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Abstract

Intangible capital can be used to create new goods and services (product intan-

gibles) or to improve the efficiency of the firm (process intangibles). We report and

study a new empirical fact: Executive and skilled labor pay is increasing in firm pro-

cess intensity (the fraction of intangibles corresponding to process intangibles). We

rationalize this fact in a dynamic principal-agent model, with the optimal contract

uncovering process intensity’s direct and indirect effect on compensation. The direct

effect is a level effect: Higher process intensity increases the returns to shirking. The

indirect effect is a slope effect: Higher complementarity between process intangibles

and physical capital investment increases the agent’s hold-up power over the firm

for any level of process intensity. We verify these effects in the data. Importantly, we

show that these effects are present in executive compensation and in the wages of

highly skilled innovative employees, which we can measure using proprietary granu-

lar vacancy posting data from a labor-market data firm. In our baseline specification,

a one standard deviation increase in process intensity is associated with an 8% in-

crease in executive pay and a 3% increase in skilled labor wages relative to industry

peers.
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1 Introduction

Intangible and innovative capital can play multiple roles within the firm. For example,
intangible capital can be used with other inputs to create new output. We call these
intangibles “product intangibles”. On the other hand, some intangibles are used to make
the firm more efficient, by, for example, reducing costs or better organizing resources. We
refer to these intangibles as “process intangibles.”1 Do these different uses of intangibles
affect the compensation of executives and skilled employees? The data show that the
answer is yes: Higher process intensity (process intangibles relative to total intangibles)
is associated with higher pay.

Figure 1: Average Executive Compensation by Process Intensity Bin
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This figure shows the mean executive compensation per unit of physical capital. The bins on the x-axis
are created by sorting firms based on their process intensity each year. The bins are equally spaced. The
y-axis is created by taking total executive compensation in the year and dividing it by the physical capital
stock.

Figure 1 plots average executive compensation as a function of the firm process in-
tensity.2 As the level of process intensity increases, the average executive compensa-

1The OECD’s Oslo Manual defines product innovation as the introduction of a good or service that is new
or significantly improved with respect to its characteristics or intended uses and meanwhile defines process and
organization innovation as implementation of a new or significantly improved production or a new organizational
method in the firm’s business practices, workplace organization or external relations (OECD (2005)).

2See Section 5 for exact details on construction.
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tion does, too.3 In this paper, we rationalize this new empirical fact using a dynamic
principal-agent model in which process intangibles are exposed to agency frictions and
verify the model’s predictions in the data.

Our model is motivated by a novel empirical stylized fact: physical investment and
process intangibles are complements. This complementarity creates an agency problem.
The agent’s shirking effort in process innovation can reduce the efficacy of physical
investment and reduce the firm’s value. This fact motivates us to model the physical
capital accumulation by a CES aggregation function between physical investment and
process intangibles.

In our model, if the agent exerts effort, process intangibles are used to increase the
efficiency of physical capital investment (i.e., the firm gets more “bang for the buck” per
dollar of physical investment). If the agent shirks, they enjoy private benefits propor-
tional to the difference in physical capital growth with and without process intangibles.4

We solve for the optimal contract that induces the agent to provide effort and find that
there are two channels through which process intensity and compensation are linked.
We call these the direct and indirect effects. We can measure these effects by closing
the model with a Fokker-Plank equation. The upshot of this is that we can calculate the
mean level of compensation over an entire distribution of firms as we vary certain firm
parameters. The direct effect can be considered a level effect: Holding other variables
and parameters fixed, as the process intensity of the firm increases, so does the promised
utility to the agent. This effect arises because the agent’s benefit from shirking increases
as process intensity increases, ceteris paribus. Therefore, the owners of the firm must
promise the agent more utility to induce them to provide effort.

The indirect effect is akin to a slope effect: The process intensity-compensation asso-
ciation becomes stronger as the complementarity between process intangibles and phys-
ical investment becomes larger. This effect is a hold-up problem. As process intangibles
become more important to the physical capital growth process, the agent can extract
more rents from the firm. This is most easily in the extreme cases. When physical in-
vestment and process intangibles are perfect substitutes, any rent extraction by the agent
can be perfectly offset by an equivalent increase in physical capital investment. The

3This graph is unconditional on the level of intangibles. We show that this results holds conditionally
on intangibles and other covariates as well, see Section 2.

4We could also motivate our modelling choice following arguments by Jensen and Meckling (1976).
Intangibles are generally harder for outsiders (owners) to monitor (Lev (2000)), and this monitoring issue
is exacerbated by the internal-to-the-firm nature of process intangibles.
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level of physical capital growth is affected, but the marginal product of investment is
not. In the other extreme case, process intangibles and physical investment are perfect
complements. In this case, the agent must be induced to provide effort; otherwise, all
physical investment is wasted: The agent can block the firm from growing until he is
compensated enough. In reality, most firms are somewhere between these two extremes.

We measure process intensity in the data using information contained in patent
claims (Bena and Simintzi (2019)). They scrape the text of filed patents, looking for
phrases like a process for... or a product for... to determine the type of patent. In that
paper, they measure process intensity similarly to ours. There are other methods of mea-
suring product versus process intensity.5 We focus on the Bena and Simintzi (2019) data
and method because it is straightforward, publicly-available, and has already been used
successfully in the previous paper.

We measure our main outcome variable, compensation, in two different ways. First,
we use executive compensation, both total and deferred, from Compustat. This is the
standard data used in the literature to test dynamic principal-agent models (Ward (2022)).
The argument for using this data is that executives are the most powerful people in a
firm and are best positioned to extract rents. However, it is not clear that executive effort
actually matters for process intangibles to be effective.6 Our second measure overcomes
that issue. We gather wage data on vacancy postings from Burning Glass Technologies
(BGT).7 BGT is a firm whose competitive advantage is its unique vacancy posting data.
The main benefit of this data is that BGT provides a large and standardized set of skills
associated with each vacancy posting. Therefore, we can look at the posted wages for
workers with skills specific to innovation, process improvement, and research and devel-
opment (R&D).

Empirically, we verify the direct and indirect effects identified in the model, condi-
tional on several covariates and fixed effects. We find that a one standard deviation
increase in the process intensity of the firm is associated with an 8.4% increase in to-
tal compensation, a 7.6% increase in deferred compensation, and a 1.7% increase in the
fraction of compensation deferred for executives. These are all measured relative to firm
physical capital, which is consistent with the normalization in the theoretical model. The

5We cite these papers below.
6For example, when Nissan had a break-through in its car production methods (Link), its CEO was

embroiled in a serious legal scandal. Exerting effort over process innovations was surely the last thing on
his mind.

7BGT has since merged with Lightcast, and the merged entity uses the Lightcast name.
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wage data from BGT is not a total flow, so it must be normalized differently. We nor-
malize with respect to the wage of job postings requiring similar skills at other firms
within the same industry-year (i.e., the leave-one-out industry-date mean). A one stan-
dard deviation increase in process intensity is associated with a 3.1% increase in this
relative skilled wage. We first measure the complementarity of physical capital invest-
ment and process intensity to test the indirect effect. We do this by examining how the
marginal product of physical investment on actual physical capital growth varies with
the level of process intensity. We then sort firms based on our measure of complementar-
ity.8 High complementarity firms have uniformly stronger associations between process
intensity and compensation. A one standard deviation increase in process intensity is as-
sociated with a 16.5% increase in total compensation in the high complementarity firms,
compared with a 6.7% increase in the low complementarity firms. For deferred compen-
sation and the BGT relative skilled wage, these numbers are 17.7% versus 7% and 4.9%
versus 2.4%, respectively.

These empirical results are robust to several different specifications. First, we repeat
our main regressions at the executive level instead of the firm level. Results are quali-
tatively similar, even when we restrict our sample to executives who changed firms at
least once. Second, we exploit the granularity of the BGT data even further and split our
high skilled workers into those with product-focused innovative skills and those with
process-focused innovative skills. We find our effects are present in the second group,
but not the first. Third, we test another channel connecting process intensity and com-
pensation that is specific to the model. In the model, agency friction becomes stronger
as uncertainty about capital growth increases. This implies that we should see another
indirect effect in the data: Higher uncertainty in capital growth should lead to a stronger
process intensity-compensation connection. We show that this is also empirically true.

We make three main contributions. First, we present a new finding that heterogeneity
in the uses of intangibles is associated with heterogeneity in pay. In particular, higher
process intensity is associated with higher pay. Second, we develop a dynamic principal-
agent model with heterogeneity in intangibles that can rationalize the empirical phe-
nomenon. Importantly, the model shows that there is a direct and indirect effect of
process intensity on compensation: The level effect comes from variation in the shirking
benefit, and the slope effect comes from variation in the complementarity between pro-

8Due to data limitations, we estimate complementarity at the four-digit NAICS level and assign all
firms in that industry to have the same complementarity.
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cess intangibles and physical capital investment. Third, we show that both the direct and
indirect effects exist in the data, not only for executives but also for the skilled works
whose effort determines the efficacy of process intangibles.

This paper sits at the intersection of three different literature. First, we contribute
to the literature on dynamic agency theory (Biais et al. (2007), DeMarzo and Sannikov
(2006), DeMarzo and Fishman (2007a), DeMarzo and Fishman (2007b), DeMarzo et al.
(2012), Sannikov (2008), Morellec, Nikolov and Schürhoff (2018), Nikolov and Whited
(2014), Tong and Ying (2018), Back, Kakhbod and Xing (2022)). Our model extends this
framework to include heterogeneous forms of intangible capital. This adds new testable
predictions (the core of our paper) and new state variables, adding computational com-
plexity. Most relevantly, Ward (2022) studies the role of agency frictions on intangibles,
but does not distinguish between different types of intangibles. We consider the pa-
pers complement, as we essentially take Ward (2022)’s result as a starting point (there
are agency frictions on intangibles) and take the next natural steps. To the best of our
knowledge, there are no other papers relating intangibles and agency frictions.9

Second, we contribute to the literature connecting intangible capital and finance
(Crouzet and Eberly (2018), Eisfeldt and Papanikolaou (2013), Ewens, Peters and Wang
(2019), Kung and Schmid (2015), Lev and Radhakrishnan (2005), Peters and Taylor (2017),
Ward (2020)). None of these papers formally model the agency conflict nor do they at-
tempt to measure heterogeneous intangible capital.10 We use the methods of Ewens,
Peters and Wang (2019) and Peters and Taylor (2017) to create our firm-level measure of
intangible capital and investment. We fit within the subset of this literature that looks
at the relationship between pay and innovation/intangibles (Bhandari and McGrattan
(2021), Kline et al. (2019), Kogan et al. (2020), Lerner and Wulf (2007), Lustig, Syverson
and Van Nieuwerburgh (2011), Song et al. (2019)). These papers also do not look at
agency conflicts or the heterogeneous nature of intangibles.

