
The Financial Transmission of a Climate Shock:

El Niño and US Banks∗

Filippo De Marco† Nicola Limodio‡

December 21, 2023

Abstract

This paper investigates how a climate shock affects the banking system. We leverage El
Niño, a recurring natural phenomenon inducing quasi-random variation in temperatures
across the US. El Niño leads to lower house prices and mortgage lending in counties
experiencing temperature increases. Higher temperatures increase water and soil salinity,
which negatively affects both crop yields and local natural amenities. Banks exposed to El
Niño reduce their mortgage lending even in counties unaffected by temperature increases.
Using a LASSO analysis we find that banks with lower operating leverage (i.e., lower
expenses on physical premises) are more climate-resilient.
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1 Introduction

Global temperatures are increasing: July 2023 marked the hottest month on record in modern

history (Copernicus Climate Change, 2023). Rising temperatures and weather-related events

are already impacting the economy, thereby affecting financial institutions through their ex-

posures to households and firms. As a result, policymakers and regulators are increasingly

evaluating banks’ preparedness to effectively managing climate risk, for example through cli-

mate stress testing (ECB, 2022; Jung et al., 2021; Acharya et al., 2023).

The existing literature studying the impact of climate shocks on credit markets has mostly

focused on extreme weather events (Brown et al., 2021; Ouazad and Kahn, 2022; Nguyen et

al., 2022), but has overlooked the role of non-destructive temperature shocks.1 While studying

the impact of extreme weather events is useful, it is also empirically challenging. When natural

disasters strike and bring destructive effects on households and firms, there are significant

government interventions and insurance payouts (Sastry, 2022; Oh et al., 2023), which affect

lending outcomes through their impact on credit demand (Cortés and Strahan, 2017; Ivanov

et al., 2022). Given the importance of understanding the total impact of climate change on

the financial sector, in this paper we study a climate shock that does not produce destructive

effects, but still affects firms, the real economy and financial institutions.

We leverage a setting with a shock to temperatures where the geography is known, but the

precise timing is not. This shock can be thought of as a stochastic Poisson process: agents know

it is coming sooner or later, but cannot predict either when it will occur nor its intensity. This

allows us to isolate the unexpected component of climate and circumvent the usual criticism of

measures related to the slow-moving nature of temperatures. This shock is a recurring climate

phenomenon affecting local climate across the United States: the El Niño-Southern Oscillation

(ENSO) or El Niño. To investigate the impact of El Niño on US climate and banks, we assemble

a county-level panel with information on temperatures and other climate events for over 3,000

US counties from the 1980s together with local mortgage lending by more than 6,000 banks. To

further understand the bank-level determinants that allow banks to hedge this climate shock,

we construct a bank-level measure of exposure to El Niño-induced temperature shocks and

1Several papers have instead focused on how the transition to a low-carbon economy and environmental
disclosure policies affect banks and credit markets (Accetturo et al., 2022; Kacperczyk and Peydró, 2022; Ivanov
et al., 2023; Degryse et al., 2023b; Giannetti et al., 2023).
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use a novel tool from the machine learning literature (Belloni et al., 2014; Chernozhukov et al.,

2018), implementing a post-LASSO analysis to recover the characteristics of banks that present

a high climate resilience.

Our identification strategy combines two key sources of variation created by El Niño. First,

in the time series, El Niño is an unpredictable climate phenomenon that occurs if both warm

waters of the southern Pacific Ocean spill into other parts of the ocean and exceptional atmo-

spheric conditions arise.2 El Niño events occur irregularly every two to seven years and cannot

be predicted well in advance.3 Since there is a continuum of potential “positive” El Niño years,

we focus our attention on the 5 strongest events between 1980 and 2018, i.e. those years with

the largest increase in average oceanic temperatures. Second, in the cross-section, we adopt

a map elaborated by climatologists at the National Oceanic and Atmospheric Administration

(NOAA), which shows the heterogeneous climate exposure to El Niño across different counties

in the US. During El Niño years, the north experiences higher than average temperatures, the

south becomes cooler while remaining parts of the country are unaffected.

The first part of our empirical analysis validates the effects of El Niño on local climate and

economic outcomes across US counties. First, we confirm that counties with a positive (nega-

tive) exposure to El Niño have a higher-than-average (lower-than-average) level and volatility

of temperatures during a top 5 El Niño. We also show that the probability of natural disasters

is affected by El Niño, but it moves in the opposite direction with respect to the tempera-

ture shock, as it declines (increases) in counties with a positive (negative) exposure during El

Niño years. Second, we explore whether county house prices and mortgage lending change in

response to this climate shock.4 Our analysis shows that mortgage lending and house prices

decline significantly, respectively by 11% and 1.3%, in counties with a positive exposure during

a top 5 El Niño event. These estimates are consistent with an elasticity of house prices with

2El Niño is referred to as a coupled climate phenomenon, requiring changes in both the ocean surface
temperature and atmospheric wind circulation. “Random atmospheric disturbances” in the Pacific Ocean may
be responsible for turning a neutral El Niño into a positive one with exceptional force (Fedorov et al., 2003;
Rojas et al., 2014). For example, there are instances when the surface temperature of the Pacific Ocean looks
like in an ENSO state, but the atmosphere is not (or vice versa).

3For example, in June 2023 the National Oceanic and Atmospheric Administration, NOOA, declared 2023 to
be an El Niño year. This cannot be considered an early forecast, since it comes in the middle of the year, when
El Niño conditions have already developed. Moreover, as of June there is still significant uncertainty whether
it will be a strong event at its peak (56% chance). Having a strong El Niño is crucial to see effects in the US,
as we show in this paper.

4Even if temporary, short-term fluctuations in weather can affect real estate prices, much like the predictable
occurrence of hot and cold seasons do within the year (Ngai and Tenreyro, 2014).
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respect to credit of about 0.12, in line with Favara and Imbs (2015). At the same time, we

cannot reject a null hypothesis of no change in lending and house prices in counties with a

negative exposure.

After documenting the county-level effects of El Niño, we study whether and how this shock

aggregates at the bank level. To achieve this, we create a measure of bank exposure to the

shock by combining information on the share of mortgage lending in a given county by a bank

with the county exposure to El Niño. Our findings indicate that in the presence of a top 5 El

Niño event, banks with one standard deviation higher exposure experience a decline in lending,

as well as total assets, of 1.7% and 0.8% respectively. We also observe that real estate and

commercial and industrial loans are the most affected among lending activities, exhibiting a

decline of 1.5% and 2.7%, while consumer lending is unaffected.

We then investigate whether the changes in mortgage lending are due to county-level fac-

tors, which may be considered close attributes of local credit demand, or bank-level factors,

which may be associated with the supply of credit. When we include county-year fixed-effects,

which absorb unobserved county-level heterogeneity (i.e. comparing mortgage lending in the

same county and year by different banks), we find that banks that are exposed to the (posi-

tive) temperature shock reduce lending. However, when we control for unobserved bank-level

heterogeneity using bank-year fixed-effects (i.e. comparing lending by the same bank and year

to different counties), we do not find that county exposure to El Niño matters anymore. More

directly, we find that exposed banks reduce mortgage lending even in areas unaffected by El

Niño (i.e., the control group of counties), effectively transmitting the shock from the positively

exposed areas in other parts of the country. These results are consistent with the hypothesis

that climate shocks impact the supply of credit.

Furthermore, to understand why county house prices and mortgage lending negatively react

to the increase in temperatures, we investigate two potential channels: agricultural crop yields

and natural amenities. El Niño has the potential to negatively affect both by increasing salinity,

which lowers micro-nutrients crucial for the development of vegetation and wildlife (Artiola et

al., 2019). We document that water and soil salinity increase during El Niño years by 8% and

21.5% in positively exposed counties and the increase in salinity negatively impacts both crop

yields and natural amenities. First, we find that crop yields of both corn and wheat decline

3



in the positively exposed counties, where the increase in salinity happens. Since the positively

exposed counties in the north of the US are large producers of corn and other agricultural

produce, this means that El Niño represents a significant negative economic shock. Second, we

observe that El Niño deteriorates the value of natural amenities, which are defined as the natural

characteristics that make a location desirable for people to live in. To test this hypothesis,

we employ the cross-sectional “Natural Amenities Scale” for US counties elaborated by the

Economic Research Service of the U.S. Department of Agriculture (USDA). We find that the

negative effects of higher temperatures on house prices and mortgage lending are increasing in

the value of natural amenities.

Finally, to understand the characteristics of banks that make them resilient to this shock,

we adopt the post-LASSO estimator, following the work of Belloni et al. (2012, 2014); Cher-

nozhukov et al. (2018). This method allows us to implement a “model selection” through an

algorithmic procedure that identifies the variables predicting a successful hedging of this climate

shock and, hence, lowering the impact of El Niño on banking. The LASSO analysis highlights

that banks with a lower ratio of fixed costs on premises and branches over total assets are

less affected by El Niño. This finding suggests that banks with a strong physical presence are

more vulnerable and present less flexibility to change their organizational structure to respond

to climate shocks. This is in line with literature on the “operating leverage hypothesis” (Lev,

1974; Carlson et al., 2004; Novy-Marx, 2011), where operational costs are as important as other

financial characteristics like the capital structure in influencing corporate behaviour. This re-

sult offers valuable insights for the theoretical modelling of climate in banking and finance, and

to policymakers to understand possible avenues for climate-resilient financial regulation.

Our empirical setting offers a natural “placebo” to test whether our results are driven by

the specific north-south geography of the temperature changes induced by El Niño. For this

purpose, we study La Niña, which generates a different and opposite cross-sectional hetero-

geneity in temperatures compared to El Niño, with the north becoming cooler and the south

warmer. We replicate the same econometric strategy used for El Niño and we define a dummy

for top 5 La Niña years. We digitize the NOAA map of county exposure to La Niña and build

a corresponding measure of bank exposure. We further notice that La Niña events are 50%

weaker than El Niño in terms of changes in oceanic temperatures, thus providing a “placebo”
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of weak El Niño years. As a result, we cannot reject the null hypothesis of no effect of a top 5

La Niña event on lending and assets at bank-level. These results are useful to rule out possible

alternative stories that the exposure to El Niño picks up geographic time-varying heterogeneity

between the North and South of the US rather than the effect of the climate shock.

To address possible confounders, we explore a rich set of alternative specifications. For

example, we re-examine our analysis of county-level and bank-level factors using small business

lending information from CRA data and find similar results, although not precisely estimated

due to the smaller sample. Additional findings show that our key results are robust to: i) using a

continuous measure of El Niño instead of top5 dummies; ii) controlling for the bank exposure to

precipitations; iii) controlling for the effect of natural disasters; iv) using alternative methods for

spatial clustering the standard errors, including wild bootstrap; v) using alternative difference-

in-difference estimators Borusyak et al. (2022) and vi) alternative model selection procedures

for the LASSO analysis.

The idea that climate may influence economic performance is well established in the existing

literature (Dell et al., 2014). Climate volatility affects economic and social outcomes such as

productivity, income and growth (Deschênes and Greenstone, 2007; Hsiang, 2010; Dell et al.,

2012) or conflict and migration (Hsiang et al., 2013). However, less is known about how climate

factors, and climate change in particular, may affect the economy through the financial sector.

This project aims to fill this gap by analysing the effects of climate shocks on house prices and

local lending, and thus overall bank balance sheets.

The climate finance literature is relatively new and it has mostly focused on whether climate

risk is priced in various asset classes, from real estate (Baldauf et al., 2020; Giglio et al., 2021) to

fixed income (Painter, 2020; Goldsmith-Pinkham et al., 2021; Acharya et al., 2022) and equity

(Engle et al., 2020; Bolton and Kacperczyk, 2021, 2022). A growing number of studies have

focused on the impact of physical climate risks on banking and credit markets. Cortés and

Strahan (2017), Correa et al. (2020), Brown et al. (2021), Ouazad and Kahn (2022), Nguyen et

al. (2022), Blickle et al. (2022) collectively show that weather shocks due to natural disasters

and sea level rise affect local credit markets, corporate lines of credit and mortgage rates. Recent

work by Sastry (2022) shows that banks distribute the flood risk of residential mortgages with

households and the government flood insurer through credit rationing and tightening loan-to-
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value rations.

Many have also focused on the transition risk to a low-carbon economy (De Haas and Popov,

2022). For example, Oehmke and Opp (2022) show theoretically that imposing higher capi-

tal requirements on “brown” firms is not an effective tool to reduce carbon emission. Others

have studied how to develop climate stress testing (Jung et al., 2021; Acharya et al., 2023).5

Using syndicated loans, Degryse et al. (2023a) and Kacperczyk and Peydró (2022) investigate

whether climate agreements and de-carbonization efforts affect loan rates and credit allocation,

depending on the environmental consciousness of banks and firms. Accetturo et al. (2022)

offer evidence that credit supply affects firms’ green investments, while Degryse et al. (2023b)

show that banks with large legacy positions are less likely to finance green innovations. Gian-

netti et al. (2023) document a disconnect between banks’ environmental disclosures and credit

allocation.

We contribute to the broad climate finance and banking literature by examining bank

exposure to a climate shock to temperatures and show which balance sheet characteristics allow

banks to hedge this climate shock. These results may be particularly valuable to understand

the timing dimension of how climate change may affect the economy.

Finally, a key part of this project is to use El Niño as an instrument for climate events,

as it has been done in other contexts. For example, Dingel et al. (2019) study the effects

of El Niño on global spatial correlation of crop productivity to explain cross-country welfare

dispersion. A number of studies have shown a negative impact of El Niño on agricultural crop

yields (Tack and Ubilava, 2013), global economic growth (Generoso et al., 2020; Callahan and

Mankin, 2023), in particular in developing countries (Smith and Ubilava, 2017). Moreover,

El Niño has been related to civil conflict (Hsiang et al., 2011), commodity prices (Brunner,

2002), and market anomalies (Novy-Marx, 2014). This is the first paper that analyzes how El

Niño-induced exogenous changes in weather can influence the economy through its effects on

banks.

