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Abstract

We use equity returns to construct a time-varying measure of what we call the zero-
beta rate: the expected return of a stock portfolio orthogonal to the stochastic discount
factor. In contrast to safe rates, the zero-beta rate fits the aggregate Euler equation
remarkably well. It has a large and volatile spread with respect to the safe rate. This
spread responds to monetary policy shocks, which move zero-beta and safe rates in
opposite directions. We claim that the zero-beta rate is the correct intertemporal price
and that the safe rate primarily reflects the behavior of a convenience yield on safe
assets.
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1 Introduction

The interest rate is perhaps the most important price in a market economy. It captures the
intertemporal price of goods and plays a central role in business cycles and monetary policy.
We use equity returns to construct a measure of the interest rate that we call the zero-beta
rate: the expected return of a stock portfolio orthogonal to the stochastic discount factor
(SDF). We show that the zero-beta rate fits a stable aggregate consumption Euler equation
remarkably well, that it has a large and cyclical spread with respect to the safe rates that
central banks control, and that this spread responds to monetary policy shocks, which move
safe and zero-beta rates in opposite directions. We claim that the zero-beta rate is the
correct intertemporal price and the behavior of safe rates reflects a large and time-varying
convenience yield on safe assets.

Our motivation starts with the aggregate consumption Euler equation,

1 = Et

[
δ

(
ct+1

ct

)−σ
Rt

Pt+1/Pt

]
, (1)

where ct is aggregate consumption, Pt is the price level, and Rt is an interest rate. This
equation lies at the heart macroeconomics, and is the structural relationship that central
banks aim to exploit through monetary policy. But, if we interpret the interest rate Rt as
the return of safe bonds such as Treasury bills, the Euler equation does not fit the data.
The left panel of Figure 1 makes this point graphically, showing the expected growth rate of
consumption and the expected real Treasury bill return, both predicted with the same set of
macroeconomic variables. The failure of the classic aggregate Euler equation is well-known
(Hansen and Singleton 1983; Dunn and Singleton, 1986; Hall, 1988; Yogo, 2004) and there
are many possible explanations, the simplest being a time-varying discount factor.

We suggest instead that it is the safe interest rate that is wrong. It is well-understood
that the safest and most convenient assets, such as cash and deposits, have a convenience
yield, and we do not expect the Euler equation to hold for these assets. To obtain the
correct intertemporal price, one would need to account for their convenience. We pursue the
hypothesis that this convenience applies not only to cash and deposits, but instead to the
category of safe assets more generally. It is not necessary, for our purposes, to precisely define
which assets are safe or specify the origin of such convenience.1 We instead proceed under
the assumption that publicly traded equities are not safe and do not provide convenience.

1We expect that Treasury bonds, highly rated corporate bonds, highly rated mortgage bonds, and other
similar assets are all to some degree convenient, perhaps because they are used to back other convenient
assets such as deposits and money market fund shares.
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Figure 1: Expected consumption growth vs. Expected Real 1m Treasury Bill Return (left)
and Real Zero-Beta Rate (right)

Notes: Both panels of this figure plot expected real returns against expected consumption growth, over time.
Expected real returns are constructed using nominal rates (1m bill yields on the left, our zero-beta rate on
the right) less expected inflation. Expected inflation and expected consumption growth are generated from
predictive regressions using the instruments described in Section 4, which are the same instruments used to
construct the zero-beta rate. In both panels, the right vertical axis is consumption growth, centered at its
mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the relevant
expected real return. All series are annualized.

Our approach is therefore to measure the interest rate by looking at the expected return
on an equity portfolio. But equities, of course, may have a risk premium. Our observation
is that if one constructs a portfolio of risky equities whose excess return is orthogonal to
the SDF, it should not have a risk premium, and its expected return should be equal to the
intertemporal price of goods. We call the expected return of such a portfolio the zero-beta
rate.

The first contribution of the paper is to construct a time-series of the zero-beta rate.
We first postulate a model of the SDF that is linear in a set of factors that the literature
has found to explain the cross-section of equity returns. Next, we estimate the betas of the
excess returns of equities with respect to each of the factors, and use these estimated betas
to construct a unit-investment, minimum-variance, zero-beta portfolio. Finally, we project
the returns of this zero-beta portfolio on a set of macroeconomic predictors to obtain an
expected return, which we call the zero-beta rate. This sequential procedure is infeasible
because to construct excess returns and estimate betas one needs to know the zero-beta rate,
so we instead estimate all of our parameters simultaneously via GMM.

The right panel of Figure 1 shows the real zero-beta rate. It is high on average, and has
a large and volatile spread with the expected real return of Treasury bills (around 8% per
year on average). The spread is so large that it renders inconsequential the much smaller
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spread between the returns on different types of safe assets. In what follows, we will use
the Treasury bill yield as our measure of the safe interest rate.2 The average level of the
zero-beta rate may seem surprising. But it actually reflects a well-known fact, going back
to Black et al. [1972], who pointed out, in the context of CAPM, that the expected return
of an equity portfolio with zero covariance to the market was well in excess of Treasury bill
yields.3

One common interpretation of the Black et al. [1972] finding has been that the CAPM
is wrong—there are more priced factors beyond the market—and that once we incorporate
them, the zero-beta rate should coincide with safe interest rates. But finding factors to
explain the spread is very hard. Lopez-Lira and Roussanov [2020], for example, find that
even if one removes almost all of common factors in stock returns, the remainder still features
a large Sharpe ratio (computed using Treasury bill yields as the safe rate).4

We propose instead that the zero-beta rate really is the interest rate, the intertemporal
price of goods, and that the time-varying spread with the safe rate reflects convenience on
safe assets and not an unexplained risk premium. This claim is testable, via the Euler
equation.

The second contribution of the paper is to show that the zero-beta rate fits the Euler
equation strikingly well. The right panel of Figure 1 shows the results graphically. It shows
the real zero-beta rate plotted against expected consumption growth, predicted with the
same set of macroeconomic variables. The results are striking: the two series strongly co-
move once they are rescaled. This is essentially a graphical test of the linearized Euler
equation, and our results suggest that the zero-beta rate is indeed the intertemporal price
of consumption.

Our more formal analysis constructs the zero-beta rate using GMM and then tests the
Euler equation moments (which are not used in the construction of the zero-beta rate)
using weak-identification-robust methods. We cannot reject an intertemporal elasticity of
substitution (IES) below 0.6 (if CRRA, risk aversion above 1.6), but are able to reject higher
values of the IES. This contrasts with the results of the same test applied to Treasury bill
yields and to the aggregate market return. The Euler equation is rejected for all values of the
IES we consider when applied to the Treasury bill yield, and is not rejected for essentially
any values when applied to the market return, reflecting weak identification.

The consequences of our results for monetary policy are potentially vast. There is a large
spread between the safe rates that central banks control as policy instruments and the zero-

2For example, Krishnamurthy and Vissing-Jorgensen [2012] find a spread of around 70 bps between
Treasurys and AAA corporate debt.

3See also Shanken [1986] and more recently Bali et al. [2017].
4See also Kim et al. [2021].
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beta rate that goes in the Euler equation, and this spread is time-varying. If this spread were
exogenous to monetary policy, the central bank could still exploit the classic Euler equation
as a structural relationship. If instead monetary policy affects the spread, then the behavior
of the zero-beta rate can differ substantially from the behavior of the safe rate.

Our third contribution is to compute the response of the safe and zero-beta rates to
monetary policy shocks (identified using the Romer and Romer [2004] and Nakamura and
Steinsson [2018] approaches). Our point estimates suggest that an unexpected monetary
tightening that raises the Treasury bill yield will lower the zero-beta rate. While, other
things being equal, a higher Treasury bill yield is associated with a higher zero-beta rate, an
unexpected monetary tightening also flattens the yield curve and increases credit spreads,
and these are associated with a lower zero-beta rate. Empirically, these effects dominate.

