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1. Introduction 
 

Private Equity (PE) markets have exploded in the past two decades. PE Assets under 

management (AUM) have multiplied more than tenfold since 2004 reaching over $10 trillion 

in 2022. The limited lifespan of these funds means that PE firms (also known as GPs) raise 

new funds every three years or so. The most sought-after PE firms complete fundraising in less 

than six months, while at the other end of the spectrum, fundraising can take two years. PE 

represents an increasing proportion of most institutional investor portfolios. These investors 

dominate the demand side of the market and spend considerable time and resources making PE 

investment decisions, probably as a result of the large commitment and multi-year nature of 

such investments.  

While mutual fund flows have been well studied, the determinants of PE fundraising success 

and performance have received less attention, possibly due to the scarcity of information. In 

the mutual fund industry, fund flows have been associated with models based on the 

competitive provision of capital by investors, heterogeneous fund manager skills with 

diminishing returns to scale, and investor learning about manager skills based on past fund 

manager performance (Berk and Green (2004)). Since a large proportion of investment in 

public and private markets is made by the same institutions, similar forces may be driving these 

two markets. Yet, information asymmetry is a more pervasive feature of private markets. 

Unlike mutual fund databases, private equity datasets are thin. Moreover, PE fund managers 

have considerable degrees of freedom to frame their track records at the time of fundraising 

(Brown et al., (2019)). As a consequence, PE fund manager selection is particularly difficult. 

Although access to reliable information is an issue in PE markets, GPs do provide a great 

deal of information to prospective investors (also known as LPs) at the time of fundraising. In 

this paper, we collect a unique dataset of close to 400 PE fundraising prospectuses and analyze 

the impact of quantitative data and qualitative information contained in these documents on 

fundraising success and performance using both econometric methods and machine learning 

algorithms for the first time.   

We start by analyzing the impact of quantitative information extracted from private 

placement memorandums (PPMs). As in previous papers, we codify information on past 

performance, vintage year, fund size, and fund sequence. In addition, we also compute two 

common measures of readability proposed in related literature but never used in the PE context: 
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the number of words in relevant PPM sections and the total number of PPM pages (Loughran 

and McDonald (2014), Kim, Wang, and Zhang (2019)). 

One could argue that investors use all of this information to learn about the perceived skills 

of PE firms and form their heterogeneous demand for the offered funds. Therefore, our first set 

of econometric tests (Section 3), analyzes fund-level determinants of fundraising success. To 

measure investors’ demand, we compute fundraising success proxies used in previous work, 

such as the ratio of the realized fund size at the end of the fundraising period (ex-post) to the 

fund size targeted by the PE firm at the start of the fundraising effort (ex-ante), fund size 

growth, and the time to raise the fund. Our results confirm that investors seem to process 

quantitative information in their capital allocation decision. We find that PE firm reputation 

and past performance are significantly related to fundraising success. In contrast, we do not 

find consistent evidence that readability impacts fundraising success in private markets. 

We then analyze whether the quantitative information apparently used by investors to 

allocate capital actually predicts fund success, i.e. whether investors really spotted fund 

manager skill. We find that fund performance is not explained neither by any of the 

aforementioned quantitative measures driving fundraising success nor by measures of 

fundraising success themselves. The result that past performance is not correlated to future 

performance is broadly consistent with previous work, (Hochberg, Ljunqvist, Vissing 

Jorgensen (2012), Harris, Jenkinson, and Kaplan (2020)). However, the finding that 

fundraising success is unrelated to future performance is novel and perhaps surprising as we 

could have anticipated that sought-after funds would perform better.6 

In section 4, we use machine learning techniques to analyze whether qualitative information 

from the PPM can help investors. It is possible that in the absence of standardized sources to 

benchmark risk exposures and past performance in private markets, the qualitative information 

provided in PPMs is valuable in identifying PE fund manager skills. We focus our analysis on 

the qualitative information provided in the strategy section of the document in which GPs 

elaborate on market segments, strategy and planned activities.7 This part of the document 

                                                           
6 Although Cavagnaro et al. (2019) provide empirical evidence that some investors do persistently select skilled 
fund managers, our finding suggests that the average investor in private markets finds it difficult to learn about 
fund manager skills. 
7 The investment strategy section contrasts with the other sections of the PPM, which lawyers tend to largely 
copy-paste across PPMs. For details on the role played by lawyers in drafting a PPM please refer to: 
https://www.lexisnexis.com/lexis-practice-advisor/the-journal/b/lpa/posts/drafting-and-reviewing-the-key-
documentation-for-a-private-equity-fund-and-its-offering.  In addition to the mostly legal sections devoted to the 

about:blank
about:blank
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contains an average of 2,633 words and conveys considerable information about what the fund 

manager plans to do. The richness of this information contrasts with the more limited and 

generic set of quantitative fund characteristics and readability measures used in the previous 

section.  

Since the information in the strategy section of the PPM is qualitative, our analysis uses the 

Term Frequency - Inverse Document Frequency (TF-IDF) approach, a well-established method 

in Natural Language Processing (NLP). This method produces a score indicating how 

characteristic a term is in each document.8 In our context, each TF-IDF score is equal to the 

frequency with which a term occurs in the strategy section of a PPM divided by its average 

frequency across the strategy sections of the rest of the PPMs in the sample.  The resulting 

matrices of TF-IDF scores of terms across PPMs, is then used as input in quantitative methods 

(Salton and Buckley, 1988). For example, the bigram (trigram) with the highest TF-IDF score 

in our sample is “portfolio company” ("due diligence process") which appears 4,065 (404) 

times in 92.6% (49.6%) of the 395 PPMs. An analysis of terms across time shows that the 

wording in PPMs has been remarkably stable over time, particularly since 2003. 

OLS regressions are generally not successful techniques for either in-sample or out-of-

sample predictions, especially in settings with a large number of terms (i.e. TF-IDF scores) and 

relatively few observations.9 Therefore, we carry out our analysis using three of the most 

traditional machine learning techniques: Lasso Regression, Random Forest, and Gradient 

Boosting. Specifically, we train each algorithm on a training dataset equivalent to 80% of our 

total sample of funds raised between 1999 and 2013, and test its accuracy on the funds raised 

in 2014-2016. 

To measure outperformance, we benchmark each fund's TVPI to the median TVPI of all 

other funds in the same geography, investment strategy, and vintage year in the Preqin 

database. Given the relatively small size of our sample, compared to other machine learning 

settings, we restrict ourselves to a binary indicator of outperformance. A second challenge for 

carrying out an out-of-sample exercise is the long horizon of PE investments. To do a standard 

                                                           
offer and its risks, PPMs also contain fund managers’ background and selected case studies. Due to the extent of 
this paper, we analyse these sections in a separate paper. 
8 A term can be either a single word or a combination of adjacent words (i.e., bigrams or trigrams). 
9 Traditional econometric techniques are designed to estimate structural parameters and drawing causal inferences. 
In contrast, machine learning algorithms are designed to maximize out-of-sample predictive accuracy avoiding 
overfitting and not being constrained by parametric assumptions a linear structure, or a specific number of 
covariates. 
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out-of-sample test we would need to train the algorithm on the few funds raised before, say, 

1985, and test the algorithm on funds raised between 2000 and 2005. Therefore, the trade-off 

between statistical power of a small sample and a look-ahead bias when training the algorithms 

needs to be managed. Since our main machine learning analysis exploits the full sample of 395 

funds, we use performance information only known in June 2022. This choice ensures that all 

funds in the test sample are at least six years old, but the information was obviously unavailable 

at the start of our test period in 2014. We address the issue of a look-ahead bias in the robustness 

section. 

Our main results show that the three machine learning algorithms are remarkably effective 

at predicting fund performance. When the algorithms are applied to our test sample of 72 funds 

from the 2014-2016 vintage years and using big- and trigrams, the different accuracy measures 

indicate that the algorithm is better than a random selector. Using all 323 funds raised between 

1999 and 2013, the Lasso algorithm accurately classifies the outperformance of 43 of the 72 

funds. Our models are better at predicting outperformance than underperformance. For 

robustness, we run an alternative analysis restricting the training sample to funds raised after 

2002, when the language in the PPM becomes even more homogeneous. The models’ 

predictive power generally improves:  Gradient Boosting, for example, correctly classifies over 

73% of the actual outperformers delivering TVPI returns higher than the median TVPI in their 

segment. 

We perform a series of ancillary and robustness tests that put our machine learning results 

in the context of the previous analysis carried out with traditional econometric methods, and 

provide support for the robustness of the main findings of the paper. We start by showing that 

the qualitative information grasped by the algorithms does not simply mirror some quantitative 

fund characteristics. Our results show that the probabilities of fund success produced by the 

algorithms using qualitative information as input are uncorrelated with standard quantitative 

variables, such as reputation or past success. Similarly, the probabilities of success are also 

uncorrelated with fundraising success measures. This pattern of evidence seems to suggest that 

the average investor does not process qualitative information when selecting PE asset 

managers. 

We also confirm that the power of the PPM’s qualitative information translates into 

meaningful economic effects as the algorithms are particularly good at identifying 

outperformers. To illustrate this, we sort the funds in our test sample according to their 
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predicted probability of success and look at their excess TVPI.  The excess TVPI of the whole 

portfolio to be 0.16. If we now remove one fund at a time, starting with those with the lowest 

predictions, the median distance increases significantly: for the 25% of funds with the highest 

predicted probability of success, excess TVPI is 0.35. In our view, this finding is evidence that 

qualitative information is a valuable tool to learn about fund manager skills and maybe one of 

the reasons why some LPs are better at this exercise than others.  

One could argue that it is unfair to compare machine learning-based results using qualitative 

information with results using quantitative information or fundraising success through linear 

regression models because the former models are able to capture non-linear complexities. For 

this reason, in the second part of Section 4, we use machine learning models training them with 

quantitative information and/or fundraising success. Our results show that the predictive power 

of these models for future fund success is substantially weaker than those algorithms using 

qualitative information.  

Unlike traditional econometric models, machine learning algorithms do not provide a 

straightforward interpretation of the marginal influence of features (i.e. independent variables) 

on outcome variables. However, developments in the explainable AI (XAI) and interpretable 

ML have started to improve the interpretability of models (e.g., Lundberg and Lee (2017), 

Ribeiro, Singh, and Guestrin (2016) , and Vilone and Lungo (2020) for a review ). In Section 

4, we use some of the methods from this literature to gain insights into our algorithms, and to 

quantify the contribution of each feature in predicting future fund performance. Our analysis 

looking into the most relevant terms predicting success shows terms such as “investment 

criteria,” “developing portfolio,” or “growth opportunity” among these terms. This analysis 

gives us some confidence that our algorithms are picking up economically interpretable 

constructs.  

In the final part of this Section 4, we address the previously raised issue of a look-ahead bias 

when training our algorithms.  The additional tests in this last section show that our previous 

results are indeed robust. In particular, we carry out an exercise where the training data set 

consists of 184 funds raised before 2011 and the binary outperformance indicator is computed 

using performance information available as of December 2014. We use these algorithms to 

predict success for funds from vintage years 2015 and 2016 (using performance information as 
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of June 2022 again). The algorithms achieve an out-of-sample accuracy of above 0.6 and 

correctly classify around 60% of the outperformers depending on the method.   

Overall, our paper makes use of previously unexploited data on qualitative information 

provided to private market participants. This analysis allows us to provide the first empirical 

study assessing the impact the readability measures of fund manager disclosures and the 

application of textual analysis and machine learning in markets characterized by non-

standardized disclosure and inherent information asymmetries.   

Our results contribute to four different strands of the existing literature in finance. First, we 

contribute to the literature of fund flows and return predictability in private markets. As in 

Harris et al. (2020), we find that buyout fund performance is poorly predicted by traditional 

quantitative variables, such as the track record available at fundraising time. Our results are 

also in line with PE papers raising concerns about the reliability of returns reported to investors 

when raising a new fund (e.g., Barber and Yasuda (2017); Jenkinson et al., (2013)), and with 

other work arguing that prior returns are not an important issue for sophisticated investors 

(Brown et al., (2019); Robinson and Sensoy (2016)). We supplement this literature using new 

fundraising success measures and introducing the analysis of textual data. We show that the 

average investor finds it difficult to extract information about fund manager skills’ 

heterogeneity using traditional quantitative measure, but that analyzing qualitative content can 

actually help. We therefore offer qualitative information as a potential explanation of why some 

investors seem to be persistently good at selecting funds (Cavagnaro et al., 2019).   

Second, our paper expands the literature on document readability of disclosures in financial 

markets. Previous papers have examined the association between readability, fund flows an 

future firm performance in public markets (Li (2008); Loughran and McDonald (2014); 

Loughran and McDonald (2016)). To the best of our knowledge, we are the first to empirically 

analyze the informational value of document readability in private markets. We do not find 

readability proxies to be significantly correlated with fundraising success or fund performance 

in private markets. We posit that, as in security issuance (La Porta et al., (2006)), one potential 

explanation behind these results may be the lack of disclosure standardization. 

Third, beyond the use of qualitative information in the form of readability and document 

presentation, our paper expands the nascent and rapidly growing literature using textual 

analysis in finance which has started to exploit public firms’ 10K filings and earnings call 
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transcripts. Hoberg and Phillips (2010) are attributed to be the first to use textual analysis to 

cluster firms according to product markets. Since then, these methods have been used for 

diverse objectives including categorizing corporate goals using letters to shareholders (Rajan 

et al., (2022)) and identifying risk factors raised by firms in their annual reports (Lopez-Lira 

(2023)).10 In the area of private markets, the only other paper exploiting textual data thatwe are 

aware of is Biesinger et al. (2021), who apply this method to investigate value creation in LBO 

portfolio companies. We contribute to this literature showing the potential to extract 

meaningful patterns from textual data in private market disclosures. We find such qualitative 

information could be valuable in assessing or inferring PE manager skills beyond other 

quantitative information measures studied in previous papers (e.g., Kaplan and Schoar (2005)). 