5The evidence on the effectiveness of stress testing in affecting credit supply and reducing emissions is mixed
(Fuchs et al., 2023), compared to cap-and-trade policies (Ivanov et al., 2023).
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2 El Niño, Identification and Data

This section provides general information about El Niño using NOAA data on the cross-sectional

exposure of different counties across the United States and the quasi-random occurrence in the

time series. It also describes our identification strategy to study the effects of El Niño on

banking and presents the key datasets used in this analysis.

2.1 El Niño and the United States

El Niño-Southern Oscillation (ENSO) or El Niño is a recurring climate variation of the ocean-

atmosphere system in the tropical Pacific – the world’s largest ocean – which has the potential

to affect weather around the globe.6 El Niño events occur irregularly in intervals of 2-7 years

and typically last between 12 and 18 months. Its occurrence is determined by changes in both

the ocean surface temperature and wind circulation patterns.

El Niño fluctuates between a neutral and two extreme states, depending on the amount

the heat that is released from the ocean into the atmosphere. In El Niño “neutral” years, the

surface temperature in the central and eastern tropical Pacific Ocean is around average and the

normal westward circulation pattern of low-level surface winds keeps the pool of warm water

in the South Pacific. In “positive” El Niño years a warming of the surface temperature in

the tropical Pacific together with a weakening or even a reversal of the westward circulation

patterns causes warm water to spill eastward so that more heat is released over the Pacific

ocean near the Americas. When this happens, climate in different areas of the planet is affected

heterogeneously: warmer temperatures arise in the tropics and cooler temperatures at higher

latitudes. The opposite occurs during a “negative” El Niño event (the so called La Niña):

stronger than normal easterly wind keep even more warm water in the South Pacific, thus

reducing heat in other parts of the ocean.

For the United States, the most significant impact of El Niño is due to a shift in the location

of the jet stream. The jet stream is a strong, high-level wind that typically separates warm

from cool air masses and pushes storms from the Pacific across the US. By affecting the location

of the jet stream El Niño therefore alters climate and rainfall patterns across the entire United

6The Southern Oscillation (SO) is an inter-annual see-saw in tropical sea level pressure between the eastern
and western hemispheres. For more information refer to NOAA, at https://www.pmel.noaa.gov/elnino/faq or
What is the El Niño–Southern Oscillation (ENSO) in a nutshell?.
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States. The shift in the jet stream also leads to changes in the occurrence of severe weather,

and the number of tropical cyclones expected within the tropics in the Atlantic and Pacific

oceans. Figure 1 shows the weather patterns induced by El Niño and its geographic effects

on the US, according to NOAA: during El Niño, the Pacific jet stream flows straight in the

southern tier of US states, causing an abnormal cooling in the south and warming up of areas

north of the 48th parallel. At the same time, the Midwest (Ohio and Upper Mississippi River

Valleys) become unusually dry while the south – from California to the Carolinas – experience

more precipitations. During La Niña, these deviations from the average are approximately, but

not exactly, reversed (Figure A3 in the Online Appendix).

2.2 Measurement of El Niño

A variety of indices are used to characterize El Niño because it effects so many elements of the

atmosphere-ocean climate system. Four widely used indices are:

1. The Southern Oscillation Index (SOI), which is given by the difference in sea-level pressure

between Tahiti and Darwin, Australia. The SOI, defined as the normalized difference in

surface pressure between Tahiti, French Polynesia and Darwin, Australia is a measure of

the strength of the trade winds, which have a component of flow from regions of high

to low pressure. High SOI (large pressure difference) is associated with stronger than

normal trade winds and La Niña conditions, and low SOI (smaller pressure difference) is

associated with weaker than normal trade winds and El Niño conditions.

2. The Niño 3 index, which referes to the anomalous SST within the region bounded by

5N-5S and 150W-90W. The SST indices are measures based the average sea-surface

temperature over a fixed area in the tropical Pacific. The SST indices are: Niño 1+2

(0-10South)(90West-80West) Niño 3 (5North-5South)(150West-90West) Niño 4 (5North-

5South) (160East-150West) Niño 3.4 (5North-5South)(170-120West). The only difference

among them is the area of the Pacific used to measure the sea surface temperature.

3. The anomalous 850 mb zonal winds show how the low-level atmospheric flow is responding

to low-level pressure anomalies associated with El Niño and other mechanisms. Often the

850 mb flow (about 1.5 km above sea level) exhibits a “cleaner” signal than the winds
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at the surface, which are subject to local effects such as terrain. An index involving the

200 mb zonal flow is used to describe the upper tropospheric winds, whose anomalies

tend to be opposite to those at 850 mb and below. The 200 mb flow is particularly

important because it is changes at around this level in the tropics that tend to have the

biggest consequences for the atmospheric circulation outside of the tropics. The 500 mb

temperature represents a proxy for the anomalous heat content of the tropical troposphere.

In an overall sense, there is greater heating of the troposphere, and more deep cumulus

convection, than normal during warm El Niño events.

4. The outgoing longwave radiation (OLR), the deeper the cumulus convection, the colder

the cloud tops, which means the thermal or infrared radiation to space is reduced. It is

straightforward to monitor OLR via satellite; its value in the tropical Pacific near the

dateline is an effective way to gauge the frequency and magnitude of the thunderstorm

activity that changes with El Niño.7

We take advantage of a composite index combining all different El Niño measures: the

Multivariate El Niño index, version 2 (MEI.v2). This bi-monthly index is calculated for 12

overlapping bi-monthly “seasons” (Dec-Jan, Jan-Feb, Feb-Mar,..., Nov-Dec) in order to take

into account El Niño’s seasonality, and reduce effects of higher frequency intra-seasonal vari-

ability. In particular, the MEI.v2 gives real-time indications of El Niño intensity, it is available

from 1979 and it is widely used in the literature.8

2.3 Identification

In this section, we provide more details on how we identify shocks to climate risk. In particular,

we present the time-series variation in the occurrence of El Niño. We also describe the cross-

sectional variation in county exposure to El Niño, which will be used to measure the counties

in which this event takes place and aggregated at bank-level to study its financial implications.

7More information on all these indices is available at https://www.cpc.ncep.noaa.gov/data/indices/
8Refer to this link available by NOAA, https://psl.noaa.gov/enso/mei/.
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2.3.1 Time-series variation - the quasi-random nature of El Niño

El Niño generally begins during April-May of a given year and lasts until the following April-

May, an interval known as the “tropical year” (Dingel et al., 2019). Because the El Niño index

typically peaks in winter, we decided to take the average of the MEI.V2 index from January to

May and define a El Niño year if this average is above a threshold of +1 degree Celsius. Figure

2 shows the MEI.V2 average value for the 9 strongest El Niño events during our sample period.

By taking the 1-degree cut, we select the top 5 events with the largest positive deviations in

the MEI.V2 index. In so doing, we end up with a sample of the 5 major El Niño years: 1983,

1987, 1992, 1998, 2016. Focusing on these 5 events provides us with an opportunity to identify

the years in which El Niño took place and with exceptional strength.

Furthermore, there is broad scientific consensus that this time-series variation is quasi-

random, as the factors that transform a neutral El Niño event into a forceful one are due to

“random atmospheric disturbances”. For example Fedorov et al. (2003) state: “Nobody antic-

ipated that El Niño would be weak and prolonged in 1992, but brief and intense in 1997/98.

Why are various El Niño episodes so different, and so difficult to predict? The answer involves

the important role played by random atmospheric disturbances (such as westerly wind bursts)

in sustaining the weakly damped Southern Oscillation”. In the same spirit, Rojas et al. (2014)

discuss the role of unpredictable atmospheric disturbances in creating stronger El Niño events:

“However, while the accuracy of these models in predicting the onset of an El Niño episode is

fairly high, the intensity is much more difficult to predict due to random atmospheric distur-

bances that may dampen or amplify the intensity of an El Niño occurrence and thus its impact

on weather patterns”.

As a result, we define the occurrence of this event as “quasi-random” throughout this paper,

as this is both unpredictable and orthogonal to economic and financial conditions.

2.3.2 Cross-sectional variation

A large body of scientific evidence allows to measure the heterogeneous effects of El Niño

on weather patterns in different areas of the globe. It is also possible to know in advance

which parts of the US counties will experience cooler-than-average or warmer-than-average

temperatures, as shown in Figure 1. Using QGIS software, we overlay this figure with the

10



US counties shapefile and we generate Figure 3, a map showing the heterogeneous geographic

effects of El Niño on temperatures across the US. The northern tier of the lower 48th parallel in

the United States and southern Alaska exhibit above normal temperatures, while areas around

the Gulf and other inner parts of the south US experience below normal temperatures.

We use this map to build a variable which measures the exposure of a county to a “positive

climate shock” if it is hit by warmer-than-average temperatures, a “negative climate shock” if

it is hit by cooler-than-average temperatures, or if it is unaffected. All of our empirical analysis

investigating county-level variables (temperatures, lending) adopt these indicators and study

their effects. In addition to this, we aggregate these indicators at the bank level and create a

measure of bank exposure to El Niño.

2.4 Data

Our empirical analysis relies on a number of different data sources from various US agencies.

The main databases we used are the following.

The U.S. Historical Climatology Network (U.S. HCN) from NOAA publishes precipitations,

temperature and other climate data from 1,219 weather stations across the United States. This

dataset is available at the station-day level and covers a large part of the United States: these

stations are selected according to their spatial coverage, record length, data completeness, and

historical stability. We collapse this dataset at the county-year level and this includes 3,108

counties from 1979 to 2019.

We take advantage of the FEMA Disaster Declarations Summary to obtain a list of natural

disasters in the US from 1980. This dataset features three types of disaster declaration: major

disaster, emergency, and fire management assistance. The dataset includes declared recovery

programs and geographic areas. We aggregate this data at the county-year level introducing

a dummy that takes unit value if a county in a year has experienced a natural disaster. In a

robustness check, we also use the Emergency Events Database (EM-DAT).

We use the Home Mortgage Disclosure Act (HMDA), focusing on conventional, originated

loans for the purchase of single (one to four) family homes, and collapse this dataset at the

bank-county-year level, with bank indicating bank holding company (BHC), and this dataset

includes 6,567 bank holding companies, operating in 3,108 counties from 1981 to 2016. We also
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merge the respondent bank ID in HMDA with bank balance sheet information from the Call

Reports using the Avery file from 1993.

We obtain county-level house price index (HPI) from 1975 until 2019 from the Federal Hous-

ing Finance Agency (FHFA) as described in Bogin et al. (2019). These indexes are calculated

using appraisal values and sales prices for mortgages bought or guaranteed by Fannie Mae and

Freddie Mac. Because in some cases sample sizes are too small for the county area, the HPI

is not always reported for each county and year. To maximize coverage and because the HPI

values reflect cumulative appreciation overtime, we use the index value with a base equal to 1

in 2000, i.e. the change in the HPI reflects an annual percentage change from 2000.

We measure salinity using two different data sources: one on water salinity and another on

soil salinity. On water salinity, we use a global, harmonized database provided by Thorslund

and van Vliet (2020). The dataset comes from the combination of observational data collected

from various sources at the station level, which we process and collapse at the county level.

This dataset covers 3144 counties over the period between 1980 and 2019 on surface water,

divided into rivers, lakes/reservoirs and groundwater locations. On soil salinity, we adopt the

“Global Soil Salinity Map” by Ivushkin et al. (2019). This database contains maps on soil

salinity covering 3223 counties for a selected number of years (1986, 1992, 2000, 2002, 2005,

2009 and 2016). In terms of definition of the salinity variables, both are measured through

electrical conductivity.9

To collect information on the agricultural sector, we rely on the U.S. Department of Agri-

culture (USDA). Under the National Agriculture Statistics Service, the USDA conducts direct

surveys with farmers and ranchers to acquire the most accurate possible estimates of agricul-

tural production in the country. Crop yields are defined as the gross or total amount of a crop

produced by plants expressed as a rate per geographic unit; in our context, the unit of measure

is bushels per harvested acre. In our analysis, we include the yields of two primary crops: corn

and wheat.

Finally, we measure natural amenities exploiting the “Natural Amenities Scale” elaborated

by the Economic Research Service of the USDA. This scale is a measure of the natural and

physical characteristics of a county that make it as a desirable location for people to live in.

9Water salinity is measured in microSiemens per centimetre µS
cm : an electrical conductivity of 1563 µS

cm
corresponds to 1,000 parts per million, which equals 1 gram of salt. Soil salinity is measured in deciSiemens per
metre dS

M : 1 deciSiemens per metre corresponds to 640 parts per million, equalling 0.64 grams of salt per liter.
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It combines six variables of climate, topography, and water area, reporting the natural and

environmental qualities preferred by people. This is a county-specific time-invariant scale and

its map is reported in Figure 4.

3 Empirical Model and Results

This section investigates how El Niño affects banking at the local level and for the bank as a

whole. First, we study how El Niño affects county-level climate variables. Second, we investigate

how loans and house prices at the county level respond to the variation in climate induced by El

Niño depending on the value of natural amenities. The third subsection aggregates the climate

exposure at the bank level and studies how banks are affected by El Niño, while the fourth

focuses on dissecting the demand and supply factors of this climate shock.

3.1 Climate and Natural Disasters

Our first empirical test validates the effect of El Niño on local climate and natural disasters.

We estimate the following equation:

Yct =
∑

j=P,N

βjExposurejc × ElNiñot + αc + γt + εct (1)

We focus on three key dependent variables (Yct) for county c in year t: average temperatures,

their volatility (i.e., standard deviation of daily temperatures within a year) and the probability

of a natural disaster. We regress these on the interaction between the cross-sectional exposure to

El Niño, Exposurejc, which can be positive (j = P ) and negative (j = N), and the occurrence

of a top 5 El Niño event, which we denote ElNiñot. PositiveExposurec is a dummy equal to 1

if a county is exposed to an increase in temperatures relative to its average and zero otherwise;

NegativeExposurec is a dummy equal to 1 if a county is exposed to a decrease in temperatures

relative to its average and zero otherwise (as in Figure 3). The variable El Niñot is a dummy

equal to 1 for the years classified as top 5 El Niño events (1983, 1987, 1992, 1998, 2016) and

zero for other cases. αc and γt are county and year fixed effects, respectively. Standard errors

are clustered at the county level.

