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1 Introduction

In this paper, we provide novel evidence of anomaly return predictability that is inconsistent

with the standard no-arbitrage condition and, thus challenges prominent linear factor models.

Our predictability is endogenous to any chosen model, i.e. we construct a predictor for asset

returns based on the common trend in the price dynamics of the test asset and of the risk

factors at hand, without relying on information outside the model (like sentiment, accounting

signals, or other macro-based state variables). We then show how the presence of such

endogenous predictability, or lack thereof, can be linked to the conditional misspecification

of the mean-variance efficient portfolio constructed using different factor models. Whereas

a large and important literature tries to understand whether factor models are misspecified,

i.e. if a set of candidate factors span the stochastic discount factor, our unique contribution is

to show how a conditional model misspecification translates in anomaly return predictability

and to quantify the economic value for an investor that trades based on such predictability.

Our analysis starts from the expected return-beta representation which posits a linear

relationship between expected returns of any asset and the expected return on the conditional

mean-variance efficient portfolio. Such representation implies that no variable should forecast

future risk-adjusted returns when the model is correctly specified. Of course, the choice of the

predictor is critical, and subject to data snooping (Lo and MacKinlay, 1990). Our proposed

predictor builds on the intuition that if there is persistent mispricing, this will show up in

the price level (Shiller, 1981). In a similar spirit, Chernov et al. (2021) argue that long-

term returns, which we will use to construct price levels, convey information about possible

model mispecification beyond one-period returns. The novelty in our approach is that we

use standard factor models to determine the fundamental value to which the price level of
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a test asset should be compared to. Thus, our predictor only leverages the conditioning

information used in the construction of the model’s factors, i.e. it is endogenous to the

model at hand (Chernov et al., 2021).

Our test is simple. The loading on the deviations of a given test asset price from the

target price implied by the mean-variance portfolio should be zero when the factor model is

well specified, i.e. if factors describe asset return dynamics accurately. On the other hand,

the loading should be negative if factors do not span the conditional mean-variance efficient

portfolio. The intuition for the negative sign is simple: When an asset’s price is above its

fundamental price level (measured by the long-run, cumulative factor return), future asset

returns are low, and vice versa.

Our test is formulated in terms of implications for the conditional mean-variance efficient

(CMVE) portfolio. To construct the CMVE we use several versions of the Fama-French

(2015, FF5) model. As a benchmark case, we employ a standard combination of the FF5

factors based on their unconditional first and second moments. Then, to account for condi-

tioning information about the factors’ mean and volatility in the construction of the mean-

variance efficient portfolio, we implement a version with factor timing (Haddad et al., 2020),

and a version with volatility timing (Moreira and Muir, 2017). We also use the characteristic-

efficient factors of Daniel, Mota, Rottke and Santos (2020) since Kozak and Nagel (2022)

show that hedging the unpriced components of heuristic factor returns makes them more

likely to span the stochastic discount factor. Finally, we perform several robustness tests

by replacing the FF5 factors with the Hou et al. (2015) q-factors in the construction of the

mean-variance portfolio.

We refer to the difference between cumulative (log) asset returns and the cumulative
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returns on the mean-variance efficient portfolio (built from one of the factor models described

above) as to price deviations. As test assets, we use 90 portfolios from the long and short sides

of 45 well-known and widely used characteristic-based strategies (Haddad et al., 2020; Kelly

et al., 2020). Independently from how we construct the mean-variance portfolio and from the

test asset considered, we show that these deviations forecast future anomaly returns with

a negative sign, thus rejecting the restriction from the beta-representation. The negative

loading of future portfolio returns on the current price deviation implies that when asset

prices are higher (lower) than the long-run price level implied by the factor model, we expect

lower (higher) returns in the next period so that the deviations are corrected. Thus, it is

natural to interpret the price deviations as the level of under- or over-pricing of a given asset

relative to the price implied by the mean-variance portfolio.

The evidence in favor of anomalies’ predictability is obtained by taking an out-of-sample

perspective, i.e. by constructing price deviations in real time. Also, importantly, our docu-

mented predictability already accounts for the possibility that the exposure of a given test

asset to the mean-variance portfolio is time-varying. We do so in two ways: by using a classic

fixed-length rolling window approach not subject to overconditioning bias (e.g., Fama and

French, 1997; Boguth et al., 2011) and by using the non-parametric method proposed by Ang

and Kristensen (2012). The latter allows for tighter windows when there is more portfolio

variation that can be picked up with greater precision. Despite these attempts, we continue

to find evidence of sizable asset return predictability implied by the price deviations.

Averaging across different factor models, we find that a value of the test asset above the

target value implied by the mean-portfolio signals future negative returns over the next two

to three years, at which point the price deviation is washed away. Interestingly, the long spell

of time it takes for returns to revert toward their target value is in line with the evidence in
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Daniel et al. (2022) who show that the beliefs of optimistic agents (who overreact to positive

information) decay towards rational beliefs over a roughly 5-year period.

Importantly, the predictive content of our price deviations survives after controlling for

the test asset’s book-to-market ratio, for the asset momentum or reversal effects captured by

the 1- and 5-year past returns, respectively, and for measures of aggregate sentiment (Baker

and Wurgler, 2006; Huang et al., 2014). The result that our price deviations predict returns

negatively and survive after controlling for the portfolio reversal based on long-term (5-years)

past returns is interesting. After all, our price deviations are obtained from the cumulative

past returns relative to the cumulative mean-variance efficient ones. Thus, the fact that

the price deviations series remains statistically significant after controlling for the (absolute)

5-years past returns, suggests that there is more information content in relative (to a given

factor model) mispricing than in absolute mispricing as captured by the stand-alone past

return series.

Although the out-of-sample R2 from a forecasting model is a commonly used metric in the

return predictability literature (see, e.g., Rapach and Zhou, 2022), Kelly et al. (2022) pointed

out that it is an incomplete measure of the model economic value. Thus, we also implement

a portfolio exercise to quantify the economic magnitude of the documented no-arbitrage

rejections. Specifically, we form a long-short portfolio that buys anomalies with the highest

one-year-ahead expected returns (decile 10) and sells anomalies with the lowest one-year-

ahead expected returns (decile 1) based on the signal provided by the asset price deviations.

Such a long-short investment strategy generates an out-of-sample annualized Sharpe ratio

of 0.53 and 0.55 when the deviations are relative to the Fama-French five-factor model or to

the Daniel et al. (2020) hedged factors, respectively. Thus, the misspecification of the return

dynamics in state-of-the-art models of the stochastic discount factors are quantitatively large.
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We also verify that the performance of our mispriced portfolio cannot be explained by

other factor models, in particular those behavioral models that have been proposed to cap-

ture temporary, long- and short-horizon deviations of prices from fundamental values (Daniel

et al., 2020), as well as models where factors are constructed to capture aggregate mispricing

(e.g., Stambaugh and Yuan, 2016; Bartram and Grinblatt, 2018). We find that our price

deviations convey different information from that captured by the Daniel et al. (2020) be-

havioral factors and from the mispricing factor of Bartram and Grinblatt (2018), as testified

by a large and statistically significant alpha induced by our strategy relative to these models.

Interestingly, independently of the candidate mean-variance portfolio, the lowest alpha and

largest time-series R2 obtain in correspondence of the mispricing factor model of Stambaugh

and Yuan (2016). This suggests that indeed our strategy captures under/over reaction of as-

set price levels and, to capture such price dynamics, one needs additional mispricing factors

outside those included in the candidate SDF model (which we use to infer the target price

level).

Price divergences could be related to frictions that prevent rational traders from elim-

inating such deviations or to irrational behaviour of agents, or both. On the one hand,

idiosyncratic risk can be interpreted as an holding cost that makes temporary deviations of

market prices from equilibrium prices possible (e.g., Pontiff, 1996, 2006). Transitory price

dislocations can also be caused by the limited, and therefore slow-moving, capital of the

currently available investors (e.g., Duffie, 2010). On the other hand, temporary price dis-

crepancies can be the consequence of over-reaction to news caused by an exaggeration of

probability of states that are objectively more likely (e.g., Bordalo et al., 2019). Thus, in-

spired by the literature on “diagnostic expectations” (e.g., Bordalo et al., 2019; Gennaioli and

Shleifer, 2018), we conclude by linking our predictive framework to a model where the price
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deviation captures agents’ over-reaction to news in prices that are subsequently corrected in

return dynamics.1

Related Literature. Our analysis builds upon, and relates to, the large empirical lit-

erature that studies temporary deviations of asset values from fundamentals. In an early

contribution, Poterba and Summers (1988) find positive autocorrelation in returns over short

horizons and negative autocorrelation over longer horizons which can be explained by per-

sistent, but transitory, divergences between prices and fundamental values. Concurrently,

Fama and French (1988) argue that the observed U-shaped pattern of the regression slope

from forward h-period industry returns rt,t+h on past returns rt−h,t is consistent with the view

that prices have a slowly decaying stationary component. Our finding that the deviations of

a portfolio price from a given factor model forecast the portfolio returns is consistent with

the permanent-transitory decomposition of prices proposed by Fama and French (1988).

Importantly, our evidence is that price deviations forecast reversal, not continuation,

of returns. Thus our evidence complements that in Ehsani and Linnainmaa (2021) about

positive auto-correlations in anomalies.

Recently, Dong et al. (2021) show that returns of the short- and (to a lesser extent) the

long-leg of anomaly portfolios are positively related to the next period’s market return. To

explain this finding, the authors also exploit the permanent-transitory decomposition for the

prices of an anomaly portfolio. However, their approach does not require direct computation

of the transitory component of prices. Differently, we provide a framework to compute the

1Behavioral models in which investors overreact to, e.g., news about firms’ prospects have a long tradition;
see, e.g., Barberis et al. (1998), Daniel et al. (1998, 2001) and Gervais and Odean (2001). We choose
diagnostic expectation as a modeling framework since it yields overreaction to not just private but also
public information, unlike model of investor overconfidence (Daniel et al., 1998) where decision makers
exaggerate the precision of private information.
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transitory price component, and use it to time characteristics-sorted portfolio returns.

Our paper is related to a recent and rapidly growing literature that aims at explaining

multi-period (cumulative) portfolio returns and portfolio price level.2 The paper closest

to ours is Chernov et al. (2021). These authors propose to use multi-horizon returns to

test over-identifying restrictions of a given factor model. Using their novel test, Chernov

et al. (2021) find that popular factor pricing models are unable to price their own factors

at multiple return horizons even when one allows for state-of-the-art SDF sensitivities. We

share a similar interest in (misspecification of) conditional dynamics. The conditional model

misspecification documented in our paper is complementary to that analyzed by Chernov

et al. (2021). Whereas Chernov et al. (2021) focus on the pricing of factors at multiple

horizons, we instead test for mispecification in the risk-adjusted short-run dynamics of a

test asset by exploiting information in long-run (cumulative) asset and factor returns.

Our paper contributes to the debate on factor timing (Cohen et al., 2003; Haddad et al.,

2020; Baba-Yara et al., 2020). In particular, we provide evidence that price deviations predict

a vast array of portfolio returns. Also, we show that such predictability derives naturally

from portfolio prices being anchored to factor prices.

Our paper is also related to the literature that aims at linking the time-series and cross-

sectional predictability. For example, Maio and Santa-Clara (2012) and Boons (2016) em-

ploy the I-CAPM to study the consistency between time-series and cross-sectional behavior

of state variables and factors. Lettau and Pelger (2020) discuss the tension between the

time-series and cross-sectional objectives when designing a factor model. We contribute to

this important discussion by showing that cross-sectional models should incorporate the in-

2See, e.g., Cohen et al. (2009), Brennan and Wang (2010), Keloharju et al. (2019), Baba-Yara et al.
(2020), Hendershott et al. (2020), Van Binsbergen and Opp (2019), Cho and Polk (2020), and Boons et al.
(2021).
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formation in the limit multi-period returns (i.e. prices) in order to capture portfolio returns

time-series dynamics.

Kozak and Nagel (2022) study under which conditions the factors constructed with heuris-

tic methods (in particular, OLS factors and dimension-reduction methods) span the condi-

tional mean-variance frontier.

