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Abstract

We introduce an asymmetric-information framework for asset pricing with general

utilities and payoffs, called a “Continuous Heterogeneous Information Large Economy”

(CHILE), in which we model a large economy as a continuum of heterogeneous agents,

with their characteristics—utility function, risk aversion, signal precision, and wealth—

represented as arbitrary continuous functions. Formalizing an assumption of Kyle (1989)

that captures large markets with finite total amount of information, we demonstrate

that our framework amounts to the usual stochastic calculus, but with the dimension

that typically represents time “transposed” to represent agents trading over one period.

The resulting environment resembles what Black (1986) calls “noise in the sense of a

large number of small events.” While our methodology is flexible enough for general

probability distributions, with log-normal payoffs the CHILE equilibrium is log-linear and

in closed form. In this equilibrium, we endogenize the inequality of wealth across traders

by equating the pre-trade to the post-trade distribution of wealth. With CRRA utilities,

such “trade-invariant” distributions obey power laws. We also document a spiral between

wealth inequality and price efficiency: widening inequality lowers efficiency, which in turn

widens inequality even more. Policies aiming to improve efficiency must be designed

carefully, because neglecting this spiral can have unanticipated effects on both inequality

and efficiency.
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1 Introduction

How do risk preferences affect market inefficiency? This straightforward question, fundamental

as it may be, is also deceptively difficult to answer. As it is widely acknowledged, the crux

of the matter is that standard approaches lack tractability, making the treatment of market

inefficiency with general preferences look like an unattainable goal. While models of financial

markets without frictions—as in, for example, the popular textbook “Asset Pricing” (Cochrane,

2005)—are able to capture many empirically relevant sources of risk and match a number of

interesting quantities, they are notoriously unable to handle asymmetric information, a force

broadly believed to be a key component of market inefficiency.

What about those asymmetric-information models collectively known as Rational Expecta-

tions Equilibria (REE)? Do they fare any better? At least with respect to non-revealing prices,

REE appear to be stuck with the framework we see at least as far back as Grossman (1976).

Exploiting that preferences with Constant Absolute Risk Aversion (CARA) can be transformed

into the mean-variance criterion, this framework offers us not only linearity, but also the ability

to work with normally-distributed payoffs. Understandably, then, this “CARA-Normal” frame-

work has become a long-standing favorite of information economists, and continues to drive

a rich literature to today. Nevertheless, and despite its many merits, there are at least two

modest research goals that our CARA-Normal workhorse cannot help us with: incorporating

wealth effects, and pushing our understanding beyond linear prices.1

Aiming to address these issues, we introduce a tractable framework with heterogeneous

traders and general preferences. Our setup begins with a large economy modeled as a continuum

of traders indexed by a ∈ [0, 1], with trader characteristics (risk aversion, signal precision, and

so on) represented as arbitrary continuous functions of a. While this framework turns out to

be flexible enough for general probability distributions—see our Appendix C for details—if we

restrict attention to log-normally distributed assets we get a log-linear equilibrium where all

1Notable papers that go beyond the CARA-Normal framework (while still requiring other assumptions for
tractability) include Peress (2004), Peress (2014), Breon-Drish (2015), Malamud (2015) and Chabakauri, Yuan,
and Zachariadis (2022). While allowing for non-Gaussian distribution, both Breon-Drish (2015) and Chabakauri
et al. (2022) require CARA utility and thus do not incorporate wealth effects. Malamud (2015) requires complete
markets. Peress (2004) and Peress (2014) achieve tractability by requiring the risk of assets to be small. See
Section 6 for more details.
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quantities are in closed-form.

Tractability like this is typically not seen in models with fully-heterogeneous agents or with

non-CARA utilities. What enables it in ours is the way we model information. In contrast

to the traditional methodology for large markets (Hellwig, 1980, and consequent literature)

we do not assume that traders have signals of finite precision, because that would imply that

as the number of traders becomes large, so does the total amount of information.2 What is

more, making that assumption would also imply that our traders base their demands on signals

with finite precision. They would thus make finite speculative trades, with the unfortunate

consequence that aggregate demand would explode for large numbers of traders.

We instead use an assumption similar to Section 9 in Kyle (1989), whereby the total amount

of information is distributed among all traders. By definition, then, the total amount of in-

formation is always finite, irrespective of the number of traders. In addition, as traders base

their demands on signals with precision inversely related to the size of the economy, aggregate

demand remains finite even when the number of traders becomes infinite.

A key contribution of our paper is to extend the above information structure from Kyle

(1989), turning it into a general formalism for economies with continuums of small heteroge-

neous signals. As it turns out, the right formalism uses a type of stochastic calculus, where the

dimension that typically represents time is “transposed” to represent traders.3

To fix ideas, we offer the following example. Suppose we represent a continuum of agents

as a unit interval. Using a to denote one of the agents, let us imagine that a lives on a segment

of size da, and that he observes the signal

ds(a) = v da+ dB(a),

where v is the fundamental value of a traded asset, and where dB(a) is an increment of a

Brownian Motion over the agent interval. The aggregate sum of all signals—a sufficient statistic

2As the total amount of information is the precision of the sufficient statistic of private signals, it equals
the sum of signal precisions held by all traders. Thus, in economies where the precision of each signal is finite
(as in “neither infinite nor infinitesimal,” i.e. neither infinitely large nor infinitely small) the total amount of
information grows directly in the number of traders.

3See Gârleanu, Panageas, and Yu (2015) for a similar trick applied to firms rather than traders.
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for all private signals—is an Itô integral, a key property that gives us access to the full arsenal

of stochastic calculus. But perhaps even more importantly, this type of aggregation also allows

us to think of the noise component of the sufficient statistic as consisting of a large number

of small idiosyncratic shocks, resembling what Black (1986) calls “noise in the sense of a large

number of small events.”

Our equilibrium has two main properties that are hard to analyze without our framework.

First, traders with higher risk tolerance provide more liquidity, while traders with higher

precision-weighted risk tolerance trade more aggressively. Although this particular property

holds with CARA-Normal assumptions, the non-CARA utility of our model introduces explicit

wealth effects into risk tolerance, nonexistent in CARA-based models. For example, in the

(plausible) case of decreasing absolute risk aversion, our model allows us to conclude that some

agents trade more aggressively, thereby also providing more liquidity, exactly because they are

wealthier than others (see section 3.2 for more implications).

As we demonstrate below, the distribution of wealth across different traders affects impor-

tant equilibrium quantities, such as price efficiency. Using the case of homogeneous precisions

as an illuminating benchmark, we show that price informativeness is a decreasing function

of the coefficient of variation of wealth—a coefficient widely-used by the wealth-inequality

literature—which in our case is the ratio of cross-sectional standard deviation of wealth over

the cross-sectional mean of wealth. In short, economies with greater dispersion of wealth have

less informative prices.

The intuition is best conveyed by noting that prices reflect the weighted average signal of

all traders, with traders’ weights proportional to their trading intensities. In the absence of

wealth effects, a population of homogeneous traders (same risk aversion, same signal preci-

sion) would generate a price that conveys information through an equally-weighted average of

trader signals—a weighting scheme which also happens to generate the most accurate possible

posteriors for all traders.

With wealth effects, however, trading intensities increase in wealth. As a result, the price

no longer conveys an equally-weighted average of signals, even if all traders have identical risk

aversions and signal precisions. Instead, the price function emphasizes the signals of richer
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traders more than those of poorer traders, for reasons unrelated to signal accuracy, effectively

creating an economy of “wealth-based discrimination for signals.” In terms of price efficiency,

this discrimination does not benefit anyone. Quite the opposite, by emphasizing the information

of richer traders more, wealth inequality distorts the information content of prices away from

the purely precision-based weights, thereby lowering price informativeness.

Second, because price efficiency affects how traders speculate, it also affects how wealth is

reallocated during trade, changing wealth inequality. Moreover, as we have just seen above,

the relationship between price efficiency and wealth inequality also runs the other way around,

giving us two parts of the same loop: wealth inequality determines price efficiency, which then

determines wealth inequality. An interesting question therefore arises: What happens if we

attempt to close this loop by feeding a particular “profile” of wealth inequality back through

it? Can we describe the wealth inequality of our trader population so that going through

the loop gives us the same description we started with? In other words, is there a notion of

“trade-invariant” wealth inequality?

As we explain next, this question is treatable by our framework. As injecting wealth hetero-

geneity into our model is straightforward, we can represent wealth inequality in probabilistic

terms across traders. Interpreting pre- and post-trade wealth as random variables taking on

different values for different traders, we can then think of wealth inequality as “trade-invariant”

if the density of wealth across traders does not change as they trade.4

To formalize this concept, we define a new type of “overall” equilibrium, in which the wealth

distribution must be trade-invariant. This way, we obtain two distinct equilibrium objects: in

addition to the informational efficiency of prices we typically see in the literature (a scalar), we

must now obtain the probability distribution of wealth (a function). While solving for price

efficiency works as usual, solving for the wealth distribution requires a tool from stochastic

calculus known as the Kolmogorov Forward Equation (KFE). Our results indicate that with

CRRA utility, the KFE is a familiar one: it has the same form as equations in random-growth

models (for a review, see Gabaix, 2009). An immediate implication is that if preferences are

4This is indeed possible, even though the wealth of each individual trader does change. All we need is that,
as agents trade, their new wealth values, viewed as a random variable, are drawn from the same distribution as
their old wealth values.
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CRRA, the trade-invariant distribution of wealth obeys a power law.

Finally, we also study how wealth inequality and price efficiency interact with each other.

We uncover the following inequality-inefficiency spiral. As above, greater wealth inequality low-

ers price efficiency, while lower price efficiency responds by making more room for speculative

profits, something that disproportionately benefits those traders who act more aggressively—

the wealthier traders. This lop-sided response widens inequality relative to exogenous wealth

distributions. As a result, policies aiming to improve price efficiency must be designed carefully,

because neglecting how inequality feeds back into efficiency can backfire. For example, while

increasing transparency—i.e. making it easier to acquire private information—has a positive

direct effect, it also has a negative indirect effect, boosting the trading benefits that wealth-

ier, more aggressive traders can enjoy from their improved information. Widening inequality,

this indirect effect can trump the direct one, decreasing price efficiency despite transparency

improvements.

2 Setup

Our economy unfolds over two time periods, t = {1, 2}, and it is made of a continuum of traders

of total mass one, described in more detail below. There are two assets: one risky, and one

risk-free, with the returns of both assets realized at t = 2. The supply of the risk-free asset is

perfectly elastic and its gross return is normalized to 1, while the liquidation value of the risky

asset is

V (v), v ∼ N
(
0, τ−1

v

)
.