Finally, our paper is also connecting to the rising literature applying machine learning 

techniques identifying human biases and improving selection in both asset pricing (e.g., 

Bianchi et al. (2021); Ke, Kelly, and Xiu (2019); Gu et al. (2020)) and corporate finance (Li et 

al. (2020), Bubb and Catan (2020), Erel et al. (2021)). Erel et al. (2021), for example, use 

algorithms to predict director performance and also show that firms are more likely to nominate 

male candidates as directors than what a trained machine learning model would. Davenport 

(2022) and Lyonnet and Stern (2022) have used a similar method to compare investor choices 

in venture capital to algorithms’ predictions. The thrust of our findings suggests that investors 

in private markets might be biased towards more established PE firms.  

We organize the rest of the paper as follows. After this introduction, section 2 presents our 

new dataset of 395 PE funds. In section 3, we analyze the role of quantitative information and 

document readability in explaining fundraising success using traditional econometric methods. 

We also analyze whether a more successful fundraising campaign helps predict ultimate fund 

success in terms of returns. Section 4 expands the analysis presenting the main results of the 

paper including the study of qualitative information using textual analysis and machine 

learning techniques to predict PE fund success. We also provide some economic interpretation 

of the algorithms, and robustness tests to addressing potential biases and alternative 

explanations, and well as ancillary tests connecting quantitative and qualitative information. 

Section 5 concludes. 

  

                                                           
10 For a extensive overview on textual analysis in several topics in accounting and finance see Loughran and 
McDonald (2016) and (2020). 
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2. Data 
 

2.1. Data collection 
 

When raising capital, PE firms send a large amount of information to potential investors. 

Most of this information is contained in Private Placement Memorandums (PPMs), which are 

long confidential documents averaging close to 80 pages (and about forty thousand words). 

There is no explicit or implicit industry standard for PE disclosures. Typically, a large part of 

the PPM content is mostly legal consisting of the terms of the security offered, the risks and 

the legal disclaimers protecting sellers from potential liabilities. Other common sections of the 

document include a description management biographies and selected investment examples. 

Importantly, PPMs contain a strategy section where management is heavily involved and which 

provides investors the GP’s vision about the market, the strategy, and the business. 

In terms of informational content, PPMs have been used as an important source of 

quantitative information in the literature. Hard information typically obtained from PPMs 

includes the PE firm’s past performance, the number of funds the PE firm and its managers 

have raised before, the target amount to be raised and the fees associated with the offer (e.g., 

Reference 1, Reference 2, Reference 3).  In our paper, we analyze quantitative information, but 

our main contribution is to go beyond hard data and extract qualitative information for the first 

time. To achieve this goal, we develop measures of the PPM readability and, most importantly, 

extract qualitative information from the strategy section of the PPM using machine learning 

techniques. 

We source PPMs from a large global institutional investor based in Europe who is mostly 

focused on leveraged buy-out (LBO) funds. The proprietary database we assembled, using the 

investor’s paper and electronic archives, consists of 941 PPMs received by the investor 

between 1999 and 2020. Panel A of Table 1 documents how we arrive at our final sample of 

395 funds used throughout the rest of the paper. Appendix 1 provides detailed descriptions of 

all the variables used in the paper. 

<Insert Table 1 here> 
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The data provider did not invest in more than 80% of the PPMs. In order to gather as much 

hard information as possible on these funds, we matched our sample with the Preqin dataset.11 

A total of 737 funds with a size above €5 million were identified in Preqin.  

To ensure that we observe at least six years of fund performance (from 2022, the time of 

our data collection), we eliminate all funds raised after 2016. The following two filters aim to 

ensure similar style and geographic focus of the funds in the sample. We want to focus on 

buyout funds, so we eliminate 84 funds that include venture capital and other styles far from 

buyout. 12 We only keep the 503 funds that are classified as either buy-out, turnaround, growth 

capital, or balanced funds.  The geographic focus filter only eliminates a couple of funds 

leaving us with 501 funds investing in either Europe, North America, or Asia. 13 Two funds in 

our proprietary sample do not have an “investment strategy and process” section in their PPMs, 

which we need to represent qualitative information. Finally, as the performance of mature funds 

is central for our analysis, we remove the 106 funds for which we do not find performance 

information in year six or later. The rest of the columns of Panel A provide statistics on the 

number of funds and their average and median size for the sample of fund in what we call the 

“Full Preqin” and the “Preqin Fund Performance” datasets. In terms of fund size, our final 

sample of 395 funds (median size of €355m) is comparable to the size of funds in the Preqin 

Fund Performance Sample (€284m), but significantly larger those funds in the  the Full Preqin 

sample (€121m). 

A feature of the Preqin dataset is that for a subset of funds, Preqin reports the fund 

characteristics (e.g., fund size, geographic focus, stage of target companies) but not the 

performance measures. The Preqin Fund Performance Sample refers to the subset of funds for 

which performance metrics are available. In addition, Preqin provides the detailed cash flow 

data behind the reported performance for a subset of these funds. For this sub-sample, we can 

calculate the time-series of performance and therefore compute the interim performance that 

we need in our analysis. 

                                                           
11 Preqin is a commercial dataset that has now become widely used by academics (e.g., Cavagnaro et al., 2019). 
We need Preqin to obtain performance information for the funds in which our institutional investor data 
provider did not invest in. 
12 Using the Preqin classification, excluded funds belong to one of the following categories: Natural Resources, 
Special Situations, Secondaries, Distressed Debt, Co-Investment, Mezzanine, Infrastructure, Secondaries, 
Venture Debt, Fund of Funds, Real Estate, and Venture Capital. 
13 Using the Preqin classification, Asian countries include China, Australia, India, South Korea, and Turkey. 
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Panel B of Table 1 shows the sources of fund performance data that we use in our analysis for 

our final sample of 395 funds. Our data provider invested in a quarter of the 395 funds. For 

these 100 funds, we have the full time series of cash flows and NAVs. An additional data search 

using all available internal records (e.g., PPMs or subsequent fund presentations) allowed us 

to collect performance data for an additional 61 funds. Of the 234 funds for which our data 

provider did not have useful performance information, 34 funds were included in the Preqin 

Cash Flow dataset, and the remaining 200 funds were drawn from the Preqin Fund Performance 

sample. To ensure comparability across sources and currencies, we converted all return 

information into euros. Appendix 2 provides the details of the conversion procedure. We should 

metion that this exercise was quite involved as the Preqin data is not consistent in terms of 

currencies for the same funds across years. 

 

2.2. Summary statistics: Performance, fundraising success and quantitative 
information 
 

We construct three performance measures. We compute the Total Value to Paid-in (TVPI) 

as the ratio of the sum of all capital distributions plus the last reported NAV over the total 

amount of capital invested (including fees). Our second measure is the Internal Rate of Return 

(IRR), also comuted net of fees.  Our final measure is an indicator variable we label 

Outperformer, which we compute as a binary indicator taking the value of one if the TVPI of 

the fund in question is greater than or equal to the median TVPI of the fund’s peers in the 

Preqin dataset. We identify the Preqin peers of a fund as those funds with performance available 

in Preqin, having raised capital in the same year, and investing in the same type (e.g., Buyout).14 

Detailed definitions of these measures are provided in Appendix 1. 

Panel A of Table 2 shows that the average performance for our final sample of 395 funds is 

equivalent to a net TVPI of 1.8x and a net IRR of 14.4%.  These figures are comparable to 

those in other large scale buyout samples covering similar time windows (e.g., Cavagnaro et 

al., 2019). The fact that only half (51.7%) of the 395 funds in our final sample were 

outperformers, provides further confidence on the representativeness of our data.  

                                                           
14 When we have the data to computere TVPI but we do not have an IRR (or the other way around) we infer the 
missing one using the following formula:  

𝐿𝐿𝐿𝐿(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇) = 4 ∗ 𝐿𝐿𝐿𝐿(1 + 𝑇𝑇𝐼𝐼𝐼𝐼) 



12 
 
 

<Insert Table 2> 

In panel B of Table 2, we provide additional summary statistics for the measures of 

fundraising success that we use in our study to proxy for investor demand. A well-established 

approach to measure fundraising success in the literature (see e.g., Hochberg, Ljungqvist, and 

Vissing-Jørgensen, 2014) is to calculate the oversubscription ratio, equivalent to the ratio of 

final to target fund size. The oversubscription ratio for our sample of funds has a mean (median) 

value of 1.05 (1.07).  This means that the average fund in our sample is oversubscribed by 5%.  

This value is close to the average oversubscription of 1.014 (or 1.4%) documented in Hochberg, 

Ljungqvist, and Vissing-Jørgensen (2014).15 The standard deviation of 0.31 indicates that we 

observe significant variation in fundraising success when using this measure. We use the 

oversubscription ratio to compute a binary indicator variable that takes a value of one if the so-

called oversubscription ratio is greater than or equal to one, and zero otherwise. As panel B 

shows, 65% of the funds in our sample actually reached their target size.  

Another way to construct a measure of investor demand in our context is to compute the 

increase in fund size of consecutive funds by the same PE fund manager, that is, the size 

increase from the previous fund to the current fund (see, e.g., Barber and Yasuda, 2017). Since 

revenue per PE firm partner has been show to strongly increase with fund scale (Metrick and 

Yasuda (2010)), it seems reasonable to assume that investor demand can be proxied by the 

change in fund size (divided by the number of years between the two successive funds). We 

compute  fund size increase dividing the final size of the current fund by the size of the previous 

fund. This measure is similar to the measure of fund flows used in the mutual fund industry. 

To the extent that a PE firm is able to raise additional capital for a given investment strategy 

relative to its previous fundraising effort. Table 2 shows that the average (median) increase in 

fund size is quite substantial reaching 1.74 (1.47). This means that the average (median) follow-

up fund by the same PE firm pursuing the same strategy is 74% (47%) larger than its 

predecessor.  

In addition to  the established measures of fundraising success we describe above, we also 

collected data on the duration of fundraising period.  Our proxy is computed as the number of 

months between the date of the drafting of the PPM (i.e., when the PE firm starts marketing 

the fund) and the final closing date of the fundraising campaign. Caeteris paribus, higher 

                                                           
15 A 1.014 average oversubscription ratio means that the average GP raises its target size plus 1.4% of the target 
size. 
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demand for a fund should translate in a shorter fundraising period. The average (median) fund 

in our sample spent 13.8 (12.0) months raising capital before closing the campaign. As with 

pervious success measures, we observe substantial differences across funds: the fund in the 

75th percentile spent 19.3 months, while that in the 25th percentile raised its capital in only a 

little over half a year. The correlation matrix in Table A1 of the Appendix shows that all 

fundraising success measures we calculate are highly correlated with each other. This fact 

makes us more confident about the validity of our measure to proxy for the, ultimately 

unobservable investor demand for a fund at the time of fundraising. 

Panel C of Table 2 provides the standard quantitative measures of fund characteristic used 

in the literature. We have 75 first-time funds as part of our final sample, but the median fund 

in our data represents the third generation of an investment strategy by a specific PE firm. The 

largest fund in our sample raised more than 17 billion euros. Indeed, our sample includes very 

large funds, as evidence by the significant difference between the mean and median fund. This 

difference is indicative of the fund size right-skewness typical of the PE industry. The fund 

characteristics in panel C have been widely used in previous work  as proxies for PE firm 

reputation since Kaplan and Schoar (2005). 

When making investment decisions across all asset classes, most investors of use past 

performance as a predictor for future success. In the context of PE, a large body of the literature 

has also studied the relationship between fundraising success and interim performance reported 

at the time of fundraising (e.g., Hochberg, Ljungqvist, Vissing-Jørgensen (2014); Barber and 

Yasuda (2017); Brown et al. (2019)). For this reason, we also collected the data on gross TVPI 

interim performance on the previous fund for 318 of the 320 second or higher fund generation 

in our sample. Following Lopez-de-Silanes et al. (2015), we compute gross TVPI as the ratio 

of the sum of the total cash received by the GP from the investment plus its current valuation 

(if not fully liquidated) over the total cash invested by the GP. The median (average) interim  

gross TVPI is 1.63 (1.52). Although these interim returns are largely based on reported net 

asset values, and hence can be somewhat managed by PE firms, the observed variation across 

funds is interesting. The standard deviation of a previous-fund gross TVPI is 0.62. One  

potential explanation behind this variation is the average four-year length between the closing 

of two subsequent funds in our sample. This length could translate is a large portion of the 

investments having realized distributions.  
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  Inflated interim performance is a well-known issue PE. For this reason, investors might 

also consider the length of the PE term track record as an indicator of success. We were able  

to compute the gross TVPI of the previous two funds for a total of 228 of the 234 funds of third 

and higher generation in our sample. Since averaging the performance of two trailing funds 

may be conceptually difficult, we follow a different procedure to classify funds and obtain a 

measure of the performance of these funds. To get an idea of how well a previous fund 

performed, we compare its performance against competing funds of similar maturity at that 

point in time for each vintage year of the current fund. We then split the 228 funds into three 

groups based on their past track record. We code two three variables. The first one takes a value 

of one if both previous funds outperformed competing funds, and zero otherwise. Table 2 

shows that 52 funds (23%) were marketed with such a track record of consistent past 

outperformance. The second dummy variable takes a value of one if to previous funds 

underperformed their peers, and zero otherwise. We have 68 funds (30%) that entered 

fundraising with this poor signal.  The third dummy variable takes a value of one if both 

previous funds have a mixed track record, and zero otherwise.  A total of 108 funds out of 228 

funds in our sample (47%) exhibited a mixed track record at the time of fundraising of the 

current fund.   

