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Abstract

Household-based and intermediary-based asset pricing models disagree about the elas-

ticity of the allocations to intermediaries. Household-based models (e.g., Lucas (1978);

Campbell and Cochrane (1999); Bansal and Yaron (2004)) focus on households’ risk-return

trade-offs, implying that the allocation to intermediaries is so elastic that renders the inter-

mediaries’ portfolio behavior irrelevant. In contrast, intermediary-based models (e.g., He and

Krishnamurthy (2013); Koijen and Yogo (2019); Haddad and Muir (2021)) emphasize house-

holds’ inelastic allocations, leading to drastically different pricing predictions. We shed light

on this discrepancy by examining households’ allocations to intermediaries and estimating

their price elasticity in the 13F data of institutional holdings. In a variance decomposition

exercise, we find that households primarily respond to intermediaries’ excess demand for

stocks by rebalancing their direct stock holdings, while their allocation to intermediaries ex-

acerbates the demand pressure by about 10%. Consistent with theory, allocations to some

intermediary types, such as mutual funds and investment advisors, exhibit a negative and

significant relationship with the price of their portfolio assets. However, the elasticity of

these allocations is not large enough to have a first-order impact on the aggregate demand

elasticity for assets. Our results support the central premise of intermediary-based asset

pricing models: households do not reallocate enough to eliminate mispricings induced by

intermediary-level frictions.
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1 Introduction

The empirical asset pricing literature points to the importance of intermediary level fric-

tions, such as balance-sheet constraints (Adrian et al., 2014; He et al., 2017), arbitrage limita-

tions (Shleifer and Vishny, 1997; Brunnermeier and Pedersen, 2009), and investment mandates

(Gabaix and Koijen, 2022), for asset returns, both at the cross-section and time-series. These

observations led to the development of intermediary-based asset pricing models (He and Krish-

namurthy, 2013). Yet, it is empirically challenging to rule out the possibility that intermediary-

level variables are correlated with some macroeconomic-variables, so that the prices might still

be efficient from the perspective of the representative investor under a correct specification of

the preferences, beliefs, and endowment processes. In other words, households are the end

owners of the assets, so they might still reallocate enough funds across the intermediaries to

eliminate any mispricing induced by the frictions at the intermediary level.

As such, these two views depart in their implication for how actively households rebalance

in response to non-fundamental price movements. The representative-investor view posits that

household-level allocations are so elastic that renders the intermediary demand irrelevant. How-

ever, the intermediary view requires some inaction or market segmentation to make households’

demand for assets inelastic. In this case, the aggregate demand elasticity is primarily set by

the intermediaries, and would primarily depend on the size of arbitrage capital available to ac-

tively managed funds, investment mandates, and constraints faced by intermediaries. Certainly

reality can be between these two extremes as well.

Two-layer Demand System Estimation

We contribute to this discussion by decomposing the aggregate demand elasticity into a direct

component, which is the sum of the demand elasticity of the direct owners of assets, including

the institutional holdings and households’ direct holdings, and an indirect component, which

captures the elasticity of the allocations to the institutional investors. Figures 1 and 2 clarify

what different asset pricing models imply about the direct and indirect elasticities.

As suggested by Figures 1 and 2, the main distinction between household-based and intermediary-

based asset pricing models is in their assumption about the indirect elasticity, that is, how elastic

the capital flows to intermediaries are with respect to price movements. To understand this dis-

tinction, consider institution i that holds asset n. Instituition i’s demand for this asset can
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be written as Qi,t(n) = Ai,twi,t(n)/Pt(n), where Ai,t is the assets under management (AUM)

of institution i, wi,t(n) is the portfolio weight of asset n, and Pt(n) is the share price. The

elasticity of institution i’s demand is the derivative of log demand with respect to log price:

ηi,t(n) ≡ −∂ log(Qi,t(n))

∂ log(Pi,t(n))
= 1− ∂ log(Ai,t)

∂ log(Pt(n))︸ ︷︷ ︸
Indirect elasticity
(household-level)

− ∂ log(wi,t(n))

∂ log(Pt(n))︸ ︷︷ ︸
Direct elasticity

(intermediary-level)

(1)

This single equation nicely highlights the tension between household and intermediary-based

models. In many households-based models, the indirect elasticity is so large that renders the

intermediary-level elsaticity irrelevant. In these models, intermediaries are just veils through

which households act. However, the most extreme intermediary-focused models assume that

assets under management are exogenous to prices—i.e. ∂ log(Ai,t)/∂ log(Pt(n)) = 0 (e.g. Koijen

and Yogo (2019)). In this world, investors have really entrusted capital to intermediaries, and

while flows may be a function of past returns, they are not a function of current prices or

valuation ratios of the fund’s assets. In these models, frictions at the intermediary level are not

undone by investors.

The purpose of this paper is to empirically disentangle the direct and indirect elasticity com-

ponents of the aggregate asset demand. The relative contribution of these two terms is informa-

tive about whether households’ reallocations undo the mispricings caused by intermediary-level

frictions.

To this end, we develop a model featuring a representative investor who invests in some risky

assets either directly, or indirectly through some intermediaries. The representative investor

also has access to some outside funds (e.g., bonds) available to transfer to her direct or indirect
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holdings.

There are four types of reallocations in the model, which cancel out in the aggregate under

the assumption that the asset supply is fixed: Intermediaries’ rebalancing of their portfolios,

the representative investor’s rebalancing of her direct risky investments, the investor’s transfers

of funds in and out of her direct risky investments, and lastly, the investor’s adjustments of her

allocations to the intermediaries. Putting it differently, if intermediaries have an excess demand

for an asset, the investor has to respond either by adjusting her direct holdings (via rebalancing

her portfolio of risky assets or rebalancing across risky assets and outside assets), or by reducing

her allocation to the intermediaries. We develop a reallocation identity that formalizes this idea

and analyze the investors’ response to such purchase (or selling) pressures by estimating the

contribution of each term in a variance decomposition exercise.

We find that about 90% of the intermediary-level demand pressure is absorbed by rebal-

ancings within the direct holdings, whereas the adjustments in the intermediated investments

exacerbate the demand pressure by about 10%. The mutual fund flows account for 7% out of

this 10%, consistent with the empirical evidence on the positive flow-performance relationship

(Chevalier and Ellison, 1997; Lou, 2012)): An increase in the intermediary-level demand for

an asset drives up its price, which attracts investors’ flow. As such, the latent demand for

intermediaries’ equity is likely to be correlated with the prices, warranting an IV strategy to

estimate the price elasticity of the capital allocations to intermediaries.

We assume that the capital allocation to each intermediary has an exponential-linear rela-

tionship with a weighted average of the log market equity and some exogenous characteristics of

the portfolio assets, inspired by Koijen and Yogo (2019) (Henceforth, KY). In essence, we treat

each intermediary as a basket of assets, thereby inheriting the characteristics of its portfolio

assets. The assets are weighted by some proxy weights that resemble the portfolio weights. We

do not use the portfolio weights for two reasons: First, it is due to the concern that the portfo-

lio weights are endogenous and respond to price movements, complicating both our theoretical

derivations and empirical analysis. Second, it is intuitive since households might not perfectly

know or track the intermediaries’ holdings. For instance, households understand energy funds

primarily invest in energy companies, but they might not exactly know the portfolio weights.

We use four different weighting schemes to demonstrate the robustness of our results.

We estimate the price elasticity of the capital flows to each intermediary type (Banks, Mutual

funds, Investment advisors, etc) via a pooled regression of the intermediaries’ log share onto
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the fund characteristics. Our coefficient of interest is the one in front of the average log market

equity of the portfolio companies, which we denote by m̃ei(t). To instrument for m̃ei(t), a

candidate is to use a weighted average of the price instruments employed by KY. However, it

is not a suitable candidate since KY assumes that the allocation of funds among intermediaries

is exogenous, while we relax this assumption.