Recently, Lopez-Lira and Roussanov (2022) show how to construct a portfolio that ex-

ploits individual stock return predictability while hedging all undiversifiable risk; they doc-

ument that such portfolio delivers a Sharpe ratio above one. Similar to them, our paper

challenges the notion of a trade-off between systematic risk and expected returns. Whereas

Lopez-Lira and Roussanov (2022) exploit a wide range of characteristics to forecast stock

returns, we instead show how to construct a predictor that is endogenous to the factor model

under scrutiny, and link this predictability to the conditional pricing ability of the model.

Finally, despite the popularity of factor models in asset pricing (e.g., Ang, 2014), the

literature on the relationship between the choice of factors and the investment horizon is

less developed. Specifically, the factor-based approach to portfolio allocation and risk man-

agement has concentrated almost exclusively on modeling one-period returns, devoting less

attention to the long-run relation between the performance of assets and factors.3 In this

paper, we propose a methodology that exploits long-horizon returns to test the short-run

dynamic properties of asset pricing models.

3Hansen and Scheinkman (2009) and Backus et al. (2014) have developed tools allowing researchers to
characterize properties of equilibrium models at different horizons.
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2 Mean-variance returns, prices and predictability

Let Re
t+1 be the vector collecting the return on asset i in excess of the risk-free rate, Rei

t+1.

The conditional mean-variance efficient (CMVE) portfolio is given by4

Rmv
t+1 =

(
k−1
t Vt

(
Re

t+1

)−1
Et

[
Re

t+1

])⊺
Re

t+1, (1)

where Vt

(
Re

t+1

)
and Et

[
Re

t+1

]
are the conditional first and second moments of excess returns,

and kt is a time-varying scalar, known at time t, governing the leverage of the portfolio.

The no-arbitrage condition

Et

[
Re

t+1

]
= −

Covt
(
Mt+1, R

e
t+1

)
Et [Mt+1]

, (2)

implies the conditional beta-pricing representation:5

Et

[
Re

t+1

]
= βi,tEt

[
Rmv

t+1

]
(3)

For any return i included in the portfolio, the validity of Equation (3) requires that in a time

series regression of the form:

Rei
t+1 = βi,tR

mv
t+1 + εi,t+1 (4)

the error terms should be unpredictable, i.e. Et [εi,t+1] = 0 (see, e.g., Ferson and Harvey,

1991, 1999; Ferson and Korajczyk, 1995). Otherwise, one would buy (sell) the hedged portfo-

4See Hansen and Richard (1987); Ferson and Siegel (2001); Cochrane (2005); Chernov et al. (2021). For
completeness, we show the derivations of the CMVE portfolio in Appendix A.

5Consider the linear SDF Mt = 1 − bt
(
Rmv

t+1 − Et

[
Rmv

t+1

])
. Applying the no-arbitrage condition to the

minimum variance efficient portfolio we have: Et [Mt+1] = bt
V art[Rmv

t+1]
Et[Rmv

t+1]
. By substituting this expression and

Covt
(
Mt+1, R

e
t+1

)
= −btCovt

(
Rmv

t+1, R
e
t+1

)
into (2), one obtains the desired expression.
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lio Rei
t+1−βi,tR

mv
t+1 when the error is expected to be positive (negative), making a risk-adjusted

profit and violating the fact that the SDF prices conditionally the given asset.

We propose to test for conditional misspecification of the SDF implied by (1) by gen-

erating a return predictor that is endogenous to the model (i.e. it depends solely on the

candidate CMVE). We start by log-linearizing the Euler condition (2):6

Etr
e
i,t+1 +

1

2
Vartr

e
i,t+1 = βi,tEtr

mv
t+1 (5)

where rei,t+1 = ri,t+1 − rf,t+1, and the conditional variance of the risky asset return on the

left hand side of (5) is a Jensen’s inequality correction that appears because we are working

with logs.

Our test for conditional mispecification involves the coefficient δi in the following model-

implied regression specification

rei,t+1 = ci,t + βi,tr
mv
t+1 + δiui,t + εi,t+1 . (6)

where ci,t is a (possibly time-varying) constant that captures the Jensen’s effect. If the

portfolio is CMVE and, hence, the associated SDF is correctly specified, one should have

δi = 0. One has. of course, many choices for ui,t. We construct a predictor that is endogenous

to the model as follows:

ui,t = ui,t−1 +
(
rei,t − ci,t−1 − βi,t−1r

mv
t

)︸ ︷︷ ︸
ε̃i,t

(H0)

i.e. our predictor is the cumulative sum of risk-adjusted returns. To interpret ui,t, it is conve-

6This expression holds exactly if the SDF and the asset i returns have a joint conditional lognormal
distribution.

10



nient to define the log price of asset i as the cumulative log return: lnPi,t+1 = lnPi,t+ ri,t+1.

Similarly, we have lnPmv,t+1 = lnPmv,t + rmv,t+1 for the CMVE portfolio, and lnPrf,t+1 =

lnPrf,t + rf,t+1 for the risk-free asset. Note now that if βi,t ≃ βi,t−1, then

ui,t = lnPi,t − lnPrf,t −
∑

ci,t − βi,t lnPmv,t , (7)

i.e. ui,t captures deviations of test asset prices from the price warranted by the CMVE

portfolio (adjusted for a possible time-varying trend captured by
∑

ci,t).
7 The intuition

behind the proposed predictor is that if there is persistent mispricing, it will show up in the

price level (Shiller, 1981). Equation (7) suggests to compute the mispricing by comparing

the portfolio price level to the value implied by the mean-variance portfolio (βi,t lnPmv,t).

The interpretation of ui,t as price deviations rest on the assumption βi,t ≃ βi,t−1, i.e. the

betas for our portfolios vary slowly and smoothly over time. This assumption is consistent

with several economic models. E.g., Gomes et al. (2003) suggest that betas are a function

of productivity shocks, which are often calibrated with an autocorrelation of 0.95 at the

quarterly horizon. This translates into a monthly autocorrelation of conditional betas above

0.98. Similarly, in Santos and Veronesi (2006), stock betas change as the ratio of labor

income to total consumption changes, which is also a highly persistent variable. Also, many

7Practically, by cumulating log excess returns on asset i we abtract from any source of long-run nominal
comovement between the asset prices and the mean-variance efficient prices. To see this, consider for ease
of exposition the CAPM model (the market is always included in the factor models studied in this paper)
and constant betas. Under the null, we have: (ri,t+1 − rf,t+1) = βi

(
rm,t+1 − rf t+1

)
+ εi,t+1.

Compounding the left- and right-hand side yields:

lnPi,t+1 − lnPrf,t+1 = βi (lnPm,t+1 − lnPrf,t+1) + ui,t+1,

or, equivalently,

lnPi,t+1 = βi lnPm,t+1 + (1− βi) lnPrf,t+1 + ui,t+1.

The term (1− βi) lnPrf,t+1 effectively removes inflation-related trends that are common to the market factor
and the asset prices.
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previous empirical studies (see, e.g., Jagannathan and Wang, 1996; Lettau and Ludvigson,

2001; Petkova and Zhang, 2005; Lewellen and Nagel, 2006; Ang and Chen, 2007; Pelger,

2020; Lopez-Lira and Roussanov, 2022) find that conditional betas are stable within short

time window.

Our test δi = 0 is intuitive. In fact, in a correctly specified factor model there is an

unpredictable error term ε̃i,t. This error term leads to a random walk component in test

asset prices, when prices are defined as cumulative returns. Hence, under the null of the

model, ui,t in (H0) is a martingale and the deviation of an asset price lnPi,t from the price

implied by the mean-variance portfolio are permanent. This implies that price deviations

should not forecast risk-adjusted excess returns (Et [ui,t+1 − ui,t] = Et [ε̃i,t+1] = 0).

The alternative hypothesis, which we entertain in this paper, is that these price deviations

are persistent instead. To be specific, we assume that the price deviations are mean reverting:

ui,t = ρiui,t−1 + ε̃i,t (H1)

which implies δi = ρi − 1 < 0 in Eq. (6).8 In words, if asset prices are above the target value

implied by the mean-variance portfolio price, and if these price deviations are persistent

but mean-reverting (i.e. ρi < 1), then future expected returns are lower (higher) on a

risk-adjusted basis (i.e. after controlling for βi,tr
mv
t+1).

Finally, note that under the null (H0), ui,t is a martingale, i.e. ρi = 1 and δi = 0 in Eq.

(6). Thus one can view (H1) as the unrestricted model, and (H0) as the restriced model.

8The result obtains by first differencing ui,t = (lnPi,t − lnPrf,t) −
∑

ci,t − βi,t lnPmv,t (see Eq. (7)),
using the autoregressive dynamics for ui,t under (H1) and our definition of log prices as cumulative log
returns, and using the assumption that betas are changing slowly over time, i.e. βi,t+1 ≃ βi,t which implies
βi,t+1 lnPmv,t+1 − βi,t lnPmv,t ≃ βi,tr

mv
t+1.
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2.1 Construction of Price Deviations

A large literature (e.g., Goyal and Welch, 2007, Rapach and Zhou, 2013, Martin and Nagel,

2020, Boudoukh et al., 2021) documents that out-of-sample tests provide the most rigorous

and relevant evidence on stock return predictability. Therefore, to construct our predictor

ui,t and to test the null δi = 0 in (6), we take an out-of-sample perspective. In particular,

we show that the price deviations captured by ui,t can be exploited in real time to predict

asset returns.

First, following e.g., Fama and French (1997) and Ferson and Harvey (1999), we estimate

the conditional betas using a regression over a 60-month rolling window:9

reτ+1 = ci,t + βi,tr
mv
τ+1 + ετ+1, τ = t− 60 : t− 1. (8)

We then construct the risk-adjusted return at time t+ 1 as:

ε̂i,t+1 = rei,t+1 − ĉi,t − β̂i,tr
mv
t+1

where the beta and the constant are obtained from the rolling window regression (using

information up to time t only, as denoted by the subscript). We repeat this same steps at

time t+ 2 and construct ε̂i,t+2 based on betas (and constant) from a rolling regressions over

9Using rolling windows to estimate conditional loadings gets around the problem of instrumenting time-
varying factor loadings with the “right” state variables (e.g., Shanken, 1990; Jagannathan and Wang, 1996;
Lettau and Ludvigson, 2001. See also discussion in Lewellen and Nagel, 2006). As we use a rolling window
of 60-months, our conditional betas estimates are not subject to overconditioning bias (Boguth et al., 2011).
While the choice of the rolling window length is arbitrary, we document that our results hold when using the
optimal nonparametric technique developed in Ang and Kristensen (2012) to estimate time-varying betas.
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the period t− 60 + 1 to t. Our predictor is given by:

ûi,t =
t∑

τ=0

ε̂i,τ (9)

and, importantly, it is obtainable in real time. We then run the predictive regression

ri,t+1 − rf,t+1 − ĉi,t − β̂i,tr
mv
t+1 = δiûi,t + ϵi,t+1 . (10)

and test the null hypothesis δi = 0 in Section 3.2. A rejection of the null, and in particular

a negative δi, suggests that underpricing (ui,t < 0) is followed by positive returns. We

exploit this insight, and the fact that ui,t can be obtained in real time, to develop a trading

strategy based on mispricing in Section 3.3. As we will see, the price deviations take time

to be reabsorbed, which implies that our trading strategy does not require high-frequency

rebalancing, reducing possible concerns about trading costs.

Note that our empirical analysis is using conditional betas since, as shown by Hansen

and Richard (1987), assuming constant betas is not innocuous. For example, with constant

betas, price deviations could simply be a byproduct of time-varying loadings. Although our

benchmark approach employs betas estimated over a rolling window, Appendix E.2 repeats

our analysis when we estimate time-varying betas using the kernel method proposed by Ang

and Kristensen (2012). The advantage of this method is that it allows the bandwidth of the

kernel to vary across portfolios, i.e. to use tighter windows when there is more variation to

be picked up with greater precision. Importantly, we will see that our findings continue to

hold when we use this alternative approach.