This result may seem strange at first because it implies that the intertemporal substi-
tution effect of a monetary tightening is the opposite of what conventional wisdom says.
It makes current consumption cheaper relative to future consumption, not more expensive.
But it is actually in line with empirical facts and theory. Empirically, a contractionary mon-
etary policy shock reduces consumption growth, as opposed to generating a lower level of
consumption but higher growth. The Euler equation implies that the zero-beta rate should
fall as households correctly expect lower future income and try to save. In other words,
the zero-beta rate fits the Euler equation both unconditionally and conditional on monetary
policy shocks. It is rather the short-run rise of safe rates that is puzzling in light of the
fall of consumption growth (or the fall of consumption growth that is puzzling in light of
the rise of safe rates). The literature has traditionally explained this with adjustment costs
such as habits or informational frictions.5 Instead, we attribute the rise in safe rates to
an endogenous fall in convenience yields, and show that this outcome arises naturally in a
stylized New Keynesian model augmented with convenience on safe bonds.

1.1 Literature Review

The aggregate consumption Euler equation plays a central role in our analysis. One natural
objection is that while this equation is a central feature of representative-agent models, in
heterogenous agents models the consumption Euler equation might hold for some individuals
but not at the aggregate level. But it’s almost exactly the other way around. At the
individual level households face uninsurable idiosyncratic risk, borrowing constraints, and
trading frictions. Such features are central to most heterogenous-agent models, with and
without nominal rigidities. But a central result in this literature is that there is nonetheless

5See Christiano et al. [2005] or Smets and Wouters [2007] for the former, and Auclert et al. [2020] for the
latter.
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an Euler equation at the aggregate level. Werning [2015] explores the issue in detail and
provides clean theoretical results, but the result shows up with variations throughout that
literature (Krueger and Lustig [2010], Auclert et al. [2018, 2020]). To be clear, one can
write models where the aggregate Euler equation fails (see Bilbiie [2021]), but an aggregate
Euler equation can be consistent with realistic individual-level consumption behavior. Our
empirical evidence supports this view.

Our approach is based on the idea that safe assets may have a convenience yield. It is
well-known that some safe assets, such as cash or bank deposits, have a lower yield than
safe bonds such as Treasury bills. Krishnamurthy and Vissing-Jorgensen [2012] show that
Treasurys have a lower yield than equally safe AAA corporate debt (by around 70 bps),
which they interpret as convenience yield. Implicitly they are taking the yield of AAA
corporate debt as the interest rate without convenience. Lenel et al. [2019] measure the
“shadow spread” between short rates and the return on short-term bonds that can be ex-
trapolated from the yield curve. Their interpretation is that short debt is useful to financial
intermediaries for backing inside money. van Binsbergen et al. [2019] identify convenience
spread by comparing safe rates with the interest rate implied by options, and find a spread
of around 30 bps. Du et al. [2018] document violations of covered interest parity, which is a
spread between safe dollar rates and safe rates synthesized from other currencies via foreign
exchange transactions, of around 50 bps.6 Our interpretation is that these papers have only
identified the “tip of the iceberg” in terms of convenience yields. We use equity returns as
the inconvenient benchmark, and find a convenience spread that is an order of magnitude
larger.

We do not take a stance on the origin of such convenience, although we conjecture that
it originates with bank deposits and other payment instruments. Safe assets of different
sorts are useful for backing these payment instruments. In this we are influenced by Lenel
et al. [2019], who propose this explanation for the convenience of safe short-term debt and
consider the effects of stickiness in both prices and the supply of reserves. See also Piazzesi
and Schneider [2021], who study the effect of convenience yields for monetary policy with
flexible prices. In contrast, we do not provide a theory of the convenience yield, and introduce
convenience in our modeling framework via safe bonds in the utility function. This is a
transparent way of introducing convenience without distorting other aspects of the model,
and helps guide the empirical work that is the main contribution of the paper.

Our finding of a large spread between the zero-beta rate and safe rates is consistent with
6Note that these relatively small arbitrage spreads can be levered to produce risk-free equity returns that

are consistent with our estimates of the zero-beta rate. For example, if banks can lever the CIP arbitrage 8:1,
a 50-100bps CIP arbitrage is consistent with a 4.5-9% risk-free equity return over safe rates. See Boyarchenko
et al. [2018] for examples of this sort of calculation.
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the literature on the existence of the “beta anomaly” and its implications.7 We innovate,
relative to this literature, by studying time-variation in the zero-beta rate and documenting
the connection between the zero-beta rate and expected consumption growth. Methodologi-
cally, we build on GMM tests of the Euler equation (Hansen and Singleton [1982], Dunn and
Singleton [1986]), using weak-instrument-robust methods (Stock and Wright [2000], Yogo
[2004]) and a regularized covariance matrix estimator (Ledoit and Wolf [2017]), in a proce-
dure inspired by the maximum likelihood approach of Shanken [1986]. Our choice of assets
and factors is informed by the work of Novy-Marx and Velikov [2022] on beta-sorted portfo-
lios, and our choice of instruments is guided by the literature on predicting business cycles
(e.g. Kiley [2022]).

2 Model

We build a simple monetary model with: (1) a rich and potentially time-varying stochastic
discount factor, (2) time-varying and potentially endogenous convenience on safe bonds, and
yet (3) a traditional consumption Euler equation. We work in nominal terms and avoid
taking a position on the presence or absence of nominal rigidities.

2.1 Setup

There is a representative household with preferences

E

[
∞∑
t=0

δtξt

(
c1−σt

1− σ
+ ηm,t log (Mt/Pt) + ηb,t log (Bt/Pt)

)]
, (2)

where ct is consumption at time t, Bt are holdings of safe, one-period nominal bonds held
at time t, Mt are money holdings, and Pt is the price level.We include money and bonds
in the utility function as a transparent way of introducing convenience to these assets. We
do not provide a deeper theory of the source of this convenience. Bonds and money enter
the utility function separably from consumption and from each other, and ηm,t and ηb,t are
shocks to the demand for money and bonds. This is essentially the model in Golosov and
Lucas [2007], augmented with safe bonds in the utility function. In this framework, if prices
are flexible, money and bonds are neutral and super-neutral. ξt is an exogenous stochastic
process that will generate fluctuations in the stochastic discount factor that are independent
of macro quantities. We assume ξt is a martingale and independent of Mt, Bt, ηm,t, and ηb,t.

7E.g. Black [1972], Frazzini and Pedersen [2014], Baker and Wurgler [2015], Hong and Sraer [2016], Bali
et al. [2017], Baker et al. [2020].
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For simplicity, we treat the supply of safe bonds Bs
t and money M s

t as exogenous. There
are N risky assets in zero net supply, which are meant to capture equities in the empirical
work. Denote their nominal return by Ri,t. We assume that at any time: (1) there is no
portfolio of these risky assets that is risk-free, and (2) there is at least one portfolio of risky
assets whose return is uncorrelated to the SDF.8

The household’s budget constraint is:

Ptct+(Bt −Bs
t )+Mt+

N∑
i=1

Xi,t ≤
(
Bt−1 −Bs

t−1

)
Rb,t−1+Mt−1+

N∑
i=1

Xi,t−1Ri,t+Ptyt+T
m
t . (3)

Here Tmt = M s
t −M s

t−1 is a government transfer, yt is real income, and Xi,t is the nominal
amount the household invests in asset i. Rb,t is the nominal return on a risk-free bond. Note
that the household is liable for the safe bonds Bs

t and also chooses to hold Bt.
The household’s problem is to choose ct, Bt, Mt and Xi,t to maximize (2) subject to (3)

and the natural borrowing limit. In equilibrium Bt = Bs
t , Xi,t = 0, and Mt =M s

t . We don’t
take a stand on nominal rigidities and the production environment, so the model does not
pin down prices Pt and real output yt. Our results are thus consistent with flexible prices
and with different forms of price stickiness.

2.2 Equilibrium

The household’s first order condition for consumption is

Λt = δtξtc
−σ
t /Pt, (4)

where the Lagrange multiplier Λt is the SDF. Here we see the role ξt plays in creating a
realistic SDF, by allowing for movements in the SDF unrelated to consumption. We will
guess and verify that ξt is independent of c−σt /Pt.