To resolve this issue, we construct an instrument for m̃ei(t) based on the following two-

step procedure: For each intermediary, we assume that funds are allocated among the other

intermediaries proportional to the number of assets in their investment space, as defined in

KY, and those intermediaries allocate their funds to stocks in their investment space based on

the book value of their holdings.1 This first stage yields an instrument for stocks’ log market

capitalization that does not depend on the allocation of funds across intermediaries. In fact, the

only source of variation among the instrumented market-to-book values across stocks is the set

of investment spaces that they belong to and the book equity of other stocks in those investment

spaces. In the second stage, the instrumented variable for m̃ei(t) is constructed as the book

equity-weighted average of the instruments for stocks’ log market capitalization. Note that this

instrument exploits intermediary-level frictions (i.e., the fact that all firms are not included in

the investment space of all intermediaries) for identification. We confirm that KY’s elasticity

estimates would be quite similar when our IV is employed.

We find a positive and significant price elasticity (as defined in Equation 1) for the capital

allocation to most intermediary types, including Mutual Funds and Investment Advisors. This

result is robust across different choices of proxy weights. The results further reveal that the

capital flows to mutual funds have the largest price elasticity, consistent with the notion that

the transaction costs are the lowest for this intermediary type.

However, the price elasticities are not large enough to have a first-order impact on the ag-

gregate demand elasticity. Our estimates indicate that the contribution of the indirect elasticity

term (the term associated with cross-intermediary reallocations) is one to two orders of magni-

tude smaller than the direct elasticity term. As such, we conclude that the aggregate demand

elasticity is primarily set at the intermediary level, and households’ contribution to the aggre-

gate demand elasticity is primarily through their direct holdings. This result is consistent with

theories and earlier evidence on households’ sluggish portfolio behavior (Ameriks and Zeldes,

1An intermediary’s investment space is defined as the set of stocks that the intermediary has held with a
positive weight over the past 36 months.
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2004; Duffie, 2010; Abel et al., 2013; Giglio et al., 2021).

We also use the elasticity estimates to shed light on the transaction costs associated with the

adjustments in the allocations to different intermediary types. Specifically, we consider mean-

variance preferences for the representative investor and a quadratic adjustment cost for the

investor’s direct and indirect allocations. Theoretically, we find the transaction cost is inversely

related to the price elasticity of the investor’s allocation to an intermediary. Empirically, our

estimates imply that households require a 1.1%-2.4% increase in the expected return for a

mutual fund to increase their allocation by more than 1%. The corresponding range of values

for investment advisers is between 3.7%-9.5%.

Our two-layer estimation methodology contributes to the fast-growing literature of demand-

based asset pricing by modifying the methodology to estimate the aggregate demand elasticity.

KY estimates the intermediary-level term in (1) as they assume an exogenous allocation of

funds to intermediaries. This assumption biases their estimation of the aggregate demand

elasticity downward, provided households have a downward-sloping demand. We find that the

bias is statistically significant, but economically small. Another related study is Darmouni et al.

(2022), which develops a two-layer demand system to study the role of capital flows in and out of

institutional investors in the fragility of the corporate bond market. Thus, the focus is different

from our study.

Furthermore, our study contributes to the literature on intermediary asset pricing by directly

examining the magnitude of the “undoing effect” by households in response to intermediary-

level frictions. Haddad and Muir (2021) develops and tests a theoretical framework with both

direct and indirect holdings, where there is a quadratic cost is associated with direct holdings.

Their model motivates a role for the risk-bearing capacity of intermediaries in the formation

of equilibrium asset prices. In our model, households face a quadratic adjustment cost for

both direct and indirect holdings. The adjustment costs determine the price elasticities of the

direct and indirect allocations. Our method uncovers that cross-intermediary reallocations are

at least one order of magnitude less responsive to non-fundamental price movements compared

to intermediary-level reallocations. Thus, it is natural that frictions that impact intermediaries’

portfolio behavior have a first-order impact on asset prices since allocations to intermediaries

exhibit a weak response to price movements.

The rest of the paper is organized as follows. Section 2 presents our theoretical framework.

Section 3 describes our methodology to estimate the aggregate demand elasticity. Section 4
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explains the data sets used in our analysis. Section 5 provides the results. Section 6 reviews

the variation in the elasticity estimates in the literature and discusses how our results compare.

Section 7 concludes.

2 A Two-Layer Asset Demand Model

2.1 Setup

Consider an economy with infinite periods, t = 1, 2, . . . . There are N risky assets, indexed by

n = 1, . . . , N , and an outside asset, indexed by n = 0. The outside asset has a deterministic

one-period return of R0(t) at t. The excess return of the risky assets is normally distributed

given the available information at time t, with a mean of µ(t) ∈ RN and a covariance matrix

of Ω(t) ∈ RN×N . We consider a representative investor that invests in the risky assets either

directly or indirectly through some intermediaries, indexed by i = 1, . . . , I. In the case of 13F

data, this representative investor represents the aggregate demand of some end investors, such

as households and non-13F institutions (which, overall, we refer to as “households”, following

KY), that might provide capital to the 13F institutions.

LetW (t) be the wealth of the representative investor at time t, which is invested in the assets

either directly or indirectly through the intermediaries. Ai(t) represents the dollar value of the

investment through intermediary i at period t. To be consistent with our empirical analysis, let

AH(t) represent the value of the investor’s direct investment in risky assets. QH,0(t) denotes the

value of the investor’s investment in the outside asset that is not through the intermediaries.

Therefore,

W (t) = QH,0(t) +AH(t) +
I∑

i=1

Ai(t). (2)

Define αH(t) = AH(t)
W (t) and αi(t) =

Ai(t)
W (t) , which respectively represent the fraction of direct

holdings and the fraction of indirect investment through intermediary i at time t.

We represent the vector of the portfolio weights of risky assets for the representative investor

and intermediaries, by wH(t) ∈ RN×1 and wi(t) ∈ RN×1, i = 1, . . . , I, respectively. Let Pn(t)

be the unit price of risky asset n at period t. The unit price of the outside asset is normalized to

one. We assume that risky assets have a fixed supply, which we normalize to one. The investor

directly holds QH,n(t) units of asset n, and likewise, Qi,n(t) represents the quantity of asset

n held by intermediary i at period t. pn(t) and qi,n(t) represent the natural logarithm of the
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prices and quantities.

Define X(t) ∈ RN×1 as the risky portion of the effective portfolio held by the investor:

X(t) = αH(t)wH(t) +
I∑

i=1

αi(t)wi(t). (3)

Since the investor is the ultimate holder of the assets, the portfolio weights in X(t) are equal

to the market portfolio weights:

Xn(t) =
Pn(t)

W (t)
, n = 1, . . . , N. (4)

Note that the investor can adjust her effective portfolio by adjusting her direct holdings

(i.e., QH,n(t), n = 1, . . . , N), or her allocation to intermediaries (i.e., αi(t), i = 1, . . . , I). In the

extreme case that the investor makes no adjustment at period t, the portfolio weights in her

direct holdings only change due to price movements. Specifically, the portfolio weights in this

benchmark case are:

w0
H,n(t) =

QH,n(t− 1)Pn(t)

A0
H(t)

, A0
H(t) =

N∑
n=1

QH,n(t− 1)Pn(t), n = 1, . . . , N. (5)

Thus, we can define the investor’s reallocation in her direct holdings as:

∆wH(t) := wH(t)− w0
H(t). (6)

Likewise, if the investor makes no adjustment in her allocation to intermediary i at period

t, the value of assets held by intermediary i only changes due to price movements between t− 1

and t:

A0
i (t) = Qi,0(t− 1)(1 +R0(t− 1)) +

N∑
n=1

Qi,n(t− 1)Pn(t), i = 1, . . . , I. (7)

Note that intermediary i might update its portfolio at period t, however, this rebalancing

would not impact the value under its management when there is no capital flow from the

investor. With these expressions, we obtain the passive benchmark for αi(t):

α0
i (t) =

A0
i (t)

QH,0(t− 1)(1 +R0(t− 1)) +A0
H(t) +

∑I
i=1A

0
i (t)

=
A0

i (t)

W (t)
. (8)

In the equation above, we use the fact that QH,0(t − 1)(1 + R0(t − 1)) + A0
H(t) +

∑I
i=1A

0
i (t)
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is simply the sum of the market value of the assets at period t, which is equal to the investor’s

wealth.2 The adjustment in the allocation to intermediary i is defined as ∆αi(t) := αi(t)−α0
i (t).