Third, we contribute to the small literature on process versus product innovation and
finance. Our measure of process innovation intensity comes from Bena and Simintzi
(2019). Ganglmair, Robinson and Seeligson (2022) provide a survey of the empirical
evidence on process claims over time and provide their measure of process intensity.11

None of these papers are concerned with compensation or agency. To the best of our

9Grabner (2014) studies the empirical relationship between “creativity-dependent” firms and incentive
pay.

10In fact, we combine patent data and intangible capital measures to get our heterogeneous measures.
11Angenendt (2018) also estimates process intensity.
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knowledge, we are the first to explicitly tie a formal model of the firm (with or without
agency) to the empirical data on process versus product innovation.12

2 Stylized Facts

This section presents three key empirical stylized facts that motivate our model in the
next section. The model will then provide further implications for us to test. These
facts also serve as a summary of our main results. We rely on simple double sorts or
regressions in this section and defer the more detailed empirical work to Section 6. We
leave formal data description and variable construction to Section 5.13

The facts we present are the following: First, firms with higher process intensity
provide higher compensation for their executives. Second, the association between pro-
cess intensity and compensation increases in the amount of physical capital investment.
Third, firms with higher process intensity have lower contemporaneous sales. All three
facts are conditional on the level of the intangible capital stock.

Figure 2 displays the first stylized fact. To construct this figure, we independently
sorted firms into three bins based on their process intensity and three bins based on their
intangible capital to physical capital ratios.14 We see two effects here. First, the average
level of executive compensation is increasing as the intangible capital bin increases (in-
tangible capital level increases). This is implied by Ward (2022). Second, within each
intangible capital bin (conditioning on the intangible capital level), executive compensa-
tion increases with the level of process intensity. This novel fact suggests that not only
does the level of intangibles matter, but that the type of intangibles matter, too. This
empirical fact has not been documented in the data, nor has it been explained by the
existing models.

Figure 3 displays our second stylized fact. This figure shows the sensitivity of execu-
tive compensation to a one-standard deviation increase in process intensity by physical

12Mohnen and Hall (2013) provide an overview of the empirical evidence linking firm outcomes to
process and product innovation.

13This section focuses on total executive compensation, one of our three compensation and salary mea-
sures. We leave the other two, deferred compensation and skilled labor salaries, to the main Results
section.

14The bins are rebalanced every year. Sorting based on intangible capital is done conditional on industry,
as Eisfeldt, Kim and Papanikolaou (2020) suggest. Process intensity is already normalized by the industry
average process intensity.
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Figure 2: Executive Compensation by Intangible Capital and Process Intensity Bin
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This figure shows the mean executive compensation per unit of physical capital. The bins on the x-axis
are created by sorting firms based on their process intensity each year. Each sub-graph and color is
created by annually sorting firms based on their intangible capital to physical capital stocks. Bins are
rebalanced each year for both variables, and the intangible capital bin assignments are conditional on
industry. The measure of process intensity is scaled by the industry average process intensity. The
compensation variable as been multiplied by 100 to remove small decimal numbers.
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capital investment bin.15 95% confidence intervals are also displayed.
The key takeaway here is that the sensitivity is increasing as physical investment

increases. This captures our idea of the hold-up problem inherent in process intangi-
bles. Firms undertaking more physical investment are more “dependent” on the efforts
of the agents to fully realize the benefits of the investment. The agent can thus extract
rents from the firm. This effect is increasing with physical investment. This positive
relationship is predicated on the assumption that physical investment and process in-
tangibles are complements. This assumption is verified in the Appendix D.16 Consider
the extreme case where physical investment and process intangibles are perfect substi-
tutes. Then, there is no interaction between process intangibles and physical investment
in executive compensation.

The third stylized fact is that sales are decreasing with process intensity, conditional
on the level of intangible capital. To show this fact, we estimate:

Sales f t = yt + yj + β1ProcIn f t + β2 IK f t + β3iB/M f t + β4Size f t + ε f t (2.1)

where sales are divided by physical capital, ProcIn is our main process intensity measure
as explained in Section 5, iB/M is the book-to-market ratio with intangibles added to the
book value, and Size is market capitalization. The two fixed effects, yt and yj, control
for date and industry effects, respectively. Standard errors are clustered at the firm level.
All variables are logged, except for process intensity (since 0 is meaningfully frequent),
which is expressed in standard deviation units.

Table 1 displays the results. The top row shows the estimates for the effects of process
intensity on sales. The effects are negative and significant across specifications. A one
standard deviation increase in process intensity is associated with about a 10% decrease
in sales. Column (1) displays the sparsest specification using only intangible capital
and process intensity without any controls or fixed effects. Column (2) adds controls.
Column (3) adds fixed effects, without controls, and Column (4) includes all controls
and fixed effects.

15The sensitivity is measured as the simple regression coefficient on process intensity when log compen-
sation is regressed on process intensity, intangible capital, and firm size. Physical capital investment bins
are created analogously to the process intensity bins above.

16Moreover, we also document there that the complementarity between physical investment and pro-
cess intangibles is much stronger than the complementarity between physical investment and product
intangibles.
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Figure 3: Sensitivity of Executive Compensation to Process Intensity by Physical Invest-
ment Bin
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This figure shows the sensitivity of log executive compensation (over physical capital) to a one-standard
deviation increase in process intensity by physical investment bin. The sensitivity is measured as the
simple regression coefficient on process intensity when log compensation is regressed on process
intensity, intangible capital, and firm size. The investment bins are based on the physical investment to
physical capital ratio of firms. They are rebalanced every year. 95% confidence intervals are displayed.
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Table 1 Here

We next turn to the model, which will capture these stylized facts and provide further
implications for the connection between compensation and process intensity.

3 Model setting

3.1 Capital, investment, and agency

The firm produces output using both physical and intangible capital, whose stock values
are K and O, respectively. The firm determines its investment, I, in the physical capital
and its investment, S, in the intangible capital. Both I and S are assumed to be non-
negative, so that investment is irreversible. Physical and intangible investments are
subject to convex adjustment costs CK(I) and CO(S), respectively. The instantaneous
cash flow produced by the firm is

Y = µKα(θO)1−α − I − S − CK(I)− CO(S), (3.1)

after netting investments and adjustment costs. The production requires a combination
of physical capital and a fraction, θ, of intangibles that are used towards product inno-
vation. They are aggregated by a Cobb-Douglas production function µKα(θO)1−α with
the productivity rate µ. Following Eisfeldt and Papanikolaou (2013), we assume the
adjustment costs for physical and intangible investment as

CK(I) =
QK

cK

(
I
K

)cK

K and CO(I) =
QO

cO

(
S
O

)cO

O, (3.2)

respectively, with constants cK, cO, QK, and QO.
The intangible capital O evolves according to

dOt = (St − δOOt)dt, (3.3)

where δO is the deprecation rate of the intangible capital. The evolution of K follows

dKt = (D(et, It, Ot)− δKKt) dt + σKtdZe, (3.4)

where δK is the deprecation rate of the physical capital and Ze is a Brownian motion
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describing shocks to the physical capital. Accumulation of physical capital depends on
both investment I and a fraction, 1 − θ, of intangibles. The production function D takes
a CES form

D(e, I, O) =
A

a1/ρ
[a Iρ + e(1 − a)(1 − θ)ρOρ]1/ρ . (3.5)

The presence of intangibles in the production function D models the process innovation,
which makes physical investment more efficient: a larger value of (1− θ)O increases the
physical capital K more for the given physical investment I. See Lin (2012) for a more
detailed discussion on this production function on physical capital. The CES parameter
ρ measures the complementarity between the physical investment and the intangibles in
the physical capital accumulation. The lower ρ is, the more complementarity between the
two components. The factor a−1/ρ in front of the CES function is a normalization factor
so that the production function D takes the same value for different CES parameter ρ

when the intangible capital O is zero.
In the production function D, the agent’s effort e is either 0 or 1. When e = 1, the

agent exerts full effort and works efficiently; when e = 0, the agent shirks his effort
and enjoys a flow of private benefits λΛ. The parameter λ is a positive constant and Λ
measures the increment of the firm’s physical capital accumulation due to the agent’s
effort, conditional on the physical capital investment and the intangible:17

Λ(I, O) = D(1, I, O)− D(0, I, O). (3.6)

When the agent exerts full effort, i.e., e = 1, the physical capital increases by D(1, I, O).
However, when the agent shirks, i.e., e = 0, the physical capital only increases by
D(0, I, O) = AI, which is independent of intangibles. Therefore, Λ measures how much
stake the agent controls in the process innovation.

For positive ρ, four properties of Λ are important for our results: (i) Λ(I, O) increases
with O, indicating a more important role agent’s effort plays in the physical capital
accumulation, hence a higher shirking benefit, when a firm possesses more intangibles;
(ii) Λ(I, O) increases in 1− θ, implying that more process innovation increases the agency
friction; (iii) When 0 < ρ < 1, ∂Λ

∂(1−θ)
increases in I. This indicates a hold up problem for

the physical investment and the problem is more severe when the firm invests more.

17He (2009) also makes the benefit function dependent on the investment rate.
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(iv) When ρ1 < ρ2,
∂Λρ1

∂(1 − θ)
>

∂Λρ2

∂(1 − θ)
> 0, 18 (3.7)

for fixed I and O. Therefore, the agency friction is more severe when ρ is smaller and
process intensity is higher.

The dependence of D on the agent’s effort models the agency friction on the process
innovation. We assume that the firm’s owner (principal) only observes the dynamics of
O and K, but cannot observe the agent’s effort e due to the random shocks in Ze. This
introduces agency friction in process innovation.19

Our model setting mirrors the stylized facts documented in the previous section.
Among the intangible capital O, θO is used in the product innovation to generate out-
put, (1 − θ)O is utilized in the process innovation to improve the efficacy of physical
investment. Therefore, we call 1 − θ firm’s process intensity. As 1 − θ increases, the Cobb-
Douglas production function µKα(θO)1−α decreases, which maps to the third stylized
fact that sales decrease in process intensity. Complementarity between physical invest-
ment and process intangibles in the second stylized fact motivates the CES aggregation
between physical investment and process intangibles in (3.5). Agent’s effort e in the
CES function represents the hold up problem: shirking reduces the efficacy of physical
investment. The property (iii) of the shirking benefit Λ also echos the empirical pattern
in Figure 3.