To summarize, our assumptions lead to the following approach to test for conditional
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misspecification and engage in anomaly timing:

1. Start from a factor model.

2. Construct the CMVE portfolio Rmv
t+1 given in equation (1).

3. Estimate using a rolling window equation (8) to construct risk-adjusted returns ε̂t+1

and price deviations ût.

4. Run the predictive regression (10). An estimate of δ ̸= 0 leads to a rejection of the

null (H0), thus implying that the model is misspecified.

3 Empirical Results

3.1 Data

Our analysis focuses on characteristics-based factors. Specifically, we implement the mean-

variance efficient portfolio using the following factor model representation:

Rmv
t+1 = b⊺tCtR

e
t+1 = b⊺t ft+1 , (11)

where Ct is a K × Nt matrix of stock-level characteristics which define a set of K factors,

ft+1 = CtR
e
t+1; and bt is a K × 1 timing vector that optimally combines these factors over

time to get to the minimum variance portfolio (see, e.g., Haddad et al., 2020; Moreira and

Muir, 2017). Theoretically, the variation in the minimum variance portfolio weights must

be driven by factor and volatility timing: bt ∝ Vt (ft+1)
−1Et [ft+1]. We use the Fama and

French (2015, FF5, henceforth) as factors, i.e. f ′t = [MKTt SIZEt HMLt RMWt CMWt]
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in equation (11), and entertain a version of FF5 with either factor return (factor-timing,

henceforth) or volatility timing (vol-timing, henceforth). Mindful that standard factor are

contaminated with unpriced components,10 we also employ the hedging approach of Daniel,

Mota, Rottke and Santos (2020, DMRS) that aims at removing unpriced risks from the

original factors. We call the residualized (with respect to the hedge portfolio returns) FF5

factors, FF5-DMRS.11 This gives a total of four candidate SDFs. In addition, in Appendix

D we repeat our main analysis when we use the Hou et al. (2015) q-factors to construct the

mean-variance efficient portfolio.

Given our factors (e.g., the FF5), we estimate b such that the single-horizon monthly

returns to the factors themselves are priced without error. For the volatility timing version,

we follow Moreira and Muir (2017) and use bi,t = biV
−1
t (fi,t+1) which is computed using

squared realized daily factor returns. For the factor timing version, we follow Haddad et al.

(2020) and use bi,t = biEt (fi,t+1) where the out-of-sample expectations for the factors are

constructed using each factor’s book-to-market ratio. In all cases, we estimate the constants

of proportionality bi for each factor i by matching the in-sample average returns to the timed

factors in the model at hand, analogous to how we estimated the vector b in the baseline

FF5 models.

We focus on U.S. data–NYSE, AMEX, and Nasdaq stocks from the Center for Research

in Security Prices (CRSP) and Compustat data required for sorting – for the sample 1967–

2019. Throughout we use monthly observations but we focus on 1-year holding-period excess

return. Indeed, the holding period for asset returns must be sufficiently long to allow for a

reaction of returns at time t+1 to the asset price deviations from the mean-variance portfolio

10For example, Gerakos and Linnainmaa (2017) find that the HML value factor is contaminated with
unpriced components.

11We are grateful to Simon Rottke for sharing the up-to-date hedged FF5 factors.
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prices at time t. Without further qualification, rt+1 will always denote the one-year-ahead

log excess returns.12 However, we repeat the relevant tests also with monthly returns.

To investigate the validity of a given SDF, we consider as test assets a large cross-section

of anomaly portfolios based on single-sorts of 45 different characteristics. These test assets,

or a subset of it, have been used by Kozak et al. (2020), Kelly et al. (2020), Haddad et al.

(2020), and Lettau and Pelger (2020), among others.13

3.2 Conditional Mispecification and Price Deviations

To test for the conditional validity of a given SDF, we run the following predictive regression:

r̃i,t+1 = a+ δûi,t + εi,t+1 (12)

where r̃i,t+1 = ri,t+1− rf,t+1− ĉi,t− β̂i,tr
mv
t+1 is the log excess return of test asset i at time t+1

net of the exposure to the log return on the mean-variance efficient portfolio rmv,t+1; and ûi,t

measures the deviations of asset i prices from the mean-variance portfolio ones. The null is

H0 : δ = 0 against H1 : δ < 0.

We start by describing the properties of the price deviations ui,t. In particular, Table

1 shows the half-life (Panel A) and the magnitude of ui,t (Panel B) across our test assets

12In our sample (see discussion of Figure 2) there is statistical evidence in favor of return predictability
for one- up to twenty month ahead, i.e. ûi,t manifests forecasting ability for rt+h/12 with h = 1, . . . , 20. We
leave open the question of the economic determinants of the timing of return reaction to price deviations,
and decide to focus on 1-year holding-period returns in line with recent empirical studies on time-variation
in anomaly returns (e.g., Lochstoer and Tetlock, 2020) and on the dynamics of equity portfolios (e.g., Kelly,
Kozak and Giglio, 2020).

13We thank Serhiy Kozak for making his data available at https://sites.google.com/site/

serhiykozak/data?authuser=0. Appendix Table C.1 lists the categories and the portfolios included in
each category.
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i = 1, . . . , 90. The price deviations are persistent but mean-reverting with an average half-life

of about 2.5 years for all the models considered. Comparing the FF5 model to its timed or

hedged versions, we observe very similar half-life distributions. In particular, for all models

prices temporarily drift away from their mean-variance target level. Panel B, investigates the

size of the price deviations which we proxy with the volatility of ui,t. All models display price-

deviations that are economically sizable, with a volatility of about 20% on average. Finally,

in Panel C, we observe that price deviations from the FF5 SDF have a high correlation of

0.8 or more with those obtained from its factor-timed or hedged versions.

Table 2, column (1), shows the results from the pooled regression. Each panel refers to

a different candidate SDFs, namely the FF5 model, its factor timed and volatility managed

versions, and the FF5 residualized with respect to the DMRS hedge portfolio. Independently

from the candidate SDF, we find a negative and statistically significant coefficient on the

price deviations. The coefficient is economically large: for example, for the FF5-DMRS we

find that a 1% positive deviation of (log) portfolio prices from the model-implied SDF value,

lead to an expected return that is lower by 27 bps over the next year (on average, across

portfolios). Also, note that the R2 associated with the predictability induced by the price-

deviations are about 10%, or larger, and thus comparable to the R2 found in the aggregate

market return predictability literature(e.g., Cochrane, 2008, 2011).

Figures 1 reports the asset specific δ̂i, along with its standard error, obtained from esti-

mating equation (12) for each top decile portfolio. Figure E.1 displays the analogous analysis

for each bottom decile portfolio. The figure shows that δ̂i is negative and significantly differ-

ent from zero for all the portfolios and all the SDFs considered. Hence, the evidence points

to an ubiquitous rejection of the null in favor of price deviations that are persistent but

mean reverting (0 < ρi < 1). Appendix Figure E.2 shows similar conclusions when we use
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nonparametric conditional beta as in Ang and Kristensen (2012).

Next, we discuss the predictive ability of price deviations over alternative horizons. Recall

that so far we have used annual returns in equation (12). Figure 2 shows the estimates

of δ from a pooled regression when we forecast h-period ahead monthly returns, with h =

1, ..., 60 (i.e. returns are not compounded). For ease of exposition, we multiply the estimated

coefficients by twelve so to make their magnitude comparable to the coefficient reported in

Table 2 (which is based on annual returns). Across all models, there is statistical evidence in

favor of return predictability for each of the future twenty months. Moreover, the magnitude

of the coefficient is negative, similar across models, and decaying to zero only slowly as

we increase the forecasting horizon. Comparing different SDFs, we observe that the price

deviations from the FF5 and FF5-DMRS predict returns quite persistently, for up to forty

months. On the other hand, the adoption of factor timing and, to a lesser extent, volatility

management make the price deviations more transient as confirmed by a faster decay pattern

in the coefficients, which become insignificant between 1.5 and 3 years. In sum, a value of

the test asset above the target value implied by the mean-portfolio signals future negative

returns over the next two to three years (in line with the average half-life reported in Table

1), at which point the price deviation is washed away. Interestingly, the long spell of time it

takes for returns to revert toward their target value is in line with the evidence in Daniel et al.

(2022) who show that the beliefs of optimistic agents (who overreact to positive information)

decay towards rational beliefs over a roughly 5-year period.

Recall that our price deviations signal is obtained in real time, using only information

up-to-time t. Thus, we now evaluate its predictive ability for each portfolio using the out-

of-sample (OOS) R2 metric proposed by Campbell and Thompson (2008). Table 3 shows

the results for each test asset. Each panel refers again to a given SDF model. On average
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(across models), we document positive OOS R2 for more than 70% of anomaly portfolios.

Most importantly, we find significant out-of-sample R2 for relevant characteristics-sorted

portfolios such as value, duration, and investment. In Appendix Table D.2, we confirm these

results for alternative factor models. Appendix Table E.1 shows similar, and sometimes

stronger, results when we estimate time-varying betas with the non-parametric Ang and

Kristensen (2012) approach. Although the out-of-sample R2 from a forecasting model is a

commonly used metric in the return predictability literature (see, e.g., Rapach and Zhou,

2022), Kelly et al. (2022) pointed out that it is an incomplete measure of the model economic

value. Thus, in Section 3.3 we implement a portfolio exercise to quantify the economic profits

of a market timer that exploits the price deviations implied by a given SDF model. Before

doing so, in the next subsection we make sure that the predictive power of the price deviations

is not subsumed by well known predictors.

3.2.1 The information content of price deviations

Our predictor ui,t is endogenous to the model: it accounts for the conditioning information

(characteristics and possible timing variables) used in the construction of the SDF, and

it allows to test conditional aspects of the model, namely the dynamics of future returns.

However, one may wonder how it relates to other portfolio return predictors.

To address this question, we run the following pooled regression:

r̃i,t+1 = a+ δûi,t + γXi,t + ϵi,t (13)

where Xi,t is an alternative candidate predictor for the anomaly portfolio i. Columns (2) to

(5) of Table 2 show the estimates when we control for (the portfolio) long-term reversal, past
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one-year returns, the book-to-market ratios, and aggregate sentiment as measured by the

Baker and Wurgler (2006) investor sentiment index. Each panel refers to a specific SDF. We

focus on results from the pooled regression only for ease of exposition, but all our conclusions

hold when we run asset-specific individual regressions.

[Insert Table 2 about here]

In column (2) we consider the reversal signal based on past 5-year returns (skipping

the most recent year) as an additional anomaly portfolio predictor. After all, our price

deviations are obtained from the cumulative past returns relative to the cumulative mean-

variance efficient ones. We see that the series of past returns relative to the mean-variance

portfolio remains statistically significant after controlling for the (absolute) 5-years past

return series. Moreover, the loading δ̂ is always negative and of similar magnitude to the

value reported in column(1). This result suggests that there is more information content in

relative (to a given factor model) mispricing than in absolute mispricing as captured by the

stand-alone past return series.

In column (3), we report results for regression (13) when we include the portfolio’s per-

formance over the prior year from month t− 12 to t− 1 along with the price deviations. In

a recent paper, Ehsani and Linnainmaa (2021) document that most factors are positively

autocorrelated, and propose a factor that bets on the continuation in factor returns. Con-

trary to their work, our framework focuses on price deviations that forecast reversal, not

continuation, of returns. It is then not surprising to see that our price deviations (capturing

reversal) continue to be statistically significant after controlling for the portfolio momentum

(capturing continuation).

Column (4) reports results for regression (13) when the control variable Xi,t is the port-
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folio’ book-to-market ratio. Indeed, valuation ratios are often used in return forecasting

regressions (e.g., Cochrane, 2005; Campbell, 2017) as they represent a natural predictor ac-

cording to the Campbell-Shiller (1988) log-linear present value model. Even after controlling

for the book-to-market ratio, the coefficient on the price deviations is statistically signifi-

cant, and negative: 1% positive price deviations for the test portfolio in this period imply

an expected return that is, over the next year, lower by about 22 bps.