The final panel D of Table 2 departs from previous past performance measures used in the 

literature and introduces document readability measures in the area of PE for the first time. A 

large strand of the document readability literature relies on lexicas to determine complexity of 

language used in a text. However, we follow Loughran and McDonald (2014) who criticize 

lexica-based approaches, arguing that the complexity of words used seems to be more closely 

related to the complexity of the underlying business than to the actual readability of the 

document itself. For this reason, they use the size of 10-K filings and show that larger files are 

associated with high return volatility, earnings forecast errors, and earnings forecast 

dispersions. Although the setting of unregulated and non-standardized disclosure in private 

markets is somewhat different,16 we adapt the idea of  Loughran and McDonald’ compute two 

simple readability proxies: the number of words in a PPM’s strategy section and the number of 

pages of the PPM. The traditional hypothesis in this filed is that a larger numbers of words or 

pages translates into lower readability. The average PPM in our sample has a strategy section 

                                                           
16 There is no document standard or regulating organization (like the SEC in public markets) publishing such 
documents in private markets. In fact, different PPMs are actually compiled (and provided) using different word 
processing software. 
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with 2775 words and the average PPM is 85 pages long. We use the natural logarithm of both 

variables in our subsequent tests.  

 

2.3. Numerical Representation of Qualitative Information in PPMs 
 

Although readability is a first step in measuring how qualitative information is presented to 

investors, in this section we go one step further and exploit methods of textual analysis to 

represent the content of qualitative information. Our goal is to represent numerically the text 

in the PPM so that it can be used for quantitative analysis. To characterize the qualitative 

information contained in each PPM, we rely on the term frequency- inverse data frequency 

(TF-IDF) approach, an established method in computational linguistics.  

To implement the TF-IDF method in the strategy section of the PPM, we carry out the 

following steps. First, we stem words in the text corpse. Second, for the main analysis we 

present in the paper, we define a term as a combination of two or three adjacent words, 

respectively (called bigrams or trigrams).17 Terms that appear in most documents, such as the 

bigram portfolio companies, are unlikely to help discriminating between funds. For this reason, 

the TF-IDF approach relies on a measure of originality of a term; it compares the number of 

times a term appears in a document with the number of documents the term appears in. We use 

the scaled version proposed by Pedregosa et al. (2011), which is a slightly modified version of 

the original measure proposed by Salton and Buckley (1988).18 More specifically, the TF-IDF 

of a term i in document j is computed as: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (𝑖𝑖, 𝑗𝑗) =  
𝑇𝑇𝑇𝑇 (𝑖𝑖, 𝑗𝑗). (ln(𝐿𝐿) − ln (𝐿𝐿𝑖𝑖))

�( ∑(𝑇𝑇𝑇𝑇(𝑖𝑖, 𝑗𝑗). (ln(𝐿𝐿) − ln (𝐿𝐿𝑖𝑖))2
 

It is basically equivalent to the frequency of term 𝑖𝑖 in document j (𝑇𝑇𝑇𝑇(𝑖𝑖, 𝑗𝑗)), weighted by 

the ratio of the total number of documents in the corpse (N) to the number of documents 

                                                           
17 In alternative exercises, we have defined a term as a single word instead, or used bigrams or trigrams alone or 
the three of them together.  
18 We use the TF-IDF vectorizer available in Scikit-Learn developed by Pedregosa et al. (2011). The authors of 
the paper modify the TF-IDF formula presented in the body of the text to produce more accurate results. They 
compute the natural logarithm to the IDF score to avoid high values for the score, preventing them from 
dominating the TF-IDF score. Furthermore, they normalize the TF-IDF score to make model training less sensitive 
to the scale of features: 

𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇 (𝑖𝑖, 𝑗𝑗) =  
𝑇𝑇𝑇𝑇 (𝑖𝑖, 𝑗𝑗)𝑥𝑥 𝐿𝐿𝐿𝐿( 𝑇𝑇𝑇𝑇𝑇𝑇(𝑗𝑗))

𝑆𝑆𝑆𝑆𝐼𝐼𝑇𝑇 (𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑎𝑎 𝑝𝑝𝑎𝑎𝑜𝑜𝑝𝑝𝑆𝑆𝑝𝑝𝑡𝑡 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇 (𝑖𝑖, 𝑗𝑗)𝑥𝑥 𝐿𝐿𝐿𝐿( 𝑇𝑇𝑇𝑇𝑇𝑇(𝑗𝑗)))
 

See Appendix Section 1 for implementation details. 
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containing the term 𝑖𝑖 at least once (𝐿𝐿𝑖𝑖). This means that the term frequency in each document 

is penalized by its frequency across documents. For example, if a term is mentioned in all the 

documents the weight attributed to it would be zero. The third step of the method is to obtain 

a TF-IDF score for each term and each strategy section of the PPM. A high TF-IDF score 

indicates that a term is particularly characteristic for a given document. For example, if a term 

appears twice in the focal document, and is not used in any of the other 394 documents, its TF-

IDF would be equal to 3.60 in our case. A term that occurs 1,000 times altogether and appears 

in all of the 395 documents would have a score of 0.03 

There are 37,001 unique terms across the 395 Strategy sections of the PPMs in our sample, 

and about half of the terms appear in more than one document. Table 3 shows the most common 

stemmed bigrams (Panel A) and trigrams (Panel B) that appear in the strategy sections of our 

PPMs. Portfolio company has the highest average TF-IDF score among all bigrams. It is 

mentioned at least once in more than 90% of the PPMs and, therefore, its presence is not 

particularly specific to certain documents. However, its high number of occurrences (4,065 

times) and the high standard deviation of TF-IDF scores across PPMs indicate that it is used 

much more frequently in some documents. The highest standard deviation across these bigrams 

is displayed by deal flow. The trigram with the highest average TF-IDF score is due diligence 

process, while the trigram with the highest standard deviation is the term buy build strategies. 

Glancing through Table 3, we find terms associated with deal sourcing (e.g., investment 

opportunity, proprietary deal flow), value creation (e.g., value creation, companies’ 

management team, buy build strategy), market segment (e.g., investment criteria), and decision 

making (e.g., investment process). Altogether, the list of terms shown in Table 3 suggests that 

the vectorization of this approach picks up concepts that appear meaningful in the PE context.  

<Insert Table 3> 

Our data set of PPMs includes documents issued over a period of 18 years (1999-2016). 

Therefore, one could argue that PE investment strategies may have evolved or changed over 

two decades. To analyze this possibility, Table 4 analyzes the evolution of the words used in 

the strategy sections of all the PPMs in our sample. To carry out this analysis, we compute the 
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averages of all TF-IDF scores for each vintage year in our sample, and calculate the cosine 

similarities between all annual vectors.19  

While one might have expected large changes, Table 4 shows that the wording used in the 

strategy section of the PPMs has remained remarkably stable, particularly since 2003. The 

cosine similarity among PPM term vectors after 2003 have values above 0.62. After 2006, 

when our sample becomes substantially larger, all cosine similarity scores are above 0.7, and 

most of them have values above 0.8. We believe that the stability of wording over time allays 

concerns regarding our approach to train algorithms using a body of historic PPMs to predict 

future fund success.  

<Insert Table 4> 

 

3. Fundraising Success 
 

3.1. Standard Quantitative Determinants and Document Readability Measures 
 

Following the previous literature on the determinants of fundraising success in Private 

Equity (Reference 1; Reference 2, Reference 3), we start this section examining the relationship 

between our fundraising success measures and the standard proxies for quantitative and 

qualitative information described in section 2. The goal is to analyze whether investors do 

indeed allocate capital according to PE firm reputation, past performance, and document 

readability.  

<Insert Table 5> 

Table 5 presents simple OLS regressions of two fundraising success for the full sample of 

395 funds with available performance data and a PPM strategy section. In all regressions, we 

control for investment strategy style, region, and vintage year fixed effects. The first six 

columns present alternative specifications for our oversubscription ,which measures the ratio 

of actual fund size (ex-post) divided by targeted fund size (ex-ante). Columns 7 to 12 repeat 

the same specifications for our new proxy measuring the number of months it takes the PE firm 

to raise a fund. Appendix Table A2, provides the same analysis as in Table 5 for the two other 

                                                           
19 To avoid that extremely uncommon or extremely common bigrams and trigrams influence the comparison, we 
filter out bigrams and trigrams that appear in less than 1% of all PPM Strategy sections (i.e., in 4 PPMs) and those 
that appears in more than 99% of all PPM Strategy sections (i.e., in 391 PPM). 
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fundraising success measures we compute for our sample: a binary indicator of whether the 

target fund size was reached, and the fund size increase of the most recent fund in comparison 

to the previous fund with the same investment focus. Given the high correlation across all four 

fundraising success measures, it is not surprising that most of the results in Appendix Table A2 

are very similar to those in Table 5.20  

The results in Table 5 are very similar for the two measures of fundraising success. There 

are three main findings that emerge from this table. First, fundraising success is positively 

correlated with PE firm reputation as proxied by the natural logarithms of fund sequence and 

fund size.21 Since the correlation between these two measures is high (0.42 for our sample), 

the first regression model for each variable only includes fund sequence: the natural logarithm 

of fund sequence is positively and significantly correlated with fundraising success in models 

1 and 7, respectively. The magnitude of the coefficients imply that a second-generation fund 

in our sample has a 4.4 percentage points higher ratio of actual vs. targeted fund size ratio 

compared to a first-time fund (0.063 x ln(2) = 0.044), and its fundraising period was about 1.5 

months shorter than that of a first-time fund (Column 7). Fund size, our second proxy for PE 

firm reputation, is also significantly correlated with the oversubscription ratio and the length 

of fundraising. In our sample, a fund is 6.8 percentage points more oversubscribed  (column 

2), and needs 1.2 months less to raise capital than a fund half of its size (column 8).  

The second set of findings pertain to the impact of current performance signals on 

fundraising success.  As expected, we find that investors process current performance signals 

from the fund manager when making allocation decisions. The interim (i.e. at the time of 

fundraising) gross TVPI performance of the PE firm’s previous fund, available for 318 funds, 

is positively associated with fundraising success. All else being equal, a fund manager with a 

one times higher TVPI has a 5.9%-points higher oversubscription (column 5), and a 2.3 months 

shorter fundraising period.  

It is a well-established fact in PE that performance figures at the time of fundraising are not 

necessarily indicative of the ultimate performance of the fund (e.g., Brown et al., 2019). 

                                                           
20 The only significant difference in results is that measures of PE firm reputation measures are not significant for 
our fund size increase variable. This may not be surprising given the way the variable is constructed though. The 
larger a PE firm’s funds have become (as tenure and sequence increase), the harder it is to grow in size at a high 
rate.  
21 Since we could expect a decreasing marginal effect of fund sequence and fund size on fundraising success, we 
use the natural logarithm of these two measures in all regression specifications. 
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Therefore, some investors may also consider a longer track record as an alternative signal of 

future performance. To analyze this, we identify the gross TVPI returns of the two previous 

funds at the time of fundraising and compare them with the historical TVPIs of PE firms raising 

at the same time. Regressions 6 and 12 on 243 funds (with at least two trailing funds) show 

that PE managers’ fundraising efforts are affected by past long(er)-term performance. 

Compared to fund managers with a mixed track record, funds in our sample that raised while 

both previous funds traded worse than the median (of previous funds at the time of fundraising) 

have a 11.5%-points lower ratio of actual to target fund size (Column 6). While the same effect 

is economically relevant in column 12 (1.9 months) it is not statistically significant. However, 

for fundraising time the positive effect of raising with two outperforming previous funds (2.5 

months) is significant at the 10%-level. 

The final finding of Table 5 and Appendix Table A2 is the lack of consistent evidence of a 

significant effect of document readability measures on fundraising success. Our readability 

measures are only significant for one of our four proxies of fundraising success (columns 9 and 

10 of Table 5). Doubling the number of words in the investment strategy section of the PPM 

(total number of PPM pages) increases fundraising time by 1.4 months (2.1 months). Although 

readability measures have been shown to have an important impact in public market disclosure. 

It has been argued that in standardized public markets, complex language may b used to 

intentionally increase investors’ information processing cost for negative price-relevant 

information. Our divergent set of findings here may be related to the non-standardized nature 

of disclosure in private markets.  Additionally, it is also possible that the nature of the 

information analysis process carried out by sophisticated investors in private markets is also 

important.  These investors typically carry out a thorough analysis of only a few funds per year. 

To the extent that they engage in substantial screening for each fund they analyze, the additional 

costs caused by low readability may not end up amounting to much for fund manager selection 

decisions.  

Overall, the results in Table 5 and Appendix Table A2 provide a somewhat consistent 

pattern linking quantitative information to fundraising success in our sample. We interpret 

these results as suggesting that the average investor does consider several of these cues in her 

asset manager selection decisions. In contrast, traditional document readability proxies about 

the length of the strategy section and the PPM itself are not consistently connected to 

fundraising success. 
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3.2. Fundraising Success and Fund Performance 
 

If investors successfully learn about differential PE fund manager ability to run funds, one 

could expect that their fund demand should be positively correlated with the fund’s ultimate 

performance. However, private markets are characterized by a lack of regulation, non-

standardized disclosures and significant information asymmetries between managers and 

investors (Robinson and Sensoy, 2013) which may interfere in the process. In the rest of this 

section, we analyze whether the ultimate net fund TVPI is correlated with the quantitative and 

qualitative fund characteristics that we found significant to predict fundraising success in the 

previous section, and, more directly, with fundraising success itself. 