Next, we present a contracting problem between the owner of our model firm (prin-
cipal) and an executive or a skilled employee (agent) who has expertise in process inno-
vation.

3.2 Contracting problem

The principal offers a contract with a cumulative compensation of C to the agent. The
agent does not subsidize the firm by accepting negative compensation. Therefore, C is
a non-decreasing process. For a given compensation plan C, the agent’s continuation

18For the first inequality, we normalize Λ by a1/ρ so that the normalized Λ(I, 0) has the same value for
different ρ.

19We can also consider the case where the dynamics of O is subject to random shocks, for example,
dOt = (St − δOOt)dt+ σOOtdWt for another Brownian motion W independent of Ze. However, contracting
on O does not provide an incentive to the agent in our model and makes the agent’s continuation utility
more volatile. We will show later that the principal’s value function is concave in the agent’s continuation
utility. Therefore, the principal is implicitly risk averse in the agent’s continuation utility, hence does not
load on the intangibles in the optimal contract.
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utility U is

Ut = max
e∈{0,1}

Ee
t

[ ∫ τ

t
e−γ(s−t)[dCs + (1 − es)λΛsds

]]
. (3.8)

The expectation is taken with respect to a probability Pe, which is induced by the agent’s
effort e. The Brownian motion Ze in (3.4) is under the measure Pe. The agent is assumed
to be risk neutral, discounting future compensation and potential private shirking benefit
using a subjective discounting rate of γ. The firm is terminated at an endogenously
determined stopping time τ, after which the agent collects the outside value, which is
normalized to be zero.

The principal of the firm chooses a contract to maximize the expected future cash
flow net compensation discounted by the interest rate r. Principal chooses among the
contracts which incentivize the agent’s full effort e = 1. Therefore, the principal’s opti-
mization problem at time zero is

max
I,S,C

Ee∗
[ ∫ τ

0
e−rs [Ysds − dCs] + e−rτ

(
ℓKKτ + ℓOOτ

)]
, (3.9)

subject to agent’s incentive compatibility constraint that the agent chooses the full effort
optimally, i.e., e∗ = 1 and agent’s participation constraint U0 ≥ 0. In (3.9), the firm’s
termination time is

τ = inf{t ≥ 0 : Ut = 0},

when the agent’s continuation value from the contract reaches his outside value. The
firm is terminated at τ to protect the agent’s limited liability with respect to his outside
value. At the termination time, the firm’s physical and intangible capital are both liqui-
dated. The recovery rate for physical capital is ℓK and the recovery rate for intangibles is
ℓO. Termination is inefficient for the firm. The principal designs the optimal contract to
manage the agent’s continuation utility U in order to provide the incentive to work and
meanwhile mitigate inefficient firm termination.

To avoid the principal deferring the compensation forever, We assume that

r < γ,

so the principal is more patient than the agent. The same technical condition is required
by DeMarzo and Sannikov (2006).
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4 Optimal contract and implications

4.1 Optimal contract

In order to incentivize the agent’s full effort, the principal exposes the agent’s continua-
tion utility to variations in K. Introducing a pay-performance sensitivity φ to dK yields
the benefit of working φΛ for the agent. Comparing to the cost of working (losing the
shirking benefits) λΛ, the principal needs to choose φ ≥ λ to incentivize the agent’s full
effort. The following result summarizes the agent’s optimal effort choice and dynamics
of the continuation utility.

Lemma 4.1 For a given cumulative compensation C, there exists a process φ such that the
agent’s continuation utility follows

dUt = γUtdt + φtKtσdZe∗
t − dCt, (4.1)

where the agent’s optimal effort is

e∗t =

{
1, φt ≥ λ,
0, otherwise.

(4.2)

Therefore, in order to incentivize full effort, agent’s incentive compatibility constraint is

φ ≥ λ. (4.3)

We now turn to the principal’s problem (3.9). Introduce the principal’s value function
as

V(Kt, Ut, Ot) = max
I,S,C

Ee∗
t

[ ∫ τ

t
e−r(s−t)[Ysds − dCs

]
+ e−r(τ−t)(ℓKKτ + ℓOOτ

)]
. (4.4)

The homogeneity in K allows us to introduce a function v via

V(K, U, O) = K v(u, o), (4.5)

where
u = U/K and o = O/K

are the continuation utility to physical capital ratio and the intangible to physical capital
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ratio, respectively. Physical capital accumulation takes the form

D(e, I, O) = K d(e, i, o), where d(e, i, o) =
A

a1/ρ

[
aiρ + e(1 − a)(1 − θ)ρoρ

]1/ρ. (4.6)

When e = 1, we denote d(1, i, o) by d(i, o) to simplify notation. Using u and o as two state
variables for the principal’s problem, the optimal contract, and the optimal investment
strategies are characterized by the following result.

Proposition 4.1 The function v, the optimal contract, and the optimal investment are described
as follows:

(i) The function v satisfies the HJB equation

0 = max
{
− (r + δK)v + max

i≥0,s≥0,φ≥λ

{(
v − o ∂ov − u ∂uv

)
d(i, o)

+
(
s − (δO − δK)o

)
∂ov + (γ + δK)u ∂uv

+
1
2

o2σ2∂2
oov +

1
2
(φ − u)2σ2∂2

uuv − o(φ − u)σ2∂2
ouv

+ µ(θo)1−α − i − s − CK(i)− CO(s/o)o
}

,−∂uv − 1
}

. (4.7)

(ii) Define u(o) = inf{u : ∂uv(u, o) = −1}. The optimal compensation is a reflection type.
Whenever ut < u(ot), no compensation is paid, i.e., dC∗

t = 0. Only when ut = u(ot),
compensation is paid to keep the state process (u, o) below u.

(iii) When

∂2
uuv < 0 and λ > u +

o∂2
ouv

∂2
uuv

, (4.8)

the optimal contract sensitivity φ∗ is λ.

(iv) When v − o ∂ov − u ∂uv > 0, the optimal physical investment and physical capital ratio,
i∗, satisfies the first order condition

(
v − o ∂ov − u ∂uv

)
∂id(i∗, o) = 1 + QK(i∗)cK−1; (4.9)

otherwise, i∗ = 0. If ∂ov > 1, the optimal intangible investment and physical capital ratio,
s∗, is

s∗ = o
(∂ov − 1

Qo

) 1
cO−1

; (4.10)
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otherwise s∗ = 0.

To understand the HJB equation (4.7), we first use (3.3), (3.4), and (4.1) to derive the
dynamics of u = U/K and o = O/K:

dot =
[
st − (δO − δK)ot − ot d(it, ot) + ot σ2]dt − ot σdZt, (4.11)

dut =
[
(γ + δK)ut − ut d(i, o) + σ2(ut − φt)

]
dt + σ(φt − ut)dZt −

1
K

dCt, (4.12)

where d(i, o) = A[aiρ + (1 − a)(1 − θ)ρoρ]1/ρ, i = I/K, o = O/K, and the superscript 1
is suppressed on Z1 to simplify notation. Equation (4.7) divides the state space into two
regions: (i) continuation region where

r vK︸︷︷︸
Expected change

= E
[
d(Kv)

]︸ ︷︷ ︸
Expected change in V

+ Y︸︷︷︸
Net cash flow

=K Lu,ov + v E[dK] + E[dK dv] + Y,

where Lu,o is the infinitesimal generator of (u, o) in (4.11) and (4.12); (ii) compensation
region, where the marginal benefit of compensation −∂uv equals the unit marginal cost.
The right-hand side of (4.7) compares two groups of terms corresponding to continuation
and compensation, respectively. Only one group equals zero for each point in the state
space. The boundary between the continuation and the compensation region is u. The
optimal compensation satisfies dC∗

t = 0 when ut < u(ot) and dC∗
t > 0 when ut =

u(ot). This compensation maintains the state process to be lower than the compensation
boundary and reflects the state process whenever the compensation boundary is reached.

The optimal pay-performance sensitivity is determined by the constrained optimiza-
tion problem

max
φ≥λ

{1
2
(φ − u)2σ2∂2

uuv − o(φ − u)σ2∂2
ouv

}
,

where the pay-performance sensitivity φ is subject to the incentive compatibility con-
straint φ ≥ λ. When the conditions (4.8) are satisfied, the incentive compatibility con-
straint is binding, i.e., φ∗ = λ. Conditions (4.8) will be verified numerically in our
experiments later.

The optimal investments are determined jointly by their first-order conditions and the
non-negativity constraint. When i∗ > 0, it satisfies the first order condition (4.9), where
the right-hand side is the marginal cost of physical investment. The left-hand side of
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(4.9) consists of two components. First, the marginal impact of physical investment on
the growth rate of the physical capital is ∂id(i∗, o). Therefore, the marginal benefit on the
value function, due to the change of physical capital accumulation, is v ∂id(i∗, o). Second,
the growth in physical capital reduces the intangible and physical capital ratio, at the rate
of o ∂id(i∗, o), and also reduces the continuation utility and physical capital ratio, at the
rate of u ∂id(i∗, o). Both reductions introduce the marginal cost (o ∂ov + u ∂uv)∂id(i∗, o).
The optimal investment in the physical capital balances the net marginal benefit on
the left-hand side of (4.9) and the marginal cost on the right-hand side. The optimal
investment in the intangible capital satisfies the following first-order condition, when
∂ov > 0,

∂ov = 1 + QO
(
s∗/o

)cO−1,

where the marginal cost on the right-hand side matches the marginal benefit ∂ov on the
left. This first-order condition yields the optimal choice of s∗ in (4.10).

The HJB equation (4.7) is combined with several boundary conditions, which we
specify next. When U reaches 0, both physical and intangible assets are liquidated.
Therefore, the boundary condition at u = 0 is

v(0, o) = ℓK + ℓOo. (4.13)

The endogenous compensation boundary u is determined jointly with the solution of
(4.7). When o = 0, (4.11) shows that the drift of do is non-negative and the volatility
vanishes. Therefore, the boundary condition at o = 0 is not needed in an upwind
numeric scheme. Finally, we impose a technical Neumann boundary condition at a
sufficiently large level o

∂ov(u, o) = 0.20

4.2 Stationary distribution

After the optimal contract and investment strategies are characterized for an individual
firm in the previous section, we examine in this section the stationary distribution of
the state variables.21 This helps us to better match model predictions with empirical
observations.

20Our numeric experiments show that the function v in a fixed bounded domain is not sensitive to the
choice of o when o is sufficiently large.