The Euler equations for money, safe bonds, and risky assets are:

c−σt = ηb,t (Bt/Pt)
−1 + δEt

[
c−σt+1

Rb,t

Pt+1/Pt

]
, (5)

c−σt = ηm,t (Mt/Pt)
−1 + δEt

[
c−σt+1

1

Pt+1/Pt

]
, (6)

c−σt = δEt
[
ξt+1

ξt
c−σt+1

Ri,t+1

Pt+1/Pt

]
. (7)

8Strictly speaking, the returns Ri,t and the SDF are endogenous objects. (1) and (2) should be understood
as assumptions on the underlying payoffs of the risky assets.
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If the household saves in money or safe bonds, it takes into account the convenience those
assets provide. Here we have used the fact that ξt is independent of c−σt /Pt and a martingale,
so it drops out of the Euler equation for money and bonds. For a risky asset, however, the
household needs to consider the covariance of its return with the SDF.

The zero-beta rate is the conditional expected return on a portfolio of risky assets whose
returns are conditionally uncorrelated with Λt+1/Λt. We have assumed above that such a
portfolio exists, with returns Rp,t+1. We can use (7) to obtain the Euler equation

c−σt = δEt
[
c−σt+1

R0,t

Pt+1/Pt

]
, (8)

where the correct interest rate is the zero-beta rate, R0,t = Et [Rp,t+1]. We have used the
fact that the return Rp,t+1 is uncorrelated with the SDF, and also that ξt is independent of
c−σt /Pt. We can also show that the zero-beta rate is the inverse of the mean of the growth of
the SDF, R0,t = Et [Λt+1/Λt]

−1. The zero-beta rate R0,t is an expected return, so it is known
at time t. However, as is standard with nominal returns, there may be risk associated with
the one-period-ahead price level. This is a separate issue from the distinction between safe
rates and zero-beta rates.

We can rearrange (6) to obtain an expression for money demand,

c−σt /Pt = ηm,tM
−1
t × R0,t

R0,t − 1
. (9)

At this point we can verify that ξt is indeed independent of c−σt /Pt . Under our guess, (8)
holds, which implies that the process for R0,t is pinned down by the process for c−σt /Pt, so
it is also independent of the process for ξt. Therefore all the terms on the right-hand-side of
(9) are independent of ξt, which implies that so is c−σt /Pt.

It only remains to solve for the interest rate on safe bonds. Rearranging (5) we obtain
an expression for the spread,

st ≡ 1− Rb,t

R0,t

=
(Bt/ηb,t)

−1

c−σt /Pt
. (10)

Notice that st ≈ R0,t − Rb,t. The model can be solved block-recursively. First, the con-
sumption Euler equation (8) and the equation for money holdings (9) jointly pin down the
zero-beta rate R0,t and c−σt /Pt as functions of the process for Mt/ηm,t. Equation (10) then
pins down Rb,t as a function of the process for Bt/ηb,t. All of this is independent of nominal
rigidities and supply shocks. To pin down ct and Pt separately we would need to be explicit
about nominal rigidities and supply shocks, which we do not take a stand on.
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3 Measuring the zero-beta rate

3.1 Empirical Implementation

To construct the zero-beta rate and associated portfolio, we impose several additional as-
sumptions, in effect imposing the structure of a linear factor model. These assumptions
allow us to construct an estimate of the zero-beta rate using relatively standard techniques.

We begin with a balanced panel of N assets (equity portfolios, which we refer to as test
assets) and T periods. Let Rt+1 denote the vector of returns across assets i ∈ {1, . . . , N}. We
assume there is a set of K priced factors, whose values at time t are Fj,t for j ∈ {1, . . . , K}.
The excess returns of each test asset can be projected onto the space of factor returns as

Ri,t+1 −R0,t = αi +
K∑
j=1

βijFj,t+1 + ϵi,t+1, (11)

where ϵi,t+1 has an unconditional zero mean and αi and βij are regression coefficients. We
assume the betas are constant over time (specifically, that ϵi,t+1 is uncorrelated with the
factors conditional on the information at time t).9 Consistent with this assumption, we
will use portfolios of stocks (beta-sorted portfolios and industry portfolios) that might be
expected to have stable betas over time, as opposed to considering individual companies.
In our robustness exercises, we allow for time-varying betas, and our results are largely
unchanged. Let α be the vector of the αi coefficients, and let ϵt+1 be the vector of regression
residuals ϵi,t+1.

Our first key economic assumption is that the nonlinear SDF Λt+1/Λt can be well approxi-
mated by a linear factor structure for the purpose of pricing equities. The first of these factors
is the excess return of the market with respect to the zero-beta rate, F1,t+1 = Rm,t+1 −R0,t.
The remainder of the factors are assumed to be either zero-investment portfolios that do
not explicitly involve the zero-beta rate (such as the SMB and HML portfolios of Fama and
French [1993]) or non-tradable factors (such as consumption growth). Our assumption is
that

Λt+1

Λt
= R−1

0,t +
K∑
j=1

ωj,t (Fj,t+1 − Et [Fj,t+1]) + ζt+1, (12)

where ζt+1 is mean zero and uncorrelated with any stock return, conditional on the infor-
mation at time t, Et [Ri,t+1ζt+1] = 0. This assumption implies that our non-linear SDF is

9We do not assume that the ϵi,t+1 are uncorrelated with each other. Equity returns might have co-
movement beyond the priced factors.
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equivalent to a linear SDF for the purpose of pricing equity portfolios,

1 = Et
[
Λt+1

Λt
Ri,t+1

]
= Et

[(
R−1

0,t +
K∑
j=1

ωj,t (Fj,t+1 − Et [Fj,t+1])

)
Ri,t+1

]
. (13)

Our framework allows for time variation in the zero-beta rate R0,t and the prices of risk for
each of the factors, ωj,t. We elaborate on this point below.

Our second key economic assumption is that the zero-beta rate is linear in a set of L
predictor variables, Zl,t for l ∈ {1, . . . , L}, the vector of which we denote Zt. To simplify our
notation, let Z0,t = 1 and standardize Zl,t, for l ≥ 1, to have mean zero and unit variance.
We assume that

R0,t(γ) = Rb,t + γ′ · Zt, (14)

where γ ∈ RL+1 is a vector of constants and Rb,t is the nominal one-period safe bond yield
(which we identify with the Treasury bill yield). The conventional view (i.e. that the mean
of the SDF is the reciprocal of the return on a safe bond) is γ = 0⃗ and therefore R0,t = Rb,t.

3.2 Estimation via GMM

Our estimation procedure can be described as a GMM version of the MLE procedure of
Shanken [1986], modified to produce a time-varying zero-beta rate. We discuss the connection
between our approach and the Shanken [1986] approach in Appendix Section G.

The relevant parameters of our model are θ = (α, β, γ), where (α, β) are the regression
coefficients associated with (11) and γ is the vector of coefficients in (14). Define the residual:

ϵ̂i,t+1 (θ) = Ri,t+1 − αi − (1− βi1) (Rb,t + γ′ · Zt)− βi1Rm,t+1 −
K∑
j=2

βijFj,t+1. (15)

Note that the first factor (the market excess return) explicitly involves the zero-beta rate,
which is why it is treated differently from other factors in this definition. Let ϵ̂t (θ) denote
the vector of residuals.