Our framework is tractable for a general function V (·). As, however, our goal here is to focus

on the effects arising from non-CARA utility (and not the general distribution), we assume a

log-normal payoff in the main part of the paper,

V (v) = exp(v).

We explore the case of the general function V (·) in Appendix C.
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Trade happens at t = 1, determining the price P .5 We denote

p = logP and R = V/P.

There are two groups of traders (agents), indexed by a, living on the interval [0, 1). Rational

traders live on the segment [ν, 1), whereas noise traders live on the segment a ∈ [0, ν).

Agent a trades a dollar amount of x (price per share times number of shares) at time t = 1,

so his realized wealth at time t = 2 is

W = W0(a) + x(R− 1),

and his realized utility is

u(W,a).

Here we see the first two dimensions of heterogeneity of our model: initial wealth W0(a), and

preferences u(·, a).6 Our only restriction is that expected utility E[u(W,a)] is thrice differen-

tiable with respect to x in a small open neighbourhood around x = 0.

The last primitive of our model is a standard Brownian Motion B(·) on the interval [0, 1),

running through the cross-section of traders, who are located on the same interval. We will

make heavy use of B(·), as it will provide the price noise in our economy.

In what follows, we micro-found the key quantities of our continuous equilibrium as limits

of corresponding quantities of a discrete economy built on traditional economic primitives. We

begin by describing our limit economy in loose terms in our next section, providing our readers

with “user-friendly” heuristics involving Brownian differentials.We tighten up our exposition in

the sequel (section 2.2), describing our discrete economy and showing how we take the limit.

5Adding information acquisition at t = 0 to our framework is straightforward. We do so in the Appendix D.
6Our third and final dimension of heterogeneity is signal precision, discussed in the next section.
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2.1 A Heuristic Presentation of the Continuous Economy

A given agent a ∈ [0, 1) has initial wealth W0(a) and utility function over final wealth u(·, a).

He lives in segment [a, a+ da), with his location determining his type as discussed above.

A rational trader a observes the signal

ds(a) = v da+
1√
t(a)

dB(a), a ∈ [ν, 1), (1)

where B(·) is the Brownian motion introduced earlier.

Conditional on v, trader a’s signal is normally distributed with precision

t(a)da.

To gain some intuition for why, we can (loosely) argue that ds(a) has the same informational

content as a signal written in the “truth plus noise” form v + dB(a)/
(√

t(a)da
)
. As the

precision of a signal is the reciprocal of the variance of the noise, we can think of the precision

of (1) as Var
(
dB(a)/

(√
t(a)da

))−1

= [da/(t(a)da2)]
−1

= t(a)da. Abusing terminology, we

refer to t(a) as the precision of trader a.

Agents in [0, ν) are Fisher-Black noise traders (see Black, 1986). Although they believe

they are observing the process in (1), their actual signal is pure noise. We model their “signal”

as

ds(a) =
1√
t(a)

dB(a), a ∈ [0, ν). (2)

We refer to t(a) for a noise trader a as a perceived precision or just precision, for brevity. Noise

trader a is only wrong about his signal and has correct beliefs about the equilibrium price

function.7

Finally, we note that conditional on v, the aggregate signal process s(a) =
∫ a
0
ds(b) is a

continuous martingale. We call an economy with heterogeneous signals such that the aggregate

signal is a continuous martingale a continuous heterogeneous information economy.

7As a modeling choice, our assumption in (2) imposes discipline on the degree of irrationality of the noise
traders. It can be relaxed with little loss of general tractability, albeit at the expense of losing our closed form.
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2.2 The Continuous Economy as a Limiting Discrete Economy

Consider an economy with n traders. Trader i, i = 1, 2, . . . , n lives in segment [ai, ai + mi),

where ai =
∑

j<imj and
∑

imi = 1. The length of the agent’s segment is the same as his size

(or mass), mi. Trader i’s wealth is W (ai) and his utility is u(·, ai).

The agents with ai ∈ [0, ν) are noise traders. They observe the signal

∆si =
1√
t(ai)

(
B(ai +m)−B(ai)

)
, (3)

but act as if their signal is

∆si = v ·m+
1√
t(ai)

(
B(ai +m)−B(ai)

)
. (4)

The agents with ai ∈ [ν, 1) are rational traders, and they observe the signal in (4).

Let

X(p,∆s;m, a)

denote the demand of the trader who lives in segment [a, a+m), and has signal ∆s. As X is a

demand function, it depends on the price p, the signal ∆s, the size of the agent m, and on the

agent’s characteristics (wealth, utility, precision), captured by the argument a.

2.2.1 An Aggregation Lemma

As we highlight with the following lemma, the key reason for the tractability of our analysis

is that as trader size becomes small, the aggregate demand in our discrete economy above

converges to a stochastic integral, allowing us to think in terms of functions and their derivatives,

rather than pointwise sequences of discrete random variables.

Lemma 1. (Aggregation lemma) Consider a continuous function X(p, s;m, a) : R × R ×

[0, 1]× [0, 1] → R with continuous partial derivatives Xs, Xss and Xm. Take a partition [0, y) =

∪ni=1[a
i, ai +mi), and let m = minimi, ∆s

i = s(ai+1) − s(ai), and ∆X i = X(p,∆si,m, ai) −

X(p, 0, 0, ai). Finally, suppose that there exists an M > 0 such that |
∑n

i=1X
i|< M for any n.
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Then, for any partition such that m→ 0 as n→ ∞, we have that

n−1∑
i=0

∆X i −→ (5)∫ y

0

Xs(p, 0, 0, a)ds(a) +

∫ y

0

(
1

2ta
Xss(p, 0, 0, a) +Xm(p, 0, 0, a)

)
da.

In what follows we will write that

∆X
agg−−→ dX = Xs(p, 0, 0, a)ds(a) +

(
1

2t(a)
Xss(p, 0, 0, a) +Xm(p, 0, 0, a)

)
da

whenever (5) holds. The idea behind the notation is that whenever ∆X
agg−−→ dX the aggregation

of ∆X and dX is the same in the limit.

The above lemma underlies the tractability of our analysis. Assuming that the demand

of each trader becomes 0 as his size goes to 0 (otherwise aggregate demand explodes), we

have ∆X(a) = X(a). Denoting β(p, a) = Xs(p, 0, 0, a) and ℵ(p, a) = 1
2t(a)

Xss(p, 0, 0, a) +

Xm(p, 0, 0, a) the aggregation lemma tells us that

X(a)
agg−−→ β(p, a)ds(a) + ℵ(p, a)da.

This further implies that for any payoff function V (·), our economy would feature a gen-

eralized linear equilibrium: given the price, one can always compute the sufficient statistic∫ 1

0
β(p, a)ds(a), which, as a linear combination of signals of rational traders and noise traders,

is conditionally normally distributed. This conditional normality simplifies inferences signifi-

cantly, overcoming a common obstacle to extending asymmetric information models beyond the

CARA-normal framework. Conveniently, our log-normal setup comes with an additional sim-

plification, stemming from that β(p, a) does not depend on p, and that ℵ(p, a) = α(a)− γ(a)p

is affine in p.

Remark 1. The condition |
∑n

i=1X
i|< M is not restrictive, since the aggregate demand is

bounded by market-clearing.
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2.3 Definition of equilibrium

Our equilibrium definition proceeds in several steps.

1. We are looking for log-linear equilibria. Denoting p = logP , the dollar demand of traders

in the interval [a, a+ da) is

dx(a) = α(a) + β(a)dsa − γ(a) · pda. (6)

The rigorous meaning of the above is that the aggregate demand of traders in some

segment A is
∫
A dxa.

2. We turn to defining dx(a). Note that dx(a) is the demand of a trader that observes

the infinitesimal signal ds with precision t(a)da. We define it as a limit of demand

x(∆s(a), p,m, ai) of a trader that observes a finite signal ∆s(a) = s(a +m) − s(a) with

precision t(a)m. We position the trader a in the interval [a; a + m), and we move all

traders b > a by +m and put them in the interval [a+m; 1 +m). We use A−a and A−a
r

to denote the set of all traders, and rational traders, excluding a

A−a = [0, 1 +m) \ [a, a+m) and A−a
r = [ν, 1 +m) \ [a, a+m).

We define x(∆s(a), p,m, a) as the best response to all other traders’ demands, where all

other traders form a continuum. When computing the best response, each trader assumes

away the market impact. By aggregation lemma, the demand of other traders in the

continuous limit can be written as dx̂(a) = β̂(p, a,m)ds(a)+ℵ̂(p, a,m)da. We require that

the demand of other traders converges to its’ limit postulated by (6): limm→0 β̂(p, a,m) =

β(a), and limm→0 ℵ̂(p, a,m) = α(a)−γ(a)p. We also require that the demand of the trader

of interest converges to the one postulated by (6): x(·, a) agg−−→ dx(a). More formally:

(a) The demand x(∆s(a), p,m, a) solves

x(p,∆s(a);m, a) = argmaxx {E [u (W0(a) + x (R− 1) , a) |p,∆s(a)]} (7)
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Where all traders act as if they get ∆s(a) given by (4) but noise traders (a ∈ [0, ν))

actually get (3). The p must clear the market:

∫
A−a

(β̂(a, p;m)ds(a) + ℵ̂(a, p,m)da) = 0.

Note that each trader neglects his influence on market clearing and assumes that the

price function is generated by all other traders in the economy.

(b) limm→0 β̂(p, a,m) = β(a), and limm→0 ℵ̂(p, a,m) = α(a)− γ(a)p

(c) x(p,∆s(a);m, a)
agg−−→ dxa = α(a) + β(a)ds(a) − γ(a) · pda, which means that for a

partition with m→ 0 we have,

n−1∑
i=0

x(p,∆s(a);mi, a) −−−→
n→∞

α(a) + β(a)dsa − γ(a) · pda.

Remark 2 (Notation). We will often use “hat” to denote an equilibrium quantity X in the

discrete economy with the size of the agent m by X̂(m). Its limit in the continuous economy is

denoted without hat, X = X̂(0). An example is α̂(a; 0) = α(a) above.