<Insert Table 6> 

Table 6 presents the results of such an analysis using similar econometric specifications as 

in the previous section.  The dependent variable for all specifications in the table is Net Fund 

TVPI and the set of regressors include the set of standard fund characteristics used in Table 5,  

(Columns 1-6) and the four proxies for fundraising success one at a time (Columns 7-10). In 

all regressions, we control for investment strategy, region, and vintage year fixed effects.  

The summary of the findings in Table 6 is straightforward: the quantitative determinants of 

fundraising success and our proxies for fundraising success are poor predictors of future fund 

performance.  Starting with the determinants of fundraising success (columns 1 to 6), only the 

number of pages in the PPM, a proxy for document complexity, is marginally negatively 

correlated with TVPI (specification 4). Fund sequence, fund size and past performance of 

previous funds have no predictive power. The finding that interim performance at the time of 

fundraising is unrelated to final fund performance may be surprising at first sight, as we have 

found that investors respond to this signal. However, the result is actually consistent with 

Harris, Jenkinson, Kaplan, and Stucke (2020), who find that when calculated at the time of 

fundraising, fund performance post-2000,  does not predict the performance of the follow-on 

fund.  

In the remaining columns of Table 6 (columns 7 to 10), we turn to examine if there is a the 

direct relationship between the four measures of fundraising success we used in the previous 

and future fund performance proxied by TVPI. All coefficients are statistically insignificant. 
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Although the coefficients of the proxies for fundraising success have the expected sign, i.e., 

are positively correlated with net TVPI, they do not show a statistically significant correlation 

with fund performance. The coefficient on the fundraising period is close to zero.22  

The results in Table 6 provide a direct test to reject the hypothesis that investors are able to 

predict PE fund returns.  This is evidence thus is broadly consistent with Harris, Jenkinson, 

Kaplan, and Stucke (2018), who find that, on average, investors have difficulty identifying 

successful buyout funds ex-ante. 

If traditional quantitative fund characteristics and soft readability factors turn out to be poor 

predictors of future fund performance, the next logical question is if other type of information 

can help investors make better investment decisions in private markets? In the next section, we 

turn to explore the potential of natural language processing (NLP) techniques combined with 

traditional machine learning algorithms to process the qualitative content of financial 

disclosure in private markets to help investors in fund manager selection. 

 

4. Predicting Fund Performance with Qualitative Information 
 

4.1.  Training Machine Learning Algorithms  
 

Our PE setting is characterized by a very large number of terms (i.e. TF-IDF scores) and 

relatively few fund PPMs. For this reason, we chose a machine learning approach and apply 

three of the most traditional techniques in this field: Lasso regression, Random Forest, and 

Gradient Boosting. These approaches differ from traditional regression methods in several 

respects, including their ability to capture non-linearity and complexity in the data.  

The general design of a machine learning exercise is to use a large part of the total sample, 

e.g. 80% of funds, to train the algorithms (in-sample). These models are then applied to the 

remaining sample (i.e., 20%) to test how well the algorithms predict patterns (out-of-sample). 

To compute the core results of the paper in this section, we train each of the three  algorithms 

(i.e., Lasso, Random Forest, and Gradient Boosting) on a training dataset consisting of 323 

                                                           
22 In unreported tests, we report the regressions shown in Table 5 but using net IRR or TVPI outperformance as 
alternative measures of fund performance. The results draw the same picture: there is no relevant explanatory 
variable in our set of proxies. 
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funds raised before 2014 (82% of our total sample). As we describe in section 2.3., we use a 

the TF-IDF scores of bigrams and trigrams as features for the training. 

The objective of the training is to classify whether or not, a specific fund outperforms in 

terms of TVPI the rest of the funds from the same geography, investment strategy and vintage 

year in the Preqin database. We classify a fund as predicted to outperform if the predicted 

probability is greater than 50%. We use five-times repeated cross-fold cross-validation for each 

of our models. This is a re-sampling procedure to evaluate machine learning model and to 

estimate the unknown tuning parameters. Cross-validation is the most widely used method for 

estimating prediction error. The advantage of using repeated cross-validation,  instead of only 

cross-validation, is that it reduces the variance of the cross-validation estimator.  Since the size 

of our training sample is relatively small for prediction purposes, we set K=10 (Hastie, 

Tibshirani, and Friedman, 2009).23 For each fund in the test set, our method produces an 

outperformance probability, which we call “predicted probability” from now on.  

We compute an weshow the algorithms’ out-of-sample statistical performance using the two 

standard in the machine learning literature. Balance Accuracy represents the average number 

of correct predictions . It is calculated as follows: 

𝐵𝐵𝑎𝑎𝐵𝐵𝑎𝑎𝐵𝐵𝑝𝑝𝑎𝑎𝑝𝑝 𝐴𝐴𝑝𝑝𝑝𝑝𝑆𝑆𝑎𝑎𝑎𝑎𝑝𝑝𝐴𝐴 = �
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
+

𝑇𝑇𝐿𝐿
𝑇𝑇𝐿𝐿 + 𝑇𝑇𝐿𝐿

� /2 

Balanced Accuracy is the average of the ratio of true positives (TP) over the sum of true 

positives and false positives (FP), and the ratio of true negatives (TN) over the sum of true 

negatives and false negatives (FN).  

The second standard metric in this field is the area under the receiver operating characteristic 

curve (ROC AUC). This metric is equivalent to the probability that the model will rank a 

random positive observation higher than a random negative observation. A model whose 

predictions are 100% wrong will have turn an AUC of 0, while a model whose predictions are 

100% correct will turn an AUC of 1. Machine learning algorithms that outperform the 0.5 

thresholds, are equivalent to having a higher predictive power than pure randomness.  

 

                                                           
23 Appendix Table A3 depicts the implementation process of cross-validation for an example of cross-validation 
with K=5 (i.e., five-fold cross validation). 
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Table 7 presents the core machine learning results of the paper. The table has two panels. In 

Panel A, we train the algorithms using the funds whose vintage is from 1999 to 2003 and the 

out-of-sample test is carried out on fund of vintage years 2014 to 2016.  Since in Section 2.3 

of the paper we showed that the wording of the PPMs is much more similar from 2003 onwards, 

we carry out a second exercise in Panel B where we train the algorithms using the funds whose 

vintage is from 2003 to 2013 only.  For each panel we show the AUC and the Balance Accuracy 

for the in-sample and the out-of sample using the three different algorithms of Lasso, Random 

Forest and Gradient Boosting.  

<Insert Table 7> 

If we focus in the results of Panel A, we find that the lowest overall value is the balanced 

accuracy for Lasso with 0.554. Meanwhile, the highest value is an AUC of 0.595 for Gradient 

Boosting.  Looking at Panel B, and in line with this observation of more similar language 

starting in 2003, we find that models trained on the restricted sample of the 304 funds raised 

as of 2003 improve predictive power. Panel B shows that five out of six out-of-sample accuracy 

measures are higher than 0.6. The only exception is the balanced accuracy for the Random 

Forest algorithm. Meanwhile, the highest number in this panel is the AUC for the Lasso 

algorithm.  

The two statistical accuracy metrics shown in Table 7 are indicative of the high predictive 

power of our methods, but they do not give us an idea of the predictive power for outperformers 

and underperformers separately. Ideally, we would like to also get an indication of whether our 

models are performing better at correctly classifying outperformers or underperformers.  

In Table 8, we compute the Confusion matrices of the models presented in Table 7. The 

table shows that our algorithms are much better at correctly classifying outperformers. Panel 

A shows that this is particularly striking for Gradient Boosting model. Exploiting our full 

training set of funds from vintage 1999 to 2013, the models correctly classify 25 out of 37 

outperforming funds (68%).  

<Insert Table 8> 

Panel B shows the same pattern of results. The better predictive power of outperformers 

becomes more apparent for Gradient Boosting when we train algorithms on the more 

homogenous PPM training sample that starts in 2003. The results show that the model correctly 

classifies 27 out of 37 (73%) outperforming funds.  
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The table also shows that the average TVPIs are higher for the subsample of funds that the 

algorithms classify as outperformers than for the funds that are predicted to underperform. In 

Panel A, the unweighted difference in mean (median) TVPIs for the Lasso algorithm is 0.38 

(0.18). This result is not driven by increased downside risk. All 25th percentile values are 

higher for the predicted outperformer samples. 

4.2. Determinants of Predictions 
 

The results presented so far in this section show that qualitative information picked up by  

algorithms seems be correlated with future fund performance. The finding means that  

qualitative information can provide informational value beyond what quantitative information 

can do.  

In Table 9 we carry out an additional exercise to put in context the results on quantitative 

and qualitative information that we presented in the previous two sections.  This table shows 

OLS regressions of the probability of success predicted by Gradient Boosting on the 

quantitative and  readability measures used in Table 5 and our fundraising proxies for the 

sample of 376 funds raised between 2003 and 2016.  

The various specifications in the table show that the coefficients on quantitative cues and 

document complexity measures are practically all statistically insignificant and virtually 

undistinguishable from zero. The only exception in the table is the marginally statistically 

significant correlation with funds raised having had two previous underperforming funds 

(column 6). Compared to funds with mixed track record at fundraising, the average predicted 

probability of success for the former funds is 12.4 percentage points higher. These results 

suggest that the algorithms are picking up something that is uncorrelated to what the standard 

quantitative measures used in the literature are picking up.  

In the last four columns of Table 9, we also test the association between the predicted 

probability of success obtained from Gradient Boosting and our fundraising success proxies. 

As the table shows, all coefficients are insignificant. These findings indicate that the average 

investor does not seem to incorporate the same qualitative information when selecting PE asset 

managers. These results are virtually identical when we use the probability of success obtained 

from Lasso regression or Random Forest. These results are included in Appendix Tables A5 

and A6 
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4.3. Economic Relevance of Predictions 
 

Machine learning predictions may also translate into meaningful and relevant economic 

outcomes. One potential way to show this with our data, is to rank the funds in our test sample 

(i.e., fund vintages 2014 to 2016) by their predicted outperformance probability and then 

calculate the TVPI distance of each of these 72 funds to the median TVPI of all funds in the 

Preqin dataset raised in the same year and with the same investment type and geography.  We 

should note that this is the same information used to calculate our binary indicator of 

outperformance  to train the algorithms.  

Figure 1 depicts the calculations detailed above. The median distance across all 72 funds is 

equal to 0.17x. The lines in the figure are then calculated with the following procedure: we 

remove the fund with the lowest predicted probability of success and recalculate the median 

distance and r epeat this process moving up the ranks of predicted outperformance.  The black 

lines in Figure 1 plot the median distances generated by this exercise for the three different 

algorithms: Lasso (Panel A), Random Forest (Panel B) and Gradient Boosting (Panel C). These 

algorithms are obtained using the training sample of 314 funds from 2003 to 2013. The figure 

shows that the median distance doubles to 0.35x when the 75% of funds with the lowest 

predicted outperformance probabilities of outperformance are discarded.  

 

<Insert Figure 1> 

We carry out a final exercise to try to bring together the results using traditional econometric 

methods and machine learning methods and compare the models trained on qualitative 

information fairly. We start by carrying out the exercise of training the machine learning 

models using the quantitative variables used in Table 5 as the features of the training (i.e., 

instead of the TF-IDF scores) and then predicting outperformance. We repeat the above 

procedure but now only using the predictions produced by these models to generate the blue 

line in Figure 1. The figure shows that the actual fund performance, measured by median TVPI 

distance, is also correlated with quantitative information when machine learning is used. This 

is probably picking up complexity and  non-linearity. However, the figure also shows that, for 

the most part, the correlation is weaker than the one we observe when using TF-IDF scores to 
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predict outperformance. This is in line with our previous finding that quantitative information 

is a not a good predictor of future success in linear models (as was shown in the regression 

setup in Section 3.2).  

 

In addition to the above exercise, we also trained the algorithms using the TF-IDF scores as 

features, but this time predicting fundraising success instead of outperformance. We use time 

to raise a fund in month to measure fundraising success in this exercise. This exercise gives us 

models that detect qualitative information incorporated in the average investors fund 

investment decision. The red line in Figure 1 shows the results of this exercise. It depicts the 

median TVPI distance of fund portfolios ranked by their predicted probability of successfully 

raising a fund. The figure makes evident that the correlations of such predictions are weaker 

than those of the TF-IDF models trained with our outperformance outcome variable, as well as 

those of machine learning-based predictions exploiting quantitative information. Altogether, 

we believe that these finding suggest that qualitative information can be exploited to learn 

about fund manager skill in private markets. 

In Table 10, we formally compare the relevance of qualitative information trained using our 

binary performance indicator to that of quantitative information and qualitative information 

picked up by the average investor. Table 10 presents regressions where the dependent variables 

are: (i) the net TVPI (columns 1 to 3); and (ii) the median net TVPI distance (columns 4 to 6). 

The table shows that the predicted success probabilities obtained from training Gradient 

Boosting on outperformance are the only ones that are statistically significantly correlated with 

ultimate fund performance. The predicted probabilities obtained from training Gradient 

Boosting using quantitative information or those obtained using qualitative information on 

fundraising success are both statistically insignificant. Our findings in Table 10 are aso 

confirmed using the Lasso ant the Random Forest models (see Appendix). 