The first six columns of Table 2 validate the evidence from NOAA on the impact of El Niño
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on temperatures across the US. The first and third columns regress the average and volatility of

temperatures on the interaction between the positive exposure variable and the dummy for top

5 El Niño events, keeping in the control group both counties with no exposure and those with

a negative exposure. Both estimated coefficients are positive, statistically different from zero

at the 1% threshold. The second and fourth columns study exclusively the difference between

counties with a negative climate exposure and all others are in the control group. In this case,

both coefficients are negative, significantly different from zero below the 1% threshold and high

in magnitudes. Finally, the third and sixth columns present regressions with both the positive

and negative exposures, keeping in the control group only counties that are unaffected by El

Niño.

All in all, in the presence of a top 5 El Niño event, counties with a positive climate exposure

exhibit yearly average temperatures that are between 0.5 and 0.6 degrees higher and an increase

in the standard deviation by 0.2 (i.e., 10% higher than the baseline temperature volatility). At

the same time, counties with a negative climate exposure experience temperature averages that

are between 0.3 and 0.5 degrees lower and a volatility of temperatures between 0.05 and 0.1 lower

(i.e., 2.5% and 5% lower compared to baseline volatility). When both positive and negative

exposure are considered together, only the counties with a positive exposure experience higher

volatility than the control group, whereas those with negative exposure are not statistically

different.

Our next test analyzes the role of natural disasters and their relationship with El Niño.

To do so, we regresses a dummy for a FEMA-declared natural disaster on the interaction

between the county exposure to El Niño and the occurrence of a top 5 El Niño event. We

find that El Niño generates effects on disasters which are opposite with respect to those on

temperatures. Counties that experience higher temperatures during a top 5 El Niño event

have a lower probability in the occurrence of natural disasters, while counties with a negative

exposure have a higher probability of disasters, which is in line with the occurrence of wildfires

in the Southern part of the US during El Niño years (Swetnam and Betancourt, 1990; Brenner,

1991). In terms of magnitudes, column (9) of Table 2 shows that the probability of a natural

disaster declines by 1.8% in counties with a positive exposure and increases by 13% in counties

with a negative exposure during a top 5 El Niño event.

14



3.2 County Mortgage Lending and House Prices

After validating the climate shock induced by El Niño in our data, we turn to study its effects

on local economic and financial outcomes. In particular, we focus on mortgage lending from

HMDA and house price indexes (HPI) from the FHFA.

We follow the regression specification in equation (1) and regress the natural logarithm of

county mortgage lending from HMDA or the House Price Index (HPI) from FHFA with base

year 2000 on county-level climate exposure to a top 5 El Niño event. Table 3 reports the

results of this analysis, showing first the effects of positive and negative temperature exposures

separately in columns (1)-(2) and (4)-(5) and then combining the two in columns (3) and (6).

During a top 5 El Niño event, counties with positive temperature exposures experience a decline

in mortgage lending of 11% and a contemporaneous decline in house prices of 1.3% with respect

to the 2000 base year, with both coefficients being statistically different from zero below the 1%

threshold. The difference in the response of mortgage lending and house prices may seems large

at first, but it is consistent with a pass-through elasticity of house prices with respect to credit

of about 0.12, which is in line with other estimates found in the literature (Favara and Imbs,

2015). Counties with negative temperature exposure on the other hand experience an increase

in lending and house prices which however is small and not statistically significant when we

include both exposures. The increase in mortgage lending in the negatively exposed areas is

consistent with previous findings in the literature which show that both mortgage (Cortés and

Strahan, 2017) and corporate lending (Ivanov et al., 2022) increase in areas hit by natural

disasters. When natural disasters strike, there is a significant mobilization of government

and insurance resources that are used for reconstruction. Credit demand hence increases and

banks accommodate it by drawing liquidity from unaffected areas where they own branches.

Negatively exposed areas have a higher likelihood of natural disasters as shown in columns

(8)-(9) of Table 2.

All in all, Table 3 shows that during a top 5 El Niño event, both lending and house prices

decrease in counties that experience an increase in temperatures. In the following sub-sections

we explore a potential channel through which El Niño can have these negative effects on local

mortgage lending and house prices through its impact on natural amenities.
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3.3 Financial Transmission of El Niño

In this section we explore whether the changes in mortgage lending at the county level docu-

mented in the previous section are due to bank-supply side or county-demand side factors . To

do so, we expand our dataset to a bank-county-year panel and estimate the following equation:

Ybct =
∑

j=P,N

∑
k=b,c

βjkExposurejk × ElNiñot + αct + γbt + εbct (2)

where the dependent variable (Ybct) is the log of total mortgage origination by bank b in

county c in year t. Exposurejk can be positive (j = P ) and negative (j = N) for both banks

(k = b) and county (k = c). The positive and negative county exposures are defined as in

equation (1). The positive and negative bank-level exposure to El Niño are defined as the

weighted average of the county climate exposure using mortgage lending shares as weights,∑
c Exposurec × Sharebc, calculated separately for positively exposed and negatively exposed

counties. Sharebc, is the average share of mortgage lending that bank b issues to borrowers in

county c relative to the entire stock of mortgages of bank b across all years in the sample. The

bank and county exposures are interacted with the occurrence of a top 5 El Niño event, which

we denote El Niñot. We identify county and bank factors by absorbing county-time (αct) and

bank-time (γbt) fixed-effects, one at a time.

We report the result of this exercise in Table 4. We first regress the natural logarithm of

mortgage lending at the bank-county level on both positive and negative bank exposure together

with county exposures interacted with the top 5 El Niño year indicator. We only control for

bank, county and year fixed-effects in column (1) but not for their double interaction. We

find that both positively exposed banks generate a lending reduction of 19.7%, while positively

exposed counties induce an increase of 11% respectively. However, this effect could be due to

a combination of time-varying demand or supply factors. To absorb unobserved heterogeneity

in bank factors, we include bank×year fixed-effects in column (2) we find that county-level

exposure to the El Niño shock does not matter anymore: the coefficient declines by a factor of

three and is not statistically different from zero. In column (3) instead, we take care of county

factors by including county×year fixed-effects, hence absorbing the county-level El Niño shock:

we find that banks that are more positively exposed reduce credit by 22% compared to less
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exposed banks lending to the same county and year.

The last two columns of Table 4 provide additional support to the hypothesis that bank-

specific factors rather than county-specific ones are driving the reduction in mortgage lending

related to El Niño. These regressions replicate the structure of column (3) but split the sample

depending on whether counties were exposed to El Niño or not. We also omit the interaction

between negative bank exposure and Niño, since this factor was quantitatively negligible in

column (3). These columns show that regardless of whether counties were individually exposed

to El Niño, the bank positive exposure to El Niño led to a contraction of credit which is similar

in point estimate and we thus conclude that supply-side factors play a larger role in explaining

the decline in credit than demand factors.

3.4 Channels: The role of Salinity

Salinity is a key input into natural amenities and agricultural yields: a stable amount of salt in

the soil helps vegetation grow and provides micro-nutrients to plants and animals. As described

in a FAO (2021) report, saline soils are technically defined as those who contain more soluble

than gypsum, a soft sulfate mineral, in a concentration sufficient to negatively affect the ability

of plants to take up water and to reduce the availability of micro-nutrients. Many regions of

the world present naturally saline soils, hosting a range of valuable ecosystems with the local

vegetation adapting to heterogeneous and even extreme conditions.10

The salinity of soils can vary over time because of both human activity and environmental

conditions. The main reason behind soil salinization due to human activity is the inappropriate

management of irrigation, while the common environmental reason behind higher salinity is the

saline water intrusion from sea into lakes, rivers and groundwater. Climate change is another

important determinant of salinity and over the past decades its effects have been increasing

in frequency and size (Vineis et al., 2011). Rising temperatures strengthen water evaporation,

which increases the presence of salt in the soil, leading, in the extreme, to aridification. At the

10Salinity can be classified in three ways (Bari and Ruprecht, 2003). Primary, or natural, salinity is caused
by natural processes such as rainfalls. Small amounts of salt evaporate from ocean water and are carried by
rain clouds. Therefore, salt concentration is higher near the coast, and decreases moving inland. Secondary,
or dry-land, salinity is the result of the reduction of perennial vegetation in dry areas. When the perennial
vegetation is lost, the amount of water lost from the landscape through plants is drastically reduced, and salinity
increases. Finally, tertiary salinity is the one caused by irrigation: when water is reapplied to crops over many
cycles, each time some of it will evaporate and the salts in the remaining water will become more concentrated.
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same time, climate change is also a primary cause of a meaningful rise of sea levels, which has

been highlighted as one of the main factors causing saltwater intrusion into groundwater (Xiao

et al., 2018).

To quantify the effect of the temperature increase due to El Niño on salinity, we employ a

similar specification as in equation (1), but replace the dependent variables to be the average

salinity of water in rivers and soils of county c in year t. As discussed in Section 2.4, both of

these are measured through electrical conductivity and consist of the concentration of dissolved

soluble salts in a sample of water and soil extract respectively..11 Table 5 presents the results

of these regressions. The first three columns display the findings on water salinity, while the

last three columns focus on soil salinity.

Columns (1), (2) and (3) indicate the during a top 5 El Niño, counties with a positive

exposure experience an increase in water salinity, while counties with a negative exposure see

a decline in water salinity. In terms of magnitudes, the results of column (3) show that water

salinity increases by 8% relative to the mean during a top 5 El Niño in counties with a positive

exposure and decline by 33% relative to the mean in counties with a negative exposure. Columns

(4), (5) and (6) show that changes in water salinity transmit to soil salinity. Soil salinity in

counties with a positive exposure to El Niño increases by 21.5% relative to the mean during

a top 5 El Niño event, while salinity drops by 28.3% relative to the mean during a top 5 El

Niño event in counties presenting a negative exposure to El Niño. In the Online Appendix, we

extend these results by studying three different types of water salinity, that of rivers, lakes and

groundwater. Table A2 shows that in all of these cases during a top 5 El Niño, counties with

a positive exposure experience an increase in all types of water salinity and are more likely to

present water with levels of salt exceeding 1,000 and 2,000 parts per million.

These findings highlight the detrimental effects of salinity on natural amenities and crop

yields: as discussed in section 2.3, an increase in salinity worsens the presence of micro-nutrients

in the water and soil, which deteriorates natural amenities like vegetation and animal life. On

11According to Mayer et al. (2005), the salinity of status of water is typically characterized with the following
scale. Water is considered “Fresh” if salinity defined as the milligrams of salt per litre are lower than 500, which
makes it suitable for drinking and all irrigation; “Marginal” water presents salinity between 500 and 1000 and is
used for most irrigations, with some adverse effects on ecosystems; “Brackish” water has salinity between 1000
and 2000 and can be used for the irrigation of selected crops only and most livestock; “Saline” water displays a
salinity between 2000 and 10,000, cannot be used for irrigation and is used for most livestock; “Highly saline”
water contains between 10,000 and 35,000 milligrams of salt per litre and is limited to use of selected livestock;
“Brine” water presents a salinity exceeding 35,000 and can be used for mining and some industrial activities.
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the contrary, a decline in salinity generally leads to a higher quality of water and potentially a

positive, or null, effect on amenities.

3.4.1 Crop Yields

The agricultural economic literature has shown that El Niño negatively affects crop yields in the

US (Tack and Ubilava, 2013). This happens because El Niño is correlated with pest damage:

increase in insects and germination rates for bacteria and fungi with El Niño (Rosenzweig et

al., 2001). Building on the results of the previous section, which show that higher temperatures

due to El Niño increase water and soil salinity, we provide a novel channel through which El

Niño can affect crop yields: salinity.

Changes in salinity have a direct effect on crop yields. In general, a reduction in salinity

may lead some water sources to qualify as fresh water and improve the quality of water, while a

substantial increase in the level of salt in the soil and water threatens water quality, especially if

used for irrigation. This can be especially detrimental in those habitats where plants are highly

sensitive to soil salinity, which can impair the health and development of vegetation. Given the

increased in salinity in positively exposed areas during a top 5 El Niño event we documented

in Table 5, we expect that the same areas also see a reduction in crop yields.

The US is an important producer of corn (32% of world production) and wheat (6% of

world production). Using data from the USDA, we run a specification as in equation (1) and

replace the dependent variables to be the average bushels per harvest acre for corn and wheat

of county c in year t. We report the results in Table 6. We find that in counties with positive

exposure, corn and wheat production decline by 0.9 and 0.8 bushels per harvest acre (0.7% and

1.8% respectively compared to the average) during a top 5 El Niño event. There is no effect on

corn production in negatively exposed counties compared to the control group and a positive

effect for wheat production. It is important to note that while the “corn belt” (i.e., the area

where corn is produced in the US) is almost entirely contained within the positively exposed

counties, the “wheat belt” has a significant southward protuberance, hence wheat and corn

production are going to be differentially affected by El Niño.

The decline in crop yields is a negative shock for the local economy in some counties.

Agriculture, food, and related industries represent about 5.4% of US GDP, with agriculture
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alone accounting for 1-2% of GDP in the period between 1980 and 2018. However, there is

significant cross-state variation and agriculture is a relevant part of the economy in the positively

exposed counties. Specifically, agriculture is 4-5% of GDP in the Northern states where corn

production is concentrated. Hence El Niño is a significant local economic shock to these areas

and has the potential to negatively affect lending and house prices.

3.4.2 Local natural amenities

The results in Table 3 show that El Niño can negatively impact house prices in areas where

temperatures increase. However, fluctuations in weather due to El Niño are only temporary

deviations from the mean and thus one may wonder how they can have long-run implications

for an asset such as real estate. We show that this concern, while valid, does not directly apply

in our setting.

First of all, the literature has shown that even temporary shocks can affect house prices:

Ngai and Tenreyro (2014) find that house prices in the same location are higher in the hot

season compared to the cold season. Thus, a predictable and temporary shock, such as the

alternating of the summer and winter seasons, can still induce fluctuations in long-term asset

prices. Second, we show that El Niño directly lowers the value of natural amenities, thus

affecting the desirability of locations and house prices. To do so, we test whether the negative

effects of El Niño on local mortgage lending and house prices are amplified in areas that have a

higher value of natural amenities. We use a natural amenities scale from the the USDA, which

combines six measures of climate, air, topography, and water surfaces that reflect environmental

qualities. Figure 4 shows a map of US counties ranked according to the value of their natural

amenities: counties out West, along with Florida and other southern states, tend to have higher

values whereas the counties in the Midwest around the Great Lakes have low amenities.