Remark 3. In our equilibrium definition, each trader assumes he has no impact on the price,

both in terms of the price level and the informational content of the price. Both of these

assumptions constitute a small mistake. Given a trade dx(a), the price changes by λdx, where

λ is finite. Similarly, cov(ds, p) is of order da. These small mistakes aggregate and do not wash

away. Because of that, the equilibrium is well-defined even when the mass of noise traders is

zero. We also note that it would be hard for traders to prove themselves wrong, as it would be

hard to statistically distinguish between cov(ds, p) of order da and cov(ds, p) equal to zero.8

8In the ongoing work, we also explore a setting where a trader ignores the impact on price level but correctly
accounts for the correlation between his signal and market price. Such behavior is consistent with competitive
REE. We find most of our results still hold in this setting, except that the equilibrium wealth distribution does
not feature power laws.
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3 Equilibrium characterisation

3.1 Inference

From the perspective of each agent in the discrete economy, the price function satisfies

∫
A−a

(
β̂(b, p,m)ds(b) + ℵ̂(p, b,m)db

)
= 0, (8)

Substituting (1) and (2) into (8), integrating, and rearranging gives

sp ≡ v +

∫
A−a β̂(a;m)/

√
t(a)dB(a)∫

A−a
r
β̂(a;m)da

=

∫
A−a
r

ℵ̂(p, a,m)∫
A−a β̂(p, a,m)

. (9)

We note that the form “truth plus noise” shows up again, this time for the signal sp de-

fined as the expression on the left-hand side of (9), with truth being v and the noise be-

ing
(∫

A−a β̂(a;m)/
√
t(a)dB(a)

)
/
(∫

A−a
r
β̂(a;m)da

)
. This noise, in particular, is normally dis-

tributed with mean zero and variance∫ 1

0
β̂(a;m)2/t(a)da(∫ 1

ν
β̂(a;m)da

)2 ,

a result that follows from standard properties of stochastic integration.9 We summarize the

information content of prices in the following lemma.

Lemma 2. The information content of prices is the unbiased signal sp defined in (9). Given

the price p, the realization of this signal can be computed as shown on the right-hand side of

(9), while its precision can be written as

τ̂p(m) =

(∫
A−a
r
β̂(a;m)da

)2
∫
A−a

β̂(a;m)2

t(a)
da

,

9For a deterministic function f , the stochastic integral
∫ 1

0
f(a)dB(a) is normally distributed with mean zero

and variance
∫ 1

0
f(a)2da.
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Moreover,

lim
m→0

τ̂p(m) ≡ τp =

(∫ 1

ν
β(a)da

)2
∫ 1

0
β(a)2

t(a)
da

.

We now turn to deriving the first-order condition (FOC), by writing the choice problem of

trader a as

max
x

E [u (W0(a) + x (R− 1) , a) |∆s(a), sp] . (10)

Lemma 3. There exists a unique best response for trader i. It solves (10) and satisfies the

FOC

E [u′ (W0(a) + x (R− 1) , a) (R− 1)|∆s(a), sp] = 0,

which has a unique solution.

The conditional distribution of v given Fa = {∆s(a), sp} is N (Ea[v](∆s(a),m), 1/τ̂a(m)),

where τ̂a(m) can be computed in closed form for any m, but the solution is particularly simple

for m = 0 (continuous economy limit), which is the only thing we need going forward.

τ = τ̂a(0) = Var[v|p]−1 = τv + τp.

Note that τ(0) is the same for all agents, hence we do not use superscript i.

Similarly,

Ea(∆s(a),m) ≡ E[v|∆s(a), p] = ĉv̄(m)v̄ + ĉs(m)∆s(a) + ĉp(m)sp,

where sp is given by the right-hand side of (9). Again, even though they can be calculated in

closed form for any m, we will only need the value of the coefficients ĉv̄(m), ĉs(m) and ĉp(m)

at 0 :

cv̄ =
τv
τ
, cs =

t(a)

τ
, and cp =

τp
τ
.

Given the information F(a) = {∆s(a), p}, the random variable z = v−E[v|∆s(a),p]√
Var[v|∆s(a),p]

is standard

normal. Then, we can write

v ≡ va(p,∆s(a),m, z) = E[v|∆s(a), p] + z
√

Var[v|∆s(a), p], where z|F(a) ∼ N(0, 1).
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Substituting va instead of v to (3) yields

∫  u′ (W0(a) + (exp (va(p,∆s(a),m, z)− p)− 1)x, a)

· (exp (va(p,∆s(a),m, z)− p)− 1)

 dN (z) = 0, (11)

where N (z) denotes standard normal CDF. Substitution of va instead of v is convenient as it

makes explicit the dependence of conditional distribution of v on ∆s(a) and m. Eq. (11) defines

implicitly the demand

X(p,∆s(a),m, a).

In order to proceed we make several observations summarized in the following lemma.

Lemma 4. The equilibrium exists only if X(p, 0, 0, a) (the limit of X(p,∆s(a),m, a), defined

by (11) as m→ 0) is zero. This implies that

E[R|P ] = 1, (12)

τp
τ

∫ 1

0
γ(a)da∫ 1

ν
β(a)da

= 1, (13)

and

exp

(
τv
τ
v̄ − τp

τ

∫ 1

0
α(a)da∫ 1

0
γ(a)da

+
1

2τ

)
= 1.

We comment here on the condition (12). In our limiting continuous economy the market is

efficient. This makes sense: if it is not, then each trader would make a finite speculative trade

and the aggregate demand would explode. What’s more, in our economy the risk premium is

zero. This is because we assume that the asset is in zero supply. One can introduce risk premium

by endowing the agents not only with cash W0(a) but also with risky asset endowments.10

3.2 The three Greeks of CHILE

According to the Aggregation Lemma, we can compute the demand coefficients α(a), β(a)

and γ(a) (the three Greeks) as follows. First, consider the demand function X(p,∆s,m, a):

10We explore such generalization in our ongoing work.
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the demand of agent sitting in the interval [a, a + m). This demand is defined implicitly by

(11). Then, demand coefficients can be found by first computing the following two functions of

partials of X(·):

f1(p, a) ≡ Xs(p, 0, 0, a), and f2(p, a) ≡
(

1

2t(a)
Xss(p, 0, 0, a) +Xm(p, 0, 0, a)

)
.

According to the Aggregation Lemma, the coefficient β(a) is simply

β(a) = f1(p, a).

Moreover, for our guess of log-linear equilibrium to be correct, f1(p, a) shall not depend on p.

Similarly, coefficients α(a) and γ(a) can be found from

α(a)− γ(a)p = f2(p, a).

If our guess is correct, then f2(p, a) is indeed an affine function of p. Then γ(a) (resp., α(a))

can be identified as a slope (resp., intercept) of that function. Proceeding as we just described

is straightforward and we do so in the Appendix. We summarize equilibrium derivation in the

theorem below.

Theorem 1. There exists a unique equilibrium. The demand coefficients are

β(a) =
t(a)/τ

ρ(a)Var[R|p]
, γ(a) =

hγ
ρ(a)Var[R|p]

, and α(a) =
hα

ρ(a)V ar[R|p]
+ κ(a), (14)

with

Var[R|p] = (exp(τ−1)− 1)

and τ = τv + τp, where τp is the equilibrium price informativeness, given as

τp =

(∫ 1

ν
t(a)
ρ(a)

da
)2

∫ 1

0
t(a)
ρ(a)2

da
. (15)
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The coefficient hγ is given by

hγ =

∫ 1

0
t(a)/ρ(a)2da∫ 1

ν
t(a)/ρ(a)da

∫ 1

0
1/ρ(a)da

and the coefficients hα and κ(a) are given in closed-form in (30) and (31) of the Appendix.

Moreover, the equilibrium demand is

dx(a) =
E[R− 1|ds(a), p]
ρ(a)V ar[R|p]

+ κ(a)da.

where E[R − 1|ds(a), p] is the infinitesimal conditional excess return from the perspective of

trader a.11

Theorem 1 above illustrates the power of our framework. It can deliver a closed-form

equilibrium under assumptions that are usually quite difficult to incorporate in REE, such as

rich heterogeneity, non-CARA utility, and non-normally distributed payoffs.

Directly from (14) we obtain the following corollary that describes the cross-section of β(a)

and γ(a).

Corollary 1. Traders with higher risk tolerance provide more liquidity, while traders with

higher precision-weighted risk tolerance trade more aggressively. More formally, γ(a) > γ(b) iff

1/ρ(a) > 1/ρ(b) and β(a) > β(b)) iff t(a)/ρ(a) > t(b)/ρ(b).

The above corollary implies that the following is true. Suppose all trader precisions are

homogeneous, t(a) = t̄, and that they all have the same utility with decreasing absolute risk

aversion. Then wealthier traders will trade more aggressively and will provide more liquidity.

The next corollary examines the role of wealth distribution for equilibrium price informativeness.

11The conditional return E[R− 1|ds(a), p] is defined as follows. Let

ERa
e(∆s(a),m) = E[R− 1|∆s(a), p]− 1.

be the expected excess return process, and denote its stochastic differential at m = 0 as

E[R− 1|ds(a), p].

Such notation makes sense, since dERa
e = E[R− 1|ds(a), p]− E[R− 1|p] and E[R− 1|p] is zero.
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Proposition 1. Suppose that t(a) = t̄, that all traders have CRRA utility function with relative

risk aversion RRA and that the wealth distribution is the same between noise and rational

traders. Then price informativeness is given by

τp = t̄

(∫ 1

ν
W0(a)da

)2
∫ 1

0
W0(a)2da

=
t̄(1− ν)2

1 + CV2 , (16)

Where CV denotes the coefficient of variation CV =

√∫
W 2dF (W )−(

∫
WdF (W ))2∫

WdF (W )
and F (·) denotes

the CDF of cross-sectional wealth distribution. The price informativeness increases in t̄ and

decreases in ν. A mean-preserving spread12 in cross-section of wealth W0(a) decreases price

informativeness.

Going forward, we take CV as our main measure of wealth inequality. The proposition

above shows that higher wealth inequality is associated with lower information efficiency. To

understand the intuition, note that the price reflects the weighted average of traders’ signals,

with the weights proportional to their wealth. Suppose we have two traders with signal preci-

sions of 1, i.e., s1 = v+ ϵ1 and s2 = v+ ϵ2, where var(ϵi) = 1. If the price reflects the signals of

these traders with equal weights, the precision of the resulting signal sp = v + 0.5ϵ1 + 0.5ϵ2 is

var(0.5ϵ1 + 0.5ϵ2)
−1 = 4. On the other hand, if the price reflects the signals with weights 90%-

10%, , the precision of the resulting signal sp = v+0.1ϵ1+0.9ϵ2 is var(0.1ϵ1+0.9ϵ2)
−1 ≈ 1.22 < 4.

More unequal wealth distribution will result in more unequal distribution of the signals’ price

weights, resulting in lower information efficiency.