Following common practice (see Cochrane [2009]), we will use a reduced-rank weighting
matrix that selects moments and achieves exact identification, as opposed to using a full-
rank weighting matrix with over-identifying restrictions. In our context, this means using
a specific zero-beta portfolio (whose weights will end up being parameter-dependent) to
estimate our model parameters. Let w ∈ RN denote some cross-sectional weights satisfying
the restrictions w′ ·β (θ) = 0⃗. Any such a vector can be constructed from an arbitrary vector
w̃ ∈ RN by w = H (θ) w̃, where H (θ) = I−β (θ) β (θ)+ is a symmetric orthogonal projection
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matrix.10

We use the projection (OLS) moments E [ϵ̂it (θ)Fj,t] = 0 (treating F0,t = 1 as a constant
time series). There are N × (K+1) of these moments, and they are sufficient to identify the
parameters (α, β). We also use instrumented versions of the asset pricing moments, which
are conditional,

Et

[
(R0,t (γ))

−1 +
K∑
j=1

ωj,t (Fj,t+1 − Et[Fj,t+1]) (Ri,t+1 −R0,t (γ))Zl,t

]
= 0.

There are L + 1 of these asset pricing moments for each asset (recall that Z0,t = 1 is a
constant). When these moments are weighted by the weight vector w = H (θ) w̃, they
simplify:

Et

[
(R0,t (γ))

−1 +
K∑
j=1

ωj,t (Fj,t+1 − Et[Fj,t+1]) (w̃
′ ·H (θ) · (Ri,t+1 −R0,t (γ)))Zl,t

]
=

Et

[
(R0,t (γ))

−1 +
K∑
j=1

ωj,t (Fj,t+1 − Et[Fj,t+1]) (w̃
′ ·H (θ) · (αi + ϵi,t+1))Zl,t

]
=

(R0,t (γ))
−1 Et [(w̃′ ·H (θ) · (αi + ϵi,t+1))Zl,t] =

(R0,t (γ))
−1 Et [(w̃′ ·H (θ) · (Ri,t+1 −R0,t (γ)))Zl,t] = 0.

The second equation follows from the first given (11) and the fact that H (θ) · w̃ is a zero-
beta portfolio. The third equation follows from the second under the assumption of constant
betas, and the fourth from the third by the zero-beta property of H (θ) · w̃. We use the
unconditional version of the fourth equation as moments. In vector form,

E [H (θ) · (Rt+1 −R0,t (γ))⊗ Zt] = 0.

There are N × (L+ 1) of these moments, but (under the appropriate rotation) K × (L+ 1)

are trivial as a consequence of the reduced rank of H (θ). Intuitively, any zero-beta portfolio
must have an expected return equal to the zero-beta rate. However, not all portfolios have
an expected return equal to the zero-beta rate—some have a risk premium. The role of the
orthogonal projection matrix H (θ) is to remove portfolios with a risk premium from the set
of moments being considered. This has the effect of eliminating the need to estimate the
prices of risk ωj,t.

We weight them by a vector w̃ (θ) to produce L + 1 weighted asset pricing moments,
10Here, I is the identity matrix, and (·)+ denotes the Moore-Penrose pseudo-inverse. H is the orthogonal

projection matrix with respect to the betas.
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which are sufficient to exactly identify the γ parameters. For convenience in what follows,
we will define our weights in terms of the vector w (θ) = H (θ) · w̃ (θ) as opposed to w̃ (θ)

directly. This is without loss provided that w (θ)′ · β (θ) = 0⃗.
Summarizing, our GMM analysis uses the moments E [gt (θ)] = 0, where

gt(θ) =

[
ϵ̂t+1 (θ)⊗ Ft+1(γ)

H (θ) · (Rt+1 −R0,t(γ))⊗ Zt

]
,

and the weight matrix

W (θ) =

[
I 0

0 w (θ)w (θ)′

]
.

We estimate our model using a continuously updating approach. Our GMM analysis
thus solves

θ̂ ∈ argmin
θ

L∑
l=0

(
T−1

T∑
t=1

w (θ)′ · (α (θ) + ϵ̂t (θ))Zl,t−1

)2

︸ ︷︷ ︸
Instrumented Asset Pricing Moment Squared

+
N∑
i=1

K∑
j=0

(
T−1

T∑
t=1

ϵ̂i,t (θ)Fj,t

)2

︸ ︷︷ ︸
Projection Errors

.

The risk prices {ωj,t} and preference parameters (σ, δ) are not identified by these moments—
the former because we consider only zero-beta portfolios, the latter because we do not include
the consumption Euler equation as one of our moments (we consider these moments below).
Because our problem is exactly identified, conditional on γ, the (αi, βij) point estimates
will be the usual OLS estimates. The caveat “conditional on γ” applies because one cannot
construct the excess returns Rt+1 −R0,t without an estimate of the zero beta rate.

To conclude our description of the estimation procedure, we describe how we determine
the weight vector w (θ). Let ΣR (θ) be an estimate of the covariance matrix of the excess
returns Rt+1 − R0,t given θ. We choose w to minimize the variance of the portfolio, w′ ·
ΣR(θ) · w, subject to the constraints w′ · β = 0⃗ and w′ · ι = 1, where ι is a vector of ones.

We assume that ΣR is of full rank and that ι does not lie in the span of β, so that the
problem is feasible. Under these assumptions, the explicit solution to this problem is given
by

w(θ) = ΣR(θ)
−1 ·

[
ι β(θ)

]
·

([
ι′

β(θ)′

]
· ΣR(θ)

−1 ·
[
ι β(θ)

])+ [
1

0⃗

]
.

We discuss our reasons for using the minimum-variance zero-beta portfolio below.
We use the Ledoit and Wolf [2017] estimator for ΣR. This covariance-matrix estimator is

designed for minimum-variance portfolio problems, and has been shown by those authors to
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outperform other covariance matrix estimators with respect to the out-of-sample portfolio
variance in such problems. Loosely, this is because it avoids over-fitting. We discuss the
details of how we apply their estimator to our setting in the Appendix Section F.

3.3 Portfolio Interpretation

We next interpret our procedure in terms of the construction of a portfolio and the prediction
of its returns. The portfolio weights w(θ) are the weights associated with the minimum-
variance zero-beta unit-investment portfolio. When we weight the moments

E [H(θ) · (Rt+1 −R0,t(γ))⊗ Zt] = 0

by w(θ), because w(θ) is a unit-investment zero-beta portfolio, we are solving for:

E [(w(θ)′ ·Rt+1 −R0,t(γ))⊗ Zt] = 0.

Using the definition of R0,t(γ), (14), these are exactly the moments of the predictive
regression

w(θ)′ ·Rt+1 −Rb,t = γ′ · Zt + κt+1,

in which the excess return of the minimum-variance zero-beta unit-investment portfolio rel-
ative to the safe rate is predicted by the variables Zt.

But for one (rather essential) caveat, our procedure is equivalent to the following steps:

1. For each asset i, run a time series regression to estimate αi and βi.

2. Use these betas, along with an estimate of the covariance matrix of excess returns ΣR,
to compute the portfolio weights w(·).

3. Predict the return of this portfolio using the Zt variables, and call the predicted return
the zero-beta rate.

The one caveat is that steps one and two are not feasible without an estimate of the zero-
beta rate, because they both involve the excess returns Rt+1 − R0,t. The GMM procedure
overcomes this by estimating θ = (α, β, γ) simultaneously, in effect performing all three of
these steps at once.

This equivalence motivates our use of a minimum-variance portfolio. In theory, all unit-
investment, zero-beta portfolios should have the same expected return. Among these, the
minimum-variance one is one whose return is the easiest to predict (in the sense that E[κ2t+1]

is minimized), and hence will be the one for which the parameter γ is best estimated. This
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intuition explains why the minimum-variance portfolio plays a special role in the Shanken
[1986] MLE procedure (described in Appendix Section G). That said, our weight matrix
is not the efficient GMM weight matrix (which would allow for deviations from the OLS
estimates of β to better fit the asset pricing moments). It instead resembles the GLS weight
matrix used in standard cross-sectional asset pricing tests (chapter 12.2 of Cochrane [2009]).

It is also worth noting the difference between our procedure and standard cross-sectional
asset pricing tests. Standard cross-sectional asset pricing tests take as given a series of excess
returns, choose a weight vector that is highly exposed to β, and attempt to identify the prices
of risk (the ωj,t in our notation). In contrast, our procedure treats excess returns as unknown,
chooses a weight vector that is orthogonal to β, and makes no attempt to identify the price
of risk.