Finally, Shen et al. (2017) document a negative predictive relation between the returns to

portfolios sorted on macro-related risk factors and investor sentiment proxied by Baker and

Wurgler (2006) index. Related, Avramov et al. (2019) show that mispricing occurs across

financial distressed firms during periods of high market sentiment because in these times both

retail and institutional investors are overly optimistic about the likelihood and consequences

of financial distress. The sluggish investors’ response to correct overpricing leads to a wide

range of anomalies in the cross-section of stocks and bonds. Column (4) of Table 2 displays

the results from a predictive regression that controls for sentiment. Once again, we find that

the predictive content of the price deviations is not driven away by aggregate sentiment.

This result continue to hold true when we use the improved aggregate sentiment of Huang

et al. (2014).

Overall, our evidence suggests that price deviations convey information about the time-

series dynamics of risk-adjusted returns ri,t+1 − βirmv,t+1 for a wide range of portfolios. The

predictive informative content of these price deviations is not subsumed by valuation ratios,

momentum or reversal in individual factors, or aggregate sentiment.14

14Appendix Table D.1 confirms these conclusions hold when we employ deviations of asset prices from the
mean-variance portfolios implied by the HXZ factors or by their volatility managed version. In particular,
for all these models, we find a negative and significant loading controlling for well-known predictors.
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3.3 Return Dynamics, Mispricing, and Trading Strategy

In this section, we study the performance of a strategy that goes long portfolios with prices

below the model-implied target (ui,t < 0), and goes short those with prices higher than what

the mean-variance portfolio would suggest (ui,t > 0). We proceed as follows. First, recall

that the term ui,t measures the deviation of the portfolio price i from the mean-variance

target price, and it is obtained in real-time using only information up to time t. We focus on

a large cross-section of anomaly portfolios based on single-sorts of 45 different characteristics

(see Kozak et al., 2020), for a total of 90 portfolios. We sort these 90 anomaly portfolios in

deciles once per year (in December) according to the portfolio-specific price deviation, ui,t.

We then hold the position in the top and bottom deciles for one year, at which point we

repeat the sorting procedure.

Figure 3 shows the performance of the top and bottom deciles sorted on the price de-

viations, along with the aggregate market returns. The top left panel refer to the results

obtained when we compute price deviations relative to the FF5 mean-variance portfolio.15

The next two panels refer to the results for the factor and volatility timed version of the FF5.

The bottom right panel refers to DMRS hedged version of FF5. As expected, the long leg

which contains underpriced test assets outperforms the market, whereas the short leg with

overpriced portfolios underperforms. A strategy that goes long underpriced test assets and

short overpriced assets generates an annualized average excess return of 3.2% and 3.4% for

the FF5 model and its version that hedges unpriced risks. The associated annualized Sharpe

Ratios are 0.53 and 0.55, respectively. A version of the mean-variance portfolio that times

factors’ returns obtains even stronger performance with annualized average excess return of

15Appendix Figure E.3 shows the performance of the strategy based on the FF5 mean-variance portfolio
and nonparametric conditional betas (Ang and Kristensen, 2012).
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4.3% and a Sharpe ratio of 0.66. The performance of a strategy based on deviations from

a volatility-timed mean-variance portfolio attains an average return of 3.6% and a Sharpe

ratio of 0.61.

It is important to understand whether our mispriced portfolio display alphas relative to

factor models, in particular those behavioral models aiming at capturing temporary, long-

and short-horizon deviations of prices from fundamental values (Daniel et al., 2020), as well

as models where factors are constructed to capture aggregate mispricing (e.g., Stambaugh

and Yuan, 2016; Bartram and Grinblatt, 2018). Table 4 shows exposures to standard factors

of our long-short strategy based on model-implied price deviations, along with its alpha.

Several observations stand out. First, the average return of such strategy is not captured

by standard characteristics-based or behavioral factors. In particular, our price deviations

convey different information from that captured by the Daniel et al. (2020) behavioral factors

and from the mispricing factor of Bartram and Grinblatt (2018): In correspondence of these

two models (see rightmost two columns of Table 4), we observe that the constant remains

large and statistically, for every panel (i.e. independently of the factors used to construct

the mean-variance portfolio). Second, we observe that, independently of the candidate SDF,

the lowest alpha and largest R2 obtain in correspondence of the mispricing factor model of

Stambaugh and Yuan (2016). This suggests that indeed our strategy captures under/over

reaction of asset price levels and, to capture such price dynamics, one needs additional

mispricing factors outside those included in the candidate SDF model (which dictates the

target price level). For example, when we use the DMRS FF5 factors to obtain the mean-

variance portfolio (see Panel (d)), we observe a sizable R2 of about 30% in correspondence of

the Stambaugh and Yuan (2016) model, which is larger than that obtained after adjusting for

“rational” model like the q-factor one. The alpha remains nevertheless significant at 1.8%
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per year despite a positive and statistically significant loading on the MNGT and PERF

factors of Stambaugh and Yuan (2016).

We provide a battery of robustness tests. Using our cross-section of 45 characteristics,

and the underlying 90 portfolios from the long and short sides of these strategies, we show in

Table D.3 the performance of our strategy when the price deviations are computed relative

to either an SDF that employs the q-factors of Hou et al. (2015) (Panel (a)) or a volatility-

timed version of the same q-model (Panel (b)).The annualized return and Sharpe ratio of the

strategy which uses deviations of prices from the q-factors are 3.7% and 0.63. Importantly,

the alpha remains significant after controlling for behavioral as well as other prominent

factors proposed in the literature. Table E.2 shows, for the case of the FF5 mean-variance

portfolio, the performance of our strategy when the time-varying exposures are computed

with the non-parametric approach of Ang and Kristensen (2012). Note that this approach

adjusts the length of the window (over which to compute betas) based on how much variation

there is in portfolio betas. For example, the growth portfolio does not exhibit much variation

in beta so the window estimation procedure picks a long bandwidth, corresponding to (a

windows of about) 60 months. In contrast, we find significant time variation in beta for the

value portfolio and the procedure picks a relatively tighter windows that allow this variation

to be picked up with greater precision. Despite this more challenging set-up, we confirm the

presence of statistically significant alphas for our strategy that longs portfolio with negative

price deviations, and shorts portfolio with positive price deviations. Table E.3 shows the

performance of a rank-based strategy that invest in all portfolios rather than just the top

and bottom quintiles.16 Despite the fact that now we take less extreme positions, the alphas

16Simply using ranks of the signals as portfolio weights helps mitigate the influence of outliers. Specifically,
the weight on portfolio i at time t is: wi,t ∝ rank (ui,t)−

∑
i rank (ui,t)/N .
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remain economically large and statistically significant. For example, when we use the FF5

factors to compute the target price level, rank-weighted strategy has a Sharpe ratio of 0.65

and an annualized alpha of 2.4% (relative to the Stambaugh and Yuan (2016) model). Finally,

Appendix Table E.4 repeats our analysis when we rebalance our portfolio monthly. In this

case, the strategy that uses asset value deviations from the FF5 mean-variance portfolio has

a Sharpe ratio of 0.57 and an annualized alpha of 3% relative to the Stambaugh and Yuan

(2016) model.

Overall, our analysis suggests that the deviations of a portfolio price from its long-term

level implied by the mean-variance contain timely information to predict anomaly returns

out-of-sample. Our conclusions is robust to alternative factors used to construct the SDF

(HXZ or FF5-factor models, and their timed version), to the use of non-parametric procedure

for the computation of the time-varying exposures, to the universe of test assets used, and

to alternative ways to construct the strategy.

[Insert Figure 3 and Table 4 about here]

4 Discussion

4.1 A Statistical Interpretation

In their seminal contribution, Fama and French (1988) argue that the (log of) stock price,

lnPi,t, is composed of two parts: a permanent component qi,t, modeled as a random walk

with drift, and a temporary component ui,t, modeled as a stationary AR(1) process,
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lnPi,t = qi,t + ui,t (14)

qi,t = qi,t−1 + αi + ηi,t

ui,t = ρiui,t−1 + vi,t

where ηi,t and vi,t are independent processes with zero mean and constant variance and

|ρi| < 1. Fama and French (1988) argue that the slowly mean reverting temporary component

induces predictability in returns.

It is easy to map our alternative hypothesis (H1) in the Fama and French (1988) frame-

work: just assume that the permanent component for the (log of) stock price is qi,t =

βi lnPmv,t; i.e. the permanent component is common across assets. Thus, our analysis un-

covers the return predictability induced by the deviation of asset prices from their (common)

permanent trend captured by the mean-variance portfolio.

4.2 An Economic Interpretation

In the introductory session of our paper we have stated the economic mechanism behind the

return predictablity from price deviations could be generated by either slow adjustment of

prices to new information or by the presence of Diagnostic Expectations. In this section we

develop these two alternative interpretations in the light of our empirical results.

Consider first the case of slow adjustment of prices to new information as considered in

the model proposed by Amihud and Mendelson (1987). Let Pt be the observed log asset price,

and Vt+1 its intrinsic value. Prices adjust slowly towards their intrinsic value; specifically, Pt
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evolves according to the following dynamics:

Pt+1 = Pt + k(Vt+1 − Pt) (15)

where k is a parameter controlling the adjustment of prices towards the asset intrinsic value.

If the adjustment parameter satisfies 0 < k < 1, then the observed asset price Pt adjusts

slowly to the fundamental price Vt:

Pt+1 = kVt+1 + (1− k)Pt (16)

In our language, Vt is the price of the CMVE portfolio and the difference Vt+1 − Vt = RV
t+1

is the CMVE portfolio return. For 0 < k < 1, Eq. (16) describes the dynamics of a security

that manifests temporary deviations from its intrinsic value.

We calibrate RV
t to the CMVE portfolio return constructed using the Fama and French

(2015) five-factor model over the period 1967–2019. Specifically, RV
t is normally distributed

with an annualized mean of 1.23% and an annualized volatility of 1.12%. The price vector

is constructed as Vt+1 = Vt + RV
t+1. We then simulate a sample of 636 observations of Pt+1

using equation (16). Using simulated prices, we construct returns. Then, we run regressions

(12) and store the estimated δ. We repeat the simulation 10’000 times.

Figure F.1 reports the distribution of δ for three different calibrations of the adjustment

parameter. For k = 0.5 (top panel), the simple partial-adjustment model features a signif-

icant and negative coefficient on price deviations. The average δ is about −0.25, which is

comparable to the mean value across the 90 anomaly portfolios reported in Table 2 Panel A.

As the adjustment parameter gets closer to one (i.e. full price adjustment to information),
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price deviation loadings get closer to zero (c.f., bottom panel with k = .95). Indeed, the

extreme case of an economy without slow adjustments (i.e. k = 1), features a δ centered

exactly at zero.

Our empirical evidence could also be interpreted with an expectation formation mecha-

nism close to a model of belief formation based on representativeness heuristic where tem-

porary discrepancies are a consequence of over-reaction to news (e.g., Bordalo et al., 2019).

Diagnostic Expectations have been proposed to model transitory deviations from Rational

Expectations for stationary univariate processes. Agents with Diagnostic Expectations ex-

trapolate into the future current news about the generic univariate process of interest, xt:

Eθ
t [xt+1] = Et [xt+1] + θ [Et [xt+1]− Et−1 [xt+1]] , (17)

where the parameter θ controls the size of the deviations from rational expectations. Expec-

tations are diagnostic when θ > 0, and are rational when θ = 0. Diagnostic Expectations

converge to Rational Expectations in the long-run but in the short-run current news in xt

(e.g., excess returns) are extrapolated into the future. Our framework in Section 2 is related

albeit with important differences. First, our framework is bi-variate, i.e. it requires a descrip-

tion of a given test asset and of the mean-variance portfolio. Second, our framework requires

non-stationary processes for the prices (of the individual asset and of the mean-variance

potfolio). In particular, expectations at time t for asset returns at time t+1 depend on their

expectations conditional upon the returns on the CMVE portfolio and on the deviations of

prices from their expectations conditional upon the price of the CMVE portfolio at time t:

Et [ri,t+1] = Et [ri,t+1|rmv,t+1] + δi (lnPi,t − E [lnPi,t| lnPmv,t]) , (18)
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where negative values for δi imply that returns increase (decrease) when prices are below

(above) their conditional expectations at time t. In other words, while prices are non station-

ary, the deviations of prices lnPi,t from their projection on the minimum-variance portfolio

prices (E [lnPi,t | lnPmv,t]) are temporary (i.e. stationary); in this sense, the price deviations

play a similar role as the news term in the DE framework (17).