4 Endogenizing cross-sectional wealth distribution

In this section, we endogenize the cross-sectional distribution of wealth. To this end, we assume

that initial wealth is the only dimension of heterogeneity in the model. In particular, we

assume that all traders have the same utility, their precision is a function of their wealth

12Preserving the average wealth of both rational and noise traders. By definition, the change in the
cross-section of wealth from W0(a) to W̌ (a) is mean preserving if both

∫ ν

0

(
W0(a)− W̌ (a)

)
da = 0 and∫ 1

ν

(
W0(a)− W̌ (a)

)
da = 0 and, W̌ (a) −W (a) is independent of W (a) and W̌ (a) is different from W0(a) on a

set of points with positive Lebesgue measure.
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t(a) = t(W (a)),13 and that the wealth of both rational and noise traders is drawn from the

distribution with PDF ϕ(W ).14 We assume that the distribution of wealth has strictly increasing

CDF Φ(W ), with the inverse function denoted by Φ−1(·). We arrange traders on the unit interval

so that the wealth of traders of the same type increases in a. The initial wealth of a trader

a is then given by W0(a) = Φ−1(a/ν) for noise traders and W0(a) = Φ−1((a − ν)/(1 − ν)) for

rational traders. In the following section, we endogenize the function Φ(·) be requiring it to be

trade-invariant.

Remark 4 (More dimensions of heterogeneity). Our analysis can be extended to allow for het-

erogeneity not only in terms of initial wealth but also in terms of other characteristics. Suppose

that we have n trader types, with traders of the same type being identical in terms of all

characteristics except for initial wealth. Suppose that the proportion of type k traders in the

population is mk. Then we can put type-k traders in the segment
[∑

j<kmj,
∑

j≤kmj

]
and let

their initial wealth be given by W0(a) = Φ−1
k ((a−

∑
j≤k)/(

∑
j≤kmj −mk)), where Φk(·) is the

CDF of the distribution of wealth across type-k traders. The setting described above is one

with two types, noise and rational, where the distribution of wealth is type-independent.

4.1 Kolmogorov in CHILE

In this section, we consider the following exercise. Consider an economy where a trader a is

of size m, whereas the rest form a continuum. Suppose that the initial wealth of a trader a is

drawn from the distribution ϕ̂(w;m). After the trade, the distribution of wealth will be different

and will depend on realized v and p, as well as the distribution the initial wealth drawn from.

Denote it ϕ̂+(w; v, p,m). We say that the distribution is trade-invariant if ex-ante distribution

of post-trade wealth coincides with ϕ̂(w), i.e.,

E[ϕ̂+(w; v, p,m)] = ϕ̂(w;m),

13This function is endogenized in the Appendix D.
14Alternatively and equivalently, we can assume that the traders receive a “shock” of being noise trader after

receiving their initial wealth, independently from their wealth.
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The expectation is taken with respect to the realizations of v and p, everywhere in this section.

The trade-invariant density in the continuous economy ϕ(w) is simply the limit, as m → 0, of

the invariant density ϕ̂(w,m), i.e., ϕ(w) = ϕ̂(w, 0).

We proceed below with a heuristic derivation, and we leave the rigorous derivation for the

Appendix. First, write the change in wealth due to trade, dW = W2 −W0 as follows

dW = (R− 1)dx

= (R− 1) ((α− γp) da+ βds(a))

= (R− 1)
(
(α− γp+ βv) da+ β/

√
t(a)dB(a)

)
= µWda+ σWdB(a).

Here we denoted

µW = (R− 1) (α(W )− γ(W )p+ β(W )v) and σW = β(W )/
√
t(W ).

We emphasize that the coefficients α, β and γ depend on W .

Recall that ϕ̂+(w; v, p,m) = Pr(W ∈ [w,w + dw])/dw is the PDF of time-2 wealth when

trader a’s size is m. Fix ϕ̂(w) = Pr(W0 ∈ [w,w + dw])/dw, the PDF of the initial wealth,

to be the same for all m. Now note that in the limit as the size of agent a becomes zero

(m → 0), agents do not trade and pre- and post-trade distributions are the same. Thus,

we have ϕ̂+(w, 0) = ϕ̂(w). Then ϕ̂+(w,m) − ϕ̂(w) = ϕ̂+(w,m) − ϕ̂+(w, 0). The Kolmogorov

Forward Equation (KFE), written at m = 0 tells us that

∂ϕ̂+

∂m
= − ∂

∂W
(µW ϕ̂+(W, 0)) +

1

2

∂2

∂W 2
(σ2

W ϕ̂+(W, 0)).

The trade-invariant density is such that E[ϕ̂+(w,m)− ϕ̂(w)] = E[ϕ̂+(w,m)− ϕ̂+(w, 0)] = 0

which implies that ∂E[ϕ̂+(w,0)]
∂m

= 0. Taking expectation over v and p, we obtain the following

ODE on trade-invariant density

0 = − ∂

∂W
(E[µW ]ϕ(W )) +

1

2

∂2

∂W 2
(E[σ2

W ]ϕ(W )). (17)
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We can compute in close-form

E[µW ] = (1− ν)β(W )τ−1

and

E
[
σ2
W

]
= β2(W )/t(w)V ar[R|p]

(see Appendix for the derivation).

Now consider a special case of CRRA utility and t(W ) = const = t̄. We obtain ρ(W ) =

W/RRA and so E[µW ] ∝ W , andE [σ2
W ] ∝ W 2, and the KFE coincides with the KFE describing

the stationary density of a Geometric Brownian Motion (GBM). It is well-known that such

density does not exist (the GBM density is log-normal, with variance increasing over time).

This is well-understood in the literature (e.g. Gabaix (1999)) and so the papers additionally

introduce a “stabilizing force”: a reflecting lower barrier, exit and reinjection or death (see

Gabaix (1999) and Gabaix, Lasry, Lions, and Moll (2016, Appendix D)).

For our context, we use death as a natural stabilizing force. More specifically, we assume

that a “death shock,” modeled as a Poisson arrival of intensity δ, lands somewhere in the

cross-section of agents. If this shock hits agent a, this agent dies before t = 2 and his wealth

is replaced with a draw from the distribution ψ(·), satisfying certain regularity conditions. In

that case the KFE becomes (see the Proof)

0 = − ∂

∂W
(E[µW ]ϕ(W )) +

1

2

∂2

∂W 2
(E[σ2

W ]ϕ(W ))− δ · ϕ(W ) + δ · ψ(W ). (18)

The intuition for the transition from (17) to (18) is as follows. With intensity δ the agent dies

and his wealth is taken out, which contributes to “outflow” −δϕ(·). His wealth is then replaced

with a draw from ψ(·) which contributes to an “inflow” δψ(·).15

For the case of CRRA utility and t(W ) = t̄, the ODE above can be translated to the ODE

for the log-wealth, which would have the form identical to the ODE (5) in Gabaix et al. (2016).

15It is also important to note that the death shocks do not alter agents’ investment policies. They would
simply maximize their utilities, conditional on not getting a shock. Given that shocks are independent from v,
p and investment policy, such a problem is equivalent to the one considered in the section 3.2.
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The results in Gabaix et al. (2016) then imply that ϕ(W ) has a power-law tail

Pr(W > x) ∼ Cx−ζ ,

where

ζ = − E[µW ]/W

E[σ2
W ]/W 2

+
1

2
+

√(
E[µW ]/W

E[σ2
W ]/W 2

− 1

2

)2

+
2δ

E[σ2
W ]/W 2

.

Substituting closed-form solutions for E[µW ] and E[σ2
W ] and simplifying we obtain

ζ = −(1− ν)RRA+
1

2
+

√(
(1− ν)RRA− 1

2

)2

+RRA2τ 2 (exp (τ−1)− 1)
2δ

t̄
. (19)

We summarize in the proposition below.

Proposition 2. In a general setup, the trade-invariant density solves ODE (18). Suppose that

(i) agents have CRRA utility with relative risk aversion RRA, (ii) t(W ) = t̄ for all W and (iii)

ψ ∼ x−ζψ , where ζψ is the greater than the right-hand side of (19). Then, stationary distribution

has a Pareto tail with exponent ζ given by (19). Moreover, the characteristic function of the

distribution of lnW is given by

CFϕ,log(s) =
2CFψ,log(s)

2− st̄(−2i(1−ν)RRA+s+i)

δRRA2(e1/τ−1)τ2
,

Where CFψ,log(s) is a characteristic function of the distribution of ỹ = ln W̃ , where W̃ is drawn

from a distribution ψ(·):

CFψ,log(s) =

∫
eisỹeyψ (ey) dy.

Provided it exists, the n-th (noncentral) moment of the wealth distribution is given by

Mϕ(n) =
2Mψ(n)

2− nt̄(1−n−2(1−ν)RRA)
δRRA2(e1/τ−1)τ2

,

where Mψ(n) is the n-th (noncentral) moment of the distribution ψ.

The proposition above allows computing the moments of the cross-sectional wealth distri-
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bution in closed form. According to Proposition 1, the price informativeness τp is decreasing in

wealth inequality CV. The proposition above allows to compute the CV in closed form and to

study the reverse channel. We do so in the following section.

5 How wealth inequality and information efficiency in-

teract?

To study how information efficiency affects wealth inequality, we note that by Theorem 1, the

information efficiency τ is a statistic summarizing the actions of all traders in the economy. To

come up with his optimal trading strategy, each trader does not need to know the strategies of

all other traders in the economy. Knowing τ suffices. The equilibrium can then be viewed in

the following way: given traders’ beliefs τ̂ about the information efficiency, they choose their

optimal trading strategies. The trading strategies then result in the information efficiency τ

that is consistent with the beliefs, τ = τ̂ . To study how information efficiency affects wealth

inequality, we vary the exogenously postulated beliefs τ̂ .

Proposition 3. For an exogenously assumed wealth distribution with a coefficient of variation

CV, the information efficiency τ is given by

τ (CV) =
t̄(1− ν)2

1 + CV2 + τv.

It is decreasing in the coefficient of variation of wealth distribution. Suppose that all traders

believe that the price inforativeness is given by τ . Denote l = minx>0 x
2(exp(1/x)− 1) ≈ 1.52.

Suppose 1− t̄(2(1−ν)RRA+1)
lδRRA2 > 0. Then the first and the second moment of cross-sectional wealth

distribution exist for all τ > 0 and the coefficient of variation of trade-invariant distribution is

given by

CV(τ) =

√
Mψ(2) (δRRA (e1/τ − 1) τ 2 + (ν − 1)t̄)

2

δMψ(1)2 (e1/τ − 1) τ 2 (δRRA2 (e1/τ − 1) τ 2 + t̄(2(ν − 1)RRA− 1))
− 1.

Moreover, for small enough (large enough) τ̂ , the coefficient of variation of trade-invariant
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wealth distribution is increasing (decreasing) in τ.