21Hopenhayn (1992).
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Because the volatility of u in (4.12) is non-degenerate at u = 0, firm liquidation
happens with positive probability under the optimal contract. In order to maintain a
stationary mass of firms, we introduce firm entry. The stationary density g of the state
variable (u, o) satisfies the stationary Fokker-Planck-Kolmogorov equation:

L∗
u,o g(u, o) + m ψ(u, o) = 0, (4.14)

where L∗
u,o is the adjoint operator of the infinitesimal generator Lu,o, ψ(u, o) represents

an entry density integrating to one, and m is an entry rate. To ensure that the stationary
density g integrates into one, the entry rate m is chosen to match the existing mass:

m = −
∫ ∞

0

∫ u(o)

0
L∗g(u, o)du do.

Coefficients in the infinitesimal generator Lu,o depend on the optimal investment strate-
gies and the agent’s optimal effort under the optimal contract. Therefore, the stationary
density g describes the behavior of the equilibrium state variables.

4.3 Quantitative model implications

We examine the quantitative implications of our model in this section. We calibrate
several model parameters to the data. For the agent shirking benefit parameter λ, it
follows (4.1) that the sensitivity of changes in U with respect to changes in K is λ when
the incentive compatibility constraint is satisfied. We proxy U using the total compen-
sation from Execucomp and regress changes in the total compensation on changes in
the physical capital to obtain λ. For the volatility parameter σ, we estimate it using
the standard deviation of annual changes in the log physical capital stock. Finally, γ is
calibrated so that the mean of u is matched to the data. We assume the recovery rate of
intangibles after termination is zero, i.e., ℓO = 0, because a firm’s internal organizational
innovation is hard to be replicated after liquidation. For firm entry, we assume that the
principal has all bargaining power so that a new firm starts at ue(o) which maximizes the
principal’s value v(·, o) for a given o. The entry density ψ(u, o) is assumed to have the
decomposition ψ(u, o) = ζ(o)ξ(u|o), where ζ is the density of a log normal distribution
with parameters µψ and σψ, and ξ has a unit mass at ue(o). All other model parameters
are summarized in Table 2. They are all consistent with the parameter choice in the
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Figure 4: Principal’s Value Function
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Figure 5: Principal’s value function, compensation boundary, conditional mean of con-
tinuation utility, and stationary density. Parameters are listed in Table 2.

literature.22

Table 2 Here

We now present the model implications of our calibrated model. The left panel of
Figure 4 shows the principal’s value function v for different values of o. Given o, the
function v(u, o) is concave in u implying that the principal is endogenously risk-averse
towards variations in u. This endogenous risk aversion is generated by the threat of
inefficient liquidation. Given u, the function v(u, o) is increasing in o, because intangi-
bles improve the efficiency of physical capital investment, hence increase the principal’s
value. The right panel of Figure 4 presents the compensation boundary u, the mean of

22For simplicity and computational ease, we set ℓK = 0.7, ℓO = 0, µψ = 0, and σψ = 1.
22 A

a1/ρ agrees with Lin (2012).
22The parameters QK and QO are in monthly unit. To annualize them, we use the following argument

from the first best case. Let b be the marginal benefit of investment i. Then the first-best optimization

in i is maxi≥0
{

b i − i − QK
cK

icK
}

. Therefore, the optimal monthly investment is i∗ =
(

b−1
QK

) 1
cK−1

. Scaling

monthly QK to QK/12cK−1, we obtain the annualized optimal investment 12i =
(

b−1
QK/12cK−1

) 1
cK−1

.
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Figure 6: Compensation boundary and Conditional Mean: Varying θ
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Figure 7: Compensation boundary and conditional mean of continuation utility for dif-
ferent values of θ. Other parameters are listed in Table 2.

the continuation utility conditioning on o, and the stationary density. The compensation
boundary u increases with o. This is due to two effects. First, the production function
d of the physical capital investment increases with o. A higher intangible-physical cap-
ital ratio improves the efficiency of physical capital investment via process innovation.
However, it also elevates the importance of the agent’s effort in the physical capital accu-
mulation. Therefore, agency friction worsens with more intangibles. In order to mitigate
inefficient liquidation, the principal increases the compensation boundary u to build up
the agent’s continuation by deferring more compensations into the future. The level
curves of stationary density show that the state variables (u, o) concentrate in a region
close to the compensation boundary. This is because the drift of u in (4.12) is positive
in most parts of the state space, pushing u to increase, meanwhile the reflecting type of
compensation ensures u ≤ u. Conditioning on o, the mean of u under the stationary
distribution is represented by the red dotted line in the right panel. It increases with
o, following the same pattern of the compensation boundary and indicating a positive
relationship between the average deferred compensation and the intangible capital.

The impact of θ on the compensation is presented in Figure 6. When θ increases,
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Figure 8: Compensation Boundary and Conditional Mean: Varying ρ
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Figure 9: Compensation boundary and conditional mean of continuation utility for dif-
ferent values of ρ. Other parameters are listed in Table 2.

more proportion of the intangible capital is used in the product innovation, and less
proportion is used in the process innovation. Given i and o, the physical capital accu-
mulation function d decreases in θ when the agent exerts full effort. As a result, the
physical capital accumulation depends less on the agent’s effort and the agency friction
is less severe when θ increases. The left panel of Figure 6 shows that the compensation
boundary decreases with θ, implying that the principal defers less compensation into
the future when less proportion of the intangible capital is used for process innovation.
The conditional mean of u in the right panel of Figure 6 shows the same pattern.

The impact of ρ is presented in Figure 8. When ρ increases, the complementarity
between the physical capital investment and the intangible capital used in the process
innovation weakens. It becomes easier to substitute process innovation using physical
capital investment, hence the agent’s effort becomes less important in the physical capital
accumulation and the agency friction subsides. Therefore, as ρ increases, Figure 8 shows
that both the compensation boundary and the conditional mean of u decrease in ρ, hence
the optimal contract depends less on the deferred compensation.

These model predictions on the intensity of process innovation and the complemen-
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tarity between the physical capital investment and the intangible capital will be tested
in our empirical analysis next.

5 Data

This section describes our data sources and how we construct our final data set. We also
provide a set of stylized facts. These facts will constitute the main empirical phenomena
that we are trying to understand.

5.1 CRSP and Compustat

We begin by describing our data preparation procedure for CRSP/Compustat. These
data sets give information on the firm balance sheet and income statement variables. The
key variables we will construct from CRSP/Compustat are investment rates (intangible
and physical) and capital stocks. We will also construct a number of variables commonly
used in the finance literature as controls in our regressions.

We employ a number of standard filters on our data. First, we only retain firms
traded on AMEX, NASDAQ, or NYSE stock exchanges. Second, following Fama and
French (2015), we drop the first two years a firm appears in the data.23 Third, we drop
firms in the Transportation, Finance, and Public industries. Fourth, we drop micro-cap
firms as defined by Fama and French (2015).24

We describe the construction of our intangible capital stock and investment variables
in the next subsection. We will describe the other CRSP/Compustat variables as we use
them, since they are more standard.

5.2 Definition of Intangible Capital

Internally generated intangible capital stocks and their associated investment rates are
not reported on firm balance sheets, so we must construct these variables ourselves. To
do so, we follow Peters and Taylor (2017). First, if any of the following Compustat
variables are NAs, we set the values to 0: xrd (R&D), xsga (Selling, General, and Admin-

23We drop entirely firms that do not have beyond two full years of data.
24Micro-caps are defined as firms whose market capitalization is less than the market capitalization of

the 20th percentile NYSE firm’s size.
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istrative), rdip (R&D in progress), cogs (Costs of Goods Sold). Second, we construct a
variable called SGA.

SGA is defined as follows. If R&D is greater than Selling, General, and Adminis-
trative expenses and R&D is less than Costs of Goods Sold, then we set SGA equal to
Selling, General, and Administrative expenses. Otherwise, we set SGA equal to Selling,
General, and Administrative expenses minus the sum of R&D and R&D in progress.25

The third and final part of the Peters and Taylor (2017) method uses the perpetual
inventory method to construct the “Knowledge Capital” (KKnow) and “Organization Cap-
ital” (KOrg) stocks.

KKnow, f t = (1 − δKnow)KKnow, f ,t−1 +
R&D f t

CPIt
(5.1)

KOrg, f t = (1 − δOrg)KOrg, f ,t−1 + (0.3)
SGA f t

CPIt
(5.2)

where CPIt is the consumer price index.26 We follow Ewens, Peters and Wang (2019)
when we select δKnow and δOrg. Ewens, Peters and Wang (2019) show that there is hetero-
geneity in these parameters across industries.27 We use their estimates from their pooled
estimation, leading to δKnow = 0.28 and δOrg = 0.3.

We define intangible capital as the sum of Knowledge Capital and Organization Cap-
ital, KInt = KKnow + KOrg.28 It follows from our definition of intangible capital that we
construct intangible investment as R&D f t + SGA f t.

5.3 Execucomp

We use Execucomp to calculate the compensation to top executives at a firm.29 Our main
measure of compensation from Execucomp is total compensation (data item: TDC1).
This total compensation measure includes salary, bonus, long-term incentive plans, op-
tion awards, and stock awards.

In order to capture a more direct measure of continuation utility (the variable U in

25Our results are similar using the Eisfeldt, Kim and Papanikolaou (2020) method of construction. Re-
sults are available upon request.

26The CPI is gathered from the Bureau of Economic Analysis.
27For example, their estimates of δKnow range from 0.18 to 0.31.
28If either KKnow or KOrg is less than 0, we set KInt to zero.
29Execucomp usually includes the compensation for the top five executives at the firm. Sometimes the

compensation for the top nine is included.
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the model), we also look at deferred compensation. FASB Statement NO. 123 (revised
2004), “... requires a public entity to measure the cost of employee services received in
exchange for an award of equity instruments based on the grant-date fair value of the
award.”30 We use this fair value of equity based compensation (e.g., stocks and options)
as a measure of future promise utility. We also use the fraction of deferred compensation
in the total compensation as another measure of promised utility.

5.4 Burning Glass Technologies

We are interested in, not only, the payments to top executives, but also the payments
to specialists/skilled labor. Though executives are unlikely to be directly involved in
innovation activities, they are arguably the best positioned to extract rents from the firm.
Indeed, most papers studying agency conflicts such as the one we study use data from
Execucomp to test their predictions. On the other hand, it is plausible that the skilled
labor directly involved with innovation has the most information about the technology in
question. Therefore, these workers are also well positioned to extract knowledge based
rents.31

Burning Glass Technologies (BGT) is a labor market data firm that collects vacancy
and resume data from the Internet using machine learning techniques. The data set we
use is collected by an “electronic spider” that scrapes job posting sites like Indeed.com
and Monster.com for information about the vacancies posted there.