5 Conclusion

Standard asset pricing theory establishes that risk-adjusted returns should be unpredictable.

Instead, this paper documents that deviations of portfolio prices from the value dictated by

leading factor models predict future risk-adjusted returns. This predictability is endogenous

to the model, i.e. it does not need any conditioning variables beyond those used in the

construction of the conditional mean-variance efficient portfolio. We also show how such

a predictability can be used to test the conditional validity of any given SDF. A real-time

strategy that exploits mean-reverting price deviations generates Sharpe ratios of about 0.6.

Finally, we show that both an economy featuring slow price adjustment or models of be-

lief formation based on representativeness heuristic can be used to rationalize our empirical

evidence. Our results have relevant implications for the practical implementation of as-

set allocation, risk measurement, and risk management based on the parsimonious factor

representation of large cross-sections of assets.
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Tables and Figures

Table 1: Price Deviations: Summary Statistics

This table reports descriptive statistics for price deviations computed using different CMVE portfolios. Price
deviations û are computed as in equation (9). Test assets are the 90 top and bottom anomaly portfolios
constructed in Kozak et al. (2020); see Appendix Table C.1 for a description of the anomalies. As factor
models to compute the mean-variance efficient portfolios, we employ Fama and French (2015, FF5), its factor
return and volatility timed versions, and its characteristics-efficient version computed in Daniel et al. (2020),
dubbed FF5-DMRS. Panel A reports the half-life (in months) distribution of price deviations for each factor
model. Panel B reports the standard deviation (in percentage) distribution of price deviations for each factor
model. Panel C reports the average correlation across price deviations for each factor model. The half-life
is calculated as log(0.5)/ log(| ρ |), where ρ is the estimated first-order autoregressive parameter for price
deviations. Monthly observations. The sample period is 1967 to 2019.

Panel A: Half-Life

Model Mean Min Pctl(25) Median Pctl(75) Max

FF5 30.1 14.4 23.6 27.4 36.1 62.7
factor-timing 34.3 17.0 24.4 32.7 40.4 76.7
vol-timing 30.4 16.6 23.6 28.5 34.3 86.3
FF5-DMRS 30.3 14.1 25.3 28.5 34.3 53.0

Panel B: Standard Deviation

Model Mean Min Pctl(25) Median Pctl(75) Max

FF5 21.0 13.2 17.8 20.5 23.6 33.2
factor-timing 26.3 18.6 23.3 25.9 28.6 34.6
vol-timing 23.6 10.7 20.0 22.9 27.1 39.7
FF5-DMRS 25.2 15.1 21.6 25.2 27.8 40.4

Panel C: Correlation Matrix

FF5 factor-timing vol-timing FF5-DMRS

FF5 1 0.797 0.593 0.841
factor-timing 1 0.272 0.851
vol-timing 1 0.553
FF5-DMRS 1
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Table 2: Predicting Anomaly Returns with Price Deviations

This table reports pooled estimates for δi from predictive regression (13). Test assets are the 90 top and
bottom anomaly portfolios constructed in Kozak et al. (2020). Price deviations û are computed as in equation
(9). We report results for price deviations computed using different mean-variance efficient portfolios. Panel
A reports results for the Fama and French (2015, FF5) factor model, Panels B and C report results for its
factor return and volatility timed versions, and Panel D reports results for its characteristics-efficient version
computed in Daniel et al. (2020), dubbed FF5-DMRS. Our panel features: n = 565, T = 90, N = 50850.
Values in parenthesis are Driscoll and Kraay (1998) robust standard errors for panel models with cross-
sectional and serial correlation. ***, **, and * indicates respectively 1%, 5%, and 10% level of significance.
Monthly observations of annual returns. The sample period is 1967 to 2019.

Panel A: FF5

(1) (2) (3) (4) (5)

δ −0.222∗∗∗ −0.183∗∗∗ −0.229∗∗∗ −0.217∗∗∗ −0.223∗∗∗

(0.029) (0.028) (0.033) (0.028) (0.028)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.097 0.131 0.098 0.102 0.128

Panel B: FF5 with Factor Timing

(1) (2) (3) (4) (5)

δ −0.218∗∗∗ −0.173∗∗∗ −0.202∗∗∗ −0.202∗∗∗ −0.197∗∗∗

(0.031) (0.033) (0.029) (0.027) (0.028)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.112 0.143 0.116 0.119 0.131

Panel C: Volatility-managed FF5

(1) (2) (3) (4) (5)

δ −0.273∗∗∗ −0.258∗∗∗ −0.279∗∗∗ −0.285∗∗∗ −0.307∗∗∗

(0.059) (0.053) (0.056) (0.058) (0.052)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.125 0.219 0.125 0.151 0.203

Panel D: FF5-DMRS

(1) (2) (3) (4) (5)

δ −0.265∗∗∗ −0.188∗∗∗ −0.267∗∗∗ −0.252∗∗∗ −0.245∗∗∗

(0.040) (0.042) (0.041) (0.039) (0.037)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.118 0.173 0.118 0.125 0.169
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Table 3: Out-of-Sample Predictability

This table reports the out-of-sample R2 (R2
OOS) for the predictive regression r̃i,t+1 = ai + biûi,t + ϵi,t, where

r̃i,t+1 is the test asset i log risk-adjusted return at time t + 1 and price deviations û are computed as in
equation (9). Test assets are the long legs for the 45 anomalies constructed in Kozak et al. (2020). We report
results for price deviations computed using different CMVE portfolios. Panel A reports results for the Fama
and French (2015, FF5) factor model, Panels B and C report results for its factor return and volatility timed
versions, and Panel D reports results for its characteristics-efficient version computed in Daniel et al. (2020),
dubbed FF5-DMRS. The R2

OOS is computed as in Campbell and Thompson (2008); p-values for R2
OOS are

computed as in Clark and West (2007). The burn-in sample starts in Jan 1967 and ends in Dec 1987, we
then use an expanding window for estimating the predictive regressions. Monthly observations of annual
returns.

Panel A: FF5

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 17.02∗∗∗ indmom 2.87∗∗∗ price −19.42
age 5.21∗∗∗ indmomrev 6.55∗∗∗ prof −17.56

aturnover −7.48 indrrev 12∗∗∗ roaa −12
betaarb −11.68 indrrevlv −0.56 roea −11.01

cfp 0.49∗∗∗ inv 16.1∗∗∗ season 8.94∗∗∗

ciss −1.32 invcap 10.65∗∗∗ sgrowth 18.28∗∗∗

divg 13.49∗∗∗ ivol −14.82 shvol −10.73
divp 1.38∗∗∗ lev −6.82 size 7.48∗∗∗

dur 7.35∗∗∗ lrrev 12.02∗∗∗ sp 18.31∗∗∗

ep 9.61∗∗∗ mom 5.88∗∗∗ strev 9.75∗∗∗

exchsw −3.44 mom12 7.16∗∗∗ valmom 11.3∗∗∗

fscore 2.03∗∗∗ momrev 12.6∗∗∗ valmomprof 7.82∗∗∗

gmargins −14.57 nissa −5.53 valprof 20.24∗∗∗

growth 11.78∗∗∗ nissm 1.69∗∗∗ value 0.97∗∗∗

igrowth 8.7∗∗∗ noa −18.42 valuem −1.6
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Panel B: FF5 with factor-timing

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 5.93∗∗∗ indmom −9.04 price −15.97
age 10.68∗∗∗ indmomrev −10.2 prof −13.76

aturnover −6.23 indrrev 4.17∗∗∗ roaa −21.12
betaarb −10.55 indrrevlv −15.69 roea −18.27

cfp 15.24∗∗∗ inv 3.14∗∗∗ season −10.99
ciss 3.75∗∗∗ invcap 3.46∗∗∗ sgrowth 7.85∗∗∗

divg −8.55 ivol −5.43 shvol −0.53
divp −1.52 lev −2.02 size 8.17∗∗∗

dur 11.2∗∗∗ lrrev −3.49 sp 12.91∗∗∗

ep −5.49 mom 1.31∗∗∗ strev 3.94∗∗∗

exchsw −9.81 mom12 −5.81 valmom −1.35
fscore −5.61 momrev −3.79 valmomprof −8.12

gmargins −22.75 nissa −16.46 valprof 14.95∗∗∗

growth 9.1∗∗∗ nissm −4.38 value 16.51∗∗∗

igrowth −2.34 noa −17.56 valuem −3.04

Panel C: Volatility-Managed FF5

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 4.49∗∗∗ indmom 12.74∗∗∗ price 9.1∗∗∗

age 9.28∗∗∗ indmomrev 3.37∗∗∗ prof 16.11∗∗∗

aturnover −5.07 indrrev 2.89∗∗∗ roaa 12.5∗∗∗

betaarb 12.36∗∗∗ indrrevlv −5.41 roea 12.19∗∗∗

cfp −0.24 inv 8.79∗∗∗ season 7.74∗∗∗

ciss 15.23∗∗∗ invcap 16.45∗∗∗ sgrowth 14.11∗∗∗

divg 15.27∗∗∗ ivol 10.58∗∗∗ shvol 6.58∗∗∗

divp −0.01 lev −4.73 size 9.28∗∗∗

dur −10.07 lrrev 7.85∗∗∗ sp 2.31∗∗∗

ep 2.3∗∗∗ mom 18.06∗∗∗ strev 5.25∗∗∗

exchsw 15.9∗∗∗ mom12 15.05∗∗∗ valmom 1.76∗∗∗

fscore 18.9∗∗∗ momrev 15.39∗∗∗ valmomprof 10.15∗∗∗

gmargins 8.65∗∗∗ nissa 6.19∗∗∗ valprof −2.7
growth 11.62∗∗∗ nissm 8.27∗∗∗ value −1.43
igrowth 13.84∗∗∗ noa 6.37∗∗∗ valuem 5.78∗∗∗
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Panel D: FF5-DMRS

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 11.55∗∗∗ indmom 1.22∗∗∗ price −13.99
age 6.76∗∗∗ indmomrev −1.87 prof −17.42

aturnover −5.7 indrrev 18.94∗∗∗ roaa −19.36
betaarb 4.69∗∗∗ indrrevlv −0.56 roea −16.73

cfp 17.1∗∗∗ inv 15.95∗∗∗ season 1.2∗∗∗

ciss 0.9∗∗∗ invcap 14.27∗∗∗ sgrowth 12.52∗∗∗

divg 8.49∗∗∗ ivol −12.15 shvol −5.88
divp 5.21∗∗∗ lev 7.29∗∗∗ size 9.28∗∗∗

dur 12.1∗∗∗ lrrev 6.71∗∗∗ sp 17.18∗∗∗

ep 13.08∗∗∗ mom 8.61∗∗∗ strev 18.87∗∗∗

exchsw −2.54 mom12 10.07∗∗∗ valmom 10.29∗∗∗

fscore 0.84∗∗∗ momrev 6.59∗∗∗ valmomprof −2.63
gmargins −16.49 nissa −10.15 valprof 8.23∗∗∗

growth 14.67∗∗∗ nissm −0.43 value 21.74∗∗∗

igrowth 13.17∗∗∗ noa −19.09 valuem 13.4∗∗∗
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Table 4: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the 90 top
and bottom anomaly portfolios constructed in Kozak et al. (2020) in quintiles according their price deviation
level. The zero-cost strategy goes long on the quintile associated with the lowest levels of price deviations
and short on the bottom quintile associated with the highest levels. Price deviations û are computed as
in equation (9). We report results for price deviations computed using different CMVE portfolios. Panel
A reports results for the Fama and French (2015, FF5) factor model, Panels B and C report results for
its factor return and volatility timed versions, and Panel D reports results for its characteristics-efficient
version computed in Daniel et al. (2020), dubbed FF5-DMRS. We control for the following factor models:
Carhart (1997) (C4), Fama and French (2018) (FF6), Hou et al. (2015) (q), Stambaugh and Yuan (2016)
(SY4), Daniel et al. (2020) (DHS3), Bartram and Grinblatt (2018) (BG3). Values in parenthesis are Newey
and West (1987) robust standard errors. ***, **, and * indicates respectively 1%, 5%, and 10% level of
significance. Monthly observations. The sample period is 1967 to 2019.
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Panel A: FF5