Figure 1 illustrates the Proposition. The dashed line represents the curve τ(CV). Higher

levels of inequality correspond to lower levels of information efficiency. As we discussed, this

happens because the best way to reflect traders’ information in price is via an equally weighted

combination of their signals. With more inequality, the weights are unequal and are skewed to-

wards wealthier traders who trade more aggressively. The solid line represents the curve CV(τ).

There are two ways for information efficiency to affect inequality. First, with higher information

efficiency, traders use their private signals less, contributing to lower inequality. Second, higher

information efficiency reduces uncertainty, making investors trade more aggressively on their

private signals. The second (first) effect dominates for high (low) τ , explaining the hump shape

of the curve CV(τ).

For high enough levels of τ we get the self-reinforcing inequality-inefficiency relationship

depicted in Figure 2. When the market is less informationally efficient, there is more money

that can be made via speculation. Since wealthy traders speculate more, they benefit from

the informational inefficiency more. This results in greater inequality. The market with more

inequality aggregates the information less well, which feeds back into a less informationally

efficient market.
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Figure 2: Inequality-inefficiency complementarity
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5.1 Overall equilibrium

In this section, we look at the comparative statics in the overall equilibrium, where the dis-

tribution of wealth is endogenous. We focus on two comparative statics exercises: increasing

transparency (i.e., increasing t̄) and providing information about firm fundamentals (i.e., in-

creasing τv). While the previous literature has extensively studied the effect of such policies

on different aspects of market quality, such as information efficiency and liquidity, the effect of

such policies on inequality is relatively unexplored. When the wealth distribution is exogenous,

Proposition 1 implies that public information disclosure and increasing transparency both in-

crease τv. We show that some of these results are overturned once the wealth distribution is

endogenized.

Proposition 4. Increasing τv always leads to an increase in τ . When equilibrium τ is small

(large) enough, increasing τv leads to an increase (decrease) in CV. Increasing t̄ has an am-

biguous effect on both τ and CV.

Providing public disclosure (increasing τv) has an ambiguous effect on inequality. When

the uncertainty reduction effect dominates (low levels of equilibrium τ), increasing τv leads to

a reduction in uncertainty faced by the traders so that they trade more aggressively on their

private information. This leads to an increase in inequality. For high levels of τ increasing

τv implies a reduction in potential profits that can be made via speculation and reduction in

inequality. The effects of changes in transparency on both inequality and information efficiency

are ambiguous. Figure 3 provides an example of when increasing t̄ reduces information efficiency.

There are two effects. When transparency improves, for the same level of inequality CV, the

information efficiency increases: the dashed curve shifts to the right. However, it also makes

investors trade more aggressively on their private information, inequality: the solid curve moves

up. As Figure 2 highlights, the increase in inequality feeds back into lower equilibrium price

efficiency.
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with lower t̄.

6 Literature review

There are several branches of literature that our paper is related to. First, there is a literature

on REE models that go beyond the CARA-Normal framework. Breon-Drish (2015) extends

the CARA-Normal framework beyond normality in a single asset setup. Albagli, Hellwig, and

Tsyvinski (2021) consider a setup with general distribution and risk-neutral traders subject to

position limits. Chabakauri et al. (2022) further extends Breon-Drish (2015) by allowing for

multiple assets. All of these papers assume CARA utility and so abstract away from wealth

effects that are central to our paper.16

Malamud (2015) considers an REE model with a continuum of assets. Central to the

tractability of his framework is the assumption of market completeness.17 In contrast, we have

one asset and continuum of states of the world. Hence the market is incomplete in our setup.

One of the central results in Malamud (2015, Theorem 2.1) is that with non-CARA utility the

equilibrium is fully revealing. In contrast, in our setup, there is no full revelation for any utility

function.

Peress (2004) was the first (to our knowledge) to study wealth effects in a noisy REE model.

Similarly to our paper, his model features log-normally distributed payoffs and non-CARA

16Here we consider risk-neutral preferences as a special case of CARA with risk-aversion equal to zero.
17Related, DeMarzo and Skiadas (1998) and DeMarzo and Skiadas (1999) analyze REE models, where the

market is quasi-complete.
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utilities.18 The key difference is that Peress (2004) relies on “small risk” approximation, where

the riskiness of the risky asset is small. In the limit, the variance of risky asset return is zero,

making such approach not suitable for quantitative work (it will be hard to match variance).

Our approximation is essentially “small information”. In contrast to Peress (2004), in our model

the asset stays risky even in the limit. Additionally: (i) in our model the equilibrium quantities

are affected by absolute risk aversion and absolute prudence, whereas in Peress (2004) only

risk-aversion plays a role and (ii) conditional skewness plays a role in our model, but not in

Peress (2004). Peress (2014) embeds the REE model of Peress (2004) into a growth model.

An interesting direction for future research is to embed our model of financial market into a

growth model.

Second, our paper is related to the literature on power laws in economics and finance.

See Gabaix (1999), Gabaix et al. (2016) and, for a review (Gabaix (2009) and Gabaix et al.

(2016)). As in most of the papers in that literature, the power law emerges via a random

growth mechanism. To the best of our knowledge we are the first to make the heterogeneity

of information a part of the random growth mechanism and thus to relate the tail exponent in

the economy to information efficiency.

Third, our paper is also related to the literature on mean-field games. See Lasry and Lions

(2007), Achdou, Han, Lasry, Lions, and Moll (2022) and, for a review, Guéant, Lasry, and Lions

(2011). A typical mean-field game is described by HJB equation determining the dynamics of

optimal policy of each agent type and KFE describing the dynamics of the distribution of

agent types over time. Our model is static. Yet the tools we use are similar. In our model the

KFE describes the trade-invariant distribution that is analogous to a stationary distribution in a

dynamic game. Moreover, as Achdou et al. (2022) note: “ The name (Mean Field Games) comes

from an analogy to the continuum limit taken in “Mean Field theory” which approximates large

systems of interacting particles by assuming that these interact only with the statistical mean

of other particles.” This analogy holds in our model. The effect of other traders on a trader

of interest in our economy is summarized by several statistics of cross-sectional distribution of

traders’ characteristics. These statistics can be viewed as a “mean field” that influences each

18The wealth effect can arise even in CARA model, because the wealth may affect the tightness of financial
constraints, as in Glebkin, Gondhi, and Kuong (2021).
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trader’s equilibrium behaviour. As in Mean Field theory other traders do not affect a trader of

interest directly, but only through their (infinitesimal) contribution to the mean field.

Fourth, on a technical side, our paper is also related to literature that uses stochastic calculus

tools outside the domain of continuous time finance and economics. Examples include Malamud

(2015) who models the noise in a continuum of assets as a cross-sectional stochastic process;

Gârleanu et al. (2015) who use Brownian bridge to represent the dividends for firms located on

a circle; and Glebkin et al. (2021) who use stochastic calculus techniques to derive a marginal

value of information in a static model.19 The most closely related paper is Avdis (2018), that

introduces a model with continuous heterogeneous information, albeit with CARA preferences

and, as a result, without wealth effects.

19There is also a related econometric literature on the unit roots. A good example is Phillips (1987).
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7 Conclusion

Thank you for reaching this part of the paper. At some point we will add a conclusion here.

Appendices

A Summary of notation

Notation Explanation

General mathematical notation

dB(a) An increment of the Brownian motion

a, b Index of agents in the continuous limit

i, j Index of agents in the discrete economy

n Number of agents in the discrete economy

m = 1/n Mass of an agent in the discrete economy

Ei[·] Conditional expectation, given agent i’s information set

Ey[·] Expectation taken with respect to r.v. y

N (·) Standard normal CDF

Model variables

General note. Subscripts indicate partial derivatives.

dx(a) = α(a)da+ β(a)dsa − γ(a)pda Demand of trader in [a, a+ da]

ρ(a) = −u′′(a)/u′(a) Absolute risk aversion of trader a

π(a) = −u′′′(a)/u′′(a) Absolute prudence of trader a

Π Profit

29



B Derivation of demand coefficients

The Lemma 7 in the appendix implies that f1(p, a) and f2(p, a) can be computed as follows.

Denote F (∆si(m),m) the left-hand side of the first order condition (11), where one substitutes

the demand of an agent X(·) instead of x.

F (∆si(m),m) =

∫  U ′ (W i
01 + (exp (vi(p,∆si,m, z)− p)− 1)X(·))

· (exp (vi(p,∆si,m, z)− p)− 1)

 dN (z)

Note, that F (∆si(m),m) is an Ito process, driven by the process

dsi = vda+
1√
t(a)

dBa.

We then apply Ito’s lemma to the process F at m = 0 and equalize both drift and diffusion to

zero.

To proceed we note that X(p,∆si,m, a) and vi(p,∆si,m, z) are also Ito processes and by

Ito’s lemma their differentials at m = 0 can be written as

dX = DXda+ σXds(a) and dv
i = Dvi da+ σv,ids(a),

where

DX = Xss(p, 0, 0, a) +Xm(p, 0, 0, a),

Dvi = viss(p, 0, 0, z) + vim(p, 0, 0, z),

σX = Xs(p, 0, 0, a),

σv,i = vis(p, 0, 0, z).

The functions f1(p, a) and f2(p, a) are identified as

f1 = σX and f2 = DX.
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The computation of equilibrium can be done in several steps. First, we determine the equi-

librium coefficients β(a). Once these are known, we can compute all other coefficients in

closed-form.

B.1 Finding β(a)

Computing the diffusion term of F (·) at m = 0 and equalizing it to zero yields

σv,iu
′(W0(a))

∫ (
exp

(
vi(p, 0, 0, z)− p

))
dN (z)+ (20)

σXu
′′(W0(a))

∫ (
exp

(
vi(p, 0, 0, z)− p

)
− 1
)2
dN (z) = 0

Now we note that

∫
exp

(
vi(p, 0, 0, z)− p

)
dN (z) = E[R|p] = 1,

where the last equality follows from (12). It then follows that

∫ (
exp

(
vi(p, 0, 0, z)− p

)
− 1
)2
dN (z) = V ar[R|p] = (exp

(
τ(0)−1

)
− 1),

where the last equality computes V ar[R|p] using the fact that R|p is lognormally distributed.20

Denoting absolute risk aversion of agent a

ρ(a) ≡ −u
′′(W0)

u′(W0)
,

and noting that σv,i = cs(0) =
t(a)
τ

we express β(a) = σX from (20) as follows

β(a) = σX =
t(a)/τ

ρ(a)Var[R|p]
=

t(a)

ρ(a)τ(exp (τ−1)− 1)
.

