.79 44.19 46.62 33.59 25.33 38.94 46.83 62.21

Rank 7 34.19 62.84 42.3 41.94 26.88 22.99 38.2 41.16 55.83

Rank 8 31.57 56.2 36.66 39.57 25.8 14.58 33.82 35.18 51.39

N 419 395 419 419 406 419 414 419 419

N otes: The table reports the correlation in % between the maximally correlated portfolios of asset

returns between the U.S. and each country. The successive pairs of portfolio are orthogonal to

each other, and obtained by canonical correlation analysis. Domestic asset returns are in domestic

currency; foreign asset returns are in foreign currency. Each column is for a different country’s

assets relative to the U.S. assets. The assets include government bonds of maturities between 2

and 10 years (obtained from various central banks) and various stock portfolios: the market (a

combination of large and mid-cap stocks), value and growth portfolios, and 10 industry portfolios

(from MSCI).
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Internet Appendix

A Approximate versions of Propositions 1 and 2

A.1 Limiting quasi-arbitrage

We derive the implications of Assumption 3.

Revisiting Proposition 1.

Proposition 5. Under Assumption 3, ∀rt+1 ∈ H, r⋆t+1 ∈ F , if r̃t+1 = r̃⋆t+1+ ϵt+1 with
ϵt+1 uncorrelated with r⋆t+1 then

∣∣covt(m⋆
t+1 −mt+1 −∆st+1, r

⋆
t+1)− covt(mt+1, ϵt+1)

∣∣ ≤ B
√
vart(r⋆t+1)

√
1−R2

R2
,

(44)

where R2 is the R-squared of a regression of rt+1 on r⋆t+1.

Proof. Consider again the diff portfolio, with returns given by equation (14). We
see that var(rdiff,t+1) = var(ϵt+1). Plugging this result into assumption 3 gives the
proposition immediately. ■

Proposition 5 gives a precise notion of how strong the relation between the two assets
must be to obtain the projection equation of Proposition 1. In particular, we see
that as the two assets become perfectly correlated and the R2 of regressing one on
the other converges to 1, we converge towards the projection equation exactly.

A less desirable feature of this result for some applications is that it relies on knowl-
edge of covt(mt+1, ϵt+1), which can be evaluated only in a fully articulated model.
We can formulate some closely related bounds that avoid this property.

Corollary (to Proposition 3). ∀rt+1 ∈ H, r⋆t+1 ∈ F , if r̃t+1 = r̃⋆t+1 + ϵt+1 with ϵt+1

uncorrelated with r⋆t+1:
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(i) A necessary condition for the diff portfolio to satisfy assumption 3 is:∣∣covt(m⋆
t+1 −mt+1 −∆st+1, r

⋆
t+1)

∣∣ ≤ 2B
√
var(ϵt+1). (45)

(ii) A sufficient condition for the diff portfolio to satisfy assumption 3 is:∣∣covt(m⋆
t+1 −mt+1 −∆st+1, r

⋆
t+1)

∣∣ ≤ (B −
√
var(mt+1))

√
var(ϵt+1). (46)

Finally, we can derive Proposition 3. Start from a pair rt+1 ∈ H and r⋆t+1 ∈ F with
corrt(rt+1, r

⋆
t+1 = ρ. We can rescale the assets and obtain:

1

ρ

rt+1√
vart(rt+1)

=
r⋆t+1√

vart(r⋆t+1)
+ ϵt+1,

with ϵt+1 uncorrelated with r⋆t+1. Applying part (i) of the Corrolary immediately
leads to Proposition 3.

Revisiting Proposition 2.

Proposition 6. Under Assumption 3, ∀rt+1 ∈ H, r⋆t+1 ∈ F such that ∆st+1 =
rt+1 − r⋆t+1 + ϵt+1 with ϵt+1 uncorrelated with rt+1 and r⋆t+1, then∣∣∣Et[∆st+1] +

1

2
vart(∆st+1)

−
[
rf,t − r⋆f,t − covt(mt+1,∆st+1 − ϵt+1) + covt(m

⋆
t+1 −mt+1 −∆st+1, r

⋆
t+1)

] ∣∣∣
=
∣∣∣Et[∆st+1] +

1

2
vart(∆st+1 − ϵt+1) +

1

2
vart(ϵt+1)