We exploit cross-sectional variation in this map to obtain additional heterogeneity at the

county level and show that the negative effects of El Niño are amplified in high amenities

areas. We employ a similar specification as in equation (1) but we augment the regression by

including an interaction between Natural Amenitiesc, a dummy equal to one if the county

has an above the median rank in natural amenities, with the El Ninot top 5 indicator. The

additional interaction term Natural Amenitiesc × El Ninot either replaces the exposure to
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positive temperature increases or it is added as an additional control. We show the results in

Table 7.

Column (1) and (4) replicate the results in the respective columns of Table 3. Columns

(2) and (5) show that, during a top 5 El Niño even, counties with high amenities experience

a 1.12% decline in mortgage lending and 3% in house prices (although the effect on lending is

not statistically significant), suggesting that these counties suffer more during El Niño events.

Finally, columns (3) and (6) explore whether the effects are heterogeneous and the results

indicate that during a top5 El Niño year, counties with positive temperature and high amenities

lose an additional 6% in mortgage lending and 1.7% in house prices. These interaction effects

amplify by about 60-100% the baseline effect of El Niño on lending and house prices in counties

with positive temperature exposure. This is a large effect and suggests the presence of a strong

channel through which El Niño can influence on real economic or financial outcomes.

3.5 Bank Balance Sheets

The previous results highlight that a top 5 El Niño event induces significant and sizeable effects

on county level house prices, mortgages and agricultural outcomes. But is the local impact of

El Niño large enough to affect banks and their balance sheets?

In this section we investigate whether banks are hit by this climate shock by building a

measure of bank exposure combining the local county exposure to El Niño with bank exposure

to the lending in that county. We use the following empirical model:

Ybt = αb + γt +
∑

j=P,N

βjExposurejb × ElNiñot + εbt (3)

in which we regress key outcomes at the bank level (total assets and lending, including its

various subcategories) on bank and year fixed effects, respectively αb and γt, and an interaction

between the positive and negative bank exposure to El Niño defined in section 3.3 and the

variable measuring whether year t is one of the top 5 El Niño, El Ninot. Standard errors are

clustered at the bank level.

Table 8 presents the results of the estimation of equation (3). The first column shows that

during a top 5 El Niño event, total assets decline by about 0.8% for banks with high exposure
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to the counties that experience a temperature increase during El Niño. We do not find that

bank exposure to counties that experience a temperature decrease compared to the control

group predicts a change in total assets. We then investigate the effects on loan portfolios,

and find in column (2) that a higher positive bank exposure leads to a decline in total bank

lending of about 1.6% during El Niño years. The negative effect on lending is in line with the

findings on mortgage lending of Tables 3 and 4, but smaller in magnitude (1.3% vs 10-20%).

The difference is given by the fact that equation (3) is estimated on the outstanding stock of

loans from balance sheet data, rather than the flow of new loan origination from HMDA as

equation (1). We then exploit the granularity of balance sheet data in the last three columns of

Table 8 and test which types of loans are particularly responsive to El Niño. We find that both

real estate and commercial and industrial loans are negatively affected by El Niño: banks with

a one standard deviation higher exposure show a 1.5% decline in real estate lending and 2.7%

decline in commercial and industrial loans. At the same time, consumer loans do not respond

to El Niño.

3.6 Banking: a LASSO analysis

In this section we want to investigate whether there are specific bank characteristics that make

them more resilient to climate shocks. Given the large amount of potential variables at the

bank level available in the Call Reports, we decided to exploit a machine learning tool for model

selection not to incur the risk of over-fitting. In the last decades, many penalization methods

have been proposed to perform model selection. One of the most popular is the LASSO (Least

Absolute Shrinkage and Selection Operator), proposed by Tibshirani (1996). The optimization

takes place through the solution of the following constrained problem:

β̂ = argmin
β

n∑
i=1

(y −Xβ)2 s.t.

p∑
j=1

|βj| < s

where p is the number of variables among which the selection should be done and s is a

parameter that defines the strength of the penalty. The smaller s, the stronger the penalty.
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This corresponds to minimizing the following function:

β̂ = argmin
β

||y −Xβ||22 + λ||β||1

where λ is the parameter that controls the strength of the penalty, often called the tuning

parameter. The idea is that since there is a cost to including a large number of regressors, the

purpose of the LASSO procedure is to exclude the ones that contribute little to the fit by setting

them to 0. The bigger λ the more variables will be excluded. Together with model selection the

LASSO procedure also performs regularization. This means that the value of the parameter

β estimated, when not 0, is kept small. This is useful when there is a need for shrinking the

variance of the estimators. The rationale behind this exercise is to minimize the Mean Squared

Error (MSE), as there is a profitable trade-off between unbiasedness and efficiency.

In our specific setting, the LASSO estimation is aimed at model selection rather than

regularization. For this reason, we implement the Post-LASSO estimation, which consists in a

2-step procedure. In the first step, the LASSO algorithm is applied to the full set of available

regressors, leading to estimates β̃; in the second step, an OLS regression is performed including

only the regressors for which β̃ ̸= 0. In this way, the regressors included are data-driven and

the problem simplifies to:

β̂ = argmin
n∑

i=1

(yi − x
′

iβ)
2 s.t. β̂j = 0 if β̃j = 0.

At the same time, we also want to keep the bank exposure variable among the regressors and

this can be done through the method proposed by Belloni et al. (2014). It consists in running

the LASSO estimation on to 2 different equations:

ybt = x
′

b × El Niñotβ + εbt

Exposureb × El Niñot = x
′

b × El Niñotβ + κbt

The first equation regresses the dependent variable, the logarithm of loans, on the vector of

potential controls, x
′

b, interacted with the variable capturing the occurrence of a top 5 El Niño

event, of El Niñot. The second equation regresses exposure that we want to be included in
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the first equation, hence the interaction between the bank exposure and a top 5 El Niño event,

Exposureb×ElNiñot, on the same set of potential control variables interacted with the dummy

for a top 5 El Niño event. Exposureb, is defined as a weighted average of the county climate

exposure using mortgage lending shares as weights,
∑

c Exposurec × Sharebc. In particular,

Exposurec takes value 1 if the county is exposed to a positive temperature shock, takes 0 if the

county is unaffected by El Niño and takes the value -1 if the county is affected by a negative

temperature shock. The second variable, Sharebc, is the average share of mortgage lending that

bank b issues to borrowers in county c relative to the entire stock of mortgages of bank b across

all years in the sample. After this first step, the second step consists in a OLS post-estimation

procedure including as regressors the union of the controls selected by the 2 Lasso procedures.

The need for running two separate LASSO regressions comes from the risk of omitted

variable bias. If only the first equation were to be estimated, the selected variables would

tend to include the ones with large effects on loans and exclude the ones with moderately-sized

coefficients. However, if one of the excluded variables had a strong correlation with exposure,

the regression in step 2 would result in an omitted variable bias. The effect of such a variable

on the outcome would be erroneously attributed to Exposureb × El Niñot. Similarly, if only

the second equation were to be regressed with LASSO, one could exclude some regressors that

are highly relevant for loans, but with only a moderate correlation with exposure. Again this

could lead to a non-negligible omitted variable bias. Including the variables selected by both

equations ensures that any excluded variables are at most mildly associated with the dependent

variables and the bank exposure, which greatly limits the scope for omitted-variables bias.

We follow in detail the algorithm implementing the LASSO estimation provided by Belloni

et al. (2012). From the call reports, there are 52 variables that could be included in this

estimation. Given our interest in understanding their role on the bank reaction to the El Niño,

we take the average of all variables across all periods and divide them by the average of total

bank assets across all periods. The list of variables is available at the end of this paper.

The variables selected by the algorithm are summarized in panel E of Table 1 and are the

following: 1) Operating Leverage - the ratio of the expenses on premises and fixed assets over

total assets; 2) Deposits - the ratio between total deposits over assets; 3) Unused Commitments

- the share of unused commitments over total assets (i.e. the undrawn portion of credit lines
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and other loan commitments); 4) Non-interest Expenses - the ratio of non-interest, operating

expenses over total assets; 5) Dividends - the share of dividends paid over total assets; 6) ROA

- the return on asset, i.e. net income over total assets.

We then present our results of the LASSO analysis in Table 9. This shows that the most

prominent variable in explaining the resilience of banks is their reliance on operating leverage,

proxied by the expenses on their physical premises over total assets. Banks with one standard

deviation lower expenses in physical capital are essentially not affected by El Niño, as the sum

of the coefficient on BankExposureb×ElNinot and the one on OperatingLeverageb×ElNinot

are close to zero. This coefficient suggests that banks with a stronger exposure to branches

and their own physical assets appear to be suffering the most from the realization of adverse

climate shocks.

At the same time, many of the remaining variables are close to statistical significance. For

instance the interaction between ROAb and El Ninot is be borderline insignificant around the

10% conventional threshold for loans, while is significantly different from zero below the 5%

threshold when regressed on total assets. This implies that during a climate shock, banks with

a high profitability perform better than the others and weather adverse climate effects more

effectively.

4 Robustness checks

4.1 La Niña

The opposite of a (positive) El Niño state is a (negative) “La Niña”. During La Niña years,

the surface temperature of the tropical Pacific Ocean are lower than average because stronger

westward wind circulation patterns keep the warm water against Asia, thus reducing heat

released from the ocean around the Americas. Figure A2 reports a description based on NOAA

elaborations.

Crucially for our purposes, La Niña offers an ideal “placebo” with two convenient elements:

1) a different cross-sectional temperature exposure, which is almost opposite compared to El

Niño ( left hand panel of Figure A3 in the Online Appendix); 2) different years during which

a top 5 La Niña event takes place (left hand panel of Figure A3 in the Online Appendix).
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It is also important to notice that the top 5 La Niña events are much weaker than the top

5 El Niño, since the absolute change in oceanic temperature peaks during a top 5 La Niña

event are half the size of a top 5 El Niño event. Based on this, we expect milder effects on

banks during top 5 La Niña years. Moreover, this specification also allows us to verify whether

unobservable geographic factors drive the results in the previous sections (i.e. North versus

South). We show the result of this robustness test in Table A1 and find that during a top 5

La Niña event banks with a one standard deviation higher exposure to La Niña do not have

different loans or total assets than others.

4.2 Event Study Specification

In this section we explore an event study specification of our bank-level analysis presented in

section 3.3. In particular, instead of presenting a difference-in-difference equation, we show the

results of a standard event study specification:

Ybt = αb + γt +
3∑

j=−3

βj Exposureb × El Ninojt + εbt (4)

in which the key variables in our study (loans, deposits and assets) are regressed on a set of

dummies around the top 5 El Niño events ranging from -3 to +3 interacted with the bank

exposure variable, Exposureb, and bank and year fixed effects, αb + γt. Standard errors are

clustered at the bank level as in the difference-in-difference setting.

The two panels of Figure A4 present a similar pattern for the evolution of bank variables

over time. In particular, we note that before a top 5 El Niño event, banks with a one standard

deviation higher exposure to El Niño are not different than other banks and lie on parallel

trends. However, during a a top 5 El Niño year and in the following year, banks banks with a

one standard deviation higher exposure experience a lower lending from the upper panel, and

lower assets in the lower panel. The effects are temporary and lasts only during the years 0

and 1, with the magnitudes reverting back to zero and becoming statistically indistinguishable

from zero during years 2 and 3.
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4.3 Demand and Supply using CRA Data

Table 4 presents evidence consistent with a supply-side channel, rather than demand, for the

effects of El Niño on credit using HMDA data. However, a potential concern is whether these

data are actually representative of bank exposure to specific counties given that most mortgages

are not retained on bank balance sheets but are later securitized.

To address this concern we re-examine our bank-county-year analysis using data from the

Community Reinvestment Act (CRA). These are loans made to small businesses that are harder

to securitize and hence are kept on bank balance sheet, in particular we focus on loans made

to firms with revenues below $1 million. We show this robustness test in Table A3.

Before comparing the two tables, it is important to note that we are likely to have lower

statistical power in this robustness test, since the CRA dataset contains only 25% of the obser-

vations available in the HMDA dataset. The reason for the reduced sample size is due to the

fact that CRA loans are made to small and opaque firms for which soft information acquisition

is crucial, requiring close interactions between banks and borrowers (Petersen and Rajan, 1994;

Degryse and Ongena, 2005). This is likely to be reflected in higher standard errors.

Table A3 shows that the coefficient on the interaction between the positive bank exposure

and Niño years using CRA data is close to the one estimated on HMDA in point estimate.

However, as anticipated, the standard errors are 3-4 times larger than in Table 4, making the

coefficients not statistically different from zero. Overall, these findings are aligned with our

results on HMDA lending and suggest that a similar, yet milder, effect may be taking place for

other types of loans.

4.4 Continuous measures of El Niño

In our baseline results we rely on an indicator equal to one for top 5 El Niño events. However

while this definition is descriptively convenient and allows us to identify with certainty excep-

tional El Niño years, there is in fact a continuum of El Niño conditions corresponding to the

amount of heat released into the tropical atmosphere. This continuum of events is measured

by the MEI index described in Section 2.2. We thus replace our dummy for a top 5 El Niño

event with the continuous MEI index in Table A4.

We find that when the MEI index is higher (i.e. a Niño-year is more likely) bank assets
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and lending contract, consistent with our baseline findings. The effects are not statistically

significant because the MEI index can take both positive and negative values (i.e. a Niña-year

is more likely). However, bank exposure to El Niño can be both positive (i.e. an increase in

temperature in the north) or negative (i.e. a decrease in temperature in the south). If we

restrict our attention to banks with positive exposure, which are the ones for which we find a

supply effect in Table 4, we find that in years where the MEI index is higher lending contracts

by about 0.6%, which is in line with our baseline finding.

4.5 Precipitations

El Niño does not only affect the level and variability of temperatures but also the pattern

of rainfall and dryness across the US. For example, in a strong El Niño year the West (i.e.