∆αH(t) is defined similarly.

Lastly, let ∆wi(t) represent the adjustment in portfolio weights by intermediary i:

w0
i,n(t) =

Qi,n(t− 1)Pn(t)

A0
i (t)

, n = 1, . . . , N

∆wi(t) := wi(t)− w0
i (t), i = 1, . . . , I.

(10)

2.2 A Reallocation Identity

The reallocations, as defined above, only result in transfers of ownership between the investor

and intermediaries or among intermediaries. Consequently, these transfers should offset each

other in the aggregate when there is no change in the asset supply. This section demonstrates

this concept formally in our model and employs this fact to obtain an identity for reallocations,

which we use in our empirical analysis to understand the magnitude of each type of allocation

adjustment. To derive this identity, we first establish that if we define X0
n(t) as the effective

portfolio prior to the reallocations (but after the price movements), it indeed equates to the

vector of market portfolio weights, thereby being equal to X(t):

X0
n(t) = α0

H(t)w0
H,n(t) +

I∑
i=1

α0
i (t)w

0
i,n(t)

=
A0

H(t)

W (t)

QH,n(t− 1)Pn(t)

A0
H(t)

+

I∑
i=1

A0
i (t)

W (t)

Qi,n(t− 1)Pn(t)

A0
i (t)

=
QH,n(t− 1)Pn(t) +

∑I
i=1Qi,n(t− 1)Pn(t)

W (t)
=

Pn(t)

W (t)
= Xn(t), n = 1, . . . , N.

(11)

Equation 11 states that the effective benchmark portfolio is also the market portfolio since

even in the benchmark case, the sum of direct and indirect investment in an asset should

2To see this, note that:

QH,0(t− 1)(1 +R0(t− 1)) +A0
H(t) +

I∑
i=1

A0
i (t) = QH,0(t− 1)(1 +R0(t− 1)) +

N∑
n=1

QH,n(t− 1)Pn(t)

+

I∑
i=1

{Qi,0(t− 1)(1 +R0(t− 1)) +

N∑
n=1

Qi,n(t− 1)Pn(t)}

= (1 +R0(t− 1))Q0(t− 1) +

N∑
n=1

[QH,n(t− 1) +

I∑
i=1

Qi,n(t− 1)]︸ ︷︷ ︸
=1

Pn(t) = W (t),

(9)

where Q0(t− 1) = QH,0(t− 1) +
∑I

i=1 Qi,0(t− 1).
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be its market value. By subtracting (11) from (3), we obtain the following identity for the

reallocations:

0 =

I∑
i=1

α0
i (t)∆wi(t)︸ ︷︷ ︸

Within-intermediary
reallocation

+

I∑
i=1

∆αi(t)wi(t)︸ ︷︷ ︸
Cross-intermediary

reallocation

+α0
H(t)∆wH(t)︸ ︷︷ ︸
Reallocation in
direct holdings

+ ∆αH(t)wH(t)︸ ︷︷ ︸
Reallocation between
the outside and risky

assets

. (12)

Equation 12 states that there are four types of reallocations, which cancel out in the aggre-

gate: Within-intermediary reallocations, cross-intermediary reallocations by the investor, the

investor’s portfolio rebalancing in her direct holdings, and the investor’s reallocation between

the outside asset and the risky assets.

The intuition behind Equation 12 is as follows: When intermediaries collectively apply

buying (selling) pressure on asset n, the investor must counterbalance this pressure either by

adjusting her direct holdings (either by rebalancing the direct holdings, or by transferring funds

between the risky and outside assets) or by reducing (increasing) her allocation to intermediaries

that invest in asset n. In our empirical section, we utilize this identity to examine how households

respond to asset demand shocks caused by intermediary-level rebalancings.

2.3 Optimal Reallocation

Next, we discuss what determines the magnitude of the investor’s reallocations. To this end,

we assume that the investor has mean-variance preferences over the excess return of her in-

vestment. Moreover, we assume that the investor faces a quadratic adjustment cost for both

direct and indirect holdings. These adjustment costs represent the economic forces that result

in households’ sluggish portfolio behavior (e.g., See Ameriks and Zeldes (2004); Giglio et al.

(2021)), such as inattention (Duffie, 2010) or inertia (Gabaix and Koijen, 2022). We employ

this framework in Section 5.3 to understand how large the adjustment costs should be to justify

our empirical results.

The quadratic cost for intermediary i is 1
2

ci
α0
i (t)

∆α2
i , where ci > 0. The α0

i in the denominator

of the quadratic cost implies that the marginal cost of the adjustment linearly increases with the

percentage change in the position, instead of its absolute change. For instance, if the investor

decides to increase her allocation to intermediary i by 1%, the marginal cost associated with

this adjustment is ci. Likewise, the quadratic adjustment cost in the direct holding of asset n is

1
2

cH,n

α0
Hw0

H,n(t)
(αH(t)wH,n(t)−α0

H(t)w0
H,n(t))

2. Note that αHwH,n(t) =
Pn(t)
W (t)QH,n(t) is the fraction

9



of the investor’s wealth invested in asset n. Thus, the marginal cost of adjustment linearly

increases with the percentage change in the fraction of wealth invested directly in this asset.3

In particular, the effective portfolio at period t is the solution to the following optimization

problem:

max
∆αi,∆αH ,∆wH

X(t)′µ(t)− 1

2
γX(t)′Ω(t)X(t)−

N∑
n=1

1

2

cH,n

α0
Hw0

H,n(t)
(∆αH(t)wH,n(t))

2 − 1

2

I∑
i=1

ci
α0
i (t)

∆α2
i .

(13)

The first-order conditions imply that the following relationships hold for the investor’s real-

locations in relation to the effective portfolio:

∆αi

α0
i (t)

= c−1
i wi(t)

′(µ(t)− γΩ(t)X(t)), (14)

αH(t)wH,n(t)− α0
H(t)w0

H,n(t)

α0
H(t)w0

H,n(t)
= c−1

H,ne
′
n(µ(t)− γΩ(t)X(t)). (15)

Note that in the equations above, µ(t) − γ(t)Ω(t)X(t) captures the distance between the

effective portfolio and the first-best portfolio, i.e, X∗ = γ−1Ω−1(t)µ(t). en is a vector that its

n’th element is one, and the other elements are zero. Equation 14 indicates that the size of

reallocations in the indirect holdings depends not only on the deviation of the effective portfolio

from the first-best portfolio, but also on the adjustment costs. For instance, if we find that

the size of cross-intermediary reallocations is small, we cannot distinguish whether it is due

to high transaction costs or high satisfaction of the investor in her effective portfolio after the

intermediaries’ reallocations. To distinguish these two channels, in our empirical section, we

estimate the ci’s by exploiting Equation 14.

Note that this setting nests some special cases that have been analyzed before. In most

household-based models (e.g., Lucas (1978)), the adjustment costs are assumed to be zero, which

implies that the investor has a large price elasticity in her direct and indirect investments. The

setting in Koijen and Yogo (2019) corresponds to the extreme case that ci = ∞, meaning that

the investor does not adjust her indirect holdings in response to price movements. Haddad and

Muir (2021) considers a positive cost for direct investment and zero cost for indirect investment.

We analyze the price elasticity of different types of reallocations to discern which setting yields

3The cost structure here is different from Haddad and Muir (2021), as it considers a quadratic cost of direct
holding and no cost of indirect holding. However, we consider a quadratic adjustment cost for both direct and
indirect holdings.
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a more realistic response from households.

2.4 Aggregate Demand Elasticity

This section characterizes the aggregate demand elasticity. We drop the time index to simplify

the notation. Note that the demand elasticity for asset n with unit price Pn is given by ηn =

−∂ logQD
n

∂ logPn
, where QD

n denotes the aggregate demand of asset n. Since QD
n = XnW

Pn
, we have:

ηn = −∂ logQD
n

∂ logPn
= 1− ∂ logXD

n

∂pn
. (16)

Therefore, the aggregate demand elasticity for asset n with respect to its price given the vector

of prices can be derived as follows:

ηn = 1− 1

Xn

∂Xn

∂pn
= 1− 1

Xn

{ I∑
i=1

αi
∂wi,n

∂pn
+ αH

∂wH,n

∂pn
+

∂αH

∂pn
wH,n +

I∑
i=1

∂αi

∂pn
wi,n

}
. (17)

Equation 17 provides the four components that determine the elasticity of the aggregate demand

for asset n. The first term inside the braces corresponds to the intermediaries’ reaction to price

movements. The three other terms correspond to the price elasticity of three types of allocation

adjustments by the investor: The rebalancing of the direct allocation to risky assets (the second

term), the reallocation between the outside asset and risky assets (the third term), and lastly,

the adjustments in the allocation to the intermediaries (the fourth term).