<Insert Table 10> 

Figure 2 seems to confirm that our algorithms seem to be picking up meaningful terms that 

represent meaningful concepts. In this figure, we plot the 30 terms with the highest Shapley 

Additive exPlanations (SHAP) values when applying Gradient Boosting on the training sample 

of funds raised between 2003 and 2013. This method of analysis, developed by Lundberg and 

Lee (2017), is frequently used in the machine learning literature. The approach is based on the 
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coalitional game, where the SHAP values measure the contribution of a feature to the 

prediction. An intuitive interpretation of a SHAP value is the difference between the prediction 

with and without using the feature. As the figure shows, the SHAP value of a term can have a 

strong (red) or weak (blue) positive or negative influence on whether a fund is predicted to 

outperform or not. Since machine learning algorithms capture combinations of terms, a term 

may have a positive impact on model performance in some combinations (or in the context of 

some other terms), and a negative impact in other combinations. In Figure 2, for example, the 

term economies of scale has a very strong negative impact in some contexts and documents, 

and a weak positive impact in other contexts.  

<Insert Figure 2 here> 

Overall, we believe that the terms that appear in Figure 2 are consistent with previous 

literature in PE. For example, winning deals with an attractive entry valuation is one of the 

typical value creation levers in the PE ownership model (Acharya et al. (2013)). Similarly, the 

ability to take a private company to the public market (initial public) is often seen as a 

“successful” exit route (Jenkinson and Sousa, 2015). A reason behind the positive SHAP value 

of this term could be associated with PE fund managers who can report about a track record of 

successful past IPOs signaling experience usefull for successfully managing such a process in 

the future. Another example of a term in Figure 2 is the network of industry experts (network 

relationship) which is key to ensure an active and high-quality deal flow as shown in the 

venture capital industry (Hochberg et al., 2007).   

Again, we would like to emphasize that machine learning algorithms use non-linear 

interactions among multiple word combinations in order to make their predictions. For this 

reason, we cannot state whether a fund will perform well (or poorly) because its PPM 

investment strategy section includes a specific combination of words. This is where the strength 

of machine learning algorithms lies. The ability to make sense of complex, non-linear 

relationships among various features makes machine learning algorithms a suitable tool for 

identifying patterns humans find hard, if not impossible, to detect.  

<Insert Figure 3 here> 

In Figure 3 we provide an example from our data that illustrates how different terms 

contribute to the probability of success predicted by the Gradient Boosting algorithm in a 

random PPM. In the figure, combinations of words are ranked in decreasing order according 
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to their contribution to the final predicted probability of outperformance f(x), which equals 

0.848 in this example. The E[f(X)] indicates the average mean predicted probability of Gradient 

Boosting in the training sample using funds raised between 2003 and 2013. In the x-axis, we 

represent the values of the probability of success. The length of each bar represents the Shapley 

value of each feature. The biagrams gener superior, cash flows, companies generating, 

investment professionals, superior returns, track records, and growth profitability are all 

positively correlated with the probability of success. On the other hand, the biagrams Oper 

finance and hand approach are all negatively correlated with the predicted probability of 

success.  

  

4.4. Robustness 

The core machine learning analysis presented in Table 7 kept in the sample as many funds 

as possible in order to maximize our sample size. However, as we argued before, this choice 

means that we have implicitly accepted a lookahead bias: in order to determine 

outperformance, we trained the algorithms using performance information not available at the 

time of predicting fund success in the training sample.  

As a robustness check, we now carry out an exercise that sacrifices sample size but mitigates 

lookahead bias concerns. Our exercise retrains the algorithms using as a training sample that  

gives funds a minimum life of six years.  Table 11 reports in- and out-of-sample statistical 

performance of the three algorithms we apply to predict fund success. In Panel A, the 

algorithms are trained on 141 funds raised between 1999 and 2007 using information available 

as of Dec 31st 2013. The test sample consists of 72 funds from vintage years between 2014 

and 2016. Outperformance in the test sample is computed using TVPIs as of Jun 30th 2022 as 

before in Table 7. In Panel B, we train the algorithms using the 122 funds raised between 1999 

and 2007 using information available as of Dec 31st 2013. 

Table 11 presents these results and allows comparisons with the full sample results 

presented in Table 7. Both panels show similar results with Random Forest and Gradient 

Boostin performing at high levels. As in Table 7, we have reported results using bigrams and 

trigrams. However, algorithms trained using words and bigrams as inputs perform better with 

smaller samples (we can supply these results upon request).  
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5. Conclusion 
 

Our study relies on the use of novel qualitative information provided to PE investors to 

predict future fund performance. Applying NLP (aka textual analysis) and machine learning 

techniques, we provide the first empirical analysis on readability and qualitative information 

in private markets. Our approach may be particularly useful if we consider that these markets 

are characterized by non-standardized disclosures and inherent information asymmetries.  

We star out paper carrying out a traditional econometric analysis of the determinants of fund 

raising success using classic proxies of PE firm reputation and interim and past performance. 

Our results echo previous findings showing a positive association of most of these variables  

associated with success in PE raising capital. We then complement this analysis looking at 

qualitative information in the form of readability measures using the same econometric 

approach. Although these measures have been shown to matter in public market disclosure, we 

do not find they are associated with fundraising success in PE, possibly due to the non-

standardized nature of disclosure in private markets or the thorough analysis carried out by 

sophisticated investors for a few funds each year.  

Since investors seem to take into consideration quantitative factors PE in their PE capital 

allocation decisions, the next natural question we analyze is if these same quantitative factors 

are good predictors of future fund performance. Our results show the oposite: traditional  

quantitative factors and readability proxies, are poor predictors of future performance. In 

addition, we do not find our proxies of fundraising success at the beginning of a fund’s life to 

be actually be correlated with ultimate fund performance. Aggregate market demand does not 

seem to be a reliable signal of PE fund manager ability. \ 

The above pattern of findings seems difficult to reconcile with Cavagnaro et al. (2019) who 

show that some investors seem to make persistently good fund manager choices. One could 

argue that these investors may be exploiting different set of signals to learn about differential 

PE manager ability. In this paper, we test if qualitative information provided by the fund 

managers as they lay out investment strategy may be useful to extract such a set of signals. Our 

paper is the first to use Natural Language Process (NLP) techniques in textual analysis, and 

machine learning algorithms to analyzing whether this kind of qualitative information explains 

investor heterogeneity in predicting returns. Our findings show that approaches to exploit the 

qualitative information disclosed to investors in PPMs has important predictive power for 
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ultimate fund success. Our study provides evidence of the value of applying these new 

technologies to process qualitative information in private markets.  

The application of new techniques in the analysis of private markets in finance is just 

starting. Upcoming studies could address some of the limitations of our current work. The most 

important one is clearly realated to our sample size, which  does not allow us to conduct a real 

backtest only using performance information  that is really available at the time of training the 

algorithms. We hope our study shows the potential of such methods and motivates owners of 

proprietary qualitative data to cooperate with researchers, and put together larger samples that 

can be analyzed with even more realistic assumptions. There are certainly other areas of 

potential improvement as the disciplines of textual analysis and machine learning are growing 

fast and will provide even more powerful methods to be applied in the context of private capital 

markets. 

We believe our findings have important implications and real world applications for 

investors in private markets. Our results suggest that there are signals of differential ability 

buried in qualitative information which can be exploited with the new methods introduced in 

this study.  
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Table 1 Panel A: Sample Construction and comparison with the Prequin dataset.   Panel A shows fund performance variables. TVPI is the total value-to-paid net of fees 
and carried interest at fund maturity or, if still not liquidated, as of June 2022. TVPI > Benchmark is a binary indicator that adopts a value of one if the TVPI is higher than the 
median of funds in Preqin of the same investment strategy and vintage, and zero otherwise. Net IRR is the internal rate of return net of fees and carried interest. 

  
Our sample   Preqin Sample   

 
Preqin Fund Performance Sample 

 

Panel A: Data Filters 

# Funds 
(%) 

Average 
Fund Size 
(EURm) 

Median 
Fund Size 
(EURm) 

  # Funds 
(%) 

Average 
Fund Size 
(EURm) 

Median 
Fund Size 
(EURm) 

  # Funds 
(%) 

Average 
Fund Size 
(EURm) 

Median 
Fund Size 
(EURm) 

                    
Initial sample assembled from archives of data provider 941 836.91 291.21  37,798 242.11 54.38  9,272 560.72 176.61             
Initial sample of funds trying to raise capital between 1999 and 
2020 with fund size>5 and information available in Preqin 737 836.91 291.21  28,309 265.30 66.7  8,580 572.68 183.54 
 78%    75%    93%   
 
Funds raised in 2016 or earlier 589 791.25 282.47  18,728 237.89 66.01  6,743 472.51 165.79 
(2/1)*100 80%    66%    79%   
 
Buyout, Growth Capital, Turnaround, and Balanced funds  505 879.83 322.98  6,682 402.34 117.59  2,799 726.29 260.48 
(3/2)*100 86%    36%    42%   
 
Funds investing in Europe, Asia, or North America 503 878.76 322.98  6,147 420.62 121.14  2,601 757.48 271.19 
(4/3)*100 
 

100% 
    

92% 
    

93% 
   

Funds with PPM including Investment Strategy section 501 881.03 322.98  6,147 420.62 121.14  2,601 757.48 271.19 
(5/4)*100 100%    100%    100%   
 
Funds with Total Value to Paid-In (TVPI) and/or Internal Rate of 
Return (IRR) for more than six years after their vintage year 395 1025.34 354.9  6,147 420.62 121.14  2,350 810.73 283.87 
 (6/5)*100  79%    100%    90%               



2 
 

Table 1 Panel B: Performance Information Sources 

Panel B exhibits our fundraising success variables. Fund target reached is a binary variable taking a value of one if the fund reached its target size specified in the PPM at the 
beginning of the fundraising process, and zero otherwise. We obtain Oversubscription by dividing target size by actual fund size. Months to fundraise is the number of months 
that have passed between first and final closing of a fund. Increase in fund size is the ratio of current fund size divided by the size of the previous fund with the same 
investment strategy by the same PE firm. 

 # Funds            Fund Size (EURm) 
 (%)    Average       Median 
Fund Cash Flows from Internal Sources 100 1316 507 

 
(25%) 

   
Summary Fund Performance from Internal Sources 61 260 219 
 (15%)   
Fund Cash Flows from Preqin Database 34 1826 1047 
 (9%)   
Preqin Fund Performance Sample 200 976 319 
  (51%)   
All 395 1025 354 
 (100%)   
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Table 2: Descriptive Statistics 
This table presents summary statistics for fund-level variables for the final sample of funds used in the paper. Panel A shows fund 
performance variables. Panel B exhibits our fundraising success variables. Panel C displays variables frequently used to explain 
private equity returns. Panel D shows measures of document readability. Detailed definitions of all variables are in the Appendix. 

    Obs Mean SD p25 Median p75 

  
Panel A. Performance             

                
(1) TVPI Current Fund 395 1.80 0.70 1.39 1.72 2.12 
                
(2) TVPI > Benchmark (%) 395 51.65         
                
(3) Net IRR Current Fund 395 14.36 13.01 7.67 14.19 21.09 
  
Panel B. Fundraising success 
 

            

(4) Oversubscription 395 1.05 0.31 0.87 1.07 1.25 
 
(5) Fund Target Reached 395 0.65         

                
(6) Months in Fundraising 395 13.82 9.21 6.16 12 19.31 
                
(7) Increase in Fund Size 319 1.74 1.08 1.13 1.47 2.02 
  
Panel C. Fund Characteristics             

(8) Fund Sequence 395 3.29 2.02 2 3 4 
                
(9) Fund Size 395 1025.34 1913.11 176.85 354.90 815.16 
                
(10) Gross TVPI Previous Fund  318 1.63 0.62 1.23 1.52 1.90 
                
(11) Both Previous Funds Low Gross TVPI  228 0.30  0.46 0 0 1 
             

(12) Both Previous Funds High Gross TVPI 228 0.23  0.42 0 0 0 
  
Panel D. Readability             

                
(13) Strategy words 395 2774.96 1281.49 1829 2644 3724 
                
(14) PPM Pages  395 84.73 36.84 62 78 101 
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Table 3. Most Common stemmed bigrams and trigrams 
In Panel A the table shows the 15 most common stemmed bigrams (i.e., combinations of two adjacent stemmed words) in our 
sample. For each stemmed bigram, the table reports the number of observations, the percentage of documents containing the 
stemmed bigram, and the average and standard deviation of the TF-IDF score. Panel B displays the 15 most common trigrams 
(combinations of three adjacent stemmed words). Detailed definitions of all variables are provided in the Appendix. 

Stemmed terms Nobs % PPM  Avr. TF-
IDF (in %) 

Std.  Dev. 
TF-IDF (in 

%) 

Panel A: bigrams     

portfolio company 4,065 92.41% 1.52% 0.69% 
manag team 2,752 92.15% 1.29% 0.57% 
invest opportune 1,601 87.85% 1.08% 0.56% 
due dilig 2,075 87.09% 1.18% 0.62% 
privat equity 1,422 84.56% 1.00% 0.61% 
invest strategi 878 82.28% 0.84% 0.55% 
valu creation 1,423 72.91% 0.99% 0.76% 
target compani 869 69.11% 0.83% 0.70% 
compani manag 653 68.35% 0.75% 0.66% 
invest process 669 66.84% 0.77% 0.66% 
deal flow 818 65.82% 0.89% 0.81% 
long term 529 60.51% 0.67% 0.64% 
invest compani 457 60.51% 0.68% 0.68% 
cash flow 569 58.48% 0.69% 0.70% 
track record 460 55.19% 0.65% 0.67% 
     

Panel B: trigrams     
due dilig process 404 49.62% 0.50% 0.58% 
portfolio compani manag 293 39.24% 0.46% 0.66% 
privat equiti firm 212 33.16% 0.36% 0.56% 
manag portfolio compani 186 32.66% 0.38% 0.61% 
compani manag team 204 32.41% 0.37% 0.59% 
privat equiti invest 190 28.10% 0.34% 0.60% 
attract invest opportun 166 27.59% 0.31% 0.55% 
proprietari deal flow 158 26.08% 0.33% 0.60% 
valu portfolio compani 129 23.54% 0.28% 0.56% 
privat equiti fund 129 22.53% 0.30% 0.61% 
decis make process 128 21.01% 0.27% 0.57% 
buy build strategi 168 20.76% 0.33% 0.72% 
potenti invest opportun 109 19.75% 0.24% 0.52% 
fund portfolio compani 120 19.49% 0.27% 0.60% 
privat equiti investor 105 18.73% 0.25% 0.55% 
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Table 4. Similarity of bigrams and trigrams across years 
The table shows the cosine similarity score of vectors representing the annual average frequency of stemmed terms across years for all 396 funds in our sample. Stemmed terms are restricted to appear in at least 1 
percent of all documents (i.e., 4 PPMs) and in less than 99 percent of all documents (i.e., 391 PPMs). The number of PPMs in each vintage year is shown in the second row of the table. 