20The calculation is as follows. We know that v|p ∼ N(µv|p, σv|p). Moreover, E[R|p] = E[exp(v − p)|p] =
exp(µv|p+σ2

v|p/2) = 1. Here the second transition uses the standard formula for mean of lognormal distribution

and third transition uses (12). Then, Var[R|P ] = (exp(σ2
v|p)− 1) exp(2µv|p + σ2

v|p) = (exp(σ2
v|p)− 1)2.
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In accordance with our guess σX does not depend on p.

The following proposition then summarizes how the solution β(a) is found.

Proposition 5. The coefficients β(a) are given by

β(a) =
t(a)/τ

ρ(a)Var[R|p]
.

where

Var[R|p] = (exp(τ−1)− 1)

and τ = τv + τp. The price informativeness τp is given by

τp =

(∫ 1

ν
t(a)
ρ(a)

da
)2

∫ 1

0
t(a)
ρ(a)2

da
. (21)

B.2 Finding γ(a)

Computing the drift term of dF (·) at m = 0 and equalizing it to zero yields:

∫
Dvi exp

(
vi(p, 0, 0, z)− p

)
dN (z)− (22)

DXρ(a)
∫ (

exp
(
vi(p, 0, 0, z)− p

)
− 1
)2
dN (z)+ (23)

π(a)ρ(a)σ2
X

2t(a)

∫
(exp

(
vi(p, 0, 0, z)− p

)
− 1)3dN (z)− (24)

2ρ(a)σv,iσX
t(a)

∫
exp

(
vi(p, 0, 0, z)− p

) (
exp

(
vi(p, 0, 0, z)− p

)
− 1
)
dN (z)+ (25)

σ2
v,i

∫
exp (vi(p, 0, 0, z)− p) dN (z)

2t(a)
=0, (26)

where we have denoted

π(a) = −u
′′′(W0(a))

u′′(W0(a))
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The absolute prudence of agent a. While the above equation is big, only the first two lines

depend on p. Denoting

ĥ(m) ≡ cp(m)

∫ 1

0
γ(a,m)da∫ 1

ν
β̂(a,m)da

,

and letting “· · ·” represent the terms that do not depend on p we write

Dvi = ĥ(m)′p+ · · ·

Noting that DX = −γ(a)p+ · · · equation (22)-(26) then becomes

ĥ(0)′p+ γ(a)ρ(a)V ar[R|p]p+ · · · = 0

From which we find

γ(a) = − ĥ(0)′

ρ(a)Var[R|p]
. (27)

Given that our equilibrium concept only requires the functions α̂(a,m), β̂(a,m) and γ̂(a,m)

to be equal to α(a), β(a) and γ(a) and does not put explicit restrictions on the derivatives of

these functions with respect to m, one might be concerned about equilibrium indeterminacy,

as the aforementioned conditions put no restrictions on ĥ(m)′. However, the observations of

Lemma 4 allow to pin down ĥ(m)′ as follows. The key is the condition (13).

Note that τp, τ and
∫ 1

ν
β(a)da are determined once β(a) is solved for. Then

ĥ(0)′ ≡ −hγ = −
τ
∫ 1

ν
β(a)daVar[R|p]

τp
∫ 1

0
1/ρ(a)da

= −
∫ 1

0
t(a)/ρ(a)2da∫ 1

ν
t(a)/ρ(a)da

∫ 1

0
1/ρ(a)da

. (28)

We summarize in the proposition below.

Proposition 6. The coefficients γ(a) are given by (27), where ĥ(0)′ is given by (28).
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B.3 Finding α(a)

We turn to finding α(a). We work our way through (22)-(26) line by line. We start with (22).

Denoting “· · ·” the terms proportional to p (which are already accounted for) we write

Dvi = cv̄(0)
′v̄ + (cp(m)ᾱ(m)β̄(m)))′ − 1

2
τ−3/2τ̂(0)′z + · · ·

While the next term can be computed in closed-form, it is only important for us to note that

it does not depend on a and denote it by hα.∫
Dvi exp

(
vi(p, 0, 0, z)− p

)
dN (z) = hα.

We turn to (23). Sice DX = α(a) + · · ·, we have

DXρ(a)
∫ (

exp
(
vi(p, 0, 0, z)− p

)
− 1
)2
dN (z) = α(a)ρ(a)V ar[R|p] + · · ·

We turn to (24). Substituting σX = β(z), and
∫
(exp (vi(p, 0, 0, z)− p) − 1)3dN (z) =

Sk[v|p]Var[R|p]3/2 we get

π(a)ρ(a)σ2
X

2t(a)

∫
(exp

(
vi(p, 0, 0, z)− p

)
− 1)3dN (z) =

π(a)ρ(a)β(a)2

2t(a)
Var[R|p]3/2Sk[R|p],

where the skewness can be computed in closed-form

Sk[R|p] =
(
exp

(
τ−1
)
+ 2
)√

exp (τ−1)− 1.

We proceed to (25). Here we substitute σv,i = t(a)/τ and

∫
exp

(
vi(p, 0, 0, z)− p

) (
exp

(
vi(p, 0, 0, z)− p

)
− 1
)
dN (z) = Var[R|p]

34



and get

2ρ(a)σv,iσX
t(a)

∫
exp

(
vi(p, 0, 0, z)− p

) (
exp

(
vi(p, 0, 0, z)− p

)
− 1
)
dN (z) =

2ρ(a)β(a)

τ
V ar[R|p]

Finally, for (26) we get

σ2
v,i

∫
exp (vi(p, 0, 0, z)− p) dN (z)

2t(a)
=

1t(a)

2τ 2

Combining it all together we get

hα − α(a)ρ(a)V ar[R|p]

+
π(a)ρ(a)β(a)2

2t(a)
Var[R|p]3/2Sk[R|p]− 2ρ(a)β(a)

τ
V ar[R|p] + 1t(a)

2τ 2
= 0

After mild simplification we get

α(a) =
hα

ρ(a)V ar[R|p]
+
π(a)β(a)2

2t(a)
Var[R|p]1/2Sk[R|p]− 3β(a)

2τ
. (29)

As before, the discipline on hα comes from the Lemma 4 and it is found as a unique solution to

∫ 1

0

α(a)da = hα

∫ 1

0

da

ρ(a)V ar[R|p]
+Var[R|p]1/2Sk[R|p]

∫ 1

0

π(a)β(a)2

2t(a)
da− 3

2τ

∫ 1

0

β(a)da. (30)

We summarize.

Proposition 7. The coefficients α(a) are given by (29), where hα is the unique solution to

(30).
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B.4 An alternative representation of demand

Define the expected excess return process

ERi
e(∆s

i,m) = E[R− 1|∆si, p].

Denote its stochastic differential at m = 0

E[R− 1|dsi, p].

Such notation makes sense, since dERi
e = E[R− 1|dsi, p]−E[R− 1|p] and the term E[R− 1|p]

is zero. Applying Ito’s lemma it’s easy to compute

E[R− 1|dsi, p] = 1cs(0)ds
i + 1ĥ(0)′pdm+ hαda.

Then the following proposition follows immediately.

Proposition 8. The equilibrium demand can be written as

dXa =
E[R− 1|dsi, p]
ρ(a)V ar[R|p]

+ κ(a)da,

where

κ(a) =
π(a)β(a)2

2t(a)
Var[R|p]1/2Sk[R|p]− 3β(a)

2τ
. (31)

C General distribution of asset payoffs

In this section, we assume the general function V (v): our only assumption is that it is weakly

increasing for all v ∈ R. For notational simplicity, we work with the case of no noise traders,

ν = 0. With general distribution, working in terms of dollar demands does not yield any

significant advantages. We thus formulate equilibrium in terms of unit demands (number of

stocks purchased/sold during trade at t = 1), which we denote by y (in the discrete economy)

and dy in the continuous economy. According to the aggregation lemma, the demand of a
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trader in [a, a+ da) is given by

dy(a) = β(a)da+ ℵ(a, P )da.

We conjecture that β(a, P ) is of the form

β(a, p) = βa(a)βp(P ). (32)

The informational content of the price is then summarized by

sp =

∫ 1

0
βa(a)ds(a)∫ 1

0
βa(a)da

= v +

∫ 1

0

βa(a)√
t(a)

dB(a).

The inference from price is identical to that in the main part of the paper, and is summarized

in the Lemma 2.

The first-order condition in the discrete economy is

∫
U ′(W a

0 + (V (v̂a(P,∆sa,m, z))− P ) y) (V (·)− P ) dN (z) = 0 (33)

Where we denoted

v̂a = E[v|∆sa, p] + z
√
Var[v|∆sa, p]

It must be true that as m → 0 the y satisfying the FOC above goes to 0. Then it follows

that the price function must be given by

∫
V

(
τv
τ
v̄ +

τp
τ
sp +

z√
τ

)
dN (z) = P.

We summarize in the lemma below.

Lemma 5. Provided that conjecture (32) holds, the equilibrium price function is given by P (sp),
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where sp = v +
∫ 1

0
βa(a)√
t(a)

dB(a) and P (x) is a strictly increasing function defined implicitly by

∫
V

(
τv
τ
v̄ +

τp
τ
x+

z√
τ

)
dN (z) = P.

Moreover, τ = τv + τp and τp is given by τp =
(
∫ 1
0 β(a)da)

2∫ 1
0
β(a)2

t(a)
da
. Let h(P ) be the inverse of P (·). For

a function f(v, P ) we have

E[f(v, P )|P ] =
∫
f

(
τv
τ
v̄ +

τp
τ
h(P ) +

z√
τ
, P

)
dN (z). (34)

C.1 Finding the coefficients β and ℵ.

Once the price function and the informational content of price is known, the derivation of

demand coefficients follows that in the main part of the paper. We differentiate the FOC (33)

implicitly and calculate the limit as m→ 0. The economics are very similar to that in the case

of the main model, with a bit algebra is a bit more convoluted. The result is summarized in

the Theorem below.

Theorem 2. There exists a unique equilibrium. The price informativeness is given by

τp =

(∫ 1

0
t(a)
ρ(a)

da
)2

∫ 1

0
t(a)
ρ(a)2

da
.

Let τ = τv + τp. The coefficient β(·) is given by β(a, P ) = βa(a)βp(P ), where

βa(a) =
t(a)

ρ(a)
and βp(P ) =

E[V ′(v)|P ]
τVar[V (v)|P ]

.

The functions E[V ′(v)|P ] and V ar[V (v)|P ] = E
[
(V (v)− P )2 |P

]
can be computed in closed

form using (34).
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The coefficient ℵ(·) is given by

ℵ(a, P ) = 1

2ρ(a)t(a)τ 2Var[V (v)|P ]


2hℵ(P )E[V

′(v)|P ]t(a) + E[V ′′(v)|P ]t(a)2+

+β(a, P )ρ(a)τ(4E[V ′(v) (V (v)− P ) |P ]t(a)

−β(a, P )π(a)skew(V (v)|P )τ)

 ,

where hℵ(P ) is the unique solution to

∫
ℵ(a, P )da = h(P )

∫
β(a, P )da,

and E[V ′(v) (V (v)− P ) |P ] and skew[V (v)|P ] = E
[
(V (v)− P )3 |P

]
can be computed in closed

form using (34).