California) and South (i.e. Texas and Florida) experience more rainfall while the mid-west

becomes drier than usual. We are agnostic as to whether precipitation variation can affect bank

lending and other financial variables. We can test the effect of bank exposure to precipitation

jointly with temperature exposure, since the temperature and precipitation maps overlap to

some degree, but not perfectly, as shown in Figure A5.

This map is valuable in building an additional bank-level measure of exposure to El Niño-

induced precipitations from our county-level data. As a result, in Table A5 we can augment

our specification from Table 8 with a measure of climate exposure to El Niño, as well as a

measure of exposure to precipitations. This specification presents findings in line with Table 8

for temperatures and, at the same time, we can reject that exposure to exogenously higher pre-

cipitations generate an effect on banking. We conclude that the most salient climate variation

from an El Niño event is the variation induced in temperatures rather than that of rainfall.

4.6 Natural disasters

We perform a robustness check on the role of disasters using an alternative dataset: the Emer-

gency Events Database (EM-DAT), made publicly available by the Centre for Research on the

Epidemiology of Disasters (CRED) and the Université catholique de Louvain (UCLouvain).

It contains information on events classified as disasters, defined as those in which either at

least 10 or more people died, or 100 or more people have been affected or injured or are left
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homeless, or there has been a declaration by the country of a state of emergency or an appeal

for international assistance. The disaster classification is based on and adapted from the Peril

Classification and hazard Glossary of the Integrated Research on Disaster Risk (IRDR, 2014).

For the purpose of our analysis, we included in the final sample only natural disasters. We are

also able to measure in this dataset floods as a separate dummy variable. The dataset provides

the geocode for the location starting from the year 2000 onwards. For this reason our sample

was limited to US disasters between 2000 and 2016.

The first three columns of Table A6 regress the probability of natural disaster on the vari-

ables as presented in equation 1, while the last three columns use a dummy describing the

probability that a flood takes place in county c in year t. The results of the first three columns

are in line with the results of the last three columns of Table 3: counties with a positive ex-

posure experience fewer disasters during a top 5 El Niño event, while counties with a negative

exposure either a small positive effect in column (2) or no effect in column (3). The last three

columns focus on floods and, in line with the last three columns of Table 3, we observe that

most of the effects take place in counties with a negative exposure to El Niño during a top 5

event, which see a large and significant increase in floods (+17%), while counties with a positive

exposure at the center of this analysis see either no effect on floods (column (4)) or a small and

imprecise effect (column (6)).

4.7 Alternative diff-in-diff estimation

We verify that our main findings in Table 8 are robust to using the latest framework for

difference-in-differences designs with staggered treatment adoption and heterogeneous causal

effects proposed by Borusyak et al. (2022). We proceed through the following steps.

First, the treatment variable is discretized. We do this by assigning value 1 to those banks

whose exposure to the Niño (Bank Exposureb), measured as the product between the county

level variables of exposure and the average share of HMDA lending conducted by bank b in

county c across all years available in the data, is above the median value, and 0 otherwise. The

treatment variable is obtained as the interaction between this discretized exposure to the Niño

and the variable El Ninot, measuring whether year t presents a top 5 El Niño event.

We then use the imputation estimator of Borusyak et al. (2022), which generates the effects
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of a binary treatment with staggered rollout allowing for arbitrary heterogeneity and dynamics

of causal effects. The benchmark case of this method considers each unit i getting treated as of

period t and remaining treated forever. In this case, however, multiple events per unit can be

accounted for. We provide results from a standard two-way fixed effects model using our new

binary treatment variable. As it can be seen in Table A7, this ensures that the new specification

of the treatment variable does not change the results: coefficients maintain the sign and the

significance of those in Table 8. Results obtained from the estimation using Borusyak et al.

(2022) are still very close in point estimate, sign and precision.

4.8 Alternative clustering

In this section we explore alternative methods to cluster our standard errors. In particular,

we explore three alternative layers of clustering: 1) clustering at the state level the regressions

in which we adopt the county clustering, instead of the county level; 2) a spatial clustering

approach, which allows for dependence of the error terms across counties within a 200km

radius; 3) a wild bootstrap method on our main tables, following Roodman et al. (2019).

Table A8 replicates the findings on temperatures presented in Table 2, while Table A9

those in Table 3 using state level clustering. In both cases, state-level clusteringleads to higher

standard errors compared to the baseline, however the significance of the estimates remains

below the 5% conventional threshold. Similarly, Table A10 and Table A11 replicate the baseline

results using spatial clustering. The confidence intervals are wider, but the estimates are still

significant at the 1 or 5% level.

The following three tables (Tables A12, Table A13 and A14) replicate our baseline findings

using wild bootstrap standard errors. In all cases, the standard errors tend to be higher, but

close in magnitude to the previous clustering at the state or spatial clustering level. The last

rows of each of these columns presents also the specific p-values and statistics associated with

this method.

4.9 LASSO: alternative model selections

In this section we provide some model selections alternative to LASSO: the stepwise selec-

tions. We use two different stepwise selections, the backward and the forward. The backward
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procedure works as follows: first, it starts with the full model containing all control variables

and then eliminates them one by one starting from the one with the highest p-value, until the

remaining covariates all have a p-value below 5% . The forward procedure instead starts with

a model containing only the constant term and adds one regressor at a time, starting from the

one with the lowest p-value and until it reaches the 5% level.

We report the results of the backward and forward selection in Tables A15 and A16. These

procedures select a larger number of covariates, all expressed as a fraction of total assets,

compared to the baseline LASSO analysis, such as: Net interest margin (NIM); Past due loans

(30-89 days) secured by real estate; Past due commercial and industrial loans (30-89 days)

secured by real estate; Currency and coin held in domestic offices; Total securities; Amount of

loans secured by nonfarm nonresidential properties with original amounts of $100,000 or less;

Amount of loans secured by nonfarm nonresidential properties with original amounts less than

$1,000,000; Total interest expense ; Total assets past due 30 through 89 days;Interest expense

from deposits; Risk-weighted assets. Notably however, operating leverage, a key regressor that

was originally selected by LASSO in Table 9 remain in the set of chosen regressors and has the

same sign.

5 Concluding Remarks

Climate change poses risks to households and firms, and therefore to the banking sector. Policy-

makers and regulators have started to assess banks’ level of preparedness for properly managing

climate risk, for example, through climate risk stress testing (ECB, 2022). However, limited

evidence exists on whether and how banks cope with climate shocks, except for the case of

natural disasters. In this paper, we study how banks react to, and whether they are resilient

against, climate-related risks induced by El Niño.

Our results show that El Niño leads to large, significant and heterogeneous changes in

lending because of its effects on bank balance sheets and credit. A machine learning tool allows

us to uncover the characteristics of banks that successfully hedge this climate shock. We find

that those with lower operating leverage (i.e. lower cost for premises and branches as a share of

assets) have lower exposure to physical risk and hence reduce their lending by less than other

banks. Our findings thus offer insights into understanding the theoretical modelling of climate
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change in finance and key policy implications for regulating climate-resilient financial systems.
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Generoso, Rémi, Cécile Couharde, Olivier Damette, and Kamiar Mohaddes, “The
Growth Effects of El Niño and La Niña: Local Weather Conditions Matter,” Annals of
Economics and Statistics, 2020, (140), 83–126.

Giannetti, Mariassunta, Loumiti Maria, Martina Jasova, and Caterina Mendicino,
“’Glossy Green’ Banks: The Disconnect Between Environmental Disclosures and Lending
Activities,” Working Paper. Available at SSRN 4424081, 2023.

Giglio, Stefano, Matteo Maggiori, Krishna Rao, Johannes Stroebel, and Andreas
Weber, “Climate change and long-run discount rates: Evidence from real estate,” The
Review of Financial Studies, 2021, 34 (8), 3527–3571.

Goldsmith-Pinkham, Paul, Matthew Gustafson, Ryan Lewis, and Michael Schwert,
“Sea level rise and municipal bond yields,” The Review of Financial Studies (forthcoming),
2021.

Hsiang, Solomon M, “Temperatures and cyclones strongly associated with economic pro-
duction in the Caribbean and Central America,” Proceedings of the National Academy of
sciences, 2010, 107 (35), 15367–15372.

, Kyle C Meng, and Mark A Cane, “Civil conflicts are associated with the global
climate,” Nature, 2011, 476 (7361), 438–441.

, Marshall Burke, and Edward Miguel, “Quantifying the influence of climate on human
conflict,” Science, 2013, 341 (6151), 1235367.

IRDR, “Peril Classification and Hazard Glossary,” Integrated Research on Disaster Risks
DATA Publication No. 1 2014.

Ivanov, Ivan, Mathias S Kruttli, and Sumudu W Watugala, “Banking on carbon:
Corporate lending and cap-and-trade policy,” The Review of Financial Studies (forthcoming),
2023.

Ivanov, Ivan T., Marco Macchiavelli, and João A. C. Santos, “Bank lending networks
and the propagation of natural disasters,” Financial Management, 2022, 51 (3), 903–927.

Ivushkin, Konstantin, Harm Bartholomeus, Arnold K Bregt, Alim Pulatov, Bas
Kempen, and Luis De Sousa, “Global mapping of soil salinity change,” Remote sensing
of environment, 2019, 231, 111260.

Jung, Hyeyoon, Robert F Engle, and Richard Berner, “Climate stress testing,” FRB
of New York Staff Report, 2021, (977).
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Figures and Tables

Figure 1: El Niño and the Pacific Jet Stream

Notes: This figure shows a map elaborated by the National Oceanic and Atmospheric Administration (NOAA)
illustrating the effects of El Niño on the Pacific jet stream. More information is provided here.

Figure 2: The 5 strongest El Niño events

Notes: This figure shows a selected number of years and the corresponding changes in oceanic temperatures
determined by their El Niño events. The 5 years with the strongest El Niño events are described by the
horizontal line. The x-axis shows the years and y-axis measures the values of the MEI.V2 index, as an average
between January and May.
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Figure 3: Heterogeneous county exposure to El Niño

Notes: This figure digitizes the map in Figure 1 based on the elaboration of the NOAA for the heterogeneous
geographic impact of El Niño on US weather.

Figure 4: Natural Amenities Scale in the US

Notes: This figure shows a map of the natural amenities scale in the United States, as elaborated by the
Economic Research Service of U.S. Department of Agriculture. Colors represent the magnitude of the scale
going from green to yellow and red. Counties with a dark green color are charactertized by the highest amenities
scale, those in yellow report the average amenities and those in dark red by the lowest amenities scale.
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Table 1: Summary Statistics

(1) (2) (3) (4) (5)
Variable Obs. Mean S.D. Min Max

Panel A - County-Level Climate and Disasters
Average Temperaturesct 108,761 12.85 4.540 -15.86 32.29
V olatility of Temperaturesct 108,752 1.684 0.805 0.0346 17.06
Probability of Nat. Disasterct 111,888 0.304 0.460 0 1

Panel B - Mortgage Lending, House Prices and Amenities
Lendingct 91,592 10.45 2.591 0 19.31
House Price Indexct 77,708 110.2 36.05 26.42 423.4
Amenities Rankc 3,107 3.492 1.043 1 7
Water Salinityct 53,868 1,045 3,476 0.0583 189,911
Soil Salinityct 21,756 0.160 0.280 0 3.364

Panel C - Bank-Level Exposure to El Niño
BankExposureb 6,674 0.0541 0.566 -1 1

Panel D - Bank-Level Variables
Lendingbt 81,086 11.72 1.522 -4.605 20.49
Assetsbt 81,086 12.28 1.423 7.947 21.44
RE Lendingbt 81,086 11.34 1.647 -4.605 20.00
CI Lendingbt 81,086 9.698 1.920 -4.605 19.30
Ind. Lendingbt 81,086 8.807 1.880 -4.605 18.99

Panel E - Bank-Level Variables selected by LASSO
Operating Leverageb 6,294 0.00234 0.00108 5.66e-06 0.0298
Depositsb 6,294 0.840 0.0669 0.0932 0.986
Unused Commitmentsb 6,293 0.0154 0.0192 0 0.239
NonInterest Expensesb 6,294 0.00582 0.00548 0.000717 0.347
Dividendsb 6,294 0.00213 0.00245 0 0.0595
ROAb 6,294 0.0127 0.0285 -0.163 0.773

Notes: This table presents summary statistics for the databases presented in section 2.4. Panel A summarises
the climate and disaster variables in county c in year t: i) the average temperature in a county; ii) its standard
deviation, used as a measure of volatility and iii) the probability of a natural disaster in a county as measured by
the FEMA Disaster Declarations Summary. Panel B presents summary statistics for the county c level amount
of lending in year t, measured through the aggregation at county level of the Home Mortgage Disclosure Act
(HMDA) data; the house price index elaborated by the Federal Housing Finance Agency; the Amenities rank
as elaborated by the Natural Amenities Scale; Water and Soil salinity as presented in section 2.5. Panel C
reports the measure of bank exposure created combining the local county exposure to El Niño with the bank
share of lending in that county (see section 2.4.2 for more details on the definition of bank exposure). Panel D
summarises key financial variables for bank b in year t used to investigate the effects of bank exposure on banks
and their balance sheets, these are the natural logarithm of loans and assets, and the types of lending (RE
standing for Real Estate lending, CI for Commercial and Industrial lending and Ind. for Individual lending).
Panel E displays the descriptives for the bank variables selected through the Lasso estimation as controls (see
section 3.6 for more). Column (1) reports the number of observations, columns (2) and (3) report the variable’s
mean and standard deviation, while columns (4) and (5) indicate their corresponding minimum and maximum
values.