 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 
Obs. 3 6 5 5 11 13 22 39 49 39 25 20 27 27 32 25 28 19 
1999                                    

2000 0.37                                  

2001 0.48 0.40                                

2002 0.51 0.42 0.35                              

2003 0.45 0.61 0.46 0.48                            

2004 0.46 0.52 0.48 0.45 0.63                          

2005 0.46 0.58 0.50 0.51 0.71 0.66                        

2006 0.54 0.65 0.56 0.57 0.77 0.74 0.80                      

2007 0.52 0.64 0.53 0.57 0.78 0.76 0.81 0.88                    

2008 0.51 0.61 0.51 0.56 0.74 0.70 0.80 0.88 0.87                  

2009 0.49 0.64 0.49 0.58 0.75 0.68 0.78 0.86 0.88 0.85                

2010 0.52 0.55 0.55 0.49 0.68 0.67 0.73 0.81 0.77 0.78 0.73              

2011 0.52 0.59 0.51 0.57 0.74 0.68 0.77 0.84 0.86 0.82 0.82 0.74            

2012 0.49 0.60 0.50 0.54 0.74 0.72 0.77 0.87 0.88 0.87 0.85 0.75 0.83          

2013 0.50 0.59 0.50 0.55 0.72 0.73 0.77 0.86 0.88 0.88 0.84 0.75 0.83 0.88        

2014 0.46 0.54 0.47 0.52 0.71 0.66 0.77 0.83 0.85 0.86 0.81 0.73 0.81 0.85 0.86      

2015 0.52 0.60 0.52 0.56 0.75 0.72 0.79 0.88 0.88 0.86 0.85 0.80 0.85 0.89 0.88 0.85    

2016 0.51 0.57 0.50 0.54 0.74 0.68 0.76 0.84 0.87 0.85 0.84 0.76 0.85 0.86 0.87 0.83 0.87  
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Table 5: Fundraising Success 
This table presents results from OLS regressions in which the dependent variables are measures of fundraising success. In columns 1-6 we use oversubscribed which is the ratio of target size divided by actual fund 
size. Month in fundraising is the dependent variable in columns 7-12. We control for investment strategy, region, and vintage year fixed effects in all regressions. Standard errors are in parentheses and clustered at 
the PE firm level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. Detailed definitions of all variables are provided in the Appendix. 

    (1) (2) (3) (4) (5) (6)   (7) (8) (9) (10) (11) (12) 

VARIABLES   
Oversubscription Month in Fundraising 

                       
Fund Sequence (ln)   0.063** -0.020 -0.023 -0.019 -0.033 -0.011  -2.146** -1.242 -1.081 -1.319 -2.338* -3.205** 
    (0.025) (0.026) (0.026) (0.026) (0.034) (0.038)  (0.896) (0.950) (0.927) (0.932) (1.289) (1.525) 
Fund Size (ln)     0.098*** 0.100*** 0.103*** 0.082*** 0.085***    -1.071** -1.131** -1.368*** -0.952** -1.028* 
     (0.014) (0.015) (0.015) (0.016) (0.019)   (0.469) (0.473) (0.452) (0.463) (0.525) 
Number of Strategy words (ln)       -0.041       2.055**       

        (0.030)     
  

(0.907)       
Number of PPM Pages (ln)         -0.046       3.046**     

          (0.044)            (1.338)     
Gross TVPI Previous Fund            0.059**       -2.310***   

            (0.030)            (0.797)   
Both Previous Funds Low Gross TVPI             -0.115***            1.930 
              (0.039)            (1.217) 
Both Previous Funds High Gross TVPI             0.036       -2.517* 
              (0.041)            (1.444) 
               
Observations   395 395 395 395 318 243  395 395 395 395 318 243 
R-squared   0.228 0.319 0.324 0.321 0.291 0.358  0.126 0.138 0.151 0.149 0.169 0.233 
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Table 6: Total Value to Paid-in (TVPI) and Fundraising 
This table presents results from OLS regressions in which the dependent variable is the total value to paid-in (TVPI) net of fees and carried interest. We control for investment strategy, region, and vintage year effects 
in all regressions. Standard errors are in parentheses and clustered at the PE firm level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. Detailed definitions of all variables 
are provided in the Appendix. 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)   
VARIABLES   TVPI     
                        
Fund Sequence (ln) 0.031 0.037 0.036 0.041 -0.022 -0.099       
  (0.060) (0.071) (0.071) (0.069) (0.088) (0.120)       
Fund Size (ln)  -0.007 -0.007 0.010 0.024 0.026       
   (0.034) (0.034) (0.037) (0.034) (0.038)       
Number of Strategy words (ln)   -0.014          
    (0.073)          
Number of PPM Pages (ln)    -0.177*         
     (0.105)         
Gross TVPI Previous Fund      -0.041        
      (0.064)        
Both Previous Funds Low Gross TVPI      0.042       
       (0.122)       
Both Previous Funds High Gross TVPI      -0.034       
       (0.094)       
Months in Fundraising       -0.002      
        (0.004)      
Oversubscribed        0.011     
         (0.110)     
Fund Target Reached         0.039    
          (0.075)    
Increase in Fund Size          0.036   
           (0.039)   
              
Observations 395 395 395 395 318 243 395 395 395 319   
R-squared 0.106 0.106 0.106 0.112 0.094 0.134 0.105 0.105 0.106 0.095   
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Table 7. Statistical performance of machine learning algorithms  
This table reports in- and out-of-sample statistical performance of the three algorithms we apply to predict fund success. The 
test sample consists of 72 funds from vintage years 2014 to 2016.  Outperformance is computed using TVPIs as of Jun 30th 
2022.  We show Area Under the Receiver Operating Characteristic curve (AUC ROC) and Balanced Accuracy as measures of 
our models’ ability to correctly classify outperforming funds. In Panel A the algorithms are trained on 323 funds raised between 
1999 and 2013. Panel B shows results for models trained on trained on 304 funds raised between 2003 and 2012. Detailed 
definitions of all variables and algorithms are provided in the Appendix. 

  Lasso   Random Forest 
 

Gradient Boosting 
Panel A: Training on 323 funds raised between 1999-2013 with info as of June 2022; test 2014-2016  
     
A.1 In-sample Fit:     
Area Under Curve (AUC) 0.565   0.603 0.611 
Balanced Accuracy 0.544   0.570 0.585 
     
A.2 Pseudo Out-of-sample:     
Area Under Curve (AUC) 0.604   0.568 0.596 
Balanced Accuracy 0.597   0.585 0.538 

    

Panel B: Training on 304 funds raised between 2003-2013 with info as of June 2022; test 2014-2016  
     
B.1 In-sample Fit:     
Area Under Curve (AUC) 0.584   0.615 0. 
Balanced Accuracy 0.572   0.587 0.574 
     
B.2 Pseudo Out-of-sample:     
Area Under Curve (AUC) 0.625   0.636 0.643 
Balanced Accuracy 0.555   0.553 0.636 
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Table 8. Confusion Matrices 
The confusion matrices show the number of correctly and incorrectly classified 37 outperformer funds and the number of 
correctly and incorrectly classified 35 underperformer funds in the test sample (out-of-sample, i.e. funds raised between 2014 
and 2016). In Panel A, predictions are trained on 323 funds raised between 1999 and 2013, in Panel B trained on 304 funds 
raised between 2003 and 2013. All variables and algorithms are defined in the Appendix. 

Panel A: Training on 323 funds raised between 1999-2013 with info as of June 2022; test 2014-2016  
 
                              
            Predicted Values:   
                              
            Lasso   Random Forest   Gradient Boosting   
                

    
Actual Values: Total 

  

TVPI ≥ 
Benchmark 

TVPI < 
Benchmark   TVPI ≥ 

Benchmark 
TVPI < 

Benchmark   TVPI ≥ 
Benchmark 

TVPI < 
Benchmark 

  
                              
    TVPI ≥ 

Benchmark 
  37   22 15   20 17   25 12   

      51%   59% 41%   54% 46%   68% 32%   
                              

    TVPI < 
Benchmark 

  35   14 21   15 20   21 14   
      49%   40% 60%   43% 57%   60% 40%   
                              

    Total   72   36 36   35 37   46 26   
         50% 50%   49% 51%   64% 36%   
                              
  TVPI             
  Mean    2.05 1.67  2.01 1.71  1.93 1.74  
  p75    2.33 1.96  2.26 1.97  2.18 1.98  
  p50    1.91 1.73  1.91 1.74  1.78 1.76  
  p25    1.69 1.47  1.67 1.56  1.67 1.54  
               

  Panel B: Training: 2003-2013, Test: 2014-2016               
                             
            Predicted Values:   
                              
            Lasso   Random Forest   Gradient Boosting   

    
Actual Values: Total 

  

TVPI ≥ 
Benchmark 

TVPI < 
Benchmark 

  

TVPI ≥ 
Benchmark 

TVPI < 
Benchmark 

  

TVPI ≥ 
Benchmark 

TVPI < 
Benchmark 

  
                              
    TVPI ≥ 

Benchmark 
  37   21 16   24 13   27 10   

      51%   57% 43%   65% 35%   73% 27%   
                              

    TVPI < 
Benchmark   35   16 19   19 16   16 19   

      49%   46% 54%   54% 46%   46% 54%   
                              

    Total   72   37 35   43 29   43 29   
           51% 49%   60% 40%   60% 40%   
                              
  TVPI             
  Mean    2.03 1.68  1.92 1.78  2.00 1.66  
  p75    2.26 1.97  2.20 1.98  2.25 1.92  
  p50    1.87 1.73  1.80 1.73  1.91 1.71  
  p25    1.69 1.44  1.69 1.52  1.69 1.44  
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Table 9. The determinants of predicted probability of success (Gradient Boosting) 
This table presents results from OLS regressions on the sample of 376 funds raised between 2003 and 2016. The dependent variable is the Probability of Success predicted by Gradient Boosting. We control for 
investment strategy, region, and vintage year effects in all regressions. Standard errors are in parentheses and clustered at the PE firm level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, 
respectively. Definitions provided in the Appendix. 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)   
VARIABLES   Probability of Success     
                        
Fund Sequence (ln) -0.019 -0.038 -0.038 -0.039 0.006 -0.127       
  (0.035) (0.040) (0.040) (0.040) (0.056) (0.080)       
Fund Size (ln)  0.022 0.022 0.017 0.030 0.027       
   (0.022) (0.022) (0.024) (0.024) (0.025)       
Number of Strategy words (ln)   -0.000          
    (0.043)          
Number of PPM Pages (ln)    0.049         
     (0.068)         
Gross TVPI Previous Fund      -0.019        
      (0.038)        
Both Previous Funds Low 
Gross TVPI      0.142**     

  

       (0.057)       
Both Previous Funds High 
Gross TVPI      0.028     

  

       (0.072)       
Months in Fundraising       0.002      
        (0.002)      
Oversubscribed        -0.088     
         (0.076)     
Fund Target Reached         -0.056    
          (0.047)    
Increase in Fund Size          0.003   
           (0.024)   
              
Observations 376 376 376 376 309 223 376 376 376 310   
R-squared 0.033 0.036 0.036 0.037 0.068 0.141 0.033 0.036 0.036 0.060   
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Table 10. TVPI, Median TVPI Distance, and out-of-sample probability of success (Gradient Boosting)  
This table presents results from OLS regressions in which the dependent variable is the Total Value to Paid-In (TVPI) net of fees and carried 
interest (columns 1-3) and the Median TVPI Distance (columns 4-6). The Median TVPI Distance is calculated as a fund’s TVPI minus the median 
TVPI of the funds from the same vintage year and investment strategy in the Preqin database. All specifications in the table control for investment 
strategy, region, and vintage year effects. Standard errors are shown in parentheses and clustered at the PE firm level. *, **, and *** denote 
statistical significance at the 10%, 5%, and 1% level, respectively. Detailed definitions of all variables are provided in the Appendix. 

  (1) (2) (3) (4) (5) (6) 
VARIABLES TVPI Median TVPI Distance 
              
Quantitative Info 0.308 

  
0.297     

 (0.276) 
  

(0.279)     
Qualitative Info (Fundraising Months) 

 
0.005 

 
  0.022   

 
 

(0.147) 
 

  (0.148)   
Qualitative Info (Outperformance) 

  
0.406***     0.417*** 

 
  

(0.138)     (0.138) 
       

Observations 67 67 67 67 67 67 
R-squared 0.238 0.209 0.300 0.216 0.208 0.428 
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Table 11. Statistical performance of the machine learning algorithms: Robustness 
This table reports in- and out-of-sample statistical performance of the three algorithms we apply to predict fund success. In Panel A, the algorithms 
are trained on 141 funds raised between 1999 and 2007 using information available as of Dec 31st 2013. The test sample consists of 72 funds from 
vintage years between 2014 and 2016. Outperformance in the test sample is computed using TVPIs as of Jun 30th 2022. We show Area Under the 
Receiver Operating Characteristic curve (AUC ROC) and Balanced Accuracy as measures of our models’ ability to correctly classify 
outperforming funds. In Panel A, we show statistical performance when training the algorithms on 141 funds raised between 1999 and 2007. In 
Panel B, we use 122 funds raised between 2003 and 2007 and using information available as of Dec 31st 2013. Detailed definitions of all variables 
and algorithms are provided in the Appendix. 