The estimation method in Koijen and Yogo (2019) covers the first two terms. Gabaix et al.

(2023) finds that the aggregate household demand for equity has a low price elasticity, implying

that the third term is small. Our analysis complements the previous studies by estimating the

last term, which we refer to as the “cross-intermediary reallocation” term.

3 Estimating the Demand Elasticity

We assume that the allocation to an intermediary depends on the characteristics of the assets

in its portfolio. Specifically, we use K = 120 exogenous observable characteristics that are

independent of the market prices, such as book equity and EBITDA.4 Let xn,k(t) be the value

of characteristic k for asset n at period t. Moreover, let xn,0(t) ≡ men(t) represent the logarithm

of the market value of asset n, which corresponds to pn(t) in our model. The latent demand

4Table A.1 in Appendix provides the list of these variables, which are based on Jensen et al. (2023).
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for intermediary i is denoted by ϵi(t), and its mean is normalized to one. We assume that the

fraction of wealth invested through intermediary i has the following exponential-linear form:5

αi(t) = exp

(
K∑
k=0

βi,k

(
N∑

n=1

νi,n(t)xk,n(t)

))
ϵi(t), i = 1, . . . , I. (19)

In this demand specification, the investor considers each intermediary as a basket of assets. That

is, the investment in an intermediary depends on some weighted average of the characteristics of

its portfolio assets, where βi,k reflects the sensitivity of the investor’s allocation to intermediary

i to its value of characteristic k. In our empirical analysis, we estimate βi,k for each intermediary

type (Banks, Insurance companies, Mutual Funds, etc.) to account for the fact the allocation

adjustment costs vary across these types.

To compute the intermediary-level characteristic values, we use some “proxy weights,” de-

noted by νi,n(t). We do not use the portfolio weights for two reasons: First, if the portfolio

weights were used, ∂αi
∂pn

would depend on how intermediary i’s portfolio weights change in re-

sponse to price movements (i.e., ∂wi
∂pn

), which would complicate our derivations. Second, it is

intuitive that the investor does not perfectly know or track the intermediaries’ portfolio weights.

However, she understands which assets are relatively more represented in each intermediary’s

portfolio. For instance, the investor understands a fund specializing in the energy sector almost

entirely invests in energy companies, but might not exactly know the portfolio weight of each

company. In our analysis, we use four weighting schemes for νi,n(t):

• log weights: We run a regression of logwi(t) on our exogenous asset characteristics in a

regression that pools the intermediaries in each investor category (e.g., Banks, Insurance,

Mutual Funds) for each period. Then, we apply the exponential function to the estimated

value of the log portfolio weight for intermediary i to compute νi,n(t).

• linear weights: Similar to the previous weighting scheme, with the difference that we

directly regress wi(t) on the characteristics and use the estimated portfolio weight to

compute νi,n(t).

5This functional form is close to the demand specification in KY (See Equation 11). The key difference is
that we do not consider the denominator term to simplify the derivations. Considering the denominator term
would reduce our elasticity estimates. The equation below clarifies this point:

α =
x

x+ y
⇒ − ∂

∂p
logα = − ∂

∂p
log x+

∂

∂p
log(x+ y) < − ∂

∂p
log x. (18)

Thus, our estimates can be considered as upper bounds.
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• book weights: νi,n(t) is equal to the book equity of asset n at period t divided by

the sum of the book equity values of intermediary i’s portfolio assets at period t, i.e.,

νi,n(t) =
BEn(t)∑

n′ BEn′ (t)I{wi,n′ (t)>0} .

• equal weights: In this case, all assets in the portfolio receive the same weight, i.e.,

νi,n(t) =
1∑N

n=1 I{wi,n(t)>0}
.

Note that in all these specifications, νi,n(t) = 0 if wi,n(t) = 0.

Given Equation 19, we have:

∂αi(t)

∂pn(t)
= βi,0νi,n(t)αi(t). (20)

Therefore, we can derive the cross-intermediary reallocation term in the aggregate demand

elasticity (Equation 17) as below:

− 1

Xn

I∑
i=1

∂αi(t)

∂pn(t)
wi,n(t) = − 1

Xn

I∑
i=1

βi,0νi,n(t)αi(t)wi,n(t). (21)

To estimate this term in data, we need to estimate βi,0’s in Equation 19. An approach is to

run an OLS estimation for the following linear model of the log allocation to intermediary i:

logαi(t) = [int.] + βi,0m̃ei(t) +
K∑
k=1

βi,kx̃k,t(i) + log ϵi(t), (22)

where

m̃ei(t) =
N∑

n=1

νi,n(t)men(t)

x̃k,i(t) =
N∑

n=1

νi,n(t)xk,n(t), k = 1, . . . ,K.

(23)

The necessary identification assumption for this approach is that the latent demand is un-

correlated with the market prices, after accounting for the other factors.

E[ϵi(t)|m̃ei(t), x̃1,i(t), . . . , x̃K,i(t)] = 1 (24)

As pointed out by KY, the latent demand is likely to be correlated with the prices, which

threatens the identification. Moreover, the latent demand and the proxy weights could be
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correlated. For instance, investors might select funds based on whether they are specialized in

firms from a certain industry or with a certain set of characteristics.

Here, we propose an IV strategy to estimate the βi,0s. This methodology helps us understand

how the investor responds to price changes not caused by their own preference shocks, which is

what βi,0 captures. A plausibly exogenous source of variation in the prices is the changes in the

investment universes.6 Note that in this model, the investment universes of the intermediaries

impose some restrictions, which have important pricing implications. For instance, in the ex-

treme case that no fund holds the shares of a certain stock, that stock is only available through

direct investment, which can be costly. Therefore, the inclusion of that stock in a fund would

reduce the cost of investment in this stock, thereby pushing up its price.

Our goal is to exploit such exogenous variations in the intermediaries’ investment universe

to estimate the price elasticities. To this end, we construct the following instrumental variable:

m̂ei(t) =

N∑
n=1

νi,n(t)m̂ei,n(t), (25)

where m̂ei,n(t) is a proxy of the logarithm of market capitalization that is orthogonal to the

allocation of funds across the intermediaries. Specifically,

m̂ei,n(t) = log{
∑
j ̸=i

Ij,n(t)BEn(t)∑N
n′=1 Ij,n′(t)BEn′(t)

Nj(t)∑
j′ ̸=iNj′(t)

M̄E(t)}. (26)

In Equation 26, Ij,n(t) is an indicator function that is one when stock n is in the investment

universe of intermediary j at period t. M̄E(t) is the overall market capitalization in the sample.

Putting in words, m̂ei,n(t) is obtained from the following two-step procedure: First, suppose

all funds are distributed among the other I − 1 intermediaries proportional to their number of

assets in their investment universe. Then, those intermediaries allocate their funds to firms in

their investment universe based on their book value. Therefore, different firms receive different

instrumented market-to-book equity (m̂ei,n(t) − ben(t)) based on the number of investment

universes they belong to, and the book value of the other stocks in those investment universes.

This procedure obtains our price instruments for the stocks. The book-equity-weighted average

of these price instruments is our instrument for the funds’ unit value.7

6We follow KY in the definition of investment universes. KY shows that the intermediaries’ investment uni-
verse is far from covering all available stocks. For instance, the number of stocks held by the median intermediary
was 67 in 2015-2017.