39



Table 2: Climate, Disasters and El Niño

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Variables Average Temperatures Volatility of Temperatures Probability of Disaster
Positive Exposurec ×
El Ninot

0.518*** 0.462*** 0.0724*** 0.0675*** -0.0270*** -0.00537
(0.0190) (0.0195) (0.00985) (0.0101) (0.00926) (0.00931)

Negative Exposurec ×
El Ninot

-0.479*** -0.362*** -0.0482*** -0.0311*** 0.142*** 0.141***
(0.0181) (0.0186) (0.00820) (0.00853) (0.00936) (0.00942)

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs. 108,761 108,761 108,761 108,752 108,752 108,752 111,888 111,888 111,888
Adj. R sq. 0.949 0.949 0.949 0.597 0.597 0.597 0.202 0.204 0.204
Mean Dep. Var. 12.86 12.86 12.86 1.674 1.674 1.674 0.304 0.304 0.304

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c in year t. County and year fixed effects are present in all
columns, and standard errors are clustered at the county level. The dependent variable in the first three columns is the average yearly temperature of a county and
is defined as the yearly average of monthly averages in Celsius degrees. The dependent variable in the next set of three columns is the yearly standard deviation of
the growth rate of daily temperatures. The dependent variable in the last three set of columns is the probability of a natural disaster in a county, which is a dummy
that takes value 1 if there have been one or more natural disasters in county c in year t as recorded by the FEMA Disaster Declarations database, and 0 otherwise.
Positive Exposurec takes unit value if a county presents a positive climate exposure to El Niño; Negative Exposurec takes unit value if a county presents a negative
climate exposure to El Niño and El Niñot takes unit value if year t exhibits a top 5 El Niño event. Obs. refers to the number of observations, Adj. R sq. refers to the
adjusted R2 and Mean Dep. Var. refers to the mean value of the dependent variable. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.
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Table 3: Mortgage Lending, House Prices and El Niño

(1) (2) (3) (4) (5) (6)
Variables Mortgage Lending House Prices
Positive Exposurec ×
El Ninot

-0.116*** -0.112*** -0.0133*** -0.0130***
(0.0170) (0.0174) (0.00267) (0.00275)

Negative Exposurec ×
El Ninot

0.0507*** 0.0241 0.00531 0.00219
(0.0183) (0.0187) (0.00374) (0.00384)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs. 91,591 91,591 91,591 77,708 77,708 77,708
Adj. R sq. 0.916 0.916 0.916 0.852 0.852 0.852
Mean Dep. Var. 10.46 10.46 10.46 1.102 1.102 1.102

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c
in year t. County and year fixed effects are present in all columns, and standard errors are clustered at the
county level. The dependent variable in the first three columns is the natural logarithm of HMDA lending at
the county level, the dependent variable in the last three columns is the House Price Index elaborated from the
Federal Housing Finance Agency. Positive Exposurec takes unit value if a county presents a positive climate
exposure to El Niño; Negative Exposurec takes unit value if a county presents a negative climate exposure to
El Niño and El Niñot takes unit value if year t exhibits a top 5 El Niño event. Obs. refers to the number
of observations, Adj. R sq. refers to the adjusted R2 and Mean Dep. Var. refers to the mean value of the
dependent variable. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.
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Table 4: Financial Transmission of El Niño

(1) (2) (3) (4) (5)
Variables Mortgage Lending
Positive Bank Exposureb ×
El Ninot

-0.197*** -0.218*** -0.202* -0.238**
(0.0725) (0.0763) (0.110) (0.0945)

Negative Bank Exposureb ×
El Ninot

-0.00193 0.0117
(0.0526) (0.0529)

PositiveCountyExposurec×
El Ninot

0.112*** 0.0476
(0.0392) (0.0321)

NegativeCountyExposurec×
El Ninot

-0.000218 0.00413
(0.0243) (0.0241)

County All All All Exposed Non-Exposed
Bank FE Yes Yes Yes Yes
County FE Yes Yes
Year FE Yes
County × Year FE Yes Yes Yes
Bank × Year FE Yes
Obs. 2,469,262 2,462,802 2,465,501 767,496 1,697,353
Adj. R sq. 0.362 0.402 0.361 0.387 0.377
Mean Dep. Var. 6.552 6.552 6.552 6.447 6.599

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is lending in
county c, by bank b in year t. Fixed effects for bank, county and year are present in column (1), only for county
and bank-year in column (2) and only for bank and county-year in the remaining columns, and standard errors
are clustered at the county level. This table presents ordinary least squares (OLS) estimates, where the unit
of observation is bank b in year t. Bank and year fixed effects are present in all columns, and standard errors
are clustered at the bank level. The dependent variable is the natural logarithm of the mortgage lending at the
county level. Positive Bank Exposureb takes unit value if bank b presents a positive exposure to El Niño, as
described in section 2.4.2, Negative Bank Exposureb takes unit value if bank b presents a negative exposure
to El Niño. Positive County Exposurec takes unit value if county c presents a positive exposure to El Niño as
presented in Figure 3. NegativeCounty Exposurec takes unit value if county c presents a negative exposure to
El Niño as presented in Figure 3. ElNinot takes unit value if year t exhibits a top 5 El Niño event. Obs. refers
to the number of observations, Adj. R sq. refers to the adjusted R2 and Mean Dep. Var. refers to the mean
value of the dependent variable. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.

42



Table 5: Channels: Salinity and El Niño

(1) (2) (3) (4) (5) (6)
Variables Water Salinity Soil Salinity
Positive Exposurec ×
El Ninot

0.134*** 0.0831*** 0.0413*** 0.0344***
(0.0291) (0.0265) (0.00413) (0.00423)

Negative Exposurec ×
El Ninot

-0.368*** -0.346*** -0.0538*** -0.0452***
(0.117) (0.118) (0.00751) (0.00767)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs. 53,838 53,838 53,838 21,756 21,756 21,756
Adj. R sq. 0.724 0.724 0.724 0.740 0.740 0.741
Mean Dep. Var. 1.045 1.045 1.045 0.160 0.160 0.160

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c in
year t. County and year fixed effects are present in all columns, and standard errors are clustered at the county
level. The dependent variable is water salinity in the first three columns and soil salinity in the second three
columns, both at the county level. The definition of these variables is available in section 2.4. PositiveExposurec
takes unit value if a county presents a positive climate exposure to El Niño; Negative Exposurec takes unit
value if a county presents a negative climate exposure to El Niño and ElNiñot takes unit value if year t exhibits
a top 5 El Niño event. Obs. refers to the number of observations, Adj. R sq. refers to the adjusted R2 and
Mean Dep. Var. refers to the mean value of the dependent variable. ***, ** and * indicate significance at the
1%, 5% and 10% level, respectively.

Table 6: Channels - Crop Yields and El Niño

(1) (2) (3) (4) (5) (6)
Variables Corn - Bushels per harvest acre Wheat - Bushels per harvest acre
Positive Exposurec
×El Ninot

-0.916** -0.900** -0.850** -0.767**
(0.452) (0.456) (0.364) (0.365)

Negative Exposurec
×El Ninot

0.606 0.309 1.412** 1.266**
(1.468) (1.482) (0.622) (0.624)

County FE Yes Yes Yes
Year FE Yes Yes Yes
Obs. 35,072 35,072 35,072 33,156 33,156 33,156
Adj. R sq. 0.691 0.691 0.691 0.761 0.761 0.761
Mean Dep. Var. 116.4 116.4 116.4 44.42 44.42 44.42

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c in
year t. County and year fixed effects are present in all columns, and standard errors are clustered at the county
level. The dependent variable is corn yields in the first three columns and wheat yields in the last three columns,
both at the county level. The definition of these variables is available in section 2.4. Positive Exposurec takes
unit value if a county presents a positive climate exposure to El Niño; Negative Exposurec takes unit value if
a county presents a negative climate exposure to El Niño and El Niñot takes unit value if year t exhibits a top
5 El Niño event. Obs. refers to the number of observations, Adj. R sq. refers to the adjusted R2 and Mean
Dep. Var. refers to the mean value of the dependent variable. ***, ** and * indicate significance at the 1%,
5% and 10% level, respectively.
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Table 7: Channels - Natural Amenities and El Niño

(1) (2) (3) (4) (5) (6)
Variables Mortgage Lending House Prices
Positive Exposurec
×El Ninot

-0.116*** -0.101*** -0.0133*** -0.0132***
(0.0170) (0.0214) (0.00267) (0.00286)

Natural Amenitiesc
×El Ninot

-0.0112 -0.0165 -0.0339*** -0.0328***
(0.0136) (0.0148) (0.00244) (0.00282)

Positive Exposurec ×
Natural Amenitiesc ×
El Ninot

-0.0629* -0.0176***
(0.0346) (0.00520)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs. 91,591 91,591 91,591 77,708 77,708 77,708
Adj. R sq. 0.916 0.916 0.916 0.852 0.853 0.853
Mean Dep. Var. 10.46 10.46 10.46 1.102 1.102 1.102

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c
in year t. County and year fixed effects are present in all columns, and standard errors are clustered at the
county level. The dependent variable in the first three columns is the natural logarithm of HMDA lending at
the county level, the dependent variable in the last three columns is the House Price Index elaborated from the
Federal Housing Finance Agency. Positive Exposurec takes unit value if a county presents a positive climate
exposure to El Niño; Negative Exposurec takes unit value if a county presents a negative climate exposure to
El Niño and ElNiñot takes unit value if year t exhibits a top 5 El Niño event. NaturalAmenitiesc is a dummy
variable taking unit value for counties that present a rank of natural amenities beyond the median. Obs. refers
to the number of observations, Adj. R sq. refers to the adjusted R2 and Mean Dep. Var. refers to the mean
value of the dependent variable. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.
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Table 8: Banks and El Niño

(1) (2) (3) (4) (5)
Variables Assets Loans Real Commercial Consumer

Estate and Industrial Lending
Positive Bank
Exposureb × El Ninot

-0.00801** -0.0165*** -0.0145** -0.0268** -0.00720
(0.00375) (0.00519) (0.00724) (0.0105) (0.0101)

Negative Bank
Exposureb × El Ninot

0.00647 0.00412 0.00602 0.000985 -0.00768
(0.00414) (0.00622) (0.00835) (0.0109) (0.00893)

Bank FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Obs. 80,750 80,750 80,750 80,750 80,750
Adj. R sq. 0.947 0.910 0.884 0.809 0.848
Mean Dep. Var. 12.28 11.72 11.34 9.698 8.807

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is bank b in
year t. Bank and year fixed effects are present in all columns, and standard errors are clustered at the bank
level. The dependent variable in the first column is the natural logarithm of assets, the second columns reports
the natural logarithm of total loans, the third column presents the natural logarithm of real estate lending,
the fourth column presents lending in commercial and industrial activities and the fifth column the natural
logarithm of individual loans. Positive Bank Exposureb measures the exposure of bank b to regions positively
affected by El Niño and is calculated as the product between the county level variable of positive exposure and
the average share of HMDA lending conducted by bank b in county c across all years available in the data.
Negative Bank Exposureb measures the exposure of bank b to regions negatively affected by El Niño and is
calculated as the product between the county level variable of negative exposure and the average share of HMDA
lending conducted by bank b in county c across all years available in the data. ElNiñot takes unit value if year
t exhibits a top 5 El Niño event. Obs. refers to the number of observations, Adj. R sq. refers to the adjusted
R2 and Mean Dep. Var. refers to the mean value of the dependent variable. ***, ** and * indicate significance
at the 1%, 5% and 10% level, respectively.

45



Table 9: A LASSO analysis of climate resilience

(1) (2)
Variables Loans Assets
Bank Exposureb×
El Ninot

-0.0207*** -0.0131***
(0.00620) (0.00400)

Operating Leverageb ×
El Ninot

-0.0379* -0.0145**
(0.0197) (0.00630)

Depositsb×
El Ninot

0.00903 0.00265
(0.0263) (0.00684)

Unused Commitmentsb ×
El Ninot

-0.00576 -0.00131
(0.00784) (0.00435)

NonInterest Expensesb ×
El Ninot

0.0231 0.00792*
(0.0182) (0.00411)

Dividendsb×
El Ninot

0.0134 0.00520
(0.0181) (0.00832)

ROAb×
El Ninot

0.0110 0.0109*
(0.0133) (0.00581)

Bank FE Yes Yes
Year FE Yes Yes
Obs. 80,748 80,748
Adj. R sq. 0.910 0.947
Mean Dep. Var. 11.72 12.28

Notes: This table presents the second step procedure of the Post-Lasso estimation. It consists on OLS estimates
for the model including the controls selected by the Lasso operator. The unit of observation is bank b in year
t. The selection is based on 2 equations: 1) a Lasso regression of the logarithm of loans of bank b in year t
on a set of controls defined as bank b characteristics averaged over the years and interacted with a dummy
that takes unit value if year t exhibits a top 5 El Niño event; and 2) a Lasso regression of the bank b exposure
interacted with ta dummy that takes unit value if year t exhibits a top 5 El Niño event on the same set of
controls. The union of the two is then included in the OLS regression using as dependent variables the natural
logarithm of loans (column 1) and the natural logarithm of assets (column 2). See section 3.6 for the definition
of all variables in this table. Bank and year fixed effects are present in both columns, and standard errors are
clustered at the bank level. Obs. refers to the number of observations, Adj. R sq. refers to the adjusted R2

and Mean Dep. Var. refers to the mean value of the dependent variable. ***, ** and * indicate significance at
the 1%, 5% and 10% level, respectively.
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Online Appendix

Figures and Tables

Figure A1: Bank exposure to El Niño

Notes: This figure shows three examples of bank exposure to El Niño. The bank exposure is defined as a
weighted sum between the climate exposure of a county in which the bank operates and the share of HMDA
lending that the bank conducts in that county as a share of total. The upper panel shows a bank with a highly
positive exposure (Associated Bank-Corp), the middle panel shows a bank with a zero exposure (The Wilber
Corporation) and the lower panel presents a bank with a highly negative exposure (Hancock Holding Company).
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Figure A2: The Top 5 El Niño and La Niña

Notes: This figure shows two panels reporting the strongest 10 El Niño and La Niña events, the left picture
shows El Niño, while La Niña is reported on the right. The x-axis shows the years and y-axis measures the
values of the MEI.V2 index, as an average between January and May.