C4 FF6 q SY4 DHS3 BG3

Constant 0.26∗∗∗ 0.25∗∗ 0.23∗∗ 0.20∗∗ 0.34∗∗∗ 0.27∗∗∗

(0.09) (0.10) (0.11) (0.08) (0.11) (0.10)

MKT −0.04 −0.04 −0.04 −0.01 −0.03 −0.06∗

(0.03) (0.03) (0.04) (0.03) (0.04) (0.03)

SMB 0.09 0.10 0.13 0.06
(0.09) (0.07) (0.09) (0.09)

HML 0.17∗∗ 0.16∗∗

(0.07) (0.06)

Mom 0.03 0.03
(0.04) (0.04)

RMW 0.02
(0.11)

CMA 0.01
(0.08)

ME 0.11
(0.07)

IA 0.16∗

(0.10)

ROE 0.03
(0.06)

Mgmt 0.20∗∗∗

(0.07)

Perf −0.01
(0.04)

PEAD −0.15∗

(0.08)

FIN 0.06
(0.09)

BG 0.10∗∗

(0.05)

Observations 384 384 384 384 384 384
Adjusted R2 0.09 0.09 0.06 0.11 0.06 0.07
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Panel B: FF5 with factor-timing

C4 FF6 q SY4 DHS3 BG3

Constant 0.39∗∗∗ 0.32∗∗∗ 0.32∗∗∗ 0.27∗∗∗ 0.39∗∗∗ 0.39∗∗∗

(0.09) (0.09) (0.10) (0.08) (0.11) (0.10)

MKT −0.11∗∗∗ −0.07∗∗ −0.08∗ −0.05∗ −0.06 −0.13∗∗∗

(0.03) (0.03) (0.04) (0.03) (0.05) (0.04)

SMB −0.05 −0.03 0.01 −0.10∗

(0.07) (0.07) (0.07) (0.06)

HML 0.27∗∗∗ 0.17∗∗∗

(0.07) (0.06)

Mom 0.01 −0.00
(0.04) (0.03)

RMW 0.07
(0.08)

CMA 0.18∗∗

(0.08)

ME −0.03
(0.06)

IA 0.38∗∗∗

(0.10)

ROE 0.01
(0.05)

Mgmt 0.34∗∗∗

(0.07)

Perf −0.02
(0.05)

PEAD −0.16∗∗

(0.06)

FIN 0.19∗∗∗

(0.07)

BG 0.14∗∗∗

(0.04)

Observations 384 384 384 384 384 384
Adjusted R2 0.28 0.30 0.24 0.34 0.29 0.18
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Panel C: Volatility-managed FF5

C4 FF6 q SY4 DHS3 BG3

Constant 0.25∗∗ 0.27∗∗ 0.28∗∗ 0.17 0.36∗∗∗ 0.32∗∗∗

(0.11) (0.11) (0.13) (0.10) (0.12) (0.12)

MKT 0.01 0.00 −0.02 0.04 −0.04 −0.03
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)

SMB 0.16∗∗ 0.12∗ 0.20∗∗∗ 0.16∗∗

(0.06) (0.06) (0.08) (0.07)

HML 0.05 0.03
(0.05) (0.05)

Mom 0.09∗∗∗ 0.09∗∗∗

(0.03) (0.02)

RMW −0.11
(0.07)

CMA 0.10
(0.07)

ME 0.16∗∗

(0.07)

IA 0.05
(0.10)

ROE 0.00
(0.06)

Mgmt 0.14∗∗

(0.06)

Perf 0.09∗

(0.05)

PEAD −0.01
(0.06)

FIN −0.07
(0.07)

BG −0.02
(0.05)

Observations 384 384 384 384 384 384
Adjusted R2 0.11 0.14 0.07 0.11 0.01 0.06

47



Panel D: FF5-DMRS

C4 FF6 q SY4 DHS3 BG3

Constant 0.31∗∗∗ 0.21∗∗ 0.22∗∗ 0.15∗ 0.33∗∗∗ 0.38∗∗∗

(0.09) (0.08) (0.09) (0.08) (0.10) (0.10)

MKT −0.12∗∗∗ −0.06∗ −0.09∗∗ −0.04 −0.10∗∗ −0.15∗∗∗

(0.04) (0.03) (0.04) (0.03) (0.04) (0.05)

SMB −0.01 0.01 0.07 −0.02
(0.06) (0.06) (0.06) (0.05)

HML 0.17∗∗ 0.02
(0.07) (0.06)

Mom 0.07∗∗∗ 0.06∗∗∗

(0.03) (0.02)

RMW 0.11∗

(0.06)

CMA 0.29∗∗∗

(0.06)

ME 0.04
(0.06)

IA 0.27∗∗∗

(0.08)

ROE 0.15∗∗∗

(0.05)

Mgmt 0.30∗∗∗

(0.06)

Perf 0.11∗∗∗

(0.04)

PEAD −0.06
(0.06)

FIN 0.13∗∗

(0.06)

BG 0.03
(0.04)

Observations 384 384 384 384 384 384
Adjusted R2 0.21 0.26 0.24 0.29 0.20 0.13
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Panel A: FF5
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Figure 1: Anomaly Portfolios and Price Deviations. This figure shows estimates for δi
from regression (12) with respective confidence intervals at 5% level of significance. Test assets are the 45
top anomaly portfolios constructed in Kozak et al. (2020). Price deviations û are computed as in equation
(9). We report results for price deviations computed using different CMVE portfolios. Panel A reports
results for the Fama and French (2015, FF5) factor model, Panle B and C report results for its factor return
and volatility timed versions, and Panel D reports results for its characteristics-efficient version computed in
Daniel et al. (2020), dubbed FF5-DMRS. Standard errors for δ̂ are computed as in Hodrick (1992). Monthly
observations of annual returns. The sample period is 1967 to 2019.
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Panel B: FF5 with factor-timing
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Panel C: Volatility-Managed FF5
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Panel D: FF5-DMRS

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

lrrev

strev

indmomrev

indrrev

indrrevlv

(a) reversal

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

valmom

valmomprof

valprof

(b) value interaction

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

mom mom12

indmom

momrev

(c) momentum

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

value

valuem

divp ep

cfp
sp

lev

sgrowth
dur

(d) value

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

inv

invcap

igrowth
growth

noa

ciss

nissa

nissm

(e) investment

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

prof
roaa

roea gmargins

(f) profitability

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

δ

ivol

shvol

aturnover

size

price
betaarb

(g) trading frictions

52



0 10 20 30 40 50 60

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

month

δ̂

(a) FF5

0 10 20 30 40 50 60

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

month

δ̂

(b) FF5 with factor-timing
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(c) Volatility-managed FF5
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Figure 2: Price Deviations and Horizon of Predictability. This figure shows pooled
regression estimates of δi for equation (12) for h-period ahead monthly returns (h = 1, . . . , 60). Test assets
are the 90 top and bottom anomaly portfolios constructed in Kozak et al. (2020). Price deviations û
are computed as in equation (9). We report results for price deviations computed using different CMVE
portfolios. Panel A reports results for the Fama and French (2015, FF5) factor model, Panle B and C report
results for its factor return and volatility timed versions, and Panel D reports results for its characteristics-
efficient version computed in Daniel et al. (2020), dubbed FF5-DMRS. Standard errors are computed as
in Newey and West (1987) with automatic bandwidth selection procedure as described in Newey and West
(1994). Non-overlapping monthly observations. The sample period is 1967 to 2019.
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(b) FF5 with factor-timing
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(c) Volatility-Managed FF5
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(d) FF5-DMRS

Figure 3: Anomaly Portfolios Rotation using Real-Time Price Deviations. Once
per year, we sort the 90 top and bottom anomaly portfolios constructed in Kozak et al. (2020) according
their price deviation level. Bottom (top) 20% corresponds to the cumulative gains of a dynamic strategy
that goes long on the 18 portfolios associated with the lowest (highest) level of price deviation. MKT is
the performance of a static buy-and-hold strategy on the market portfolio in excess of the risk-free rate.
Price deviations û are computed as in equation (9). We report results for price deviations computed using
different CMVE portfolios. Panel A reports results for the Fama and French (2015, FF5) factor model, Panle
B and C report results for its factor return and volatility timed versions, and Panel D reports results for
its characteristics-efficient version computed in Daniel et al. (2020), dubbed FF5-DMRS. Shaded areas are
NBER recessions. Monthly observations.
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Appendix

A Mean-variance efficient portfolio and the SDF

Define Σt = Vt

[
Re

t+1

]
and µt = Et

(
Re

t+1

)
and consider the following portfolio:

RC
t+1 = w⊺

tR
e
t+1 (A.1)

wt = k−1
t Σ−1

t µt (A.2)

Next, we show that the SDF

MC
t+1 = 1− kt

(
RC

t+1 − Et

[
RC

t+1

])
prices all assets conditionally:

Et

[
MC

t+1R
e
t+1

]
= Et

[
1− kt

(
RC

t+1 − Et

[
RC

t+1

])
Re

t+1

]
= Et

[
Re

t+1

]
− ktEt

[(
w⊺

tR
e
t+1 − w⊺

tEt

[
Re

t+1

])
Re

t+1

]
= Et

[
Re

t+1

]
− ktw

⊺
tEt

[(
Re

t+1 − Et

[
Re

t+1

])
Re

t+1

]
= Et

[
Re

t+1

]
− ktk

−1
t µ⊺

tΣ
−1
t Σt

= 0 (A.3)

The parameter kt is found by pricing the portfolio RC
t+1 itself:

Et

[
MC

t+1R
C
t+1

]
= Et

[
1− kt

(
RC

t+1 − Et

[
RC

t+1

])
RC

t+1

]
= Et

[
RC

t+1

]
− ktEt

[(
RC

t+1 − Et

[
RC

t+1

])
RC

t+1

]
= Et

[
RC

t+1

]
− Vt

[
RC

t+1

]
kt

= 0 ⇔ kt =
(
Vt

[
RC

t+1

])−1
Et

[
RC

t+1

]
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B Price deviations when factor returns are i.i.d.

This example is inspired by Section 2.4 in Chernov et al. (2021).

Suppose that the true model is given by:

Mt+1 = 1− b⊺ (ft+1 − E[ft+1]) , b = V (ft+1)
−1E [ft+1]

where the factors ft+1 are excess returns to traded portfolios.

Suppose also that the factor returns are i.i.d. Thus, the model prices the factors both

conditionally and unconditionally.

Despite the factors being i.i.d., our predictive model (12) implies that test assets’ returns

are not, since their dynamics feature the (persistent) ui,t term:

ri,t+1 = β′
ift+1 + ∆ui,t+1︸ ︷︷ ︸

δiui,t+vi,t+1

.

ui,t = (lnPi,t − lnPf,t)− βi lnPf,t,

ui,t = ρiui,t−1 + εi,t

where δi = 1− ρi and for simplicity we have omitted the αi.

Note that the SDF prices rit+1 unconditionally:

E
[
Mt+1r

i
t+1

]
= E [(1− b⊺ (ft+1 − E[ft+1])) (β

′
ift+1 +∆ui,t+1)]

= (β′
i E [(1− b⊺ (ft+1 − E[ft+1])) ft+1]︸ ︷︷ ︸

=0 using the definition of b

+E [(1− b⊺ (ft+1 − E[ft+1]))∆ui,t+1]

where the last term is zero given our assumption of factors being independent over time

and the price deviations ui,t being zero mean. However, the SDF does not prices rit+1
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conditionally:

Et

[
Mt+1r

i
t+1

]
= Et [(1− b⊺ (ft+1 − E[ft+1])) (β

′
ift+1 +∆ui,t+1)]

= β′
i Et [(1− b⊺ (ft+1 − E[ft+1])) ft+1]︸ ︷︷ ︸
=0 using the definition of b and factors being iid

+ Et [(b
⊺ (ft+1 − E[ft+1]))∆ui,t+1]︸ ︷︷ ︸

=0 since factors are i.i.d and property of ui,t

+ Et [∆ui,t+1]

= δiui,t

where in the last step we exploit the AR(1) dynamics for ui,t.