  Lasso   Random Forest 
 

Gradient Boosting 
Panel A: Training on 141 funds raised between 1999-2007 with info as of Dec 2013; test 2014-2016  
     
A.1 In-sample Fit:     
Area Under Curve (AUC) 0.622   0.586 0.579 
Balanced Accuracy 0.605   0.561 0.565 
     
A.2 Pure Out-of-sample:     
Area Under Curve (AUC) 0.463   0.560 0.583 
Balanced Accuracy 0.488   0.560 0.538 

    

Panel B: Training on 122 funds raised between 2003-2007 with info as of Dec 2013; test 2014-2016  
     
B.1 In-sample Fit:     
Area Under Curve (AUC) 0.600   0.580 0.640 
Balanced Accuracy 0.567   0.512 0.616 
     
B.2 Pure Out-of-sample:     
Area Under Curve (AUC) 0.507   0.549 0.655 
Balanced Accuracy 0.502   0.534 0.597 
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Figure 1. Economic significance of qualitative information 
This figure depicts the average median distance of the selected portfolios of 72 out-of-sample funds from out test sample (i.e., 
raised between 2014 and 2016). Algorithms are trained using funds from 2003-2013. We first sort funds by their predicted 
probability of success (from low to high). We then calculate the median distance of all funds (i.e. with 0% funds removed). 
Median distance is calculated as the difference between the Total-Value to Paid-In (TVPI) and the median TVPI of funds 
raised in the same year and with the same investment type. We then calculate the median distance of the remaining portfolio 
of funds after having removed the fund with the next lowest predicted probability of success. We repeat this procedure 
removing one additional fund each time. The figure plots median distances for algorithms trained using quantitative 
information as features and outperformance as outcome variable, qualitative information (TF-IDF scores) and outperformance, 
and qualitative information (TF-IDF scores) and fundraising success measured by months in fundraising, respectively. Panel 
A displays predicted probabilities produced by Lasso regressions, Panel B for Random Forest algorithms and Panel C for 
Gradient Boosting. All variables and algorithms are defined in the Appendix. 
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Panel C: Gradient Boosting 
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Figure 2. Most relevant combinations of words to make predictions (Gradient Boosting) 
The figure presents the SHAP values for the top-30 characteristics in terms of variable importance in GP quality. We use the 
Gradient Boosting algorithm trained on 314 funds raised between 2003 and 2013 to make the predictions. Combinations of 
words are ranked in decreasing order according to their importance. The Shapley value determines the position on the x-axis, 
and the feature determines the y-axis. Points represent observations. The color represents the value of the feature from low 
(blue) to high (red). 
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Figure 3. Shapley values at play in an example (Gradient Boosting) 
This figure depicts how features contribute to the final prediction of a random example in our dataset. Combinations of words 
are ranked in decreasing order according to their contribution to the final predicted probability f(x). E[f(X)] indicates the 
average mean predicted probability of Gradient Boosting in the training sample (i.e., funds raised between 2003 and 2013).  
The x-axis represents the values of the probability of success. The length of the bar represents the Shapley value of each 
feature.



Appendix 1: Variable definitions 
Independent Variables   Definition 
Ultimate Total Value to Paid-In 
(TVPI)   Ratio of all capital distributions plus the last reported Net Asset Value to the total 

amount of capital invested (including fees). 
      

Fund target reached   Binary variable adopting a value of one if the fund reached its target size specified 
in the PPM at the beginning of the fundraising process, and zero otherwise 

   
Oversubscribed   Ratio of target size divided by actual fund size 
   
Months to fundraise   Number of months that have passed between first and final closing of a fund 
   

Increase in fund size   Ratio of current fund size divided by the size of the previous fund with the same 
investment strategy by the same PE firm 

      
Soft Information Variables   Definition 

Number of Strategy words (ln)   Natural log of the number of words in the PPM Strategy section 

     

Number of PPM Pages (ln)   Natural log of the number of pages in the PPM 

      
Salient Information Variables 

 Definition 

Gross TVPI Previous Fund   Lagged gross TVPI (excluding fees) of a given private equity firm's previous fund 
as of the fundraising date 

     

Gross TVPI second-last Fund   Lagged gross TVPI (excluding fees) of a given private equity firm's second-last 
fund as of the fundraising date 

   

Both previous funds high gross TVPI  Binary variable that adopts a value of one if both previous funds (of same strategy 
and PE firm) outperform other past funds in our sample, and zero otherwise 

   

Both previous funds low gross TVPI  Binary variable that adopts a value of one if both previous funds (of same strategy 
and PE firm) underperform other past funds in our sample, and zero otherwise 

     

Fund Size (ln)   Natural log of the amount of capital a fund has under management (in millions of 
Euros) 

      

Fund Sequence (ln)   Natural log of the sequence number of a fund for a certain investment strategy by a 
PE firm 

  



   
Probabilities   Definition 

Lasso – Quantitative Info   
Probability predicted by Lasso regression trained using the following variables: 
Fund Sequence (ln), Fund Size (ln), and Gross TVPI Previous Fund including 
dummies capturing investment type and geographic focus fixed effects 

   

Lasso – Qualitative Info (Months in 
Fundraising)  

Probability predicted by Lasso trained using the TF-IDF scores of the PPM Strategy 
section to predict if Fundraising days>=Benchmark Fundraising days, where the 
benchmark is the median number of days between the fundraising launch and 
closing 

   

Lasso – Qualitative Info 
(Outperformance)  

Probability predicted by Lasso trained using the TF-IDF scores of the PPM Strategy 
section to predict if TVPI>=Benchmark TVPI, where the benchmark is the median 
TVPI of funds raised in the same year and with the same investment type 

     

Gradient – Quantitative Info   
Probability predicted by Gradient regression trained using the following variables: 
Fund Sequence (ln), Fund Size (ln), and Gross TVPI Previous Fund including 
dummies capturing investment type and geographic focus fixed effects 

   

Gradient – Qualitative Info (Months 
in Fundraising)  

Probability predicted by Gradient trained using the TF-IDF scores of the PPM 
Strategy section to predict if Fundraising days>=Benchmark Fundraising days, 
where the benchmark is the median number of days between the fundraising launch 
and closing 

   

Gradient – Qualitative Info 
(Outperformance)  

Probability predicted by Gradient trained using the TF-IDF scores of the PPM 
Strategy section to predict if TVPI>=Benchmark TVPI, where the benchmark is the 
median TVPI of funds raised in the same year and with the same investment type 

   

Random Forest– Quantitative Info   
Probability predicted by Random Forest regression trained using the following 
variables: Fund Sequence (ln), Fund Size (ln), and Gross TVPI Previous Fund 
including dummies capturing investment type and geographic focus fixed effects 

   

Random Forest – Qualitative Info 
(Months in Fundraising)  

Probability predicted by Random Forest trained using the TF-IDF scores of the 
PPM Strategy section to predict if Fundraising days>=Benchmark Fundraising 
days, where the benchmark is the median number of days between the fundraising 
launch and closing 

   

Random Forest – Qualitative Info 
(Outperformance)  

Probability predicted by Random Forest trained using the TF-IDF scores of the 
PPM Strategy section to predict if TVPI>=Benchmark TVPI, where the benchmark 
is the median TVPI of funds raised in the same year and with the same investment 
type 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Appendix 2: Converting performance numbers into EUR 

To understand whether having performance available in different currencies prevents us from 
fairly comparing ultimate performance across funds, we compute and compare the median 
TVPI achieved by a USD-denominated investor with that of an investor operating in EUR. First, 
we calculate cash flows and unrealized values in USD and EUR for each fund with the entire 
history of cash flows available in Preqin.1 Then, we compute the TVPI in both currencies and 
calculate the USD-denominated TVPI over the EUR-denominated TVPI. Next, we compute the 
median of that ratio for funds raised in the same vintage year.  

There are substantial differences between the median USD-denominated TVPI and the 
median EUR-denominated TVPI across vintage years. For example, in 2007, the median USD-
denominated TVPI to the median EUR-denominated TVPI is approximately 0.88. For example, 
if the EUR-denominated TVPI of a fund is 2.3 and its USD-denominated TVPI is 2.6, then the 
ratio is 0.88. The magnitude of these ratios outlines the necessity of having performance data 
in a single currency to compare performance across funds fairly. Because most of the funds in 
our sample are Europe-focused, we use EUR-denominated fund performance in the analyses 
presented below.  

For the funds with TVPI (IRR) non denominated in EUR, we approximate the EUR-
denominated performance of these funds, we implement the following process. First, for every 
fund with the entire history of cash flows in Preqin, we calculate the TVPI in EUR and each 
currency as previously done with USD. Then, we compute the ratio EUR-TVPI over the TVPI 
calculated using each of the nine currencies. Finally, we calculate the median of the ratio for 
every vintage year in Preqin. We calculate the median ratio per vintage year because previous 
literature shows that deal flow in private equity is influenced by market conditions (Gompers 
and Lerner (1998)). Then, we use the median ratio of the vintage year to compute the EUR-
denominated TVPI (IRR) of all funds.   

                                                           
1 Unless otherwise indicated, TVPI refers to TVPI net of fees. 



Table A1. Measures of fundraising success 

This table shows average values for four measures of fundraising success and pairwise correlations among them. Months to 
fundraise is the number of months that have passed between first and final closing of a fund. Fund size increase is the ratio of 
current fund size divided by the size of the previous fund with the same investment strategy by the same PE firm. Fund target 
reached is a binary variable adopting a value of one if the fund reached its target size specified in the PPM at the beginning of 
the fundraising process, and zero otherwise. We obtain Oversubscription by dividing target size by actual fund size. *, **, and 
*** denote statistical significance at the 10%, 5%, and 1% level, respectively. 

    
Obs. Mean 

Correlation Matrix 

    (1) (2) (3) (4) 

                
(1) Month to fundraise 395 13.84 1.00       
                
(2) Increase in Fund Size 319 1.74 -0.17*** 1.00 1.00   
                
(3) Fund Target Reached 395 0.65 -0.38*** 0.21*** 1.00   
                
(4) Oversubscription 395 1.05 -0.35*** 0.36*** 0.78*** 1.00 

                



Table A2: Fundraising Success (Alternative Measures) 
This table presents results from OLS regressions in which the dependent variables are measures of fundraising success. In columns 1-6 we use Target Reached, which is a binary variable adopting a 
value of one if the fund reached its target size specified in the PPM at the beginning of the fundraising process, and zero otherwise. In columns 7-12, Increase in fund size is the ratio of current fund 
size divided by the size of the previous fund with the same investment strategy by the same PE firm. We control for investment strategy, region, and vintage year fixed effects in all regressions. 
Standard errors are in parentheses and clustered at the PE firm level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. 

    (1) (2) (3) (4) (5) (6)   (7) (8) (9) (10) (11) (12) 

VARIABLES   
Target Reached (Yes/No)   Fund Size Increase 

                              
Fund Sequence (ln)   0.064 -0.039 -0.045 -0.036 -0.067 -0.02   -0.200* -0.159 -0.165 -0.155 -0.095 -0.134 
    -0.041 -0.043 -0.043 -0.043 -0.064 -0.076   (0.105) (0.111) (0.111) (0.111) (0.112) (0.147) 
Fund Size (ln)    0.122*** 0.125*** 0.132*** 0.115*** 0.104***     -0.047 -0.046 -0.054 -0.038 -0.056 
     -0.021 -0.021 -0.021 -0.025 -0.028     (0.047) (0.047) (0.057) (0.047) (0.056) 
Number of Strategy words (ln)     -0.085*    

      -0.071       

      -0.045          (0.100)       
Number of PPM Pages (ln)      -0.103   

        0.073     

       -0.064           (0.251)     
Gross TVPI Previous Fund        0.085**  

          0.137   

        -0.039            (0.091)   
Both Previous Funds Low Gross TVPI        -0.108*             -0.127 
         -0.064             (0.177) 
Both Previous Funds High Gross TVPI        0.057             0.064 
         -0.073             (0.144) 
               
Observations   395 395 395 395 318 243   319 319 319 319 318 236 
R-squared   0.174 0.231 0.239 0.236 0.221 0.305   0.235 0.237 0.238 0.237 0.247 0.243 
                              



Appendix 2. Machine learning algorithms 

This table describes the algorithms used in our analyses. All algorithms are implemented using 
the Sklearn package. 