BGT collects the unstructured data on the websites and arranges them in a database
with standardized variables. This allows cross-firm and intertemporal comparisons.
Most importantly for us, BGT standardizes the set of skills firms looking for. For ex-
ample, one firm may want to hire someone "proficient at Microsoft Word." Another firm
might simply state that "the job will require a good deal of writing, so facility with word
processors like Microsoft Word is a must". BGT would assign “Microsoft Word” as a skill
for both firms. For each job posting, BGT assigns a number for employee skills.32 These
skills are drawn from a list created by BGT, which means that the subjective nature of
this data is somewhat reduced.

30Link to statement.
31For example, if computer programmers are trying to solve a complex and highly specialized problem,

it is feasible that even their direct managers cannot tell the difference between slow progress and shirking.
327% of jobs have no assigned skills or skills are assigned to a non-existent job posting. We drop these

cases from the data set.
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There are three lists of skills, and the difference between these lists is the level of
granularity. For example, the least granular list has 29 different levels, such as Ad-
ministration, Design, Business, and Health Care. We use the middle list (in terms of
granularity) that has 677 levels. Examples of skills here include Litigation, Water Testing
and Treatment, and Technical Support.

We classify certain skills as being innovation intensive (II) versus not. We call a job
posting an innovation intensive job (II job) posting if it has one of these skills assigned to
it.33 Our selection of skills for this categorization is subjective. We ask ourselves “What
skills are associated with the creation of new ideas and products?” Note that this related
to, but different than, “high skill." For example, medical doctors are highly skilled and
educated, but we do not consider them to typically be involved in the creation of new
products or processes. Consequently, medical doctors are not “innovation” job holders.

Around 5% of all BGT job postings have an associated salary. These are the salaries
the employer is offering for the position. For each firm-year, we compute the average II
job salary. Similarly, we compute the average II job salary within an industry year.

There are two drawbacks to the BGT data. First, BGT data only go back to 2010. As
we will see, this reduces our sample size to less than 2000 observations for regressions
using BGT data. Second, as alluded to above, even though the II workers in BGT are
the ones actually undertaking the innovative work, it is not clear how much power these
workers have to extract rents from shirking. This second drawback is not so problem-
atic, since we have Execucomp data, as well. Our results are consistent with either the
executives or the II workers, or both, being subject to agency conflicts.

5.5 Process Claims Data

Our data for process claims comes from the data set compiled by Bena and Simintzi
(2019).34 The authors collect data from the U.S. Patent and Trademark Office (USPTO)
up to 2021. They parse the structured-text of each patent to identify the claims section
of the patent. Patent claims delineate the scope of the patent in the eyes of the law. To
that end, they are important and precisely written. For example, the outcomes of patent

33We require only one skill to be II because it is not true that more non-II skills reduce the innovativeness
of the job, so to speak. For example, one company may want someone who understands artificial intelli-
gence, while another company wants this same role to also manage people and write reports. The second
company’s posting would have a smaller fraction of skills classified as II, but that role just described is no
less innovative.

34We refer the reader to that paper’s Internet Appendix for further details not discussed here.
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infringement lawsuits frequently depend on these claims. Within the claims section
of the patent, the authors then classify each claim as being either process or product
oriented.

Though definitions are subjective, the existing literature (Bena and Simintzi (2019),
Ganglmair, Robinson and Seeligson (2022)) generally defines process innovations as
those that improve firm productivity/production methods or reduce costs, meanwhile
product innovations introduce new products.

Within each-firm year, we compute the total number of process claims across all
patents and divide that sum by the total number of claims, processes, and products.
This measure aggregates information from all the patents filed by the firm that year.
This measure is similar to that used by Bena and Simintzi (2019). Note that in the model
process intensity, 1 − θ, is a parameter. Our measure of process intensity in the data is
allowed to vary by firm-year. However, most of the variation in process intensity can be
captured by a firm-level fixed effect.35 Thus, our measures do a good job of sorting firms
into different, relatively invariant, groups, which is in line with our theory.

By using patent data to construct the process intensity of the firm, we are assuming
that this patent-level measure is a good proxy for the overall-firm level measure. We use
the patent data because no firm-level measure of process intensity exists. If, for example,
firm-level process intensity, p f , is:

p f = βpp + e

where β > 1, pp is the patent level measure, and e is noise, then we have classic errors-
in-variables on the right-hand side. This will not lead to problems in inference, since we
are interested in cross-firm comparisons.

Throughout, we drop firms with no claims of any kind (i.e., no patents). This is
implicit in our measures of process intensity that are defined as the number of process
claims over total claims.

5.6 Summary Statistics

Table 3 displays summary statistics. We allocate firms to different portfolios based on
their process intensity measure, 1 − θ, and the averages of select variables are computed

3550% of the variation in process intensity is captured by firm-fixed effects. Adding a full set of controls,
including industry fixed effects, increases the R2 of the regression by only 8%.
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for each portfolio. The firms are assigned to a portfolio each year.
The first column lists the portfolio, where a higher portfolio number indicates a larger

average process intensity. The second column lists what we call the “iB/M” ratio.36 The
iB/M ratio is constructed similarly to the classic book-to-market ratio.37 Instead of sim-
ply taking the ratio of book equity to market capitalization, we add the intangible capital
stock to book equity before computing the ratio. The standard measures of book equity
fail to account for internally generated intangibles, which are becoming an increasingly
important part of the firm’s capital stock.38 The iB/M ratio is almost monotonically de-
creasing in the firm’s process intensity. Though we do not explore the iB/M ratio in the
model, this result is in line with the production-based asset pricing literature. According
to Lin (2012), as the process intensity increases, the marginal product of physical invest-
ment increases. This increase in marginal product increases what Kogan and Papaniko-
laou (2014) call the “present value of growth opportunities.” Kogan and Papanikolaou
(2014) show that, everything else equal, a larger present value of growth opportunities
leads to a lower book-to-market ratio.39 Thus, this empirical result is consistent with our
interpretation of process intensity.

Table 3 Here

The next three columns show the intangible investment rate, physical investment rate,
and intangible capital stock, all scaled by physical capital. None of these variables have
a monotonic relationship with our process intensity portfolio ranking, but the difference
between the averages in the fifth and first portfolios are all large and positive.

The final three columns show our compensation and salary measures.40

6 Empirical Results

This section displays our main empirical results. First, we look at Execucomp data
and show that higher process intensity is associated with higher total compensation, de-
ferred compensation, and deferred compensation as a fraction of the total compensation.

36This terminology follows Park (2019) and Kazemi (2022).
37We construct firm book equity following the standard method outlined in, e.g., Bali, Engle and Murray

(2016).
38See Peters and Taylor (2017), Kazemi (2022), Belo et al. (2022).
39Kazemi (2022) shows the same result for the iB/M ratio.
40Compensation is scaled by physical capital, and the II salary is scaled by the industry average.
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Second, we show that higher process intensity is associated with higher II job salaries
relative to industry peers.

We end with a robustness subsection. In that subsection, we provide three further
tests. First, we exploit the granularity of the BGT data and show that II job salaries with
a process focus are more affected by firm-level process intensity than II job salaries with
a product focus. Second, we re-estimate our Execucomp tests, this time restricting our
sample to executives who worked in at least two firms. This alleviates concerns about
higher pay being a firm characteristic. Third, we study the relationship between uncer-
tainty, compensation, and process intensity. If the compensation and process intensity
connection is due to agency frictions, as we propose in this paper, we should see the as-
sociation between process intensity and compensation strengthen when there are larger
agency frictions. We find that this is the case.

We test the relationship between physical capital and process intensity. This relation-
ship hinges on the model parameter, ρ. In the model, physical capital growth follows:

dKt

Kt
=

(
−δK + A

[
a iρ

t + (1 − a) ((1 − θ)ot)
ρ] 1

ρ

)
dt + σdZt.

Thus, the parameter ρ reflects the substitution elasticity. A priori, ρ could imply that
physical investment and process intangibles are substitutes or complements in the phys-
ical capital production process. We have assumed they are complements in the model.
Here we test that assumption. If physical investment and process intangibles are sub-
stitutes, then conditional on the stock of intangibles, a higher process intensity should
reduce physical capital investment. The reverse is true if they are complements.

We estimate the following panel regression:

PhysInv f t = yt + yj + β1ProcIn f t + β2 IK f t + β3iB/M f t + β4Size f t + β5Sales f t + ε f t (6.1)

where PhysInv f t is physical capital investment (Compustat: capex) divided by the phys-
ical capital stock.

Table 4 displays the results. Looking at the top row, we see that the sign of the pro-
cess intensity coefficient is positive across specifications. Taking the final three columns
together, we conclude that, on average, physical investment and process intangibles are
complementary in the creation of physical capital. That is, ρ > 0. The effect is statisti-
cally and economically significant: a one standard deviation increase in process intensity
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is associated with around a 3% increase in physical capital investment.

Table 4 Here

This result and the results of Table 1 are (almost) mirror images of each other. We can
imagine freezing the amount of intangible capital and physical capital in the firm and
simply varying the process intensity of the firm. According to the model, when process
intensity is lowered, current sales should go up, and on the flip side, as we increase pro-
cess intensity, more of the firm’s intangible capital stock is devoted to physical capital
production. While this second effect depends on the parameter ρ, under our specifica-
tion, we have shown that increases in process intensity are associated with increases in
physical capital investment. Thus, we see a clear pendulum: as we vary the process
intensity of the firm, we are shifting resources from current sales to “future sales” in the
form of investment.

6.1 Process Intensity, Compensation, and Salaries

6.1.1 The Direct Effect

We have shown that process intensity is associated with lower contemporaneous sales
and higher physical capital investment. These results do not depend on our proposed
agency frictions. We now turn to compensation and salaries. The following regression
estimates are our main empirical results. We show that higher process intensity is asso-
ciated with higher total and deferred compensation, as well as higher salaries for II job
employees relative to their industry peers. These results correspond to what we called
the direct effect of agency frictions on the process intensity-compensation association.

We estimate specifications of the form:

Compensation Measure f t = yt + yj + β1ProcIn f t + β2 IK f t

+ β3Size f t + β4iB/M f t + β5Sales f t + ε f t (6.2)

where the variables are the same as before. One difference here is in the final listed con-
trol. For example, when use deferred compensation as our dependent variable, we will
control for total compensation. Similarly, when the relative II job salary is the dependent
variable, we will control for total compensation. The dependent variables are either to-
tal compensation divided by physical capital, deferred compensation (stocks and option
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awards) divided by total compensation, or the posted II job salary relative to industry
peers in the same year.