−
[
rf,t − r⋆f,t − covt(mt+1,∆st+1 − ϵt+1) + covt(m

⋆
t+1 −mt+1 −∆st+1, r

⋆
t+1)

] ∣∣∣
=
∣∣∣Et[∆st+1]−

1

2
vart(∆st+1 − ϵt+1) +

1

2
vart(ϵt+1)

−
[
rf,t − r⋆f,t − covt(m

⋆
t+1,∆st+1 − ϵt+1) + covt(m

⋆
t+1 −mt+1 −∆st+1, rt+1)

] ∣∣∣
≤ B

√
vart(∆st+1)

√
1−R2, (47)

where R2 is the R-squared of a regression of ∆st+1 on rt+1 and r⋆t+1.
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Proof. Consider the carry portfolio given by equation (12). Plugging in the assump-
tion about ϵt+1, we see that var(rcarry,t+1) = var(ϵt+1). We use the Euler equations
to compute the risk premium of the portfolio:

E [rcarry,t+1]− rft +
1

2
var(rcarry,t+1)

= E(rt+1)− E(r⋆t+1)− E(∆st+1)− cov(ϵt+1, rt+1 + ϵt+1) +
1

2
var(ϵt+1)

= −E (∆st+1)−
1

2
var(∆st+1) + rft − r⋆ft − cov(mt+1,∆st+1 − ϵt+1)

+ cov(m⋆
t+1 −mt+1 −∆st+1, r

⋆
t+1). (48)

Using the Sharpe ratio bound of Assumption 3 gives the first formulation of condition
(47) immediately. Similar calculations lead to the other formulations in (47). ■

As before, we see immediately that as we converge to spanning the exchange rate
(R2 → 1), this condition converges to Proposition 2. We also notice that the Siegel
paradox sign flip only affect the variance of the spanned risk ∆st+1−ϵt+1 = rt+1−r⋆t+1,
not that of the unspanned risk ϵt+1.

We obtain Proposition 4 by noticing that the term cov(mt+1, ϵt+1) can be bounded
as well using the Sharpe ratio bound.

B Testing the portfolio approximation

We report the correlation (in %) between the excess return on various stock portfolios
—Table 3— and bonds of different maturities —Table 5— in their origin currency
and converted to U.S. dollars. Tables 4 and 6 start from the U.S. version of these
portfolios and converts them to foreign currency. These correlations are pervasively
extremely high, almost all over 99.9%.
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Table 3: Correlation between excess returns converted in different currencies: foreign
stocks

AU CA DE JP NO NZ SE CH UK

Market 99.88 99.91 99.93 99.96 99.88 99.89 99.91 99.94 99.94

Value 99.92 99.94 99.93 99.96 99.89 99.85 99.92 99.93 99.94

Growth 99.82 99.88 99.93 99.96 99.9 99.93 99.92 99.95 99.94

Oil, Gas, Coal 99.89 99.93 NA 99.96 99.92 99.92 99.93 NA 99.96

Basic Material 99.84 99.94 99.94 99.95 99.88 99.91 99.91 99.96 99.91

Consumer Discretionary 99.91 99.95 99.93 99.96 99.92 99.94 99.94 99.93 99.96

Consumer Products, Services 99.88 99.96 99.97 99.95 NA NA 99.94 99.93 99.98

Industrials 99.90 99.91 99.94 99.95 99.89 99.92 99.92 99.94 99.94

Health Care 99.91 99.97 99.96 99.96 NA 99.91 99.93 99.96 99.97

Financials 99.92 99.95 99.94 99.96 99.89 99.93 99.91 99.93 99.92

TeleCom 99.92 99.95 99.96 99.96 99.92 99.84 99.93 99.94 99.96

Technology 99.91 99.88 99.96 99.96 99.86 NA 99.94 99.95 99.95

Utilities 99.93 99.91 99.94 99.97 NA 99.93 NA 99.95 99.97

N otes: The table reports the correlation (in %) between the excess return on various stock indices

expressed in their home currency and converted to U.S. dollar. The portfolios include the market (a

combination of large and mid-cap stocks), value and growth portfolios, and 10 industry portfolios,

all from MSCI. Each column corresponds to a different country.
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Table 4: Correlation between excess returns converted in different currencies: U.S.
stocks