Furthermore, we have that

Cov (ui,t−1, ui,t) ̸= 0

In words, through our predictive system we document that test assets feature persistent

pricing errors.17

17In the notation of Chernov et al. (2021), δiui,t is the conditional pricing error at horizon h = 1.
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C Test Assets

Table C.1: Categories

We group anomaly portfolios constructed in Kozak et al. (2020) following Lettau and Pelger (2020). This
table lists the categories and the portfolios that we include in each category. Differently from Lettau and
Pelger (2020), we allocate some of the portfolios in the category “others” across the other categories. In
total, we consider 8 categories and 45 anomaly portfolios. Anomalies are defined in Kelly et al. (2020),
Haddad et al. (2020), and Kozak et al. (2020).

Category Anomaly Portfolios

reversal indmomrev, indrrev, indrrevlv, lrrev, strev
value interaction valmom, valmomprof, valprof
momentum indmom, mom, mom12, momrev
value cfp, divp, dur, ep, lev, sgrowth, sp, value, valuem
investment ciss, inv, invcap, igrowth, growth, nissa, nissm, noa
profitability gmargins, prof, roaa, roea
trading frictions aturnover, betaarb, ivol, price, shvol, size
others accruals, age, divg, exchsw, fscore, season

Notes: lrrev is long-term reversal calculated as in De Bondt and Thaler (1985). strev is short-term reversal
calculated as in Jegadeesh (1990). indmomrev is industry momentum-reversal reversal calculated as in
Moskowitz and Grinblatt (1999). indrrev is industry relative reversal calculated as in Da et al. (2014).
indrrevlv is industry relative reversal low volatility calculated as in Da et al. (2014). valmom is value-
momentum calculated as in Novy-Marx (2013). valmomprof is value-momentum-profitability calculated as
in Novy-Marx (2013). valprof is value-profitability calculated as in Novy-Marx (2013). mom is 6-months
momentum calculated as in Jegadeesh and Titman (1993). mom12 is 12-months momentum calculated as
in Jegadeesh and Titman (1993). indmom is long-term reversal calculated as in Moskowitz and Grinblatt
(1999). momrev is momentum-reversal calculated as in Jegadeesh and Titman (1993). value is annual value
calculated as in Fama and French (1993). valuem is monthly value calculated as in Asness and Frazzini
(2013). divp is dividend yield calculated as in Naranjo et al. (1998). ep is earnings/price calculated as in
Basu (1977). cfp is cash-flow/market value of equity calculated as in Lakonishok et al. (1994). sp is sales-
to-price calculated as in Barbee Jr et al. (1996). lev is leverage calculated as in Bhandari (1988). sgrowth is
sales growth calculated as in Lakonishok et al. (1994). inv is investment calculated as in Chen et al. (2011).
invcap is investment-to-capital calculated as in Xing (2008). igrowth is investment growth calculated as
in Xing (2008). growth is asset growth calculated as in Cooper et al. (2008). noa is net operating asset
calculated as in Hirshleifer et al. (2004). ciss is composite issuance calculated as in Daniel and Titman (2006).
prof is ross profitability calculated as in Novy-Marx (2013). roaa is annual return on assets calculated as
in Chen et al. (2011). roea is annual return on equity calculated as in Haugen et al. (1996). gmargins is
gross margins calculated as in Novy-Marx (2013). ivol is idiosyncratic volatility calculated as in Ang et al.
(2006). shvol is share volume calculated as in Datar et al. (1998). aturnover is asset turnover calculated as
in Soliman (2008). size is size calculated as in Fama and French (1993).
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D Alternative Factor Models: Robustness

D.1 Predictive regressions

Table D.1: Pooled Regressions for Alternative Factor Models

This table reports pooled estimates for δi from predictive regression (13). Test assets are the 90 top and
bottom anomaly portfolios constructed in Kozak et al. (2020). Price deviations û are computed as in
equation (9). We report results for different CMVE portfolios. Panel A reports results for the Hou et al.
(2015, HXZ) factor model, Panel B reports results for its volatility timed version, and Panel C reports results
for the principal component model employed in Kelly et al. (2020). Our panel features: n = 565, T = 90,
N = 50850. Values in parenthesis are Driscoll and Kraay (1998) robust standard errors for panel models
with cross-sectional and serial correlation. ***, **, and * indicates respectively 1%, 5%, and 10% level of
significance. Monthly observations of annual returns. The sample period is 1967 to 2019.

Panel A: HXZ

(1) (2) (3) (4) (5)

δ −0.347∗∗∗ −0.300∗∗∗ −0.352∗∗∗ −0.332∗∗∗ −0.340∗∗∗

(0.049) (0.052) (0.046) (0.046) (0.046)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.159 0.185 0.159 0.167 0.183

Panel B: Volatility-managed HXZ

(1) (2) (3) (4) (5)

δ −0.377∗∗∗ −0.316∗∗∗ −0.405∗∗∗ −0.371∗∗∗ −0.365∗∗∗

(0.065) (0.066) (0.063) (0.063) (0.059)

Controls Long-Term Reversal Prior Returns Book-to-Market Sentiment
Adjusted R2 0.176 0.226 0.181 0.198 0.227
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D.2 Out-Of-Sample R2

Table D.2: Out-of-Sample Predictability for Alternative Factor Models

This table reports the out-of-sample R2 (R2
OOS) for the predictive regression r̃i,t+1 = ai + biûi,t + ϵi,t, where

r̃i,t+1 is the test asset i log risk-adjusted return and price deviations û are computed as in equation (9). Test
assets are the long legs for the 45 anomalies constructed in Kozak et al. (2020). See Appendix Table C.1
for a description of the anomalies. We report results for different mean-variance efficient portfolios. Panel A
reports results for the Hou et al. (2015, HXZ) factor model, Panel B reports results for its volatility timed
version, and Panel C reports results for the principal component model employed in Kelly et al. (2020). The
R2

OOS is computed as in Campbell and Thompson (2008); p-values for R2
OOS are computed as in Clark and

West (2007). The burn-in sample starts in Jan 1967 and ends in Dec 1987, we then use an expanding window
for estimating the predictive regressions. Monthly observations of annual returns.

Panel A: HXZ

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 14.71∗∗∗ indmom 11.64∗∗∗ price −2.61
age 10.88∗∗∗ indmomrev 1.96∗∗∗ prof 3.17∗∗∗

aturnover 10.12∗∗∗ indrrev 18.07∗∗∗ roaa −3.22
betaarb 12.37∗∗∗ indrrevlv −7.58 roea −3.4

cfp 16.86∗∗∗ inv 27.41∗∗∗ season 5.49∗∗∗

ciss 18.04∗∗∗ invcap 15.59∗∗∗ sgrowth 29.52∗∗∗

divg 18.59∗∗∗ ivol 2.59∗∗∗ shvol 15.42∗∗∗

divp 21.39∗∗∗ lev 4.26∗∗∗ size 12.32∗∗∗

dur 3.01∗∗∗ lrrev 20.48∗∗∗ sp 32.9∗∗∗

ep 21.87∗∗∗ mom 11.89∗∗∗ strev 17.54∗∗∗

exchsw 9.17∗∗∗ mom12 17.12∗∗∗ valmom 11.31∗∗∗

fscore 9.67∗∗∗ momrev 19.18∗∗∗ valmomprof 10.83∗∗∗

gmargins −3.67 nissa 6.63∗∗∗ valprof 32.43∗∗∗

growth 24.42∗∗∗ nissm 16.87∗∗∗ value 24.63∗∗∗

igrowth 20.3∗∗∗ noa −1.29 valuem 6.74∗∗∗
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Panel B: Vol-managed HXZ

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals −1.78 indmom 18.46∗∗∗ price 0.75∗∗∗

age 8.06∗∗∗ indmomrev −0.6 prof 15.01∗∗∗

aturnover 17.93∗∗∗ indrrev 6.16∗∗∗ roaa 4.33∗∗∗

betaarb 3.15∗∗∗ indrrevlv −19.48 roea 6.09∗∗∗

cfp 23.58∗∗∗ inv 19.8∗∗∗ season 3.03∗∗∗

ciss 18.64∗∗∗ invcap 3.96∗∗∗ sgrowth 25.54∗∗∗

divg 19.11∗∗∗ ivol −2.24 shvol −0.75
divp 19.83∗∗∗ lev 11.16∗∗∗ size 19.7∗∗∗

dur 6.17∗∗∗ lrrev 23.44∗∗∗ sp 29.72∗∗∗

ep 15.09∗∗∗ mom 22.99∗∗∗ strev 15.72∗∗∗

exchsw 12.82∗∗∗ mom12 21.83∗∗∗ valmom 5.54∗∗∗

fscore 14.66∗∗∗ momrev 30.72∗∗∗ valmomprof 17∗∗∗

gmargins −1.85 nissa 9.77∗∗∗ valprof 23.06∗∗∗

growth 22.26∗∗∗ nissm 14.98∗∗∗ value 21.95∗∗∗

igrowth 25.88∗∗∗ noa 3.58∗∗∗ valuem 25.64∗∗∗
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D.3 Anomaly Rotation using Price Deviations

Table D.3: Long-Short Anomaly Portfolio Alphas for Alternative Factor Models

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the 90 top
and bottom anomaly portfolios constructed in Kozak et al. (2020) in quintiles according their price deviation
level. The zero-cost strategy goes long on the quintile associated with the lowest levels of price deviations
and short on the bottom quintile associated with the highest levels. Price deviations û are computed as
in equation (9). We report results for different CMVE portfolios. Panel A reports results for the Hou
et al. (2015, HXZ) factor model, Panel B reports results for its volatility timed version, and Panel C reports
results for the principal component model employed in Kelly et al. (2020). We control for the following factor
models: Carhart (1997) (C4), Fama and French (2018) (FF6), Hou et al. (2015) (q), Stambaugh and Yuan
(2016) (SY4), Daniel et al. (2020) (DHS3), Bartram and Grinblatt (2018) (BG3). Values in parenthesis are
Newey and West (1987) robust standard errors. ***, **, and * indicates respectively 1%, 5%, and 10% level
of significance. Monthly observations. The sample period is 1967 to 2019.
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Panel A: HXZ

C4 FF6 q SY4 DHS3 BG3

Constant 0.29∗∗∗ 0.26∗∗ 0.27∗∗ 0.19∗∗ 0.38∗∗∗ 0.28∗∗∗

(0.10) (0.11) (0.12) (0.09) (0.11) (0.11)

MKT −0.01 0.01 −0.00 0.04 −0.00 −0.02
(0.03) (0.03) (0.04) (0.03) (0.04) (0.04)

SMB 0.08 0.07 0.13∗ 0.05
(0.07) (0.06) (0.07) (0.06)

HML 0.17∗∗∗ 0.11∗∗

(0.07) (0.05)

Mom −0.00 −0.01
(0.03) (0.03)

RMW −0.02
(0.07)

CMA 0.16∗∗∗

(0.06)

ME 0.06
(0.05)

IA 0.24∗∗∗

(0.08)

ROE −0.06
(0.04)

Mgmt 0.25∗∗∗

(0.06)

Perf −0.01
(0.05)

PEAD −0.16∗∗∗

(0.06)

FIN 0.05
(0.06)

BG 0.10∗∗

(0.04)

Observations 384 384 384 384 384 384
Adjusted R2 0.09 0.11 0.08 0.14 0.05 0.06
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Panel B: Volatility managed HXZ

C4 FF6 q SY4 DHS3 BG3

Constant 0.25∗ 0.20∗ 0.23∗ 0.10 0.30∗∗ 0.31∗∗

(0.13) (0.11) (0.13) (0.11) (0.12) (0.13)

MKT 0.02 0.04 0.01 0.09∗∗ −0.01 −0.02
(0.05) (0.04) (0.05) (0.04) (0.05) (0.06)

SMB 0.05 0.05 0.12∗ 0.06
(0.06) (0.07) (0.06) (0.05)

HML 0.06 −0.02
(0.08) (0.08)

Mom 0.08∗∗∗ 0.08∗∗

(0.03) (0.03)