Table 5 displays the results when the dependent variables are either total or deferred
compensation, both from Execucomp. Looking at row one, we see that the increases in
process intensity are associated with increases in both types of executive compensation.
A one standard deviation increase in process intensity is associated with a 7% increase in
total executive compensation, for a given quantity of intangibles. The effects on deferred
compensation are similar. A one standard deviation increase in process intensity is asso-
ciated with an 8% increase in deferred compensation. The sign on intangible capital (row
2) is positive throughout. This is consistent with the model: We can either think of fixing
the intangible capital level and increasing process intensity to increase agency frictions,
or we can fix the process intensity but increase the amount of intangibles subject to this
emphasis on process innovation to increase agency frictions. Firm size is associated with
decreases in total compensation and deferred compensation. It may be the case that ex-
ecutives controlling bigger firms accept lower pay due to the non-compensation benefits
of “empire building.” Higher iB/M ratios are also associated with lower compensation.
Book-to-market ratios can be used as measures of performance. For example, a low
iB/M ratio implies market values the firm much more than its balance sheet shows. This
higher “bang for the buck” could be associated with better management and, therefore,
higher pay for executives. Higher sales are associated with higher total compensation
and deferred compensation.

Table 5 Here

The previous results show that both forms (total and deferred) of compensation are
increasing in process intensity, but they do not tell us how the composition of payment
changes. According to the model, the payment boundary and average promised utility
increase in process intensity (Figure 6). The empirical analog of this result is that de-
ferred compensation should become a larger fraction of total compensation as process
intensity increases. We re-estimate equation (6.2) using the ratio of deferred to total
compensation as our dependent variable.

Table 6 displays the results. The top row shows us that process intensity increases
are associated with a larger fraction of compensation deferred. The same is true of
intangible capital (row two). At first blush, it may seem that the two coefficients (on
process intensity and intangible capital) should be equal, since it is the quantity (1 − θ)o
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that affects agency frictions and investment. However, o is a state variable, so increasing
o can affect other firm decision variables, which can then affect the coefficient estimates.
The key is that both coefficients have the same sign. The effect sizes for process intensity
are smaller than in the specifications that look solely at total or deferred compensation.
A one standard deviation increase in process intensity is associated with a 1-2% increase
in the fraction of total compensation deferred. The fact that this effect is smaller than
the previous ones tells us that process intensity is affecting both the current and future
components of compensation.

Table 6 Here

Up to this point, we have examined executive pay, but executives are unlikely to be
directly involved in the innovation or investment process. At the same time, executives
probably have the most scope for extracting rents from their firms. II job employees,
though less powerful than c-suite executives, are directly involved in implementing and
developing new processes. It is their efforts that determine success or failure. Because
internal process innovations and improvements are inherently opaque (especially to out-
siders), it is difficult to assess the efficacy of the hours worked by II employees even if
their managers can see that the quantity of working hours is high.In the next two tables,
we will show that II employee wages and salaries are also increasing in process intensity,
lending credence to hypothesis that non-executives can extract rents, too. To the best
of our knowledge, we are one of the first papers to test the consequences of dynamic
agency theory in compensation of non-executives.

Table 7 shows our estimation results when we use the relative II job salary as the
dependent variable in equation (6.2). As explained in the Data section, these are posted
salaries, not total wage bills. Therefore, we cannot scale by firm size or capital. Instead,
we scale by the leave-one-out industry-year mean of the II job salary. The coefficients
can be interpreted as “how much more, relative to similar peers, does a firm pay for
a given set of skills?” The first row shows that a one standard deviation increase in
process intensity is associated with a 3% increase in relative II job salary. The coefficient
on process intensity is similar across specifications. Note that our sample size is much
smaller, given that Burning Glass Data only starts in 2010 and not all vacancy postings
have wage data.

Table 7 Here
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6.1.2 The Indirect Effect

This section verifies what we have called the indirect effect of agency frictions on the
process intensity-compensation association. We focus on 1/ρ, which measures the com-
plementarity between physical investment and process intangibles (see equation 3.6). In
the model section, we calibrated ρ based on Lin (2012), but now we will estimate a proxy
in the data.

Firms with lower values of ρ will have stronger complementarity between physical in-
vestment and process intensity. That is, the marginal effect of physical capital investment
on physical capital growth should be increasing in process intensity. Due to data limita-
tions, we cannot estimate ρ for each firm. Instead, we estimate ρ for each industry.41 We
then assume that all firms in that industry have the same ρ.

We estimate:

Three Year Capital f t

K f t
= αj + β1jPhysical Investment f t + β2jProcess Intensity

+ β3jIntangible Capital + β4jSize

+ β5jPhysical Investment × Process Intensity

+ β6jiB/M f t + β7jSales f t + ε f t (6.3)

The dependent variable is the sum of real physical capital over years t through t + 2
divided by real physical capital in year t.

Notice that the coefficients have j subscripts. This is because we estimate the previous
equation for each industry. β5j is our measure of 1/ρ. This coefficient measures how
much process intensity increases the efficiency of physical investment. As we wrote
above, we assume that all firms in industry j have the same ρj.42

With these estimates in hand, we then group firms based on 1/ρj. We form two bins
based on β5j.43 Firms in bin 1 have smaller estimates of β5j, or, larger estimates of ρ.

Our goal is to study the interaction of the bins and process intensity. Recall (3.7).
The agent can extract more benefits when ρ is smaller, and process intensity is higher.
The intuition is that for small ρ firms, process intangibles are more “important” in the
production of physical capital. Thus, the agents whose effort controls the efficacy of

41We define industry as 3 digit SIC before 2002 and 4 digit NAICS after 2002.
42Note that ρj and β5j are not equivalent. The latter is a proxy of the former. Since we are interested in

relative ranks across firms, this estimate is sufficient.
43The bins are based on the firm-level distribution of β5j not the industry-level distribution.
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process intangibles can exert more power over the firm.
The effect on the benefit function should be reflected in compensation. Firms with

smaller ρ values should see a stronger relationship between process intensity and com-
pensation. This follows from the definition of ut in the model. We test this hypothesis
by estimating the following:

Compensation Measure f t = αb + βb1Process Intensity f t +X f tβb + ε f t (6.4)

The subscript b refers to the complementarity bin. Essentially, we are estimating the
equation (6.2) but allowing the coefficients to vary with the bins based on 1/ρ (e.g.,
there will be a different β1 for bin 1 and bin 2). Our control variables are the same
as before, and a bin-date fixed effect. In the table, we display only the coefficients on
process intensity.

Table 8 Here

Table 8 displays the results. Looking down at each column, we see that the coeffi-
cients are increasing as we move from bin 1 to bin 2, as expected. In the second row
(i.e., the coefficient corresponding to high complementarity firms), the effect of process
intensity on compensation is always significant. In fact, the point estimates more than
double for each compensation measure as we move from bin 1 to bin 2.

This section has established our main results: Compensation and process intensity
are tightly linked. This statement applies to total and deferred executive pay. It also
applies to the salaries of highly skilled, innovation-based workers. Finally, these results
interact with process innovation and physical capital investment complementarity pre-
dictably. The more important process intensity is to the firm’s capital growth process,
the more rents the agent can extract, ceteris paribus.

6.2 Robustness and Further Results

This subsection presents three robustness and placebo tests meant to rule out alternative
hypotheses.

In the first test, we exploit the granularity of the Burning Glass data further and
look at the difference in salaries between II jobs with a process focus and II jobs with
a more product focus. For example, a chemist working at a drug company is likely
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working on product innovations (new drugs) versus process innovations (reducing in-
vestment costs).44 On the other hand, an organizational specialist working on supply
chain management is more likely to be working on process innovations. We exploit the
richness of the Burning Glass Data to distinguish between these types of skills. We de-
fine “R&D skills” to be those focused on new scientific discoveries or similar advances.45

Examples include Medical Research, Quantum Mechanics, Neuroscience, and Clinical
Research. The other category we define is “Process skills.” These could also be called
organizational capital skills.46 Examples here include Logistics, Process Improvement,
Operations Analysis, and Supplier Relationship Management. With these definitions
in hand, we re-estimate our II job salary regressions using each of these subcategories
as the dependent variable.47 Our hypothesis is that Process skill job salaries should be
more affected by the agency frictions in our model, and, thus, their salaries should be
increasing more in process intensity.48

Table 9 displays the results of estimating equation 6.2 restricted to either R&D skills
jobs salaries or Process skills jobs salaries. The set of controls is the same as in the pooled
regression. The top row shows that there is no significant relationship between process
intensity and the salaries of R&D skills jobs. However, process intensity is associated
with an increase in process skills jobs’ salaries. Notice that the coefficient is similar
in magnitude to the analogous coefficients in Table 7. Within the set of skilled, II job
employees, some are more likely to be involved with process innovations relative to
product innovations. We have shown that, even with such a fine distinction, there are
differences in the sensitivities of salaries to process intensity. This is in line with the
empirical interpretation of the model: Those employees best able to extract rents from
the process innovations are the ones whose compensation should increase with process
intensity.

Table 9 Here

In the second test, we ask if better executives simply self-select into process intense

44Of course, much of this is subjective. Is discovering a new chemical compound that leads to multiple
new drugs a process or product innovation?

45While this is not the same as product innovation, as our previous example showed, they are more
likely to be tilted in that direction.

46Eisfeldt and Papanikolaou (2013).
47When we compute the leave-one-out industry average, we do so using the subcategory.
48Our classification system for jobs can assign a job to both categories simultaneously. This makes sense

since high skill employees are frequently asked to have an assortment of skills.

34



firms and hence receive higher compensation. To test this, we estimate executive-level
regressions on the subset of executives who change firms in our sample. That is, we
estimate:

Compensation Measurei f t = yt + yj + β1ProcIn f t + β2 IK f t

+ β3Size f t + β4iB/M f t + β5Sales f t + ε f t (6.5)

This equation looks similar to (6.2). The key difference is in the dependent variable,
which is measured at the executive-firm-date (i f t) level. In (6.2) we looked at firm-date
level regressions.

Table 10 displays the results. The coefficient estimates on process intensity are similar
to the full sample, firm-level estimates: A one standard deviation increase in process
intensity is associated with a 9% increase in executive compensation.