7The results are similar across different choices of the stock-level price instrument (m̂ei,n(t)), such as dis-
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Therefore, the identification assumption in our IV specification is:

E[ϵi(t)|m̂ei(t), x̃1,i(t), . . . , x̃K,i(t)] = 1. (27)

Note that the identification assumption under the IV specification is that the latent demand

for investor i is uncorrelated with the investment universe of the other investors. In fact, once we

control for book equities, the only source of cross-sectional variation in the instrumented market

capitalization among stocks is the differences in the set of intermediaries that they belong to

their investment universe. This variation is plausibly exogenous since investment universes are

set based on mandates or investment style, and they are highly persistent. Thus, the shocks to

latent demand are unlikely to affect the investment universes.

Our instrumental variable is different from the one employed by KY, primarily in the first

stage of the construction of the stock-level IVs. KY assumes that the AUMs are exogenous,

so they distribute each intermediary’s AUM among its portfolio stocks. However, we relax this

assumption in our analysis. Table 1 compares the elasticity estimates for KY’s model with their

and our choice of instruments. We see the estimates are quite close.

Variable of Interest: Average Elasticity

Equal-Weighted Value-Weighted

KY Instrument 0.426∗∗∗ 0.420∗∗∗

(0.012) (0.008)

Our Instrument 0.373∗∗∗ 0.342∗∗∗

(0.007) (0.006)

Observations 805684 805684

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1: Average Elasticity Estimate in KY. This table compares the average elasticity
estimates, across quarters and assets, in KY’s model with their choice and our choice of IV.

A potential concern is that the instrument variable proposed here is weak for our estimation

purposes. We address this concern by examining the t-statistics of the first-stage regressions,

and demonstrating that the t-statistics well exceed the critical value suggested by Stock and

Yogo (2002). The results, along with the estimation results obtained with this empirical strategy,

tributing M̄E(t) to intermediaries equally or proportionate to the overall book equity of their holdings.
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are provided in the empirical section.

4 Data

Like KY, we use the 13F holdings data. The 13F data has long position holdings of institutions

in the US. We use the same categories as KY—namely banks, insurance companies, investment

advisors (which includes hedge funds), mutual funds, pension funds, and other. We follow

their algorithm to correct institution type into these categories. The 13F data does not cover

the complete holdings for every stock as KY document, so we label the residual holdings as

“households’ direct holdings.” Importantly, these are not delegated investments through mutual

funds or hedge funds. Thus, following KY, these households are placed at the intermediary level.

We also use characteristic data from Jensen et al. (2021). We take 120 stock characteristics

that are not a function of prices, as shown in Table A.1, which we combine with the log of market

equity. For the 120 characteristics, we use the inverse hyperbolic sine of each characteristic. We

would take the log, but there are many characteristics with negative values or values around zero.

For large values of x, sinh−1(x) ≈ log(x) + log(2), so this is an approximate log transformation

for large positive values. For values of x close to zero, the sinh−1(x) ≈ x. When we refer to the

KY covariates, we mean the log of market equity, and the inverse hyperbolic sine of book equity

(be), beta (beta 60m), operating profitability to book equity (ope be), asset growth (at gr1),

and dividends to assets (div12m at = div12m − at).

5 Results

The results can be summarized in a single sentence: Cross-intermediary reallocations are small

and exhibit low sensitivity to prices, implying their minimal contribution to the aggregate

demand elasticity. In this section, we initially utilize the reallocation identity (Equation 12) to

conduct a variance decomposition analysis, which sheds light on how intermediary-level demand

pressures are absorbed by households. Subsequently, we estimate and find a low price elasticity

for cross-intermediary reallocations. Nonetheless, there exists significant variation in the price

elasticity of the allocations to different intermediary types, consistent with the notion that

transaction costs vary across these types.
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5.1 How do Households Respond to Demand Pressure from Intermediaries?

We can move the within-intermediary reallocation term in Equation 12 to the left-hand side to

obtain the following decomposition identity:

−
I∑

i=1

α0
i (t)∆wi(t)︸ ︷︷ ︸

Within-intermediary
reallocation

=
I∑

i=1

∆αi(t)wi(t)︸ ︷︷ ︸
Cross-intermediary

reallocation

+α0
H(t)∆wH(t)︸ ︷︷ ︸
Rebalancing in
direct holdings

+ ∆αH(t)wH(t)︸ ︷︷ ︸
Reallocation between
the outside and risky

assets

. (28)

The intuition for the equation above is as follows: If asset n is collectively demanded more

by the intermediaries by tilting their portfolio weights toward this asset, the households can

respond in two ways: They can absorb the demand by selling their direct holding of asset n

and use the funds to purchase more of the outside asset or another risky asset. Or, they can

withdraw funds from the intermediaries with a positive position in asset n to mitigate their

excess demand.8

By taking the covariance of both sides with the left-hand side, we obtain:

1 =
COV (−

∑I
i=1 α

0
i (t)∆wi,n(t),

∑I
i=1∆αi(t)wi,n(t))

V AR(
∑I

i=1 α
0
i (t)∆wi,n(t))

+
COV (−

∑I
i=1 α

0
i (t)∆wi,n(t), α

0
H(t)∆wH,n(t))

V AR(
∑I

i=1 α
0
i (t)∆wi,n(t))

+
COV (−

∑I
i=1 α

0
i (t)∆wi,n(t),∆αH(t)wH,n(t))

V AR(
∑I

i=1 α
0
i (t)∆wi,n(t))

.

(29)

The first term in Equation 29 reflects the fraction of intermediaries’ net demand that is ab-

sorbed by cross-intermediary reallocations. Likewise, the second and third terms show the

fraction absorbed through adjustments in the direct holdings, either through rebalancings of

direct holdings or reallocation between the outside asset and risky assets. Table 2 provides our

estimates of these terms (in percentages) when we consider all periods and all assets in our

data.

Table 2 reveals that approximately 90% of intermediaries’ excess demand is absorbed through

the rebalancing of direct holdings. In contrast, cross-intermediary reallocations actually exac-

erbate the demand pressure. This observation aligns with the return-chasing behavior of the

capital flows, as documented in the empirical literature (e.g., See Chevalier and Ellison (1997),

8Recall that αi’s are the fraction of the total wealth managed by intermediary i, however, the data on the
overall wealth is not available. We address this issue by multiplying all α’s and ∆α’s in Equation 28 by W (t)

Ā(t)
,

where Ā(t) = AH(t) +
∑I

i=1 Ai(t). For instance, α
0
i (t) is replaced by

A0
i

Ā(t)
and ∆αi(t) is replaced by

Ai(t)−A0
i (t)

Ā(t)
,

where A0
i (t) is defined in Equation 7. This transformation is innocuous since it simply multiplies all α’s and ∆α’s

by a scalar.
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Across Intermediary Direct Holdings (Rebalancing)

(1) (2)

Variance Component -9.95∗∗∗ 89.66∗∗∗

(3.35) (2.62)

Observations 802484 802484

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Variance Decomposition. This table provides the contribution (in percentage) of
the cross-intermediary reallocation term and the term associated with the rebalancing of direct
holdings in Equation 29. The residual is the term corresponding to the reallocation between
the outside and risky assets.

Banks Insurance Companies Investment Advisors Mutual Funds Pension Funds Other Direct Holdings

(1) (2) (3) (4) (5) (6) (7)

Variance Component -0.30∗∗∗ -0.34∗∗∗ -2.07∗∗∗ -7.14∗∗∗ 0.80 -0.91∗∗∗ 89.66∗∗∗

(0.10) (0.04) (0.25) (1.50) (2.49) (0.14) (2.62)

Observations 802484 802484 802484 802484 802484 802484 802484

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Variance Decomposition By Intermediary Type. This table decomposes the
cross-intermediary reallocation term in Equation 29 by the intermediary type. The residual is
the term corresponding to the reallocation between the outside and risky assets.

Lou (2012)).9 An excess demand for asset n drives up its price, attracting capital flow toward

intermediaries holding substantial positions in this asset. To shed light further on this obser-

vation, we decompose the cross-intermediary reallocation term based on intermediary types in

Table 3. In line with this mechanism, we see that capital flows to mutual funds account for

most of the positive relationship between the capital flows to intermediaries and their excess

demand.

From the estimates presented in Table 2, we can infer that around 20% of the intermedi-

ary sector’s excess demand is absorbed through the transfers of funds from the outside asset.