3.4 The Convenient SDF

Our model ascribes all of the spread st ≈ R0,t −Rb,t to the convenience on safe bonds. Our
estimation procedure embodies this assumption, via our assumption that the vector of ones, ι,
does not lie in the span of the betas. This assumption, which is familiar from arbitrage pricing
theory (Chamberlain and Rothschild [1983]) and is often viewed as a technical assumption
(see, eg., assumption 3.iii in Kim et al. [2021]), has an important economic meaning in our
context.

Our procedure estimates the zero-beta rate, R0,t = Et [Λt+1/Λt]
−1, under the assump-

tion that the relevant innovations of the SDF Λt are spanned by the factors Ft. How-
ever, it is not possible to build a risk-free portfolio using stocks. As a result, by the ab-
sence of arbitrage, given any stochastic process R̃0,t, there is an SDF Λ̃t that prices stocks

(Et
[
Λ̃t+1/Λ̃t ×Ri,t+1

]
= 1) and satisfies R̃0,t = Et

[
Λ̃t+1/Λ̃t

]−1

. In particular, one could

choose R̃0,t = Rb,t. These other SDFs attribute the spread between the zero-beta expected
return our procedure recovers, R0,t, and the process R̃0,t to an omitted factor.11 All unit-
investment, zero-beta portfolios must load equally on the omitted factor to explain why their
expected return is R̃0,t and not R0,t. Put another way, the vector of ones must lie in the
span of the betas of the assets to the augmented set of factors (including both the omitted
factor and Ft). The assumption that the vector of ones does not lie in the span of the
betas thus selects, from the set of all SDFs that price equities, the “Convenient SDF” that
attributes all of the spread st to convenience as opposed to risk premium. This, of course,
is the perspective we adopt in this paper, and our econometric method embodies this view.

11It is without loss of generality to assume this factor is orthogonal to the included factors Ft, implying
that the conditional variance of these other SDFs is higher than the conditional variance of Λt+1/Λt.
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This point can be further illustrated using the example of the “betting against beta”
model of Frazzini and Pedersen [2014] (but note that consumption is not modeled in their
framework, and hence their model cannot speak to the main part of our analysis). In
that model, leverage-constrained and unconstrained agents interact in financial markets;
the leverage-constrained agents are analogous to the agents who value convenience in our
model.12 The leverage-constrained agents have a single-factor SDF (with the market as
the single factor) that prices stocks, whose mean is the inverse of the zero-beta rate. The
unconstrained agents have a two-factor SDF, whose factors are the market and a zero-beta
portfolio, with a mean consistent with safe bond yields. The betas of each asset to these two
factors sum to one (ι lies in the span of the betas). The two SDFs agree on equity prices,
but differ in their conditional means. Our procedure, applied to this hypothetical economy,
would recover the leverage-constrained investors’ SDF given the market as the single factor.
It cannot be applied to the two-factor SDF of the unconstrained agents, as our assumption
that ι does not lie in the span of the betas is violated.

4 The Zero-Beta rate

4.1 Data

Our procedure requires a set of equity portfolio returns (the Ri,t), a set of factors (the
Fk,t), a set of instruments (the Zl,t), and consumption data (Ct). We will briefly describe
the portfolios, factors, instruments, and consumption data we use in our main specification
in this section. Additional details can be found in Appendix Section A, and results with
alternative portfolios, factors, instruments, and consumption data can be found in Appendix
Section E.

Equity Portfolios. Our main equity returns data consists of the equity returns in CRSP
which can be matched to a firm in COMPUSTAT, excluding the bottom 20% of stocks by
market value in each month. For each of these stocks, we compute a five-year trailing beta
to the CRSP market return (using monthly data).13 We then construct 27 (3x3x3) portfolios

12The key difference between these two types of agents is that leverage-constrained agents do not own any
safe bonds. In the Frazzini and Pedersen [2014] model, any safe bonds in positive net supply must be owned
by an un-modeled third class of agents.

13Novy-Marx and Velikov [2022] point out that the smallest deciles of stocks are likely to be less liquid
than other stocks, and as result have betas that are attenuated relative to other stocks; this notably affects
the conclusions of Frazzini and Pedersen [2014]. For this reason, in our main specification we exclude these
stocks, and in our robustness exercises verify that our results are not meaningfully altered by their inclusion.
The robustness of our results to the inclusion of these stocks likely stems from our use of betas based on
monthly as opposed to daily data, which reduces impact of liquidity on betas.
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based on (i) market beta, (ii) market capitalization (i.e. size), and (iii) book-to-market ratios
(i.e. value). We augment these portfolios with the 49 industry portfolios (based on four-digit
SIC codes) from Ken French’s website,14 and thus consider 76 stock portfolios in total. For
additional details on the construction of these portfolios, see Appendix Section A.

There are two considerations that have guided our choices. First, we use beta-sorted
portfolios to ensure that there is a wide variation across our portfolios in terms of their beta
to the market. Our motive is evident from (15): an equity portfolio with a beta of one to the
market is in fact insensitive to the level of the zero-beta rate. Second, we have included a
variety of portfolios to ensure that it is possible to form a well-diversified zero-beta portfolio.
Commonly used portfolios such as the Fama-French 25 size by value portfolios exhibit a
strong factor structure; a portfolio constructed from only the FF25 and forced to have zero
beta to the market, size, and value factors would load heavily on poorly estimated residuals.

Factors. Our main specification uses seven tradable factors: the five equity-related factors
of Fama and French [2015], the return of a 6-10y Treasury bond portfolio over a one-month
Treasury bill, and return of long-term corporate bonds over long term Treasury bonds (i.e.
the Treasury bond and default factors of Fama and French [1993]). We have chosen these
factors because they are standard in the literature and because they are thought to explain
the cross-section of expected returns in the equity portfolios we study. Our use of the five-
factor Fama-French model is motivated in particular by the results of Novy-Marx and Velikov
[2022], who find that univariate-beta-sorted portfolios are correlated with the investment and
profitability factors of Fama and French [2015]. Our inclusion of the bond return factors is
motivated by our use of the term spread and excess bond premium as instruments (discussed
below).

We augment these seven tradable factors with a consumption-based nominal SDF,

F8,t =
c−σt+1/Pt+1

c−σt /Pt
,

which arises from the model. Our main specification uses σ = 5; in robustness exercises,
we present results with σ = 1, a linear consumption factor, and no consumption factor at
all. Note that it is not essential in our framework that the prices of risk {ωj,t} be identified,
in contrast to the usual cross-sectional asset pricing exercise. Concretely, even though we
include a consumption-based factor, our portfolios have almost no beta to that factor. This
lack of variation would be a problem if we wanted to identify the price of consumption risk.

14Note that the portfolios include the smallest 20% of stocks; because the portfolios are not beta-sorted
and are value-weighted, the inclusion of these stocks in industry portfolios is unlikely to affect our results.
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But since our goal is instead to construct a zero-beta portfolio, the presence of irrelevant
factors presents no particular difficulties. That is, the typical weak identification problem in
cross-sectional asset pricing is not relevant for our procedure. A different weak-identification
problem, related to the predictability of returns, is the main challenge. Likewise, our omission
of portfolios sorted on investment, profitability, or beta to bond returns does not meaningfully
alter our results.

Instruments. We have chosen our instruments with the goal of predicting either con-
sumption growth or the spread between the zero-beta rate and bill yields—an instrument
that predicts neither of these is likely to be irrelevant. Our main specification includes five
instruments, all of which are available at the monthly frequency starting in 1973.

We include the Treasury bill yield, motivated by the results of Nagel [2016], who argues
that spreads between near-money assets should be correlated with the level of nominal inter-
est rates. We include a rolling average of the previous twelve months of inflation (specifically,
log-changes in the CPI index), motivated in part by the result of Cohen et al. [2005], who
find that the slope of the security market line varies with the level of inflation. Given that
finding, it is natural to think that the intercept of the security market line (the zero-beta
rate) might also depend on the level of inflation.