Table 10 Here

In our third test, we look at firm-level measures of agency frictions to test if the
association between process intensity and compensation is higher when frictions are
stronger. According to the model, firms facing more uncertainty in the physical capital
growth process should be exposed to greater agency frictions.

We compute and industry-year level of uncertainty and assign all firms within that
industry-year to have the same level of uncertainty. Much like for our complementarity
measure, data limitations preclude us from calculating a firm-level measure of uncer-
tainty. Within each industry-year, we calculate the cross-sectional variance of physical
capital growth at the firm level. This is our measure of σ in the model and proxies for
the severity of agency frictions.

We split the firm-level distribution of uncertainty into a high and low bin each year.
Then, like our complementarity regressions, we estimate the following panel regressions:

Compensation Measure f t = αb + βb1Process Intensity f t +X f tβb + ε f t (6.6)

where now b refers to the uncertainty bin.
Table 11 displays the results. Once again, we see that firms in the high bin have

significant and positive coefficients on process intensity. On top of that, the high bin
coefficients are always larger than the low bin ones. For example, when moving from a
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low uncertainty to high uncertainty firm, the association between process intensity and
total executive compensation increases by 4%.

Table 11 Here

7 Conclusion

We presented and studied a new empirical fact: Higher process intensity is associated
with higher pay for executives and skilled employees. To rationalize this fact, we devel-
oped a dynamic principal-agent model in which agent effort determined the efficacy of
process intangibles on the physical capital growth process. The model delivered two key
channels: A direct effect and indirect effect of process intensity on compensation. The
direct effect states that higher process intensity increases the benefits of shirking, so the
agent must be further compensated to ensure full effort. The indirect effect states that for
a given level of process intensity, higher process intangible-physical capital investment
complementarity increases the hold up power the agent has over the firm. This leads to
a larger effect of process intensity on compensation for all levels of process intensity.

We verified these two main effects in the data using measures of executive and skilled
labor pay. Our baseline specifications showed that a one standard deviation increase in
process intensity is associated with an 8% increase in executive pay and a 3% increase in
skilled labor pay. When process intangible-physical investment complementarity is high
(i.e., the hold up problem is serious), these numbers increase to 16% and 5%, respectively.

We have taken the level of process intensity as given. However, even if changing
this ratio is costly, over the medium to long-term we expect it to be endogenous. Study-
ing this choice is left for future work. We have also not considered the asset pricing
implications of process intensity and agency. Adding a stochastic discount factor as in
Kogan and Papanikolaou (2014) to the model would provide further interesting testable
implications.
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A First best benchmark

To compare with the main model, we study in this section the first best benchmark,
where the investment does not subject to agency friction. The firm’s problem is

V(K, O) = max
I,S

E
[ ∫ ∞

0
e−rsYsds

∣∣∣K0 = K, O0 = O
]
, (A.1)

subject to (3.1), (3.3), and (3.4) with e = 1.
The homothetic property in K allows us to introduce the following decomposition of

the value function:
V(K, O) = Kv(o), (A.2)

where o = O/K.

Proposition A.1 The function v in (A.2) satisfies the following HJB equation

(r + δK)v =max
i,s≥0

{
(v − o∂ov)d(i, o) + (s − (δO − δK)o)∂ov +

1
2

o2σ2∂2
oov

+ µ(θo)1−α − i − s − Qk
cK

icK − QO

cO

( s
o
)Co o

}
, (A.3)

where d(i, o) = A[aiρ + (1 − a)(1 − θ)ρoρ]1/ρ. When (v − o∂ov)∂id(0, o) > 1, the optimal
investment in the physical capital satisfies the first order condition

(v − o∂ov)∂id(i∗, o) = 1 + QK(i∗)cK−1; (A.4)

otherwise, i∗ = 0. If ∂ov > 1, then the optimal investment in the intangible capital is

s∗ = o
(∂ov − 1

Qo

) 1
cO−1

; (A.5)

otherwise s∗ = 0.

Figure 10 provides the first best solution with the parameters in Table 2.49 As the
intangible-physical capital ratio increases, investment in the physical capital becomes
more efficient, hence both the principal’s value (top left panel) and the physical capital
investment over physical capital stock ratio (top right panel) increase. The intangible

49We impose Neumann boundary condition when o is sufficiently large. The boundary condition at
o = 0 is not needed because the drift of o is non-negative and the volatility of o vanishes at o = 0.
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Figure 10: First Best Value Function
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Figure 11: First best: value function v, optimal investment in the physical capital over the
physical capital stock, optimal investment in the intangible over physical capital stock,
and optimal investment in the intangible over intangible capital stock. The parameters
are listed in Table 2.

investment over physical capital stock displays a hump shape in the bottom left panel.
However the intangible investment over intangible capital stock displays a decreasing
and convex pattern in the bottom right panel. When o is close to zero, even though
the intangible investment is small comparing to the physical capital stock, it is large
comparing to the intangible capital stock. When o is sufficiently away from zero, both
S∗/K and S∗/O decrease in o due to the decreasing return to scale of the intangible
capital in generating firm cash flows.

Proof of Proposition A.1

Recall the value function V in (A.1). It follows from the dynamic programming principle
that Ṽt = e−rtV(Kt, Ot)+

∫ t
0 e−rs(dYs − dCs) is a supermartingale for an arbitrage strategy

(i, s) and is a martingale under the optimal strategy. Using (A.2) and (4.11), we obtain
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from Itô’s formula that

d
(
Kv(o)

)
=
{

Kvd(i, o)− δKKv + K∂ov
[
s − (δO − δK)o − o d(i, o)

]
+

1
2

Ko2σ2∂2
oov

}
dt

+ Kσ
(
v − o ∂ov

)
dZt.

The drift of Ṽ (divided throughout by e−rtK) is

− rv + vd(i, o)− δKv + ∂ov
[
s − (δO − δK)o − o d(i, o)

]
+

1
2

o2σ2∂2
oov

+ (θo)1−α − i − s − QK

cK
iCK − QO

cO

( s
o
)Co o

Therefore the HJB equation (A.3) follows from the fact that the drift of Ṽ is nonpositive
for any i, s and is zero for optimal i∗ and s∗. The first order conditions in i∗ and s∗ follow
from the same argument as in Proposition 4.1.

B Optimal investment

Dependence of the optimal investment in the physical and intangible capital on θ and
ρ are presented in Figures 12 and 14. As θ increases, less intangible capital is used in
the process innovation and the investment in the physical capital becomes less efficient.
As a result, investment in both physical and intangible capital decrease. As ρ increases,
complementarity between the physical capital investment and the intangible capital de-
creases in the physical capital accumulation, resulting decreasing in both physical and
intangible capital investment.

C Proofs for Lemma 4.1 and Proposition 4.1

Proof of Lemma 4.1

Consider a probability measure P0 under which

dKt = σKtdZ0
t
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Figure 12: Optimal Investment: Varying θ
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Figure 13: Optimal investment in the physical and intangible capital for different θ. Op-
timal investment ratios I∗/K and S∗/K are evaluated at the mean of U/K conditioning
on O/K. The parameters are listed in Table 2.

Figure 14: Optimal Investment: Varying ρ
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Figure 15: Optimal investment in the physical and intangible capital for different ρ. Op-
timal investment ratios I∗/K and S∗/K are evaluated at the mean of U/K conditioning
on O/K. The parameters are listed in Table 2.
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with a P0-Brownian motion Z0. Introduce an equivalent probability measure Pe such
that Ze, defined via

dZe
t = dZt −

D(et, It, Ot)− δKKt

σKt
,

is a Brownian motion under Pe. Then K follows the dynamics (3.4).
Under P0, the agent’s continuation value U in (3.8) has the semimartingale decompo-

sition
dUt = dHt + φtdKt, (C.1)

where φ arises from the martingale representation theorem. We will use dynamic pro-
gramming to determine the finite variation process H. To this end, it follows from (3.8)
and the dynamic programming that Ũt = e−γtUt +

∫ t
0 e−γs(λΛs(1 − es)ds + dCs) is a

super-martingale under Pe for arbitrary effort e and a martingale for the optimal effort
e∗. We obtain from Itô’s formula that

dŨt = e−γt
{
− γUtdt + dHt + λΛt(1 − et)dt + dCt

+ φtKt
(
d(et, it, ot)− δK

)
dt + φtKσdZe

t

}
,

where d(e, i, o) = A[aiρ + e(1 − a)(1 − θ)ρoρ]1/ρ. The drift of Ũ is nonpositive for an
arbitrary effort e and is ero for the optimal effort e∗. Therefore,

dHt =
(
γUt + φtδKKt

)
dt − dCt − max

e∈{0,1}

{
λΛt(1 − e) + φtKd(e, it, ot)

}
dt. (C.2)

The optimal effort e∗t = 1 if and only if

φtKd(1, i, o) ≥ λΛt + φtKd(0, i, o).

Recall the definition of Λ from (3.6), the previous incentive compatibility condition is
equivalent to

φt ≥ λ.

When the previous condition holds, e∗ = 1 and we obtain from (C.1) and (C.2) that U
follows (4.1).
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Proof of Proposition 4.1

We drive the HJB equation (4.7) from the dynamic programming principle. To this
end, it follows from the dynamic programming principle that Ṽt = e−rtKtv(0t, ut) +∫ t

0 e−rs(Ysds − dCs) is a supermartingale under arbitrary strategy (i, s, C) and a martin-
gale under the optimal strategy. Using Itô’s formula, together with (4.11) and (4.12), we
calculate

d
(
Kv(o, u)

)
=
{

Kv d(i, o)− δKKv + K∂ov
[
s − (δO − δK)o − o d(i; o) + σ2o

]
+ K∂uv

[
(γ + δK)u − u d(i, o) + σ2(u − φ)

]
+

1
2

Ko2σ2∂2
oov +

1
2

Kσ2(φ − u)2∂2
uuv − Koσ2(φ − u)∂2

ouv

+ Kσ2[− o∂ov + (φ − u)∂uv
]}

dt

+ Kσ
[
v − o∂ov + (φ − u)∂uv

]
dZe∗ − ∂uvdCt.

The drift of Ṽ, divided throughout by e−γtK, is

− rv + v d(i, o)− δKv + ∂ov
[
s − (δO − δK)o − o d(i, o) + σ2o

]
+ ∂uv

[
(γ + δK)u − u d(i, o) + σ2(u − φ)

]
+

1
2

o2σ2∂2
oov +

1
2
(φ − u)2σ2∂2

uuv − o(φ − u)σ2∂2
ouv + σ2[− o∂ov + (φ − u)∂uv

]
+ µ(θo)1−α − i − s − QK

cK
icK +

QO

cO
(i/o)iO o + (∂uv + 1)

(
− 1

K
dCt

dt

)
.