Proof of Theorem 2.

Denote F (∆s(m),m) the left-hand side of the first order condition (33)

F (∆sa(m),m) =

∫  U ′ (W i
0 + (V (v̂a(p,∆sa,m, z))− P ) y(·))

· (V (v̂a(p,∆sa,m, z))− P )

 dN (z)

The function F (·) can be seen as an increment of an Ito process F̃ (∆s̃(l), l) between l = m

and l = 0. The process F̃ (·) is in turn driven by

ds̃(l) = vdl +
1√
t(a)

dB(l)

with ∆s̃(l) = s̃(l)− s̃(0), and

dv̂a(l) = d

(
τv
τ̂
v̄ +

t(a)

τ̂(l)
∆s̃(l) +

τ̂p(l)

τ̂(l)
ŝp(l) +

z√
τ̂(l)

)
.

dy = β̂(a, P,m)ds(l) + ℵ̂(a, P,m)da.
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We note that can be computed as

ĥ(P, l) =

∫ 1

0
ℵ̂(a, P, l)da∫ 1

0
β̂(a, P, l)da

.

We then compute the diffusion coefficient of dF and equalize it to zero. This gives the

solution for β(·). Setting the drift of dF to zero gives the solution for ℵ(·). The function hℵ(P )

is a linear combination of the derivatives of ĥ(P,m) and τ̂(m) with respect to m at m = 0. We

pin down hℵ(P ) (the limit of ĥ(P,m) as m → 0) by requiring the price function in the m → 0

limit to coincide with the function P (·) described in Lemma 5.

D Information acquisition

We start with the following lemma.

Lemma 6. Consider a continuously differentiable function f(t,m) such that f(t, 0) does not

depend on t. Consider t(m) ∈ argmaxt f(t,m). Suppose that t(m) is single-valued and bounded

for small enough m. Then, t(0) ∈ argmaxt fm(t, 0).

Our approach to endogenizing t(a) is as follows. Denote U i(W i
0, t

i,m) the maximum in (7)

for a given precision ti and initial wealth W i
0. Define Ci(ti,m) as a (monetary) cost of acquiring

signal ∆si. Then we define ti(m) as

ti(m) = argmax
t

{U i(W i
0 − Ci(ti,m), ti,m)}

and

t(a) = lim
m→0

ti=a(m).

Assumption 1. Ci(t,m) = c(t)m+ o(m), where c(t) is a convex function.

Using Lemma 6, one can derive that the precision t(a) solves the following problem:

t(a) ∈ argmax
t

{
∂Ua(W i

0 − Ci(ti,m), ti,m), t,m)

∂m

∣∣∣∣
m=0

c(t)

}
.
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The following proposition solves for optimal precision choice.

Proposition 9. The optimal precision choice solves

c′(t) =
1

2ρ(a)τ(exp (τ−1)− 1)
.

E An OLG economy

The time is discrete, t ∈ {1, 2, . . .∞}. The economy is populated by households who live

for two periods. The young households can either be locals, in which case they receive their

initial wealth from their parent households, or they can be immigrants, in which case their

initial wealth is drawn from the distribution ψ(·). The households can vanish without kids with

intensity δ. These vanished households are replaced by immigrants. The wealth of vanished

households is distributed equally across the whole economy. Thus, the economy always has a

unit mass of young households.

The households optimize the family wealth by investing in the risk-free asset with a return

1 and a risky asset. We assume that the risky asset is in unit supply. The risky asset is a

claim to the next period’s dividend generated by a Lucas tree. The dividends Vt are i.i.d. with

Vt = exp(vt), and vt ∼ N(0, τ−1
v ). The goal of each household is to choose the investments

to maximize the bequest utility u(·, a). We, therefore, abstract away from the consumption-

investment tradeoff. In the economy described here, families manage the wealth inherited from

their parents, which is not used for consumption (the households manage “family offices”).

The evolution of wealth distribution across households is given by

f(w, l) =

(
f(w, 0) +

∫ m

0

(
− ∂

∂w
(µW (l, w)f(w, l)) +

1

2

∂2

∂W 2
(σ2

W (w, l)f(w, l))

)
dl

)
(1− Pr(no kids))+

+ Pr(no kids)ψ(w)

The wealth of the family changes due to investments made in the assets (the term in the

square brackets), provided that the family has offsprings. If there are no offsprings, the wealth

is seized and redistributed. Given the large size of the economy, such redistribution does not
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result in a sizeable increase in other families’ wealth. When one family vanishes it is replaced

by immigrants (the last term).

The analysis of the OLG economy described here is the same as the analysis of the static

economy presented in the main paper. The trade-invariant distribution of the main paper

corresponds to the (stochastic) steady-state distribution here.

F Proofs

F.1 Proof of Lemma 1

Proof of Lemma 1. Fix p. We drop the argument p in what follows. That is, X(∆si;m, ai)

denotes X(p,∆si;m, ai).

By Ito’s lemma we have

X(∆si,m, ai)−X(0, 0, ai) =

=

∫ ai+1

ai
Xs(s(a)− s(ai); a− ai, ai)dsa+

+

∫ ai+1

ai

(
1

2ta
Xss(p, s(a)− s(ai); a− ai, ai) +Xm(p, s(a)− s(ai); a− ai, ai)

)
da.

Denote the i-th segement Ai = [ai, ai+1) and âi =
∑n−1

i=1 a
i1(a ∈ Ai) (âi gives ai whenever a

falls in the i-th segment Ai). With such notation we can write

n−1∑
i=0

(
X(∆si;m, ai)−X(0; 0, ai)

)
=

=

∫ y

0

Xs(s(a)− s(âi); a− âi, âi)dsa+

+

∫ y

0

(
1

2ta
Xss(s(a)− s(âi); a− âi, âi) +Xd(s(a)− s(âi); a− âi, âi)

)
da.

Denote LI =
∫ y
0

(
1
2ta
Xss(s(a)− s(âi); a− âi, âi) +Xd(s(a)− s(âi); a− âi, âi)

)
da and SI =∫ y

0
Xs(s(a) − s(âi); a − âi, âi)dsa. That LI →

∫ (
1
2ta
Xss(p, 0; 0, a) +Xd(p, 0; 0, a)

)
da follows

42



from the Continuous Mapping Theorem.21 We can also apply Continuous Mapping Theorem

to the stochastic integral, since in our case it is bounded (since
∑n

i=1X
i is bounded). Thus, we

get

n−1∑
i=0

(
X(p,∆si;m, ai)−X(p, 0; 0, ai)

)
−−−→
n→∞∫

Xs(p, 0; 0, a)dsa +

∫ (
1

2ta
Xss(p, 0; 0, a) +Xd(p, 0; 0, a)

)
da.

F.2 Proof of Lemma 3

Proof of Lemma 3. We start with FOC (we use shortcut Ei[·] = E[·|∆si, sp])

Ei [U ′ (W01 + (R− 1)x) ((R− 1))] = 0.

The second derivative of the objective function is

Ei
[
U ′′ (·) (R− 1)2

]
< 0

Hence, the objective function is strictly concave. Hence, the FOC is both necessary and

sufficient.

F.3 Proof of Lemma 4

Proof of Lemma 4. Denote, for this proof only γ̄(m) =
∫ 1

0
γ(a,m)da, β̄(m) =

∫ 1

ν
β(a,m)da

and ᾱ(m) =
∫ 1

0
α(a,m)da.

Indeed, if the limit is not zero, then the aggregate demand is infinite. Eq. (12) follows by

21Here we use the fact that Lebesgue integral is a continuous mapping from C[0, 1] to C[0, 1], the space of
functions continuous on [0, 1].
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substituting x = 0 to (11) and noting that Fi = p in the limit when m = 0. Note that

E[R|p] = exp

(
E[v|p]− p+

1

2τ

)
= 1 as m→ 0.

We must have that ∂/∂p of LHS is zero. It’s only possible if

∂/∂pEi[v] = 1 =⇒
τ ip(0)

τ i(0)

γ̄(0)

β̄(0)
= 1.

It then follows that E[v|p]− p+ 1
2τ

= τv
τ
v̄ − τp

τ
ᾱ
γ̄
+ 1

2τ
and the last statement follows.

F.4 Proof of Corollary 1

Proof of Corollary 1. Eq.(16) follows from (21) by substituting ρ(a) = RRA/W (a) and

t(a) = τ̄ . From there, the only part of the corollary that requires a proof is a statement about

mean preserving spread.

By definition, the change in the cross-section of wealth from W0(a) to W̌ (a) is mean pre-

serving if ∫ ν

0

(
W0(a)− W̌ (a)

)
da = 0 and

∫ 1

ν

(
W0(a)− W̌ (a)

)
da = 0

and W̌ (a) is different from W0(a) on a set of points with positive Lebesgue measure. Then, the

only “affected” term is
∫ 1

0
W0(a)

2da. We have

∫ 1

0

W̌ (a)2da =

∫ 1

0

(
W0(a) + W̌0(a)−W0(a)

)2
da

=

∫ 1

0

W0(a)
2da+

∫ 1

0

(
W̌0(a)−W0(a)

)2
da+ 2

∫ 1

0

W0(a)da

∫ 1

0

(
W̌0(a)−W0(a)

)
da

=

∫ 1

0

W0(a)
2da+

∫ 1

0

(
W̌0(a)−W0(a)

)2
da

>

∫ 1

0

W0(a)
2da
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F.5 Proof of Proposition 2

Proof of Proposition 2.

Consider a process ∆s̃(l) = s(a + l) − si(a). The signal that the discrete trader a receives

is ∆s̃(m). Similarly, the time-2 optimal wealth of the trader with a signal ∆s̃(l) is W̃ (l). Then

the optimal time-2 wealth of the discrete trader is ∆W̃ (m).

An optimal wealth of a discrete trader of size l with signal ∆s̃(l) = s(a + l) − s(a) must

satisfy the FOC ∫
u′(W ) (exp(va(l)− p)− 1) dN (z) = 0.

Where,

va(l)(p,∆s̃(l), l, z) = E[v|∆s̃(l), p] + z
√
Var[v|∆s̃(l), p].

Thus, the optimal wealth can be viewed as an Ito process, driven by the process ds(a). Applying

Ito’s lemma to the FOC we can write

dW = µW (∆s̃(l), l;W, v, p)da+ σW (∆s̃(l), l;W, v, p)dBa.