We also include three instruments—the term spread (10yr less 3m Treasury yields), the
excess bond premium (EBP) of Gilchrist and Zakrajšek [2012], and the unemployment rate
(U6)—that have been found to predict recessions. There is an extensive literature on pre-
dicting recessions using these and other variables; one recent example is Kiley [2022], who
finds that similar variables15 can be used to predict increases in unemployment rate at the
one-year horizon. Insofar as consumption growth is predictable, our prior is that variables
that predict recessions are likely to be useful in predicting consumption growth.

We employ these five instruments in our main specification. In robustness exercises, we
also consider the cyclically-adjusted price-earnings (CAPE) ratio of Campbell and Shiller
[1988], the shadow spread defined by the difference between actual bill yields and those
implied by a smoothed term structure (Lenel et al. [2019]),16 lagged consumption growth,
and using the BAA corporate bond spread (vs Treasurys) in the place of the EBP. When using
lagged consumption growth and lagged inflation as instruments, we use only log(ct−1/ct−2)

and a trailing average of inflation up to Pt−1 to avoid issues related to measurement error in
Ct and Pt, a standard practice in the literature.

15Kiley [2022] uses the BAA-Treasury spread instead of the EBP, and the other variables are defined
slightly differently.

16We would like to thank Monika Piazzesi and Mortiz Lenel for suggesting that we include this spread.
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Consumption Data. We use real NIPA non-durable goods and services consumption
per capita growth as a our preferred consumption measure. We use this measure both
because it is standard in the literature and because our interest lies in studying an aggregate
Euler equation. In our robustness exercises, we also generate results with non-durable goods
consumption only. Our use of aggregate consumption data should guide the interpretation
of our estimates of the IES.17

Data Sample. Our data sample begins in January 1973, when all of our instrument vari-
ables become available, and ends in December 2020. Because some of our instruments involve
lags and changes, our returns series begins in March 1973, and those returns are predicted
using data from January and February 1973. Our sample is 574 months long.

4.2 Results

Table 1 presents a rescaled version of the γ coefficients estimated with our GMM procedure,
with their associated standard errors. Recall that as part of our procedure, we have stan-
dardized our instruments to mean zero and unit variance. The coefficients and standard
errors in Table 1 have been rescaled to undo the effects of the standardization. The first
column of Table 1 also presents the results of a Wald test of the hypothesis that all of the
coefficients (except the constant) are zero.

Several results are immediately apparent. First, our instruments have some ability to
predict the return of our zero-beta portfolio—the Wald test p-value is under one percent.
Our predictive regression is noisy, and only the EBP, term spread, and inflation coefficients
are statistically significant at the 10% level on their own, but collectively our instruments
are able to predict the zero-beta portfolio return.

Second, the spread over the Treasury bill yield is significant and economically substantial.
The constant in Table 1 is the average monthly return of the zero-beta portfolio (because the
instruments have been de-meaned). Our estimate of roughly 0.7% per month corresponds
to an annualized excess return of over 8% per year. This estimate is consistent with other
estimates of the average zero-beta return (Bali et al. [2017]) and with estimates of the
arbitrage-based return on equity available to banks (Boyarchenko et al. [2018]).

17Vissing-Jørgensen [2002] and others have shown that the consumption growth of financial market par-
ticipants is more sensitive to certain shocks than the consumption growth of non-participants. Assessing the
extent to which the consumption Euler equation with the zero-beta rate holds for various sub-populations
is an interesting direction for future research.
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Table 1: Predicting the Zero-Beta Rate
(1) (2)

GMM OLS (inf.)
Lrf 1.186 1.187

(0.914) (0.789)

Lump 0.105 0.105
(0.0986) (0.0965)

Lebp -0.603 -0.603
(0.342) (0.309)

Ltsp 0.310 0.310
(0.118) (0.119)

L2cpi_rolling -2.582 -2.586
(1.175) (1.048)

Constant 0.718 0.716
(0.137) (0.134)

Wald/F 21.46 5.012
p-value 0.000663 0.000167
Observations 574 574
Standard errors in parentheses

Notes: The first column of this table shows our point estimates and standard errors for the γ coefficients
from our GMM estimation. The instruments have been centered, so the constant is the average monthly
excess return of the zero-beta portfolio over the 1m Treasury bill yield. Standard errors in the first column
are robust to heteroskedasticity and account for estimation error in the other parameters. The Wald statistic
in the first column is a test of the hypothesis that all coefficients except the constant are zero; the p-value is
shown below. The second column shows (for comparison purposes only) the results of a predictive regression
of the excess return of the zero-beta portfolio over the 1m Treasury bill yield on our instruments.

The standard deviation of the return of our zero-beta portfolio less the zero-beta rate
is about 3.2% per month, or 11% per year (consistent with the variances of the minimum-
variance portfolios constructed by Ledoit and Wolf [2017]). This standard deviation is sub-
stantially below the standard deviation of the market return, which helps explain why we
are able to reject the null of no-predictability for our portfolio despite the notorious diffi-
culty of predicting the market return. The annualized average Sharpe ratio of the portfolio,
computed using the excess returns over Treasury bills, is about 0.8, and often (because the
return is predictable) above one. Our view is not that this portfolio is a new asset pricing
factor uncorrelated with all other factors, but rather that the excess return of our portfolio
over Treasury bills reflect the convenience of Treasury bills.

Third, our point estimates suggest that the zero-beta rate increases more than one-for-
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one with Treasury bill yields (i.e. the spread is increasing in bill yields) and is decreasing in
the lagged inflation rate. The former is consistent with the interpretation of our spread as a
convenience yield (Nagel [2016]). The latter is interesting in light the finding that inflation
also affects the slope of the security market line (Cohen et al. [2005]).

Our point estimates also suggest that the unemployment rate and term spread positively
predict the zero-beta portfolio returns, whereas the EBP negatively predicts those returns.
That is, times when unemployment is low, the yield curve is inverted, and the excess bond
premium is high are times when the return of our portfolio is predicted to be particularly
negative. These are exactly the times when an increase in the unemployment rate (and a
recession more generally) is particularly likely (Kiley [2022]). Our results thus suggest a
connection between expected stock returns and business cycles.

The second column of Table 1 presents the results of an OLS regression in which our
instruments are used to predict the return of our zero-beta portfolio. This regression is in-
feasible on its own: one needs to know the γ coefficients to construct the zero-beta portfolio
return. The purpose of this column is to illustrate two points. First, the moment condi-
tions that define this OLS regression are exactly the moment conditions used in our GMM
procedure; as a result, up to numerical errors, the point estimates are identical. Second,
the robust standard errors used in the OLS regression do not account for the fact that the
zero-beta portfolio return is itself estimated. Nevertheless, they are strikingly similar to our
GMM standard errors, which do take this into account, suggesting that the main source of
uncertainty with respect to the γ parameters is the uncertainty associated with the predictive
regression.

Figure 2 presents the nominal zero-beta rates generated by our point estimates for γ, along
with Treasury bill yields. It also presents results for the zero-beta rate from a ridge-penalized
estimation. In Appendix Section B, we include a ridge penalization for the construction of
the zero-beta rate. This ridge penalty is designed to reduce over-fitting and improve the
out-of-sample reliability of our estimate of the zero-beta rate.18 For this reason, the ridge
estimate would be our preferred estimate if we wished only to construct the zero-beta rate (as
opposed to our exercise in the next section, which tests the consumption Euler equation).
The ridge penalty attenuates the γ coefficients towards zero (with the exception of the
constant term), which has the effect of moving the zero-beta rate towards the Treasury bill
yield. The scale of the penalty is determined via cross-validation, with the goal of minimizing
the out-of-sample squared forecast error of the zero-beta portfolio return. Figure 2 shows
that this procedure results in a small shrinking of the spread between the zero-beta rate and
Treasury bill yields, consistent with a reasonable degree of out-of-sample predictability for

18Our use of the ridge penalty explains why we standardize the instruments Zt.

21



the zero-beta portfolio return.