Figure A3: The cross-section of temperatures: El Niño and La Niña

Notes: This figure shows two panels. The left hand panel shows the map of temperature effects due to El Niño,
while the right hand panel shows the heterogeneous temperature impact of La Niña. In both cases, counties
coloured in light red present a positive exposure (i.e., higher temperatures) and those in blue a negative exposure
(i.e., lower temperatures).
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Figure A4: Event Study Specification and El Niño

Notes: This figure presents two panels showing the results of the event study specification discussed in section
4.2. The upper panel presents the results for lending and the lower panel for assets. The y-axis reports the
magnitudes in points of natural logarithm, the x-axis reports the year relative to El Niño being the zero.
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Figure A5: El Niño and Precipitations

Notes: This figure digitizes a map based on the elaboration of the National Oceanic and Atmospheric Admin-
istration (NOAA) showing the heterogeneous geographic impact of El Niño on precipitations. The green area
presents a positive exposure to precipitations, while the yellow area shows the negative exposure.

Figure A6: Alternative Exposure

Notes: This figure digitizes a map based on the elaboration of the National Oceanic and Atmospheric Admin-
istration (NOAA) showing the heterogeneous geographic impact of El Niño on temperatures. The red area
presents a positive exposure to precipitations, while the blue area shows the negative exposure.
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Table A1: “Placebo”: Banks and La Niña

(1) (2)
Variables Loans Assets
Bank Nina Exposureb ×
La Ninat

0.00138 0.00231
(0.00359) (0.00251)

Bank FE Yes Yes
Year FE Yes Yes
Obs. 80,750 80,750
Adj. R sq. 0.910 0.947
Mean Dep. Var. 11.72 12.28

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is bank b in
year t. Bank and year fixed effects are present in all columns, and standard errors are clustered at the bank level.
The dependent variable in the first column is the natural logarithm of bank loans, while the second columns
reports the natural logarithm of total bank assets. Bank Nina Exposureb measures the exposure of bank b to
La Niña and is calculated as the product between the county level variables of exposure and the average share
of HMDA lending conducted by bank b in county c across all years available in the data. La Niñat takes unit
value if year t exhibits a top 5 La Niña event. The list of years with top 5 La Niña events can be found in the
right panel of Figure A3. Obs. refers to the number of observations, Adj. R sq. refers to the adjusted R2 and
Mean Dep. Var. refers to the mean value of the dependent variable. ***, ** and * indicate significance at the
1%, 5% and 10% level, respectively.
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Table A2: Water Salinity and El Niño

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Variables Rivers Lakes Groundwater

Panel A: Probability of Water Salinity > 1000 ppm
Positive Exposurec ×
El Ninot

0.0179*** 0.0114** 0.0189** 0.0191** 0.0365** 0.0329*
(0.00560) (0.00552) (0.00858) (0.00858) (0.0162) (0.0168)

Negative Exposurec ×
El Ninot

-0.0471*** -0.0441*** -0.00602 0.000847 -0.0229 -0.0129
(0.01000) (0.0100) (0.0112) (0.0112) (0.0179) (0.0186)

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs. 53,838 53,838 53,838 16,289 16,289 16,289 17,106 17,106 17,106
Adj. R sq. 0.679 0.679 0.679 0.672 0.672 0.672 0.402 0.402 0.402
Mean Dep. Var. 0.0967 0.0967 0.0967 0.0622 0.0622 0.0622 0.148 0.148 0.148

Panel B: Probability of Water Salinity > 2000 ppm
Positive Exposurec ×
El Ninot

0.0128*** 0.00840*** 0.0164*** 0.0149*** 0.0194* 0.0110
(0.00302) (0.00290) (0.00577) (0.00558) (0.0116) (0.0122)

Negative Exposurec ×
El Ninot

-0.0324*** -0.0302*** -0.0127 -0.00729 -0.0333*** -0.0299**
(0.00847) (0.00853) (0.00981) (0.00978) (0.0126) (0.0132)

County FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Obs. 53,838 53,838 53,838 16,289 16,289 16,289 17,106 17,106 17,106
Adj. R sq. 0.703 0.703 0.703 0.653 0.653 0.653 0.198 0.198 0.198
Mean Dep. Var. 0.0466 0.0466 0.0466 0.0239 0.0239 0.0239 0.0474 0.0474 0.0474

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c in year t. County and year fixed effects are present in all
columns, and standard errors are clustered at the county level. The dependent variables are two dummy variables that take unit value if water salinity exceeds two
thresholds: 1000 parts per million (ppm) in panel A and 2000 ppm in panel B. The first three columns measure water salinity in rivers, the second three columns in lakes
and the last three columns in groundwater reserves. PositiveExposurec takes unit value if a county presents a positive climate exposure to El Niño; NegativeExposurec
takes unit value if a county presents a negative climate exposure to El Niño and El Niñot takes unit value if year t exhibits a top 5 El Niño event. Obs. refers to the
number of observations, Adj. R sq. refers to the adjusted R2 and Mean Dep. Var. refers to the mean value of the dependent variable. ***, ** and * indicate significance
at the 1%, 5% and 10% level, respectively.
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Table A3: El Niño, Bank and County Factors - CRA Data

(1) (2) (3)
Variables CRA Lending
Positive Bank Exposureb ×
El Ninot

-0.0690 -0.0417
(0.130) (0.137)

Negative Bank Exposureb ×
El Ninot

-0.187 -0.182
(0.126) (0.148)

Positive County Exposurec ×
El Ninot

-0.0260 0.0170
(0.134) (0.138)

Negative County Exposurec ×
El Ninot

0.0161 0.00851
(0.0655) (0.0711)

Bank FE Yes Yes
County FE Yes Yes
Year FE Yes
County × Year FE Yes
Bank × Year FE Yes
Obs. 817,004 814,772 816,943
Adj. R sq. 0.258 0.234 0.291
Mean Dep. Var. 6.507 6.507 6.507

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is lending
in county c, by bank b in year t. Fixed effects for bank, county and year are present in column (1), only for
bank and county-year in column (2) and only for county and bank-year in column (3), and standard errors are
clustered at the county level. The dependent variable is the natural logarithm of the CRA lending at the county
level. PositiveBankExposureb takes unit value if bank b presents a positive exposure to El Niño, as described
in section 2.4.2, Negative Bank Exposureb takes unit value if bank b presents a negative exposure to El Niño.
Positive County Exposurec takes unit value if county c presents a positive exposure to El Niño as presented
in Figure 3. Negative County Exposurec takes unit value if county c presents a negative exposure to El Niño
as presented in Figure 3. El Ninot takes unit value if year t exhibits a top 5 El Niño event. Obs. refers to the
number of observations, Adj. R sq. refers to the adjusted R2 and Mean Dep. Var. refers to the mean value of
the dependent variable. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.
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Table A4: Bank effects, El Niño and the MEI index

(1) (2) (3) (4)
Variables Loans Assets Loans Assets
Bank Exposureb ×
MEI Nino Indext

-0.00342 -0.00237
(0.00274) (0.00204)

Positive Bank Exposureb
×MEI Nino Indext

-0.00613* -0.000869
(0.00324) (0.00245)

Bank FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Obs. 80,750 80,750 80,750 80,750
Adj. R sq. 0.910 0.947 0.910 0.947
Mean Dep. Var. 11.72 12.28 11.72 12.28

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is bank b in
year t. Bank and year fixed effects are present in all columns, and standard errors are clustered at the bank level.
The dependent variable in the first and third columns is the natural logarithm of bank loans, while in the second
and fourth columns is the natural logarithm of total bank assets. Exposureb measures the exposure of bank b
to El Niño and is calculated as the product between the county level variables of exposure and the average share
of HMDA lending conducted by bank b in county c across all years available in the data. MEI Nino Indext

reports the value of the Pacific Oceanic temperatures for all El Niño events, as described in section 2.2. Obs.
refers to the number of observations, Adj. R sq. refers to the adjusted R2 and Mean Dep. Var. refers to
the mean value of the dependent variable. ***, ** and * indicate significance at the 1%, 5% and 10% level,
respectively.

Table A5: Bank effects, El Niño and Precipitations

(1) (2)
Variables Loans Assets
Bank Exposureb ×
El Ninot

-0.0265*** -0.0147**
(0.00957) (0.00689)

Bank Prec. Exposureb ×
El Ninot

0.00951 0.0145**
(0.00815) (0.00624)

Bank FE Yes Yes
Year FE Yes Yes
Obs. 80,750 80,750
Adj. R sq. 0.910 0.947
Mean Dep. Var. 11.72 12.28

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is bank b in
year t. Bank and year fixed effects are present in all columns, and standard errors are clustered at the bank level.
The dependent variable in the first column is the natural logarithm of bank loans while the second columns
reports the natural logarithm of total bank assets. BankExposureb measures the exposure of bank b to El Niño
and is calculated as the product between the county level variables of exposure and the average share of HMDA
lending conducted by bank b in county c across all years available in the data. Bank Prec.Exposureb measures
the exposure of bank b to the precipitations induced by El Niño and is calculated as the product between the
county level variables of exposure and the average share of HMDA lending conducted by bank b in county c
across all years available in the data, the map for this exposure is available in Figure A5. El Niñot takes unit
value if year t exhibits a top 5 El Niño event. Obs. refers to the number of observations, Adj. R sq. refers to
the adjusted R2 and Mean Dep. Var. refers to the mean value of the dependent variable. ***, ** and * indicate
significance at the 1%, 5% and 10% level, respectively.

54



Table A6: El Niño and Natural Disasters - Alternative Dataset

(1) (2) (3) (4) (5) (6)
Variables Probability of Natural Disasters Probability of Flood
Positive Exposurec ×
El Ninot

-0.145*** -0.149*** -0.0177 0.00462
(0.0165) (0.0166) (0.0185) (0.0189)

Negative Exposurec ×
El Ninot

0.00817 -0.0292*** 0.145*** 0.146***
(0.00677) (0.00610) (0.0239) (0.0244)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs. 52,836 52,836 52,836 52,836 52,836 52,836
Adj. R sq. 0.221 0.220 0.221 0.188 0.189 0.189
Mean Dep. Var. 0.851 0.851 0.851 0.266 0.266 0.266

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c
in year t. It regresses Natural Disasters on the county exposure. to El Niño. County and year fixed effects
are present in all columns, and standard errors are clustered at the county level. The dependent variables are
NaturalDisastersct and Floodsct, which are two dummy variables that takes value 1 if there have been one
or more natural disasters and one or more floods in county c in year t as recorded by EM-DAT database, and
0 otherwise. Positive Exposurec takes unit value if a county presents a positive climate exposure to El Niño;
NegativeExposurec takes unit value if a county presents a negative climate exposure to El Niño and ElNiñot
takes unit value if year t exhibits a top 5 El Niño event. Obs. refers to the number of observations, Adj. R sq.
refers to the adjusted R2 and Mean Dep. Var. refers to the mean value of the dependent variable. ***, ** and
* indicate significance at the 1%, 5% and 10% level, respectively.

Table A7: Banks and El Niño - Alternative Difference-in-Difference Estimation

(1) (2)
Variables Assets Loans
Bank Exposureb ×
El Ninot

-0.013 -0.023**
(0.008) (0.011)

Bank FE Yes Yes
Year FE Yes Yes
Obs. 81,044 81,044
Mean Dep. Var. 12.28 11.72

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is bank b in
year t. Bank and year fixed effects are present in all columns, and standard errors are clustered at the bank level.
The dependent variable in the first column is the natural logarithm of total assets and in the second column
the natural logarithm of total loans. The estimation of the difference-in-difference is described in section 4.7.
Bank Exposureb measures the exposure of bank b to El Niño and is calculated as the product between the
county level variables of exposure and the average share of HMDA lending conducted by bank b in county c
across all years available in the data. El Niñot takes unit value if year t exhibits a top 5 El Niño event. Obs.
refers to the number of observations, Adj. R sq. refers to the adjusted R2 and Mean Dep. Var. refers to
the mean value of the dependent variable. ***, ** and * indicate significance at the 1%, 5% and 10% level,
respectively.
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Table A8: Climate and El Niño - Clustering at the State Level

(1) (2) (3) (4) (5) (6)
Variables Average Temperatures Volatility of Temperatures
Positive Exposurec ×
El Ninot

0.518*** 0.462*** 0.0724** 0.0675**
(0.0788) (0.0750) (0.0318) (0.0328)

Negative Exposurec ×
El Ninot

-0.479*** -0.362*** -0.0482* -0.0311
(0.0648) (0.0616) (0.0269) (0.0276)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs. 108,761 108,761 108,761 108,752 108,752 108,752
Adj. R sq. 0.949 0.949 0.949 0.597 0.597 0.597
Mean Dep. Var. 12.86 12.86 12.86 1.674 1.674 1.674

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c in
year t. County and year fixed effects are present in all columns, and standard errors are clustered at the state
level. The dependent variable in the first three columns is the average yearly temperature of a county and is
defined as the yearly average of monthly averages in Celsius degrees. The dependent variable in the last three
columns is the yearly standard deviation of the growth rate of daily temperatures. Positive Exposurec takes
unit value if a county presents a positive climate exposure to El Niño; Negative Exposurec takes unit value if
a county presents a negative climate exposure to El Niño and El Niñot takes unit value if year t exhibits a top
5 El Niño event. Obs. refers to the number of observations, Adj. R sq. refers to the adjusted R2 and Mean
Dep. Var. refers to the mean value of the dependent variable. ***, ** and * indicate significance at the 1%,
5% and 10% level, respectively.