From FOC, we can express ∆s̃(l) as a function of optimal wealth, and write the dirft and

diffusion coefficients as functions of W, l, v, p only. In what follows we’ll only write Wand l as

arguments of µW and σW .

While we can compute µW (l,W ) and σW (l,W ) for any l, we will only need them at l = 0.

There it is easily calculated from dW = (R− 1)dx, recalling that dx = αda+ βdsa − γpda

µW (0,W ) = (R− 1) (α(W )− γ(W )p+ β(w)v) ,

for rational traders and

µW (0,W ) = (R− 1) (α(W )− γ(W )p) ,
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for noise traders. We also have

σW (0,W ) = (R− 1) β/
√
t(a).

By Kolmogorov Forward Equation, the PDF of optimal wealth for the size of an agent equal

to l , f(w, l) = Pr(W (l) ∈ [w,w + dw])/dw o satisfies

f(w, l) =

(
f(w, 0) +

∫ m

0

(
− ∂

∂w
(µW (l, w)f(w, l)) +

1

2

∂2

∂w2
(σ2

W (w, l)f(w, l))

)
dl

)
(1− Pr(death))+

+ Pr(death)ψ(w)

The death probability is δm+O(m2). The stationary density is such that E[f(w, l)] = f(w, 0).

Taking expectations, dividing by m and taking the limit as m→ 0 we obtain

0 = − ∂

∂w
(E [µW (0, w)] f(w, 0)) +

1

2

∂2

∂w2
(E
[
σ2
W (w, l)

]
f(w, 0)) + δf(w, 0)− δψ(w).

Now we compute

E [µW (0, w)] = E [E [(R− 1) |p] (α(W )− γ(W )p)] + (1− ν)β(w)E [v (R− 1)]

= (1− ν)β(w)E [v (R− 1)]

= (1− ν)β(w)τ−1

Where the last transition is thanks to Lemma 8.

E
[
σ2
W (w, l)

]
= β2(w)/t(a)V ar[R|p].

E [µW (w, 0)]

E [σ2
W (w, 0)]

= (1− ν)
t(a)τ−11

β(w)V ar[R|p]
= (1− ν)ρ(W ).

The statements about the tail exponent follow from the results in Gabaix et al. (2016).

We now turn to the statements about the characteristic function and the moments. First,
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we make the change of variable

y = lnW,

and derive the PDF of y, when W is drwan from ϕ(·) and ψ(·), as follows:

ϕlog(y) = eyϕ (ey) ,

ψlog(y) = eyψ (ey) .

Then, the KFE can be rewritten as

−
(
cµ +

cσ
2

) ∂ϕlog(y)

∂y
+

1

2
cσ
∂2ϕlog(y)

∂y2
− δϕlog(y) + δψlog(y) = 0,

where we have denoted

cµ = E[µW ]/W = (1− ν)β(W )/Wτ−1, and

cσ = β2(W ) (exp(1/τ)− 1) /
(
W 2t̄

)
.

Taking the Fourier transform of the last ODE and expressing CFϕ,log(s) from the result-

ing linear equation yields the answer for the characteristic function. The moment generating

function for log wealth is MGFϕ,log(s) = CFϕ,log(−is). The n-th moment is MGFϕ,log(n).

F.6 Proof of Proposition 5

Proof of Proposition 5. To get (21) note that

τp =

(∫ 1

ν
β(a)da

)2
∫ 1

0
β(a)2

t(a)
da

.

Then (21) follows by substituting β(a) = t(a)
ρ(a)τ(exp(τ−1)−1)

to integrals
∫ 1

0
β(a)da and

∫ 1

0
β(a)2

t(a)
da

and rearranging.
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F.7 Proof of Lemma 7.

Lemma 7. Consider an Ito process dz(a) = µ(z, a)da + σ(z, a)dB(a). Consider a function

y = ϕ(z(a), a) defined implicitly by F (y, z, a) = 0. Then, σy = ∂ϕ
∂z

and µy = ∂ϕ
∂a

+ 1
2
σ2 ∂2ϕ

∂z2
are

given by

σy = −Fz
Fy
,

µy = −(Fa + Fzµ+
1

2
Fyyσ

2
yσ

2 + Fyzσyσ +
1

2
Fzzσ

2)/Fy,

where µ, σ and partials of ϕ are evaluated at (z(0), 0) and partials of F are evaluated at

(ϕ(z(0), 0), 0, 0). These expressions can be obtained by applying Ito’s lemma to F (y, z, a) at

a = 0, dF = µFda+ σFdz and equalizing both µF and σF to zero.

Proof. We apply Ito’s lemma at a = 0 to the identity

F (ϕ(z(a), a), z, a) = 0.

We have

dF = Fydϕ+ Fzdz + Fada+
1

2
Fyydϕ

2 + Fyzdϕdz +
1

2
Fzzdz

2.

Since dϕ = ϕzdz + ϕada+
1
2
ϕzzdz

2 = σydz + µyda we have

µF = Fyµy + Fzµ+ Fa +
1

2
Fyyσ

2
yσ

2 + Fyzσyσ
2 +

1

2
Fzzσ

2 = 0

σF = Fyσy + Fz = 0.

Solving for µy and σy from the two equations above yields the stated result.
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F.8 Proof of Lemma 6

Proof of Lemma 6. Suppose that there exists t̂ such that fm(t(0), 0) < fm(t̂, 0). Then, by

continuity, there exists m̄ such that

fm(t(m),m) < fm(t̂, m) for m < m̄.

Integrate the above with respect to m:22

f(t(m),m)− f(t(0), 0) < f(t̂, m)− f(t̂, 0).

Since f(t, 0) does not depend on t we have f(t(0), 0) = f(t̂, 0) and so

f(t(m),m) < f(t̂, m).

A contradiction with t(m) ∈ argmaxt f(t,m).

F.9 Proof of Proposition 3

Proof of Proposition 3.

The first part of the proposition is a restatement of the Proposition 1.

For the second part, we use the closed form-solutions for the moments and obtain

CV2 =
Mψ(2)

(
δRRA

(
e1/τ − 1

)
τ 2 + (ν − 1)t̄

)2
δMψ(1)2 (e1/τ − 1) τ 2 (δRRA2 (e1/τ − 1) τ 2 + t̄(2(ν − 1)RRA− 1))

− 1.

Condition 1− t̄(2(1−ν)RRA+1)
lδRRA2 > 0 is sufficient to ensureMϕ(2) > 0 for all τ̂ . It can be verified that

both moments indeed exist provided that this condition holds. Differentiation of closed-form

22To integrate the left-hand side we use the Envelope Theorem df(t(m),m)
dm = fm(t(m),m)
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expression for CV with respect to τ yields

dCV2/dτ = −
Mψ(2)

(
e1/τ (2τ − 1)− 2τ

)
t̄
(
δRRA

(
e1/τ − 1

)
τ 2 + (ν − 1)t̄

)
δMψ(1)2 (e1/τ − 1)

2
τ 4 (δRRA2 (e1/τ − 1) τ 2 + t̄(2(ν − 1)RRA− 1))

2 ·

·
(
δRRA

(
e1/τ − 1

)
τ 2 + (ν − 1)t̄(2(ν − 1)RRA− 1)

)
which is positive (negative) for small enough (large enough) τ , provided that the condition

1− t̄(2(1−ν)RRA+1)
lδRRA2 > 0 holds.

F.10 Proof of Proposition 9

Proof of Proposition 9 .

Denote ∆s̃i(l) = s(ai+1) − s(ai + l). Fix the precision of trader i, ti = t and assume that

t(a) = t(a;m) for a ̸∈ Ai. Consider the relized utility process

U i
r(l) = u((W i

0 − Ci(ti, l)) + (exp(v − p)− 1) x̂i).

Here x̂i = x̂i(∆s̃i(l), p, l)) is the equilibrium allocation to trader i, implicitly defined by

Ei
[
U ′ ((W i

0 − Ci(ti, l)) + (exp(v − p)− 1)x
)
(exp(v − p)− 1)

]
= 0.

By Ito’s lemma we can write

U i
r(m)− U i

r(0) =

∫ m

0

µu(b)db+

∫ m

0

σu(b)dB,

where µu and σu denote the drift and the diffusion coefficients of U i
r(m) process. Since

E[
∫ m
0
σu(b)dB] = 0 we have that

∂Ũ i(m)

∂m
(t;m) =

∂E[U i
r(m)− U i

r(0)]

∂m
= E[µu(m)].

Thus,
∂Ũ i(0)

∂m
(t; 0) = E[µu(0)].
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To compute the drift of U i
r at 0, we calculate the diffusion coefficient (the ‘dB’ coefficient) of

x̂i at 0, σx(0). From Ito’s lemma it follows that σx(0) =
1√
t(a)

∂x̂i

∂∆s̃i(l)
(0, p−i(0), 0). Calculations

similar to that in section 3 yield that

σx(0) = β(a)/
√
t(a).

Applying Ito’s lemma to the process Ũ i(l) we get

daE[µu(0)]/u
′(W0) = E[dx̂i(R− 1)]− 1c(ti)− 1

2
(dx̂i)2ρ(a)E[(R− 1)2].

Applying the familiar box calculus we have (dx̂i)2 = σ2
xda. Note that dx̂i = const · da +

∂x̂i

∂∆s̃i(l)
(0, p−i(0), 0)vda+ σxdBa. Then, since E[R− 1] = 0 we have

E[dx̂i(R− 1)] = β(a)E[v(R− 1)] = β(a)τ−11,

where the last transition is due to Lemma 8 (to follow). We also have

E[(R− 1)2] = E[E[(R− 1)2|p]] = (exp
(
τ−1
)
− 1).

Combining everything, we get

E[µu(0)]

1u′(W0)
=

1

2

1ti/τ

ρ(a)Var[R|p]
τ−1 − c(ti).

Taking first-order condition with respect to ti yields the stated result.

Lemma 8. E[v (R− 1)] = τ−11.

Proof. Note that by law of iterated expectations we have

E[v (R− 1)] = E [E [v (R− 1) |p]]

= E [E [v (R− 1) |p]] .
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Denoting µv|p = E[v|p] and τ−1 = V ar[v|p] we have

E [v (R− 1) |p] = ∂

∂t
E [exp (tv − p)]|t=1 − µv|p1

=
∂

∂t
exp

(
tµv|p +

1

2
t2τ−1 − p

)∣∣∣∣
t=1

− µv|p1

=
(
µv|p + τ−1

)
exp

(
µv|p +

1

2
τ−1 − p

)
︸ ︷︷ ︸

=E[R|p]=1

−µv|p1

= τ−11

[Dummy: Biblio]
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