Therefore, the rebalancing of direct holdings plays the most significant role in counterbalancing

the purchasing or selling pressure exerted by intermediaries.

Overall, these observations imply that the capital flows are not orthogonal to within-

intermediary portfolio adjustments. In particular, within-intermediary portfolio adjustments

not only impact the prices, but also the latent demand for those intermediaries. As such, we

employ the IV technique described in Section 3 to estimate the price elasticity of the allocations

to intermediaries. The next section provides the results.

9This result is robust across time, as shown in Figure A.1.
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5.2 Elasticity of Allocations to Intermediaries

First, we show that our empirical strategy does not suffer from the weak instrument bias. A

standard methodology in the literature is to examine the t-statistics in the first-stage regressions,

namely, the regression of the log market equities onto their instrumented value, and compare

the results against the critical value proposed by Stock and Yogo (2002). Figure 3 provides the

minimum t-statistics for each year. The minimum t-statistics well exceed the critical value of

4.05 for rejecting the null hypothesis of weak instrument at the five percent confidence level.

Table 4 provides a similar result for the intermediary-level instruments.

Figure 3: First-stage minimum t-statistic on the instrumented log market equity
This plot shows the minimum t-statics of the first-stage regression of log-market equity on its
instrumented value across intermediaries. The flat line displays the critical value to reject the
null hypothesis of weak instrument at five percent level confidence (Stock and Yogo, 2002).

Table 5 provides the estimates of the price-elasticity (βi,0) of the allocation to each inter-

mediary type. The estimates are obtained from estimating the coefficients in Equation 22 with

the IV specification. We see that the allocation to intermediaries is indeed negatively related

to the prices, in contrast to what the results in Section 5.1 might suggest. This result is robust

across intermediary types and the choice of weighting scheme for the proxy weights. The price

elasticity is the largest for mutual funds, consistent with the idea that the adjustment cost is

the lowest for this type. Moreover, the results are mixed for Insurance companies and Pension

funds, in line with the inflexibility of the allocations to these types of intermediaries. In Section
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Banks Insurance Advisors Mutual Funds Pension Other

log weights 21.650 18.820 13.740 15.760 27.010 7.230

linear weights 15.550 15.140 19.620 21.710 22.280 13.410

book weights 22.740 15.500 15.560 16.280 19.230 8.270

equal weights 15.330 8.280 15.130 16.590 15.200 7.340

Table 4: First Stage t Statistics for Intermediaries. This table provides the minimum
t-statistic of the first-stage regression of the log-AUM on its instrumented value for each inter-
mediary group. The t-statistics in each row correspond to a weighting scheme introduced in
Section 3 for the proxy weights. All values are above the threshold values provided by Stock
and Yogo (2002).

Dependent variable: log(α)

Banks Insurance Advisors Mutual Funds Pension Other

(1) (2) (3) (4) (5) (6)

Log −2.168∗∗ 0.785 −0.890∗∗∗ −3.087∗∗∗ −0.766 −1.661∗

(1.103) (2.022) (0.311) (0.792) (1.975) (0.919)

Linear −0.722 0.646 −0.631∗∗∗ −2.459∗∗∗ −2.214∗∗ −0.981∗∗∗

(0.447) (0.558) (0.125) (0.275) (1.004) (0.312)

Book −0.456 −1.098 −1.531∗∗∗ −4.705∗∗∗ −3.050∗∗∗ −1.012∗∗∗

(0.444) (0.784) (0.202) (0.574) (0.920) (0.341)

Equal −0.626 −3.664∗∗ −1.614∗∗∗ −5.484∗∗∗ 2.080∗∗ −1.838∗∗∗

(0.572) (1.581) (0.231) (0.623) (0.826) (0.510)

Observations 20912 5608 218894 93910 4792 38788

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Price-elasticity of the allocation to intermediaries This tables provides the IV
estimates of βi,0 in Equation 22 for each intermediary type. The regression pools all periods
and all intermediaries for each intermediary type. The standard errors are double clustered by
intermediary and quarter.

5.3, we use these elasticity estimates to compute the adjustment cost for each intermediary

type.

Now, we compute the contribution of the cross-intermediary reallocation term to the ag-

gregate demand elasticity by plugging in these estimates in Equation 21. Table 6 presents the

weighted average elasticity of this term across stocks for each intermediary type. We see that the
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Average Intermediary Elasticity Effects (Times 100)

(1) (2) (3) (4) (5) (6) (7)
Banks Insurance Advisors Mutual Funds Pension Other Combined

Log 0.0146∗∗∗ -0.0032∗∗∗ 0.0258∗∗∗ 0.2741∗∗∗ 0.0126∗∗∗ 0.0216∗∗∗ 0.3455∗∗∗

(0.0033) (0.0005) (0.0024) (0.0376) (0.0022) (0.0030) (0.0460)

Linear 0.0114∗∗∗ -0.0057∗∗∗ 0.0512∗∗∗ 0.4082∗∗∗ 0.0382∗∗∗ 0.0319∗∗∗ 0.5351∗∗∗

(0.0020) (0.0006) (0.0034) (0.0316) (0.0042) (0.0036) (0.0413)

Book 0.0076∗∗∗ 0.0103∗∗∗ 0.1611∗∗∗ 0.9294∗∗∗ 0.0721∗∗∗ 0.1440∗∗ 1.3245∗∗∗

(0.0021) (0.0019) (0.0174) (0.1293) (0.0130) (0.0576) (0.1713)

Equal 0.0038∗∗∗ 0.0197∗∗∗ 0.1205∗∗∗ 0.4072∗∗∗ -0.0109∗∗∗ 0.2184∗∗ 0.7588∗∗∗

(0.0005) (0.0018) (0.0103) (0.0497) (0.0013) (0.1033) (0.1181)

Observations 805684 805684 805684 805684 805684 805684 805684

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6: The contribution of the cross-intermediary reallocation term to the aggre-
gate elasticity. This table presents the overall price elasticity of allocations to each interme-
diary type, along with the combined effect. The reported numbers are 100 times larger than
the estimated values. The combined effect provides an estimate for the contribution of the
cross-intermediary reallocation term in Equation 17 to the aggregate demand elasticity.

estimated combined contribution to the aggregate demand elasticity is between 0.003 − 0.013,

depending on the choice of weighting scheme. These numbers are at least one order of magni-

tude smaller than the demand elasticity estimates in KY (See Table 1). The majority of this

contribution is through adjustments in the allocations to mutual funds. Figure 4 displays the

weighted average elasticity of the cross-intermediary reallocation term over time for different

weighting schemes and different intermediary types.

Our results indicate that households’ adjustments in the allocation to intermediaries play

a weak role in the aggregate demand elasticity. It is an important observation since it implies

that if intermediaries face some frictions that cause them to exert some buying or selling pres-

sure on some assets, the pressure is unlikely to be undone by households’ reallocations across

intermediaries. It is in contrast with household-based asset pricing models that assign a weak

role to intermediary-level portfolio decisions in the formation of equilibrium prices.

5.3 Adjustment costs

We can use the elasticity estimates in this section to shed light on the adjustment costs investors

face in their allocations to intermediaries. In particular, Equation 14 shows how the adjustment

cost impacts the sensitivity of the allocations to an intermediary with respect to expected return

movements:
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(a) Log weight (b) Linear weight

(c) Book weight (d) Equal weight

(e) Legend

Figure 4: The contribution of the cross-intermediary reallocation term to the ag-
gregate elasticity. This figure presents the overall price elasticity of allocations to each
intermediary type, along with the combined effect, over time. The combined effect provides
an estimate for the contribution of the cross-intermediary reallocation term in Equation 17 to
the aggregate demand elasticity.
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∂αi

∂µn
= αic

−1
i wi,n. (30)

In our empirical analysis, we estimate the price elasticity of αi. To estimate ci, we can apply

the chain rule to the left-hand side and employ Equation 20:

∂αi

∂µn
=

∂αi

∂pn
/
∂µn

∂pn
= φ−1βi,0νi,nαi, (31)

where φ = ∂µn

∂pn
is the pass-through rate between the price change and the change in the expected

return (Davis et al., 2022). By taking a summation of the right-hand sides in (30) and (31) over

n, we derive the following equation for the transaction cost, assuming that wi,0 is small:

ci ≃ β−1
i,0 φ. (32)

Equation 32 nicely relates the adjustment cost to the price-elasticity of the allocation to

intermediary i. In line with intuition, there is a negative relationship between the adjustment

cost and price elasticity. Recall that ci is the marginal adjustment cost when the allocation is

changed by 1%. That means the expected return of investing in intermediary i should increase

by ci to make investors increase their allocation by at least 1%.