Therefore the dynamic programming principle implies that the HJB equation satisfied
by v is

(r + δK)v = max
i,s,φ,C

{(
v − o ∂ov − u ∂uv

)
d(i, o) +

(
s − (δO − δK)o

)
∂ov + (γ + δK)u ∂uv

+
1
2

o2σ2∂2
oov +

1
2
(φ − u)2σ2∂2

uuv − o(φ − u)σ2∂2
ouv

+ µ(θo)1−α − i − s − QK

cK
icK +

QO

cO
(i/o)iO o + (∂uv + 1)

(
− 1

K
dCt

dt

)}
. (C.3)

Because dCt/dt is can be infinite, if ∂uv + 1 < 0, the right-hand side of the previous
equation can be infinite by choosing infinite dCt/dt. Therefore, the wellposedness of the
HJB equation requires that ∂uv + 1 ≥ 0. As a result, the equation (C.3) is transformed to
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(4.7). In order to incentivize the full effort e∗ = 1, the incentive compatibility condition
restricts φ ≥ λ.

D Complementarity

This appendix summarizes our results on the complementarity of different types of in-
tangibles with respect to physical investment. This is important because a claim in the
model is that only process intangibles are complementary with physical investment. This
assumption leads to the hold-up channel we emphasize. We check this claim in the data
by estimating panel regressions with physical investment interacted with different types
of intangibles.

We estimate two different regressions. First, we estimate:

Three Year Capital f ,t+2

K f ,t−1
= α + β′X f t + β1Phys. Inv. f t

+ β2Proc. Int. f t + β3Prod. Int. f t

+ β4Proc. Int. f t × Phy. Inv. f t + β5Prod. Int. f t × Phy. Inv. f t + ε f t.

(D.1)

The dependent variable is three-year physical capital growth, X f t is a vector of controls
(size, iB/M ratio, and sales to capital ratio), Phys. Int. is physical capital investment
(divided by physical capital), Proc. Int. is the ratio of process intangibles to physical
capital, and Prod. Int. is the ratio of product intangibles to physical capital. Second, we
estimate:

Three Year Capital f ,t+2

K f ,t−1
= α + β′X f t + β1Phys. Inv. f t

+ β2Int. Cap. f t + β3ProcIn f t

+ β4Int. Cap. f t × Phy. Inv. f t + β̃5ProcIn f t × Phy. Inv. f t + ε f t.

(D.2)

These two regressions capture the same idea: If β5 > β4 in equation (D.1), then
process intangibles are more complementary with physical investment than product in-
tangibles, and if β̃5 > 0 in equation (D.2) then the same thing is true. This is the source of
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the hold-up friction and motivation for our modeling assumptions. The first regression
looks at effects of changing the level of one type of intangible while fixing the level of
the other. The second regression looks at changing the composition of intangibles while
fixing the total level of intangibles.

As in the body of the paper, we estimate the previous two regressions within industry,
which means all the coefficients are industry dependent. We summarize the results of
the estimates by looking at the mean value of the coefficients of interest across industries.

We also estimate the above two regressions using pooled panel regressions with in-
dustry and date fixed effects and clustering at the industry-date level. We estimate each
panel regression on two different subsamples: The full sample and the sample restricted
to firms with non-zero process intensity.

Table 12 displays the results. The first row shows the average coefficient value across
industries when we estimate complementarity within industry (as in the body of the
paper). The first column shows the average value of β̃5 in equation (D.2). The second
column shows the average value of β4 in equation (D.1). The final column shows the
average value β5 in equation (D.1). The first row is consistent with our hypothesis:
β̃5 > 0 and β4 > β5. The second row shows the results from the pooled panel regression
when using the full sample. Once again, the results are consistent with the hypothesis.50

The final row repeats the panel regression but restricts the sample to firms with non-zero
process intangibles. The anticipated effects are stronger than in the full sample results.
This is encouraging, since the model is meant to capture firms that engage in both types
of intangible use.

Table 12 Here

50 β̃5 is statistically insignificant, however.
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Table 2: Model Parameters

Symbol Variable Value Reference

a Weight of the physical investment in
the physical capital accumulation 0.45 Lin (2012)

α
Cobb-Douglas parameter of
the physical capital in cash flow 0.6 Belo et al. (2022)

A Scale parameter in
the physical capital accumulation 0.09 Lin (2012)51

θ
Percentage of intangibles used in
the product innovation 0.7 Lin (2012)

ρ
CES parameter in
the physical capital accumulation 0.5 Lin (2012)

λ Agent shirking benefit parameter 0.07 Calibrated from data

σ Volatility of log K 0.22 Calibrated from data

δK Physical capital deprecation rate 0.1 Lin (2012)

δO Intangible capital deprecation rate 0.2 Lin (2012)

QK
Scale parameter of the
physical investment adjustment cost 56.55 (monthly)52 Eisfeldt and Papanikolaou (2013)

cK
Convexity parameter of the
physical investment adjustment cost 1.8 (monthly) Eisfeldt and Papanikolaou (2013)

QO
Scale parameter of the
intangible investment adjustment cost 625 (monthly) Eisfeldt and Papanikolaou (2013)

cO
Convexity parameter of the
physical investment adjustment cost 3.2 (monthly) Eisfeldt and Papanikolaou (2013)

µ Productivity rate 0.45 Ward (2022)

γ Agent impatient parameter 0.045 Calibration from data

r Interest rate 0.04 Ward (2022)

This table shows the parameters used in our simulations. Citations are given for the parameters based on
the existing literature.
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Table 6: Fraction of Compensation Deferred and Process Intensity

Dependent variable:

Deferred Compensation / Total Compensation

(1) (2)

Process Intensity 0.031∗∗∗ 0.017∗∗

(0.009) (0.008)

Intangible Capital 0.058∗∗∗ 0.111∗∗∗

(0.007) (0.010)

Size −0.012
(0.011)

iB/M Ratio 0.140∗∗∗

(0.006)

Sales −0.078∗∗∗

(0.015)

Fixed effects Industry + Date Industry + Date
Observations 5,508 5,403

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table shows the relationship between the firm-level fraction of executive compensation deferred and
process intensity (in standard deviation units). The dependent variable is the ratio of deferred
compensation in the form of stock and option grants to total executive compensation. The results come
from estimating panel regressions (6.2). Data definitions are found in the Data section of the paper. All
variables aside from process intensity are logged. Industry fixed effects use one broad one digit SIC
codes (after 2002) or one digit NAICS (before 2002), and date fixed effects correspond to years.
Clustering is performed at the industry-date level, where industry is either three digit SIC or four digit
NAICS (delineated by 2002, again), and date is year.
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Table 7: Innovation Intensive Salaries and Process Intensity

Dependent variable:

Innovation Intensive Wage Relative to Industry Average

(1) (2) (3) (4)

Process Intensity 0.040∗∗∗ 0.034∗∗ 0.038∗∗ 0.031∗

(0.015) (0.015) (0.016) (0.016)

Intangible Capital 0.050∗∗∗ 0.077∗∗∗ 0.053∗∗∗ 0.089∗∗∗

(0.012) (0.021) (0.013) (0.025)

Size 0.046∗∗∗ 0.046∗∗∗

(0.008) (0.008)

iB/M Ratio 0.020 0.016
(0.019) (0.020)

Sales −0.055 −0.083∗∗

(0.034) (0.039)

Fixed effects No No Industry + Date Industry + Date
Observations 1,603 1,565 1,603 1,565

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table shows the relationship between the firm-level average innovation intensive job salary (relative
to industry average) and process intensity (in standard deviation units). The dependent variable is
defined as the average posted wage for innovation intensive jobs in a given firm-year from Burning Glass
Technologies. The industry average used to normalize is a leave-one-out mean of the firm-year
innovation intensive salaries. The results come from estimating panel regressions (6.2). Data definitions
are found in the Data section of the paper. All variables aside from process intensity are logged. Industry
fixed effects use one broad one digit SIC codes (after 2002) or one digit NAICS (before 2002), and date
fixed effects correspond to years. Clustering is performed at the industry-date level, where industry is
either three digit SIC or four digit NAICS (delineated by 2002, again), and date is year.
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Table 9: Process versus R&D Jobs

Dependent variable:

Process Skill Salaries R&D Skill Salaries

(1) (2)

Process Intensity 0.034∗∗ 0.024
(0.017) (0.022)

Intangible Capital 0.080∗∗∗ 0.086∗∗∗

(0.025) (0.030)

Size 0.018 −0.014
(0.020) (0.025)

iB/M Ratio 0.042∗∗∗ 0.029∗∗

(0.009) (0.012)

Sales −0.083∗∗ −0.067
(0.040) (0.043)

Fixed effects Industry + Date Industry + Date
Observations 1,507 1,010

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table shows the relationship between different II job salaries and process intensity (in standard
deviation units). In column one, the dependent variable is the average firm-date salary for process
focused jobs divided by the leave-one-out mean of firm-date salaries. In column two it is the average
firm-date salary for R&D or product focused jobs divided by the leave-one-out mean of firm-date salaries
The results come from estimating panel regressions (6.2). Data definitions are found in the Data section
of the paper. All variables aside from process intensity are logged. Fixed effects are at the bin-date level.
Clustering is performed at the industry-date level, where industry is either three digit SIC or four digit
NAICS (delineated by 2002, again), and date is year.
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Table 10: Compensation of Executives Who Switch Firms

Dependent variable:

Total Compensation Deferred Compensation

(1) (2)

Process Intensity 0.086∗∗∗ 0.092∗∗∗

(0.018) (0.021)

Intangible Capital 0.481∗∗∗ 0.554∗∗∗

(0.022) (0.025)

Size −0.524∗∗∗ −0.430∗∗∗

(0.011) (0.014)

iB/M Ratio −0.488∗∗∗ −0.503∗∗∗

(0.032) (0.035)

Sales 0.583∗∗∗ 0.530∗∗∗

(0.028) (0.035)

Fixed effects Industry + Date Industry + Date
Observations 5,639 5,802

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This table shows the relationship between executive compensation (divided by the capital stock) and
process intensity (in standard deviation units) amongst the set of executives who switch firms at least
once in our sample. In column one, the dependent variable is the total executive compensation. In
column two it is the deferred executive compensation. Data definitions are found in the Data section of
the paper. All variables aside from process intensity are logged. Fixed effects are at the bin-date level.
Clustering is performed at the industry-date level, where industry is either three digit SIC or four digit
NAICS (delineated by 2002, again), and date is year.
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