RMW 0.02
(0.09)

CMA 0.17∗

(0.10)

ME 0.07
(0.06)

IA 0.09
(0.11)

ROE 0.07
(0.07)

Mgmt 0.20∗∗∗

(0.08)

Perf 0.15∗∗∗

(0.05)

PEAD 0.01
(0.06)

FIN −0.00
(0.06)

BG −0.02
(0.06)

Observations 384 384 384 384 384 384
Adjusted R2 0.04 0.06 0.01 0.11 −0.01 0.00
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E Fama and French (2015): Further Results

E.1 Bottom Deciles
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Figure E.1: Anomaly Portfolios and Price Deviations. This figure shows estimates for
δi from regression (12) with respective confidence intervals at 5% level of significance. Test assets are the
45 bottom anomaly portfolios constructed in Kozak et al. (2020). Price deviations û are computed as in
equation (9). We report results for price deviations computed using the Fama and French (2015) factor

model to calculate the CMVE portfolios. Standard errors for δ̂ are computed as in Hodrick (1992). Monthly
observations of annual returns. The sample period is 1967 to 2019.
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E.2 Nonparametric Conditional Betas (Ang and Kristensen, 2012)
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Figure E.2: Anomaly Portfolios and Price Deviations. This figure shows estimates for δi
from regression (12) with respective confidence intervals at 5% level of significance. Test assets are the 45
top anomaly portfolios constructed in Kozak et al. (2020). Price deviations û are computed as in equation
(9) using the methodology proposed by Ang and Kristensen (2012) to calculate time-varying parameters.
We report results for price deviations computed using the Fama and French (2015) factor model to calculate

the CMVE portfolio. Standard errors for δ̂ are computed as in Hodrick (1992). Monthly observations of
annual returns. The sample period is 1967 to 2019.
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Table E.1: Out-of-Sample Predictability

This table reports the out-of-sample R2 (R2
OOS) for the predictive regression r̃i,t+1 = ai + biûi,t + ϵi,t,

where r̃i,t+1 is the test asset i log risk-adjusted return at time t + 1 and price deviations û are computed
as in equation (9) using the methodology proposed by Ang and Kristensen (2012) to calculate time-varying
parameters. Test assets are the long legs for the 45 anomalies constructed in Kozak et al. (2020). We report
results for price deviations computed using the Fama and French (2015) factor model to calculate the CMVE
portfolio. The R2

OOS is computed as in Campbell and Thompson (2008); p-values for R2
OOS are computed

as in Clark and West (2007). The burn-in sample starts in Jan 1967 and ends in Dec 1987, we then use an
expanding window for estimating the predictive regressions. Monthly observations of annual returns.

Anomaly R2
OOS Anomaly R2

OOS Anomaly R2
OOS

accruals 32.2∗∗∗ indmom 23.25∗∗∗ price 7.86∗∗∗

age 28.24∗∗∗ indmomrev 2.23∗∗∗ prof 17.21∗∗∗

aturnover 14.53∗∗∗ indrrev 17.59∗∗∗ roaa 19.12∗∗∗

betaarb 2.4∗∗∗ indrrevlv 7.57∗∗∗ roea 9.78∗∗∗

cfp 20.2∗∗∗ inv 16.52∗∗∗ season 29.97∗∗∗

ciss 7.18∗∗∗ invcap 13.54∗∗∗ sgrowth 27.44∗∗∗

divg 20.18∗∗∗ ivol −7.62 shvol −8.44
divp 7.63∗∗∗ lev 3.84∗∗∗ size 26.29∗∗∗

dur 10.36∗∗∗ lrrev 32.56∗∗∗ sp 23.75∗∗∗

ep 19.28∗∗∗ mom 36.67∗∗∗ strev 20.75∗∗∗

exchsw 9.8∗∗∗ mom12 41.28∗∗∗ valmom 19.04∗∗∗

fscore 11.09∗∗∗ momrev 34.48∗∗∗ valmomprof 27.78∗∗∗

gmargins 12.82∗∗∗ nissa 1.79∗∗∗ valprof 16.46∗∗∗

growth 24.91∗∗∗ nissm 5.1∗∗∗ value 17.26∗∗∗

igrowth 21.67∗∗∗ noa 32.41∗∗∗ valuem 19.79∗∗∗
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Figure E.3: Anomaly Portfolios Rotation using Real-Time Price Deviations. Once
per year, we sort the 90 top and bottom anomaly portfolios constructed in Kozak et al. (2020) according
their price deviation level. Bottom (top) 20% corresponds to the cumulative gains of a dynamic strategy
that goes long on the 18 portfolios associated with the lowest (highest) level of price deviation. MKT is the
performance of a static buy-and-hold strategy on the market portfolio in excess of the risk-free rate. Price
deviations û are computed as in equation (9) using the methodology proposed by Ang and Kristensen (2012)
to calculate time-varying parameters. We report results for price deviations computed using the Fama and
French (2015) factor model to calculate the CMVE portfolio. Shaded areas are NBER recessions. Monthly
observations.
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Table E.2: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the 90 top
and bottom anomaly portfolios constructed in Kozak et al. (2020) in quintiles according their price deviation
level. The zero-cost strategy goes long on the quintile associated with the lowest levels of price deviations
and short on the bottom quintile associated with the highest levels. Price deviations û are computed as
in equation (9) using the methodology proposed by Ang and Kristensen (2012) to calculate time-varying
parameters. We report results for price deviations computed using the Fama and French (2015) factor model
to calculate the CMVE portfolio. Values in parenthesis are Newey and West (1987) robust standard errors.
***, **, and * indicates respectively 1%, 5%, and 10% level of significance. Monthly observations. The
sample period is 1967 to 2019.

FF3 C4 FF5 FF6 q SY4 DHS3

Constant 0.73∗∗∗ 0.64∗∗∗ 0.94∗∗∗ 0.86∗∗∗ 0.95∗∗∗ 0.81∗∗∗ 0.60∗∗∗

(0.15) (0.15) (0.15) (0.16) (0.18) (0.17) (0.13)

MKT −0.13∗∗ −0.08∗ −0.22∗∗∗ −0.18∗∗∗ −0.21∗∗∗ −0.16∗∗∗ −0.18∗∗∗

(0.05) (0.04) (0.05) (0.05) (0.07) (0.05) (0.06)

SMB 0.00 0.00 −0.14 −0.14∗ −0.05
(0.15) (0.13) (0.10) (0.08) (0.18)

HML −0.50∗∗∗ −0.44∗∗∗ −0.33∗∗∗ −0.23∗∗∗

(0.14) (0.15) (0.11) (0.09)

Mom 0.14 0.16∗∗

(0.09) (0.07)

RMW −0.45∗∗∗ −0.48∗∗∗

(0.16) (0.13)

CMA −0.15 −0.22
(0.17) (0.15)

ME −0.06
(0.17)

IA −0.62∗∗∗

(0.19)

ROE −0.21
(0.16)

Mgmt −0.41∗∗

(0.20)

Perf 0.10
(0.11)

PEAD 0.39∗∗∗

(0.11)

FIN −0.26∗

(0.14)

Observations 384 384 384 384 384 384 384
Adjusted R2 0.23 0.27 0.32 0.38 0.17 0.15 0.19
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E.3 Rank-Weighted Strategy
Table E.3: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the 90 top
and bottom anomaly portfolios constructed in Kozak et al. (2020) in quintiles according their price deviation
level. The zero-cost strategy goes long on the quintile associated with the lowest levels of price deviations
and short on the bottom quintile associated with the highest levels. Price deviations û are computed as
in equation (9). We report results for price deviations computed using the Fama and French (2015) factor
model to calculate the CMVE portfolio. Values in parenthesis are Newey and West (1987) robust standard
errors. ***, **, and * indicates respectively 1%, 5%, and 10% level of significance. Monthly observations.
The sample period is 1967 to 2019.

FF3 C4 FF5 FF6 q SY4 DHS3

Constant 0.26∗∗∗ 0.25∗∗∗ 0.25∗∗∗ 0.24∗∗∗ 0.23∗∗∗ 0.20∗∗∗ 0.30∗∗∗

(0.08) (0.07) (0.08) (0.08) (0.08) (0.06) (0.09)

MKT −0.04∗ −0.04∗ −0.04 −0.03 −0.03 −0.01 −0.03
(0.02) (0.02) (0.03) (0.03) (0.03) (0.02) (0.03)

SMB 0.05 0.05 0.06 0.06 0.07
(0.07) (0.07) (0.06) (0.06) (0.07)

HML 0.09∗ 0.10∗∗ 0.09 0.10∗∗

(0.05) (0.05) (0.05) (0.05)

Mom 0.02 0.02
(0.03) (0.03)

RMW 0.03 0.03
(0.08) (0.08)

CMA −0.01 −0.02
(0.06) (0.06)

ME 0.06
(0.06)

IA 0.08
(0.07)

ROE 0.04
(0.05)

Mgmt 0.14∗∗∗

(0.05)

Perf −0.00
(0.03)

PEAD −0.10∗

(0.06)

FIN 0.05
(0.07)

Observations 384 384 384 384 384 384 384
Adjusted R2 0.06 0.06 0.06 0.06 0.04 0.09 0.06
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E.4 Monthly (Non-Overlapping) Observations
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Figure E.4: FF5

Figure E.5: Anomaly Portfolios Rotation using Real-Time Price Deviations. Once
per year, we sort the 90 top and bottom anomaly portfolios constructed in Kozak et al. (2020) according
their price deviation level. Bottom (top) 20% corresponds to the cumulative gains of a dynamic strategy
that goes long on the 18 portfolios associated with the lowest (highest) level of price deviation. MKT is the
performance of a static buy-and-hold strategy on the market portfolio in excess of the risk-free rate. Price
deviations û are computed as in equation (9). We report results for price deviations computed using the
Fama and French (2015) factor model to calculate the CMVE portfolio. Shaded areas are NBER recessions.
Monthly observations.
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Table E.4: Long-Short Anomaly Portfolio Alphas

This table reports factor exposures and alphas obtained by regressing returns of a zero-cost investment
strategy that exploits price deviations on several prominent factor models. Once per year, we sort the 90 top
and bottom anomaly portfolios constructed in Kozak et al. (2020) in deciles according their price deviation
level computed in real-time using an expanding window from 1987 to 2018. The zero-cost strategy goes
long on the top decile and short on the bottom decile. Values in parenthesis are Newey and West (1987)
robust standard errors. ***, **, and * indicates respectively 1%, 5%, and 10% level of significance. Monthly
observations. The sample period is 1967 to 2019.

C4 FF6 q SY4 DHS3

Constant 0.30∗∗∗ 0.31∗∗∗ 0.28∗∗∗ 0.25∗∗∗ 0.35∗∗∗

(0.09) (0.10) (0.10) (0.09) (0.11)

MKT −0.03 −0.04 −0.03 −0.01 −0.02
(0.03) (0.03) (0.04) (0.03) (0.05)

SMB 0.09 0.08 0.11
(0.12) (0.09) (0.11)

HML 0.16∗∗ 0.18∗∗

(0.08) (0.07)

Mom −0.01 −0.01
(0.04) (0.04)

RMW −0.02
(0.13)

CMA −0.03
(0.10)

ME 0.10
(0.09)

IA 0.14
(0.10)

ROE −0.01
(0.07)

Mgmt 0.18∗∗

(0.07)

Perf −0.06
(0.05)

PEAD −0.13
(0.09)

FIN 0.05
(0.10)

Observations 384 384 384 384 384
Adjusted R2 0.08 0.08 0.04 0.11 0.04
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F A Model of Slow Adjustment to Information
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Figure F.1: Predictability Using Price Deviations and Slow Adjustment to Infor-
mation. This figure shows ex-post densities for δ coefficients in specification (12) for different calibrations
of the adjustment parameter k in equation (16). We calibrate RV

t to the CMVE portfolio return over the
period 1967–2019, with an annualized (percentage) mean of 1.23% and an annualized volatility of 1.12%.
Prices are constructed as Vt+1 = Vt + RV

t+1. We then simulate 10000 times a sample of 636 observations of
Pt+1 using equation (16). The case k = 1 is full price adjustment to information.
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