Table 7 presents the estimates of the adjustment cost for different intermediary types. We

see that the adjustment cost for mutual funds is estimated to be between 1.1%-2.4%. It implies

that for a 1% increase in the allocation to a mutual fund, the expected return of the fund should

increase by at least 2.4%, based on our most conservative estimate. We drop the estimates for

Insurance companies and Pension funds due to the mixed results observed in Table 5.

6 Variation in the elasticity estimates across models

We found that the contribution of the cross-intermediary reallocation term to the aggregate

demand elasticity ranges between 0.003-0.013 (See Table 6). In this section, we provide the

estimates of the aggregate demand elasticity from various elasticity models and argue that the

variation in these elasticity estimates across models is at least one order of magnitude larger

than the elasticity of the cross-intermediary reallocation term.

The KY model is close to a standard isoelastic demand model, where portfolio weights have
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Transaction Costs

Banks Advisors Mutual Funds Other

Log 0.028 0.067 0.019 0.036

Linear 0.083 0.095 0.024 0.061

Book 0.132 0.039 0.013 0.059

Equal 0.096 0.037 0.011 0.033

Table 7: Adjustment Costs for Allocations to Intermediaries This table presents the
estimates of the adjustment cost for the adjustment of the allocation to each intermediary type.
The numbers can be interpreted as the minimum increase in the expected return required to
increase the allocation to an intermediary by 1%.

the following functional form:

wi,n(t) = exp(ϱ̂i,n,1(t) + ϱi,2(t) log(MEn(t)))

= 0︸︷︷︸
intercept
term

+(ϱi,n,1(t))(MEn(t))
ϱi,2(t)︸ ︷︷ ︸

level
term

+0 · log(MEn(t))︸ ︷︷ ︸
log
term

, (33)

where exp(ϱ̂i,n,1(t)) = ϱi,n,1(t) captures the exogenous covariates and latent demand (error

term). With this specification, the elasticity of an investor is simply 1−ϱi,2(t).
10 This isoleastic

demand can be estimated by regressing the log of portfolio weights on the instrumented log

of market equity and exogenous controls. We do this, using a KY instrument and the 120

exogenous controls. Note that the covariates constraints imposed by the KY GMM estimation

method is not imposed. The first row in Table 8 shows that value-weighted elasticity across

time periods, which is 0.41. This is quite similar to the model results from above. In other

words, the KY elasticity results are quite robust to include many more controls, estimating a

model with a more simple two-staged least-squares, and using only a simple isoleastic demand

model.

Davis (2021) also considers a model where demand is linear is characteristics, the log of

10In the KY specification, the elasticity of an investor is actually 1 − ϱi,2(t)(1 − wi,n(t)). This (1 − wi,n(t))
term comes from an adding up constraint for portfolio weights. Quantitatively, since portfolio weights tend to
be small, this makes little difference.
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Model Covariates Elasticity Level Log

Isoelastic All 0.414∗∗∗ 0.586∗∗∗

(0.045) (0.045)

Linear Only Level 0.221∗∗∗ 0.779∗∗∗

(0.006) (0.006)

Linear Level & KY 0.275∗∗∗ 0.725∗∗∗

(0.006) (0.006)

Linear Level, KY, & Log 0.424∗∗∗ 0.754∗∗∗ -0.178∗∗∗

(0.016) (0.006) (0.011)

Linear All 0.646∗∗∗ 0.747∗∗∗ -0.393∗∗∗

(0.030) (0.005) (0.026)

Observations 805684 805684 805684

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 8: Elasticity Across Models This table shows the elasticity estimates for the cross-
intermediary reallocation term across models. There are results for both isoleastic and linear
demand models, with covariates shown. KY covariates represent the covariates used in Koijen
and Yogo (2019) use in their model. All covariates include all the 120 controls as discussed in
the text (See Table A.1). The elasticity is one minus the log and level effects.

market equity, and market-portfolio weights:

wi,n(t) = βi,n,0(t)︸ ︷︷ ︸
intercept
term

+βi,1(t)
MEn(t)

A(t)︸ ︷︷ ︸
level
term

+βi,2(t) log(MEn(t))︸ ︷︷ ︸
log
term

, (34)

where βi,n,0(t) includes the error term (latent demand) and all the exogenous controls. Note

that if βi,1(t) = 1 and βi,n,0(t) = βi,2(t) = 0, this corresponds to a market-indexer with an

elasticity of zero. If βi,1(t) < 1 and βi,2(t) < 0, then aggregate market demand for every

asset is downward sloping and there is a unique equilibrium price. This demand function can

be derived using log demand or mean-variance demand, similar to KY (see Davis, 2021). We

briefly summarize some of the benefits and downsides of this demand function. The benefits

are the following:

1. This demand function can hold short positions. Isoelastic demand of course can only

accommodate long-only positions.
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2. This demand function aggregates well. In other words, the demand function of many

investors in aggregate has the same functional form as the individual investors. This

is not true of isoelastic demand. This matters for estimating demand functions of the

aggregate household and for institutions that are composed of many individual funds (e.g.

BlackRock).

3. This linear demand function has a great deal of flexibility, with the level term fitting the

degree to which an investor is a market-indexer and the log market equity term captures

the sensitivity of investors to prices.

The downside of the model is that the elasticity will be very high for small positions. To

see this, note that the elasticity of an investor with this demand function is given by:

1−
βi,1(t)

MEn(t)
A(t) + βi,2(t)

wi,n(t)
. (35)

In aggregate, this means that the assets with small market-portfolio weights tend to have higher

elasticity values. While there is some evidence that small stocks may have more elastic demand

(Haddad et al., 2022), linear demand can at times make this effect too extreme. Since we look

at value-weighted elasticity values in this section and for most of the paper, this right-skewed

elasticity distribution is completely offset by using value-weighted averages.11

This demand function is estimated by regressing portfolio weights (not log portfolio weights)

on characteristics and the two instrumented endogenous terms (level and log price term). The

KY instrument is in logs, and thus it is natural to use the KY instrument and the exponentiated

KY instrument as the two instruments. The minimum F statistic for these two instruments

across pooled samples and all periods is above the Stock and Yogo (2002) critical value.12

The second row of table 8 shows the value-weighted elasticity across time when demand is

estimated with only the level term. There are no other covariates used in this regression. This

yields an average elasticity of 0.22. The third row shows the elasticity with the linear model

only estimated with a linear term and the covariates used by KY, which increases the elasticity

to 0.28. The next row uses the same specification except it also includes the log term, which

increases the elasticity further to 0.42. This specification provides a similar elasticity to the

isoelastic model and the KY model shown above. The prior specifications with this linear model

11Equal-weighted averages result in much higher elasticity values, as can be seen in Davis (2021).
12This critical value for two instruments and two endogenous covariates is 7.03, as can be seen in Table 5.2 of

Stock and Yogo (2002).
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miss obvious controls, while this model has a reasonable set of controls. Finally, the last row

includes all 120 controls, which increases the elasticity further to 0.65.

The take-away from this section is that estimates of the aggregate market elasticity for

individual assets vary from around 0.4 to 0.65 simply by using different functional forms and

different controls. This increase in the average elasticity of 0.25 is much larger than the cross-

intermediary effects, which range from 0.003 to 0.013. This is especially true when compared to

the large variation in microeconomic elasticity values across different studies, as highlighted by

Gabaix and Koijen (2022). In conclusion, the cross-intermediary elasticity term is very small

to variation across demand models.

7 Conclusion

Both from a policy and investment perspective, it is crucial to understand the role of households

and intermediaries in financial markets. Existing asset pricing models assume different alloca-

tions of the roles, which have resulted in drastic differences in their implications. For instance,

how large is the impact of an asset purchase program on the prices? Different models have

vastly different answers based on whose response is more salient in the “aggregate market’s”

response: Households or intermediaries. Our analyses are intended to shed light on this debate.