Table A9: Mortgage Lending and El Niño - Clustering at the State Level

(1) (2) (3)
Variables Mortgage Lending
Positive Exposurec ×
El Ninot

-0.161*** -0.159***
(0.0342) (0.0358)

Negative Exposurec
×El Ninot

0.0550** 0.0174
(0.0248) (0.0246)

County FE Yes Yes Yes
Year FE Yes Yes Yes
Obs. 91,591 91,591 91,591
Adj. R sq. 0.909 0.909 0.909
Mean Dep. Var. 10.45 10.45 10.45

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c in
year t. County and year fixed effects are present in all columns, and standard errors are clustered at the state
level. The dependent variable is the natural logarithm of HMDA lending at the county level. PositiveExposurec
takes unit value if a county presents a positive climate exposure to El Niño; Negative Exposurec takes unit
value if a county presents a negative climate exposure to El Niño and ElNiñot takes unit value if year t exhibits
a top 5 El Niño event. Obs. refers to the number of observations, Adj. R sq. refers to the adjusted R2 and
Mean Dep. Var. refers to the mean value of the dependent variable. ***, ** and * indicate significance at the
1%, 5% and 10% level, respectively.
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Table A10: Climate and El Niño - Spatial Clustering

(1) (2) (3) (4) (5) (6)
Variables Average Temperatures Volatility of Temperatures
Positive Exposurec ×
El Ninot

0.518*** 0.462*** 0.0724** 0.0675**
(0.0684) (0.0695) (0.0305) (0.0313)

Negative Exposurec
×El Ninot

-0.479*** -0.362*** -0.0482* -0.0311
(0.0701) (0.0696) (0.0288) (0.0292)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs. 108,761 108,761 108,761 108,752 108,752 108,752
R sq. 0.00561 0.00293 0.00722 0.000481 0.000130 0.000533
Mean Dep. Var. 12.86 12.86 12.86 1.674 1.674 1.674

Notes:

Table A11: Mortgage Lending and El Niño - Spatial Clustering

(1) (2) (3)
Variables Mortgage Lending
Positive Exposurec ×
El Ninot

-0.116*** -0.112**
(0.0427) (0.0439)

Negative Exposurec
×El Ninot

0.0507 0.0241
(0.0362) (0.0371)

County FE Yes Yes Yes
Year FE Yes Yes Yes
Obs. 91,592 91,592 91,592
R sq. 0.000526 0.0000641 0.000540
Mean Dep. Var. 10.46 10.46 10.46

Notes:
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Table A12: Climate and El Niño - Wild Bootstrap

(1) (2) (3) (4) (5) (6)
Variables Average Temperatures Volatility of Temperatures
Positive Exposurec ×
El Ninot

0.517*** 0.461*** 0.0723** 0.0675**
(0.0787) (0.0749) (0.0318) (0.0327)

Negative Exposurec ×
El Ninot

-0.479*** -0.362*** -0.0481* -0.0310
(0.0647) (0.0615) (0.0268) (0.0276)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs. 108,761 108,761 108,761 108,752 108,752 108,752
Adj. R sq. 0.222 0.220 0.224 0.0708 0.0704 0.0708
Mean Dep. Var. 12.86 12.86 12.86 1.674 1.674 1.674
Wild Bootstrap p value 0 0.001 0.0601 0.149
Wild Bootstrap t stat 6.567 -7.401 2.278 -1.791
Wild Bootstrap p value Pos 0 0.0751
Wild Bootstrap t stat Pos 6.159 2.064
Wild Bootstrap p value Neg 0 0.297
Wild Bootstrap t stat Neg -5.890 -1.123
Wild Bootstrap p value joint 0 0.103
Wild Bootstrap F stat 70.45 3.763

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c
in year t. County and year fixed effects are present in all columns, wild bootstrapped standard errors are in
parenthesis and their corresponding pvalues and statistics are reported in the last rows. The dependent variable
in the first three columns is the average yearly temperature of a county and is defined as the yearly average of
monthly averages in Celsius degrees. The dependent variable in the last three columns is the yearly standard
deviation of the growth rate of daily temperatures. Positive Exposurec takes unit value if a county presents
a positive climate exposure to El Niño; Negative Exposurec takes unit value if a county presents a negative
climate exposure to El Niño and El Niñot takes unit value if year t exhibits a top 5 El Niño event. Obs. refers
to the number of observations, Adj. R sq. refers to the adjusted R2 and Mean Dep. Var. refers to the mean
value of the dependent variable. ***, ** and * indicate significance at the 1%, 5% and 10% level, respectively.
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Table A13: Mortgage Lending and El Niño - Wild Bootstrap

(1) (2) (3)
Variables Mortgage Lending
Positive Exposurec ×
El Ninot

-0.145*** -0.141***
(0.0391) (0.0402)

Negative Exposurec ×
El Ninot

0.0570** 0.0236
(0.0216) (0.0209)

County FE Yes Yes Yes
Year FE Yes Yes Yes
Obs. 91,592 91,592 91,592
Adj. R sq. 0.755 0.755 0.755
Mean Dep. Var. 10.45 10.45 10.45
Wild Bootstrap p value 0.005 0.0551
Wild Bootstrap t stat -3.709 2.640
Wild Bootstrap p value Pos 0.0110
Wild Bootstrap t stat Pos -3.518
Wild Bootstrap p value Neg 0.302
Wild Bootstrap t stat Neg 1.129
Wild Bootstrap p value joint 0.004
Wild Bootstrap F stat 11.09

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is county c
in year t. County and year fixed effects are present in all columns, wild bootstrapped standard errors are in
parenthesis and their corresponding pvalues and statistics are reported in the last rows. The dependent variable
is the natural logarithm of HMDA lending at the county level. Positive Exposurec takes unit value if a county
presents a positive climate exposure to El Niño; Negative Exposurec takes unit value if a county presents a
negative climate exposure to El Niño and El Niñot takes unit value if year t exhibits a top 5 El Niño event.
Obs. refers to the number of observations, Adj. R sq. refers to the adjusted R2 and Mean Dep. Var. refers
to the mean value of the dependent variable. ***, ** and * indicate significance at the 1%, 5% and 10% level,
respectively.

Table A14: Banking and El Niño - Wild Bootstrap

(1) (2)
Variables Loans Assets
Bank Exposureb ×
El Ninot

-0.0300*** -0.0176***
(0.00816) (0.00679)

Bank FE Yes Yes
Year FE Yes Yes
Obs. 81,086 81,086
Adj. R sq. 0.400 0.421
Mean Dep. Var. 11.72 12.28
Wild Bootstrap p value 0 0.00500
Wild Bootstrap t stat -3.673 -2.599

Notes: This table presents ordinary least squares (OLS) estimates, where the unit of observation is bank b
in year t. Bank and year fixed effects are present in all columns, wild bootstrapped standard errors are in
parenthesis and their corresponding pvalues and statistics are reported in the last rows. The dependent variable
in the first column is the natural logarithm of bank loans and in the second column is the natural logarithm
of total bank assets. Exposureb measures the exposure of bank b to El Niño and is calculated as the product
between the county level variables of exposure and the average share of HMDA lending conducted by bank b
in county c across all years available in the data. El Niñot takes unit value if year t exhibits a top 5 El Niño
event. Obs. refers to the number of observations, Adj. R sq. refers to the adjusted R2 and Mean Dep. Var.
refers to the mean value of the dependent variable. ***, ** and * indicate significance at the 1%, 5% and 10%
level, respectively.
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Table A15: Backward Selection

(1) (2)
VARIABLES Loans Assets
Bank Exposureb×
El Ninot

-0.0137** -0.00840*
(0.00667) (0.00437)

OperatingLeverageb×
El Ninot

-0.0244 -0.0124*
(0.0338) (0.00663)

NIMb×
El Ninot

-0.0136 -0.00192
(0.0104) (0.00437)

PastDueRealEstateb×
El Ninot

-0.0669*** -0.0524***
(0.0180) (0.0143)

PastDueC&Ib×
El Ninot

0.00385 0.00817
(0.00980) (0.00780)

CashDomesticb×
El Ninot

-0.0266** -0.0222***
(0.0133) (0.00526)

Securitiesb×
El Ninot

2.10e-05 -0.0120**
(0.00810) (0.00540)

BusinessLoans < $100Kb×
El Ninot

0.0350*** 0.0268***
(0.00656) (0.00416)

IntExpensesb×
El Ninot

-0.0903*** -0.0929***
(0.0223) (0.0150)

BusinessLoans < $1milb×
El Ninot

-0.0373*** -0.0284***
(0.0127) (0.00614)

PastDueAssetsb×
El Ninot

0.0312 0.0265*
(0.0197) (0.0153)

IntExpensesDepositsb×
El Ninot

-0.00896 -0.000864
(0.0251) (0.0154)

Bank FE Yes Yes
Year FE Yes Yes
Obs. 69,225 69,225
Adj. R sq. 0.913 0.946
Mean Dep. Var. 11.71 12.28

Notes:
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Table A16: Forward selection

(1) (2)
VARIABLES Loans Assets
Bank Exposureb×
El Ninot

-0.0133* -0.00909**
(0.00689) (0.00424)

OperatingLeverageb×
El Ninot

-0.0268 -0.0150**
(0.0255) (0.00648)

Depositsb×
El Ninot

0.0303 0.0246***
(0.0241) (0.00711)

Dividendsb×
El Ninot

0.0141 0.00313
(0.0177) (0.00788)

BusinessLoans < $100Kb×
El Ninot

0.0123** 0.0111***
(0.00624) (0.00333)

BusinessLoans < $1milb×
El Ninot

-0.0273*** -0.0201***
(0.00786) (0.00536)

IntExpensesDepositsb×
El Ninot

-0.0871*** -0.0687***
(0.0119) (0.00607)

RWAb×
El Ninot

0.00209 0.0125**
(0.00890) (0.00521)

Intangibleb×
El Ninot

-0.00294 0.0257***
(0.0399) (0.00898)

Bank FE Yes Yes
Year FE Yes Yes
Obs. 77,908 77,908
Adj. R sq. 0.910 0.946
Mean Dep. Var. 11.71 12.28

Notes:

Table A17: Alternative Exposure

(1) (2) (3) (4) (5) (6)
Variables meanTAVG sd TAVG growth
PositiveExposurec×
El Ninot

0.526*** 0.483*** 0.0794*** 0.0763***
(0.0194) (0.0198) (0.0100) (0.0103)

NegativeExposurec×
El Ninot

-0.461*** -0.351*** -0.0426*** -0.0252***
(0.0197) (0.0200) (0.00855) (0.00881)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs. 108,761 108,761 108,761 108,752 108,752 108,752
Adj. R sq. 0.949 0.949 0.949 0.597 0.597 0.597
Mean Dep. Var. 12.86 12.86 12.86 1.674 1.674 1.674

Notes:
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Table A18: Alternative Exposure

(1) (2) (3) (4) (5) (6)
VARIABLES log loans HPI2000
PositiveExposurec×
El Ninot

-0.123*** -0.118*** -0.0136*** -0.0132***
(0.0174) (0.0177) (0.00221) (0.00226)

NegativeExposurec×
El Ninot

0.0637*** 0.0386* 0.00661** 0.00377
(0.0199) (0.0202) (0.00315) (0.00322)

County FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Obs. 91,591 91,591 91,591 77,708 77,708 77,708
Adj. R sq. 0.916 0.916 0.916 0.893 0.893 0.893
Mean Dep. Var. 10.46 10.46 10.46 1.094 1.094 1.094

Notes:

List of Variables used in the LASSO estimation

1. sc = Securities;

2. bkprem = Equipment and premises;

3. ore = Other real estate;

4. intan = Intangibles and goodwill;

5. liab = Total liabilities;

6. dep = Total deposits;

7. eqtot = Total equity;

8. rwajt = Riskweighted assets;

9. rbct1j = Tier 1 (core) capital ;

10. intinc = Total interest income;

11. ilndom = Interest income from domestic loans;

12. ilnfor = Interest income from foreign loans;

13. eintexp = Total interest expense;
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14. edepdom = Interest expense from deposits ;

15. efrepp = Interest expense from fedfunds and repos (liabilities);

16. nonii = Noninterest income;

17. epremagg = Expenses on premises and fixed assets;

18. ideoth = Noninterest, operating expenses;

19. idpretx = Net income before taxes;

20. eqcdiv = Cash dividends to equity holders;

21. noij = Net operating income;

22. lnlsnet = Loans and leases, net ;

23. lnatres = Loans and leases loss allowances;

24. lnlsgr = Loans and leases, gross;

25. idlnls = Loans and lease financing receivables of the institution, including unearned in-

come;

26. lnre = Loans secured primarily by real estate, whether originated by the bank or pur-

chased;

27. lnci = Commercial and industrial loans;

28. lndepac = All loans (other than those secured by real estate), including overdrafts, to

banks, other depository institutions;

29. scus = Total US Treasury securities plus US Government agency and corporation obliga-

tions;

30. scrdebt = Total debt securities, both domestic and foreign at amortized cost and fair

value, excluding nonaccrual debt securities;

31. lndepcb = Total loans to commercial banks located in the U.S. and acceptances of such

banks;
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32. lnrenr4 = Amount of currently outstanding loans secured by nonfarm nonresidential prop-

erties with original amounts less than $1,000,000 held in domestic offices;

33. lnrenr1 = Amount of currently outstanding loans secured by nonfarm nonresidential prop-

erties with original amounts of $100,000 or less held in domestic offices;

34. lnrenr2 = Amount of currently outstanding loans secured by nonfarm nonresidential prop-

erties with original amounts of more than $100,000 through $250,000 held in domestic

offices;

35. depdom = The sum of all domestic office deposits, including demand deposits, money

market deposits, other savings deposits and time deposits;

36. idtrcomb = Total transaction and nontransaction accounts of commercial banks and other

depository institutions;

37. trn = The sum of the following accounts held in domestic offices: demand deposits, NOW

accounts, Automated Transfer Service (ATS) accounts and telephone or preauthorized

transfer accounts;

38. ddt = Total demand deposits included in transaction accounts held in domestic offices;

39. uc = The unused portions of commitments to make or purchase extensions of credit;

40. ucloc = Unused commitments for revolving, openend lines secured by 14 family residential

properties;

41. p3asset = Total assets past due 30 through 89 days and still accruing interest;

42. p3re = Total loans secured by real estate past due 30 through 89 days and still accruing

interest;

43. p3ci = Total commercial and industrial loans past due 30 through 89 days;

44. nimy = Net interest margin as percentage of asset;

45. roa = return on assets;
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46. insdep = Amount ($) of deposit accounts of $100,000 or less held in domestic offices and

in insured branches in Puerto Rico and U.S. territories and possessions or, if missing

Beginning September 2009, amount of deposit accounts of $250,000 or less (excluding

retirement= accounts) held in domestic offices and in insured branches in Puerto Rico

and U.S;

47. ntlnls = Net chargeoffs: Total loans and leases chargedoff (removed from balance sheet

because of uncollectibility), less amounts recovered on loans and leases previously charged-

off.);

48. chcoin = Currency and coin held in domestic offices;

49. lncon = Loans to individuals;

50. chus = Balances due from depository institutions in U.S.;

51. chfrb = Balances due from FRB;

52. chbal = Total cash and balances due from depository institutions.
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