Figure 2: Zero-beta rate and the T-Bill Yield

Notes: This figure plots the nominal zero-beta rate constructed from our GMM procedure with cross-
validated ridge penalization (see Appendix Section B), the same constructed without ridge penalization, and
the nominal Treasury bill yield. The zero-beta rates are constructed using our main specification of factors,
instruments, and equity portfolios (as described in Section 4).

4.3 Misspecification of the Factors

Before proceeding, we will briefly comment on how misspecification in the factors would
affect our results. If we omit an asset-pricing factor from Ft, we will incorrectly attribute
to convenience on safe assets what is really risk premium. If the omitted risk premium is
constant, or more generally not predictable by the instruments Zt, the average level of the
zero-beta rate will be wrong but the time-variation will be correct. In other words, our
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estimate of γ will be unbiased, except for the constant. Our estimates of γ will be biased
only if the omitted risk premium is both time-varying and predictable by the Zt. If we have
included unnecessary asset pricing factors, our procedure will generate unbiased estimates
of the zero-beta rate, but these estimates will be less precise than if we had excluded the
unnecessary factors. We discuss the consequences of misspecification of the instruments
below.

5 The Euler Equation

Our model shows that once we take into account the convenience yield of safe assets, the
Euler equation should hold with the zero-beta rate, not with the safe rate. In this section we
show that indeed the zero-beta rate fits an aggregate consumption Euler equation remarkably
well.

We start with a linearized version of the Euler equation,

Et [log (ct+1/ct)] = σ−1 ln(δ) + σ−1 (log (R0,t)− Et [log (Pt+1/Pt)]) ,

That is, the real zero-beta rate should predict real consumption growth.
Figure 1 compares expected consumption growth with the expected real return of Trea-

sury bills on the left panel, and with the zero-beta rate on the right panel. The two series
are plotted on separate axes, which have been aligned in terms of their mean values. The
axes have also been scaled to each represent +/- four standard deviations. In effect, these
graphs are tests of the linearized Euler equation, with σ defined by the ratio of the standard
deviations and δ set to ensure that equation holds at the average values. The contrast be-
tween these two figures is striking. The expected real Treasury return bears essentially no
resemblance to expected consumption growth. In contrast, the real zero-beta rate co-moves
strongly with expected consumption growth.

There is nothing mechanical about this result, but it’s important to interpret it correctly.
Both time series are projections on the predictors Zt. If we had only one predictor Zt, both
time series would be perfectly aligned after rescaling, by construction. With only one predic-
tor, the Euler equation has exactly enough degrees of freedom, δ and σ, to ensure it holds.
But once we expand the set of predictors Zt, this stops being a mechanical result. Shocks
to different predictors could move the real zero-beta rate and expected consumption growth
in different directions. In our main specification, with five predictor variables, there are cer-
tainly many other possible time series that could have been generated by our procedure. The
failure of the Euler equation with the expected real Treasury bill return provides a placebo
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test. Our procedure could have concluded that either expected consumption growth or the
real zero-beta rate resembled the expected real Treasury bill return. It instead found that
those two series were proportional to each other, and neither resembled the expected real
Treasury bill return. In Appendix Section C we also conduct a similar placebo test with
long-term Treasury bonds, and find the Euler equation also fails for these bond returns.

The fact that the Euler equation holds with the zero-beta rate supports our claim that the
zero-beta rate is the correct intertemporal price. Having said this, since the Euler equation
does have a free intercept δ, the fact that it holds with the zero-beta rate does not provide
much extra support for the average level of the zero-beta rate. That is, if our measurement of
the zero-beta rate includes an omitted risk premium, but that omitted risk premium is either
constant or not predictable by the Zt, the zero-beta rate will still fit the aggregate Euler
equation, even if its average level is off. The impatience rate δ will absorb the omitted risk
premium. But the Euler equation does provide support for the time variation in the zero-
beta rate. If the movements in the zero-beta rate mostly reflected predictable movements in
the omitted risk premium, we would not expect the linearized consumption Euler equation
to hold.

One potential concern with regards to Figure 1 is that the predictive regressions that
define the zero-beta rate and consumption growth suffer from over-fitting.19 In our view, this
is almost certainly the case. Nevertheless, it is remarkable that the two predictive regressions,
each of which is overfitting a distinct time series, nevertheless generate almost identical (up
to a scaling factor) predictions. Figure 3 below compares our ridge-penalized zero-beta rate
with a similarly constructed forecast of consumption growth.20 Ridge penalization reduces
the scale of both expected consumption growth and the zero-beta rate, but they remain
roughly proportional.

Another potential concern is that the underlying zero-beta portfolio somehow, by co-
incidence, tracks realized consumption growth, so that whatever predictors Zt we use, the
conditional expectations will mechanically line up. However, since we use consumption as
an asset-pricing factor, the innovations in the zero-beta portfolio and consumption growth
are orthogonal. That is, consumption growth and the zero-beta portfolio are correlated only
through the conditional expectations. We confirm in Appendix Figure 12 that our results are
essentially unchanged when we do not include a consumption-related factor when construct-
ing the zero-beta rate.21 When the consumption-related factor is omitted, the zero-beta rate

19We view the potential overfitting of expected inflation as a less serious issue, due to the relative ease of
forecasting inflation as opposed to consumption growth or portfolio returns.

20That is, consumption growth is estimated using a ridge regression, whose penalty parameter is selected
via ten-fold cross-validation.

21This is not a surprising result: most stocks have close to zero beta with respect to consumption growth,
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Figure 3: Results for Ridge Regressions

Notes: Both panels of this figure plot expected real returns against expected consumption growth, over
time. Expected real returns are constructed using nominal rates (1m bill yields on the left, the zero-beta
rate constructed using our main specification and ridge penalization on the right, see Appendix Section B)
less expected inflation. Expected inflation is generated from predictive regressions using the instruments
described in Section 4, which are the same instruments used to construct the zero-beta rate. Expected
consumption growth is generated in the same fashion, but with a ridge regression whose penalty is chosen
using ten-fold cross-validation. In both panels, the right vertical axis is consumption growth, centered at its
mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the relevant
expected real return. All series are annualized.

is constructed without using consumption data in any way, further emphasizing that the
alignment of the two series would not be expected absent theory.

5.1 Testing the Euler equation

While the graphical results in Figures 1 and 3 are suggestive, they are not a proper statis-
tical test. In addition, the linearized Euler equation may be misleading if σ is large (low
intertemporal elasticity), so we want to test the instrumented version of the non-linear Euler
equation,

Et

[(
δ

(
ct+1

ct

)−σ
R0,t

Pt+1/Pt
− 1

)
Zl,t

]
= 0. (16)

In addition to the zero-beta rate, we will test the Euler equation with the Treasury bill
yield Rb,t and with the market return Rm,t+1. These are classical tests of the Euler equation
and illustrate two polar issues. The Treasury bill return is very easy to predict (the nominal
return is known ex-ante), and statistical tests strongly reject the Euler equation. The market
return, in contrast, is hard to predict and one cannot reject anything. The latter is a “weak-
instruments” problem (Yogo, 2004). The return of the zero-beta portfolio is considerably

especially after controlling for other factors that price the cross-section of stocks.
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less volatile than the market and easier to predict, as shown in Table 1. However, the F-
test in the (infeasible) OLS regression suggests that we may suffer from a weak instruments
problem,22 so we will test the Euler equation using weak-instruments-robust methods.

The method we adopt follows Stock and Wright [2000], and our main interest lies in
testing whether or not, for some value of the IES σ−1, the model cannot be rejected. The
essence of our procedure is as follows.

1. Conjecture value of σ (the null hypothesis),

2. Estimate θ̂(σ) (i.e. construct the zero-beta rate) as above,

3. Estimate δ̂(σ) using the unconditional Euler (16) with l = 0 (Z0,t = 1),

4. Test using the instrumented Euler moments (16) with l > 0.

Repeating this procedure for many possible values of σ allows us to construct a confidence
set, and to test if the model is rejected for all values of σ. Note that the conjectured value
of σ enters our estimation of the zero-beta rate via our use of the consumption risk factor.
Because this factor plays a minimal role in the pricing of stocks, the estimated zero-beta
rate is largely insensitive to the conjectured value of σ.