Do households undo? The answer to this question is what divides existing models; specifi-

cally, it separates household-based asset pricing models (Merton, 1973; Lucas, 1978; Campbell

and Cochrane, 1999; Bansal and Yaron, 2004; Barro, 2006; Gabaix, 2012) from the more recent

intermediary-based models (He and Krishnamurthy, 2013; Koijen and Yogo, 2019; Haddad and

Muir, 2021; Gabaix and Koijen, 2022). The central premise of the former class of models is that

enough rebalancing would take place to eliminate any mispricing induced by intermediary-level

frictions. Thus, intermediary-level frictions, such as balance-sheet constraints and investment

mandates, do not have a first-order effect on the prices.

In this paper, we directly test this central assumption by examining how sensitive cross-

intermediary reallocations are with respect to non-fundamental price movements. We do this by

developing and estimating a model in which a representative investor invests in some risky assets

both directly and indirectly through some intermediaries. Then, we decompose the aggregate de-

mand elasticity into a direct component, which captures the elasticity of the within-intermediary

reallocations and the elasticity of the direct holdings, and an indirect component, which rep-
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resents the elasticity of the allocations to intermediaries. Consistent with intermediary-based

models, we find that the indirect elasticity component is substantially smaller than the direct

component, meaning that intermediaries’ portfolio behavior has a first-order impact on the

aggregate demand elasticity.

Thus, we conclude that intermediary-level frictions play a first-order role in price movements

since allocations to intermediaries exhibit a weak response to price dislocations.

28



References

Abel, Andrew B, Janice C Eberly, and Stavros Panageas, 2013, Optimal inattention to the stock

market with information costs and transactions costs, Econometrica 81, 1455–1481.

Adrian, Tobias, Erkko Etula, and Tyler Muir, 2014, Financial intermediaries and the cross-

section of asset returns, The Journal of Finance 69, 2557–2596.

Ameriks, John, and Stephen P Zeldes, 2004, How do household portfolio shares vary with age,

Technical report, working paper, Columbia University.

Bansal, Ravi, and Amir Yaron, 2004, Risks for the long run: A potential resolution of asset

pricing puzzles, The journal of Finance 59, 1481–1509.

Barro, Robert J, 2006, Rare disasters and asset markets in the twentieth century, The Quarterly

Journal of Economics 121, 823–866.

Brunnermeier, Markus K, and Lasse Heje Pedersen, 2009, Market liquidity and funding liquidity,

The review of financial studies 22, 2201–2238.

Campbell, John Y, and John H Cochrane, 1999, By force of habit: A consumption-based

explanation of aggregate stock market behavior, Journal of political Economy 107, 205–251.

Chevalier, Judith, and Glenn Ellison, 1997, Risk taking by mutual funds as a response to

incentives, Journal of political economy 105, 1167–1200.

Darmouni, Olivier, Kerry Siani, and Kairong Xiao, 2022, Nonbank fragility in credit markets:

Evidence from a two-layer asset demand system, Available at SSRN .

Davis, Carter, 2021, The elasticity of quantitative investment, working paper .

Davis, Carter, Mahyar Kargar, and Jiacui Li, 2022, An information-based explanation for in-

elastic demand, Available at SSRN .

Duffie, Darrell, 2010, Presidential address: Asset price dynamics with slow-moving capital, The

Journal of finance 65, 1237–1267.

Gabaix, Xavier, 2012, Variable rare disasters: An exactly solved framework for ten puzzles in

macro-finance, The Quarterly journal of economics 127, 645–700.

29



Gabaix, Xavier, and Ralph S. J. Koijen, 2022, In search of the origins of financial fluctuations:

The inelastic markets hypothesis, working paper .

Gabaix, Xavier, Ralph SJ Koijen, Federico Mainardi, Sangmin Oh, and Motohiro Yogo, 2023,

Asset demand of us households, Available at SSRN 4251972 .

Giglio, Stefano, Matteo Maggiori, Johannes Stroebel, and Stephen Utkus, 2021, Five facts about

beliefs and portfolios, American Economic Review 111, 1481–1522.

Haddad, Valentin, Paul Huebner, and Erik Loualiche, 2022, How competitive is the stock mar-

ket? Theory, evidence from portfolios, and implications for the rise of passive investing,

Working Paper, UCLA and Minnesota.

Haddad, Valentin, and Tyler Muir, 2021, Do intermediaries matter for aggregate asset prices?,

The Journal of Finance 76, 2719–2761.

He, Zhiguo, Bryan Kelly, and Asaf Manela, 2017, Intermediary asset pricing: New evidence

from many asset classes, Journal of Financial Economics 126, 1–35.

He, Zhiguo, and Arvind Krishnamurthy, 2013, Intermediary asset pricing, American Economic

Review 103, 732–70.

Jensen, Theis Ingerslev, Bryan Kelly, and Lasse Heje Pedersen, 2023, Is there a replication crisis

in finance?, The Journal of Finance 78, 2465–2518.

Jensen, Theis Ingerslev, Bryan T Kelly, and Lasse Heje Pedersen, 2021, Is there a replication

crisis in finance?, Technical report, National Bureau of Economic Research.

Koijen, Ralph S. J., and Motohiro Yogo, 2019, A demand system approach to asset pricing,

Journal of Political Economy 127, 1475–1515.

Lou, Dong, 2012, A flow-based explanation for return predictability, The Review of Financial

Studies 25, 3457–3489.

Lucas, Robert E Jr, 1978, Asset prices in an exchange economy, Econometrica: journal of the

Econometric Society 1429–1445.

Merton, Robert C, 1973, An intertemporal capital asset pricing model, Econometrica: Journal

of the Econometric Society 867–887.

30



Shleifer, Andrei, and Robert W Vishny, 1997, The limits of arbitrage, The Journal of finance

52, 35–55.

Stock, James H, and Motohiro Yogo, 2002, Testing for weak instruments in linear iv regression.

31



Appendix A: Additional Figures and Tables

cowc gr1a oaccruals at oaccruals ni taccruals at
taccruals ni capex abn debt gr3 fnl gr1a
ncol gr1a nfna gr1a ni ar1 noa at
aliq at at gr1 be gr1a capx gr1
capx gr2 capx gr3 coa gr1a col gr1a
emp gr1 inv gr1 inv gr1a lnoa gr1a
mispricing mgmt ncoa gr1a nncoa gr1a noa gr1a
ppeinv gr1a sale gr1 sale gr3 saleq gr1
age at be bidaskhl 21d cash at
ni ivol rd sale rd5 at tangibility
beta 60m beta dimson 21d betabab 1260d betadown 252d
earnings variability ivol capm 21d ivol capm 252d ivol ff3 21d
ivol hxz4 21d ocfq saleq std rvol 21d turnover 126d
zero trades 21d zero trades 126d zero trades 252d dsale dinv
dsale drec dsale dsga niq at chg1 niq be chg1
niq su ocf at chg1 sale emp gr1 saleq su
tax gr1a dolvol var 126d ebit bev ebit sale
f score ni be niq be o score
ocf at ope be ope bel1 turnover var 126d
at turnover cop at cop atl1 dgp dsale
gp at gp atl1 ni inc8q niq at
op at op atl1 opex at qmj
qmj growth qmj prof qmj safety sale bev
corr 1260d coskew 21d dbnetis at lti gr1a
pi nix sti gr1a ami 126d iskew capm 21d
iskew ff3 21d iskew hxz4 21d rskew 21d chcsho 12m
eqnetis at netis at netdebt rd
at be debt div12m
ebitda eqnpo eqpo fcf
ival ni ocf sale

Table A.1: Exogenous Variable Names This shows the 120 exogenous characteristic variables
used in the demand estimation (Equation 19). The variables are obtained from Jensen et al.
(2021).
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Figure A.1: The decomposition of households’ response to intermediaries’ excess
demand. This figure decomposes the vector of intermediaris’ excess demand at each period
into three terms: The rebalancing of direct holdings (orange line), adjustments in the allocations
to intermediaries (blue line), and transfers between the risky assets and outside assets. The
terms add up to 100%. The last term is the residual.
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