Lasso Regression 

Lasso Regression is an extension of logistic regression, a probabilistic linear model that uses a 
logistic sigmoid function to return a probability value. Lasso Regression, unlike logistic 
regression, includes a regularization penalty, the so-called L1 norm, to the loss function. Given 
an example 𝑖𝑖 with a vector of features 𝑥𝑥(𝑖𝑖)  and an output 𝑦𝑦(𝑖𝑖), the elastic regression solves the 
following equations: 

𝑧𝑧(𝑖𝑖) = 𝑤𝑤𝑇𝑇𝑥𝑥(𝑖𝑖) + 𝑏𝑏     (1) 

𝑦𝑦�(𝑖𝑖) = 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠(𝑧𝑧(𝑖𝑖))    (2) 

Where, 𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠�𝑧𝑧(𝑖𝑖)� = 1

1+𝑒𝑒−𝑧𝑧(𝑖𝑖) 

Ը(𝑦𝑦�(𝑖𝑖),𝑦𝑦(𝑖𝑖)) = −𝑦𝑦(𝑖𝑖) log (𝑦𝑦�(𝑖𝑖)) − (1 − 𝑦𝑦(𝑖𝑖)) log (1 −𝑦𝑦�(𝑖𝑖))     (3) 

The overall cost is computed as follows:  

Ϳ = �Ը(𝑦𝑦�(𝑖𝑖),𝑦𝑦(𝑖𝑖))
𝑚𝑚

𝑖𝑖=1

+ 𝛿𝛿 ���𝑤𝑤𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

� 

Where 𝑗𝑗 refers to the number of features, and 𝛿𝛿 denotes the amount of shrinkage. Note that for 
𝛿𝛿 = 0, Lasso Regression computes the cost function of logistic regression.  

Random Forest 

Tree-based method that randomly creates and merges multiple individual decision trees. To 
create these individual decision trees, we use bootstrapping. Each decision tree is implemented 
as a tree of binary decision nodes where each node compares one feature value of the sample 
to a threshold. The feature and the threshold are selected by comparing the Gini impurity of a 
random subset of features. The Gini impurity is calculated as follows: 

𝐺𝐺 = �𝑝𝑝(ℎ) + (1 − 𝑝𝑝(ℎ))
𝐶𝐶

ℎ=1

 



Where C is the total number of classes and 𝑝𝑝(𝑖𝑖) is the probability of picking a datapoint with 
class 𝑖𝑖. The final prediction is the most highly voted predicted variable. The random forest 
algorithm takes an average of predictions from all the decision trees. 

Gradient Boosting  

Like Random Forest, Gradient Boosting is a tree-based method that randomly creates and 
merges multiples decision trees. The key difference with the Random Forest is that the final 
prediction is a linear sum of all trees and the goal of each tree is to minimize the residual error 
of previous trees.  

  



Table A3. Ten-fold cross-validation implementation 
The figure depicts the implementation process of ten-fold cross-validation, a resampling procedure to evaluate machine learning models. First, the model is trained with observations included in 
Folds 2 to  and tested on Fold 1. Then, we compute and store the Area Under the Receiver Operating curve (AUC) on Fold 1. The process is repeated until the ten folds are used in the test sample.  

Training sample 
    
    

  AUC 
                                              
    Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10     
                                              

1st round   Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10 →  AUC 1 
                                              

 2nd round   Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10  → AUC 2 
                                              

3rd round   Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10  → AUC 3 
                                              

4th round   Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10  → AUC 4 
                                              

5th round   Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10  → AUC 5 
                                              

6th round   Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10 →  AUC 6 
                                              

7th round   Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10  → AUC 7 
                                              

8th round   Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10  → AUC 8 
                                              

9th round   Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10  → AUC 9 
                                              

10th round   Fold 1   Fold 2   Fold 3   Fold 4   Fold 5   Fold 6   Fold 7   Fold 8   Fold 9   Fold 10  → AUC 10 
 



Table A4. The determinants of predicted probability of success (Lasso) 
This table presents results from OLS regressions on the sample of 376 funds raised between 2003 and 2016. The dependent variable is the Probability of Success predicted by Lasso. We control for 
investment strategy, region, and vintage year effects in all regressions. Standard errors are in parentheses and clustered at the PE firm level. *, **, and *** denote statistical significance at the 10%, 
5%, and 1% level, respectively. Definitions provided in the Appendix. 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)   
VARIABLES   Probability of Success     
                        
Fund Sequence (ln) 0.010 0.003 0.003 0.003 0.013 -0.035       
  (0.032) (0.038) (0.038) (0.038) (0.050) (0.067)       
Fund Size (ln)  0.008 0.008 0.012 0.008 0.016       
   (0.021) (0.021) (0.022) (0.022) (0.024)       
Number of Strategy words 
(ln)   -0.000        

  

    (0.038)          
Number of PPM Pages (ln)    -0.040         
     (0.058)         
Gross TVPI Previous Fund      -0.025        
      (0.040)        
Both Previous Funds Low 
Gross TVPI      0.012     

  

       (0.054)       
Both Previous Funds High 
Gross TVPI      0.008     

  

       (0.068)       
Months in Fundraising       0.000      
        (0.002)      
Oversubscribed        -0.027     
         (0.066)     
Fund Target Reached         -0.008    
          (0.043)    
Increase in Fund Size          0.007   
           (0.023)   
              
Observations 376 376 376 376 309 223 376 376 376 310   
R-squared 0.053 0.054 0.054 0.055 0.074 0.103 0.051 0.053 0.053 0.071   
                        

 

  



Table A5. The determinants of predicted probability of success (Random Forest) 
This table presents results from OLS regressions on the sample of 376 funds raised between 2003 and 2016. The dependent variable is the Probability of Success predicted by Random Forest. We 
control for investment strategy, region, and vintage year effects in all regressions. Standard errors are in parentheses and clustered at the PE firm level. *, **, and *** denote statistical significance at 
the 10%, 5%, and 1% level, respectively. Definitions provided in the Appendix. 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)   
VARIABLES   Probability of Success     
                        
Fund Sequence (ln) 0.003 -0.006 -0.006 -0.005 0.003 -0.005       
  (0.009) (0.009) (0.009) (0.009) (0.013) (0.018)       
Fund Size (ln)  0.010** 0.011** 0.013** 0.011* 0.009       
   (0.005) (0.005) (0.006) (0.006) (0.007)       
Number of Strategy words 
(ln)   -0.006        

  

    (0.009)          
Number of PPM Pages (ln)    -0.025         
     (0.016)         
Gross TVPI Previous Fund      0.001        
      (0.009)        
Both Previous Funds Low 
Gross TVPI      0.015     

  

       (0.015)       
Both Previous Funds High 
Gross TVPI      0.015     

  

       (0.024)       
Months in Fundraising       0.000      
        (0.001)      
Oversubscribed        0.003     
         (0.016)     
Fund Target Reached         0.004    
          (0.011)    
Increase in Fund Size          -0.006   
           (0.007)   
              
Observations 376 376 376 376 309 223 376 376 376 310   
R-squared 0.069 0.080 0.082 0.088 0.099 0.148 0.067 0.069 0.069 0.087   
                        

 



Figure A1. Most relevant combinations of stemmed words to make predictions 
(Gradient Boosting) 

The figure presents the SHAP values for the top-30 characteristics in terms of variable importance in GP quality. We use the 
Gradient Boosting algorithm trained on 314 funds raised between 2003 and 2013 to make the predictions. Combinations of 
words are ranked in decreasing order according to their importance. The Shapley value determines the position on the x-axis, 
and the feature determines the y-axis. Points represent observations. The color represents the value of the feature from low 
(blue) to high (red). 

 

 

 

 

 

 

 

 



Figure A2. Most relevant combinations of words to make predictions (Random Forest) 
The figure presents the SHAP values for the top-30 characteristics in terms of variable importance in GP quality. We use the 
Random Forest algorithm trained on 314 funds raised between 2003 and 2013 to make the predictions. Combinations of words 
are ranked in decreasing order according to their importance. The Shapley value determines the position on the x-axis, and the 
feature determines the y-axis. Points represent observations. The color represents the value of the feature from low (blue) to 
high (red). 

 



Figure A4. Shapley values of stemmed words at play in an example (Gradient Boosting) 
This figure depicts how features contribute to the final prediction of a random example in our dataset. Combinations of words 
are ranked in decreasing order according to their contribution to the final predicted probability f(x). E[f(X)] indicates the 
average mean predicted probability of Gradient Boosting in the training sample (i.e., funds raised between 2003 and 2013).  
The x-axis represents the values of the probability of success. The length of the bar represents the Shapley value of each 
feature. 

 

 



Figure A5. Shapley values of stemmed words at play in an example (Random Forest) 
This figure depicts how features contribute to the final prediction of a random example in our dataset. Combinations of words 
are ranked in decreasing order according to their contribution to the final predicted probability f(x). E[f(X)] indicates the 
average mean predicted probability of Random Forest in the training sample (i.e., funds raised between 2003 and 2013).  The 
x-axis represents the values of the probability of success. The length of the bar represents the Shapley value of each feature. 

 



Figure A6. Shapley values of words at play in an example (Random Forest) 
This figure depicts how features contribute to the final prediction of a random example in our dataset. Combinations of words 
are ranked in decreasing order according to their contribution to the final predicted probability f(x). E[f(X)] indicates the 
average mean predicted probability of Random Forest in the training sample (i.e., funds raised between 2003 and 2013).  The 
x-axis represents the values of the probability of success. The length of the bar represents the Shapley value of each feature. 



 

Figure A7. Most relevant combinations of stemmed words to make predictions (Random Forest) 
The figure presents the SHAP values for the top-30 characteristics in terms of variable importance in GP quality. We use the Random Forest 
algorithm trained on 314 funds raised between 2003 and 2013 to make the predictions. Combinations of words are ranked in decreasing order 
according to their importance. The Shapley value determines the position on the x-axis, and the feature determines the y-axis. Points represent 
observations. The color represents the value of the feature from low (blue) to high (red). 

 



Table A7. Most relevant combinations of words to make predictions (Lasso) 
The figure presents the twenty terms with the highest and lowest coefficient predicted by Lasso. Lasso is trained on funds raised between 2003 
and 2013. 

Positive coefficient   Negative Coefficient 
Term Coefficient   Term Coefficient 
investment criteria 9.36   institutional investor -10.42 
proactive sourcing 8.35   focus -on- cash -9.92 
lead private equity 8.12   company case -8.94 
intrinsic value 8.11   cash generation -8.47 
lead private 7.82   intend -to- make -7.89 
information technology 7.03   exit option -7.73 
health care 6.74   owner -of the- company -7.65 
advisory board 6.62   portfolio company case -7.34 
domain expertise 6.52   company grows -7.19 
strategic repositioning 6.48   advisory team -7.14 
transaction -of the- fund 6.45   investment advisor -6.96 
continue focusing 6.41   company creates -6.82 
investor -in the- fund 6.16   hands-on- approach -6.82 
average EBITDA 6.11   support -the- company -6.77 
proactively identifies 6.02   portfolio company creates -6.70 
          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A8. Most relevant combinations of stemmed words to make predictions (Lasso) 
The figure presents the twenty terms with the highest and lowest coefficient predicted by Lasso. Lasso is trained on funds raised between 2003 
and 2013. 

Positive coefficient   Negative Coefficient 
Term Coefficient   Term Coefficient 
invest criteria 9.36   institut investor -10.42 
proactiv sourc 8.35   focu cash -9.92 
lead privat equiti 8.12   compani case -8.94 
intrins valu 8.11   cash gener -8.47 
lead privat 7.82   intend make -7.89 
inform technolog 7.03   exit option -7.73 
health care 6.74   own compani -7.65 
advisori board 6.62   portfolio compani case -7.34 
domain expertis 6.52   compani grow -7.19 
strateg reposit 6.48   advisori team -7.14 
transact fund 6.45   invest advis -6.96 
continu focu 6.41   compani creat -6.82 
investor fund 6.16   hand approach -6.82 
averag ebitda 6.11   support compani -6.77 
proactiv identifi 6.02   portfolio compani creat -6.70 
          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A9. TVPI, Median Distance, and out-of-sample probability of success (Random Forest) 
This table presents results from OLS regressions in which the dependent variable is the Total Value to Paid-In (TVPI) net of fees and carried 
interest (columns 1-3) and the Median TVPI Distance (columns 4-6). The Median TVPI Distance is calculated as a fund’s TVPI minus the median 
TVPI of the funds from the same vintage year and investment strategy in the Preqin database. All specifications in the table control for investment 
strategy, region, and vintage year effects. Standard errors are shown in parentheses and clustered at the PE firm level. *, **, and *** denote 
statistical significance at the 10%, 5%, and 1% level, respectively. Detailed definitions of all variables are provided in the Appendix. 

  (1) (2) (3) (4) (5) (6) 
VARIABLES TVPI Median TVPI Distance 
              
Quantitative Info -0.301   -0.290   

 (0.372)   (0.373)   
Qualitative Info (Months in Fundraising)  0.503   0.562  

  (0.189)   (0.618)  
Qualitative Info (Outperformance)   1.670**   1.703** 

   (0.772)   (0.735) 
       

Observations 67 67 67 67 67 67 
R-squared 0.224 0.216 0.278 0.202 0.216 0.279 



Table A10. TVPI, Median Distance, and out-of-sample probability of success (Lasso)  
This table presents results from OLS regressions in which the dependent variable is the Total Value to Paid-In (TVPI) net of 
fees and carried interest (columns 1-3) and the Median TVPI Distance (columns 4-6). The Median TVPI Distance is calculated 
as a fund’s TVPI minus the median TVPI of the funds from the same vintage year and investment strategy in the Preqin 
database. All specifications in the table control for investment strategy, region, and vintage year effects. Standard errors are 
shown in parentheses and clustered at the PE firm level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% 
level, respectively. Detailed definitions of all variables are provided in the Appendix. 

  (1) (2) (3) (4) (5) (6) 
VARIABLES TVPI Median TVPI Distance 
              
Quantitative Info 0.330   0.358   

 (0.957)   (0.974)   
Qualitative Info (Months in Fundraising)  0.139   0.155  

  (0.187)   (0.189)  
Qualitative Info (Outperformance)   0.560***   0.568*** 

   (0.145)   (0.145) 
       

Observations 67 67 67 67 67 67 
R-squared 0.218 0.217 0.353 0.196 0.218 0.354 
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