AU CA DE JP NO NZ SE CH UK

US Market 99.88 99.94 99.95 99.96 99.87 99.90 99.92 99.94 99.94

US Value 99.90 99.95 99.96 99.96 99.87 99.91 99.92 99.95 99.95

US Growth 99.87 99.93 99.94 99.96 99.88 99.90 99.92 99.94 99.94

US Oil, Gas, Coal 99.90 99.96 99.97 99.98 99.92 99.92 99.94 99.96 99.96

US Basic Material 99.81 99.90 99.92 99.95 99.85 99.88 99.90 99.93 99.93

US Consumer Discretionary 99.91 99.95 99.95 99.96 99.9 99.91 99.92 99.95 99.95

US Consumer Products, Services 99.93 99.97 99.97 99.97 99.92 99.93 99.94 99.96 99.96

US Industrials 99.86 99.93 99.94 99.96 99.84 99.90 99.90 99.94 99.94

US Health Care 99.90 99.96 99.95 99.96 99.88 99.93 99.93 99.95 99.96

US Financials 99.91 99.95 99.95 99.94 99.87 99.93 99.91 99.92 99.94

US TeleCom 99.87 99.93 99.95 99.95 99.9 99.91 99.93 99.96 99.95

US Technology 99.88 99.93 99.94 99.96 99.89 99.91 99.92 99.94 99.94

US Utilities 99.84 99.92 99.94 99.96 99.85 99.88 99.91 99.96 99.94

N otes: The table reports the correlation (in %) between the excess return on various stock indices

expressed in the U.S. dollars and converted to foreign currency. The portfolios include the market (a

combination of large and mid-cap stocks), value and growth portfolios, and 10 industry portfolios,

all from MSCI. Each column corresponds to a different country.
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Table 5: Correlation between excess returns converted in different currencies: foreign
bonds

AU CA DE JP NO NZ SE CH UK

2Y Bond 99.86 99.97 99.92 99.97 NA 99.85 99.91 99.91 99.95

3Y Bond 99.86 99.97 99.92 99.97 99.91 NA NA 99.93 99.96

4Y Bond NA 99.97 99.93 99.97 NA NA NA 99.94 99.96

5Y Bond 99.87 99.97 99.93 99.97 99.91 99.85 99.91 99.93 99.96

6Y Bond NA 99.96 99.93 99.97 NA NA NA 99.92 99.96

7Y Bond NA 99.96 99.93 99.96 NA NA 99.91 99.91 99.96

8Y Bond NA 99.96 99.92 99.96 NA NA NA 99.90 99.96

9Y Bond NA 99.96 99.92 99.96 NA NA NA 99.89 99.96

10Y Bond 99.87 99.96 99.93 99.96 99.91 99.88 99.91 99.88 99.96

N otes: The table reports the correlation (in %) between the excess return on government bonds of

different maturity expressed in their home currency and converted to U.S. dollars. Bond returns

are constructed from yields obtained from each country’s central bank. Each column corresponds

to a different country.
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Table 6: Correlation between excess returns converted in different currencies: U.S.
bonds

AU CA DE JP NO NZ SE CH UK

US 2Y Bond 99.9 99.95 99.95 99.97 99.91 99.93 99.95 99.93 99.96

US 3Y Bond 99.91 99.96 99.95 99.97 99.92 99.93 99.95 99.92 99.96

US 4Y Bond 99.92 99.96 99.94 99.96 99.92 99.94 99.95 99.91 99.96

US 5Y Bond 99.91 99.97 99.93 99.96 99.91 99.94 99.95 99.89 99.95

US 6Y Bond 99.91 99.97 99.93 99.96 99.89 99.94 99.94 99.88 99.95

US 7Y Bond 99.9 99.96 99.92 99.96 99.88 99.94 99.94 99.86 99.95

US 8Y Bond 99.89 99.96 99.91 99.96 99.86 99.93 99.93 99.85 99.95

US 9Y Bond 99.88 99.96 99.9 99.96 99.85 99.93 99.93 99.84 99.95

US 10Y Bond 99.88 99.96 99.9 99.96 99.84 99.93 99.92 99.83 99.94

N otes: The table reports the correlation (in %) between the excess return on U.S. government

bonds of different maturity expressed in U.S.. dollars and converted to foreign currency. Bond

returns are constructed from yields obtained from the Federal Reserve. Each column corresponds

to a different country.
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