Specifically, we continue to construct the zero-beta rate as before, using the asset pricing
moments as before as well as the instrumented Euler equation

gt(θ, δ, σ) =


ϵ̂t+1(θ)⊗ Ft+1(γ, σ)

H(θ) · (Rt+1 −R0,t(θ))⊗ Zt(
δ
c−σ
t+1

c−σ
t

R0,t(θ)

Pt+1/Pt
−
)
)⊗ Zt


and the weight matrix

W (θ) =

I 0 0

0 w(θ)w(θ)′ 0

0 0 e0e
′
0

 ,
where e0 is a basis vector with one on the element corresponding to Z0,t = 1 and zero
otherwise. Conditional on σ, the parameters θ = (α, β, γ) and δ are exactly identified. In
particular, the estimated value of δ, δ̂(σ), will be set so that the consumption Euler equation
holds on average. Treating σ as known and minimizing over (θ, δ) results in the estimates
θ̂(σ) and δ̂(σ) and the usual GMM standard errors (see Appendix Section H for details).

The moments

gl,t(θ, δ, σ) =

(
δ
c−σt+1

c−σt

R0,t(θ)

Pt+1/Pt
− 1

)
Zl,t,

22It is below the critical values suggested by, e.g., Olea and Pflueger [2013].
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for l ∈ {1, . . . , L}, are not targeted in the estimation of θ̂(σ) and δ̂(σ). Let gTest,t(θ, δ, σ) be
the vector of these moment conditions, and let V̂Test(σ) be the variance-covariance matrix of
1
T

∑T
t=1 gTest,t(θ̂(σ), δ̂(σ), σ). Under the null hypothesis of an IES of σ−1, the test statistic

Ŝ(σ) =

(
1

T

T∑
t=1

gTest,t

(
θ̂(σ), δ̂(σ), σ

))′

· V̂Test(σ)−1 ·

(
1

T

T∑
t=1

gTest,t

(
θ̂(σ), δ̂(σ), σ

))

is chi-square distributed with L degrees of freedom (Stock and Wright [2000], see Appendix
Section H for the details of how their results can be applied to our problem).

Inverting this test statistic allows us to construct confidence sets. Specifically, we con-
struct a 95% confidence set by computing Ŝ(σ) for values of σ between 1

4
and 10, and com-

paring the Ŝ(σ) values to the 95th-percentile of a chi-squared distribution with L degrees of
freedom.

Importantly, the same procedure can be applied to traditional Euler equations. If we
replace R0,t(θ) in (16) with either the Treasury bill yield Rb,t or the CRSP market return
Rm,t+1, we can apply the exact same procedure to estimate δ̂(σ) using the unconditional
Euler equation moment and then test on the instrumented Euler equation moments. In these
cases θ does not enter the consumption Euler equation, and there is no need to estimate the
zero-beta rate while simultaneously testing the consumption Euler equation for a different
asset.

The advantage of this approach is that the same set of moments are being used to test
the consumption Euler equation as applied to the three different assets (the Treasury bill,
market portfolio, and zero-beta rate), consistent with recommendations of Cochrane [2009]
(sections 11.5 and 11.6). If the test rejects for a given σ, it is because the instruments Zt
collectively predict

c−σt+1

c−σt

Rt+1(θ)

Pt+1/Pt
,

where Rt+1 is one of R0,t, Rb,t, or Rm,t+1. If the test fails to reject, it is because the null of
no predictability cannot be rejected.

Our results are shown below, in Figure 4. Consistent with the findings of Hansen and
Singleton [1983], Dunn and Singleton [1986], and Yogo [2004], we are able to reject the
hypothesis that the Euler equation holds when applied to the Treasury bill yield. Intuitively,
our instruments have some ability to predict consumption growth, and are certainly able to
predict the real Treasury bill return. The finding that expected real Treasury bill returns
are not proportional to consumption growth (Figure 1) essentially guarantees the rejection
of the test.
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Figure 4: Tests of Specification by IES

Notes: This figure plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which is constructed using
the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution
with degrees of freedom equal to the number of instruments (5). The set of σ for which Ŝ(σ) is less than the
threshold is the S-set (Stock and Wright [2000]).

Again consistent with the findings of Yogo [2004], our test fails to reject the consumption
Euler equation as applied to the market index for almost any values of σ. The market return
is volatile relative to consumption growth; for most values of σ, the moment condition is
essentially identical to the market return.23 The market return is difficult to predict, and it is
therefore unsurprising the procedure is unable to reject the model. This lack of predictability
is the weak-identification problem.

In contrast, the test applied to the zero-beta rate is able to reject the model for some but
23This ceases to be true for σ sufficiently large; in this case, the predictability of consumption growth

allows the test to reject in some specifications. However, there is a separate issue that arises when σ becomes
excessively large, discussed below.
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not all values of σ. In our baseline analysis, values of σ below 1.6 (IES above 0.6) are rejected,
and values of σ above 1.6 (IES below 0.6) cannot be rejected. This again is unsurprising in
light of Figure 1. Our instruments are able to predict both consumption growth and the real
zero beta return, and when the latter is scaled down by a factor of five (i.e. σ ≈ 5), the two
series are remarkably similar.

A key limitation of our test arises from the non-linear nature of the Euler equation. When
σ becomes large (say, σ = 20), the realized SDF becomes very large on the date with the
largest consumption drop in the data sample (in our sample, April 2020). The realization
on this date dwarfs all other realizations of the SDF; as a consequence, the variance matrix
V̂test(σ) becomes almost singular. All of our test statistics (for the Treasury bill, zero-beta
rate, and the market) converge towards one in this case. Intuitively, it is as-if there are only
two dates in our data set (April 2020 and not-April-2020), and the model is untestable in
this case. For this reason, we restrict our analysis to σ ≤ 10.

5.2 Interpretation

The fact that there is a stable aggregate consumption Euler equation with the zero-beta
rate is our central result. The zero-beta rate may seem too large and too volatile, but the
fact that it fits the Euler equation makes it hard to dismiss. Through the lens of the Euler
equation, it seems to be the correct intertemporal price. The fact that the Euler equation
holds for any market return at all is surprising in itself. It is well-known that the Euler
equation does not hold with the Treasury bill yield, and the conventional view is that there
is no stable aggregate consumption Euler equation in the data. The implicit assumption
underlying this view is that a safe interest rate is the correct intertemporal price, which
implies that convenience yields are small. In contrast, our results suggest that the zero-beta
rate is the correct intertemporal price, which implies that safe rates reflect the behavior of
large and time-varying convenience yields.

5.3 Misspecification of the Instruments and Alternative Specifica-

tions

Our results are robust to the inclusion of extraneous (i.e. weak or irrelevant) instruments,
due to our use of weak-instrument-robust inference methods. If we have excluded relevant in-
struments (ones that predict the zero-beta return, consumption growth, or both), our results
will be biased only to the extent that these instruments allow us to reject the consumption
Euler equation. Our prior is that it is generally hard to predict either consumption growth
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or the return on a stock portfolio, but we cannot rule out the possibility of an omitted
instrument.

To further allay concerns about misspecification, in Appendix Section E we present the
analog of Figures 1 and 4 (our “graphical” and GMM tests) for alternative specifications of
our model. Table 4 in that appendix presents our γ coefficient estimates for each of these
specifications. We consider the following alternatives:

• With the bottom two deciles of stocks included in the data sample.

• With Fama-French 5-factor sorted + industry portfolios and instead of 3-factor +
industry portfolios.

• With a σ = 1 instead of σ = 5 used to construct the consumption factor

• With a linear consumption factor instead of a non-linear consumption factor in the
SDF.

• With no consumption factor in the SDF.

• With only the market factor, and with only the FF3 factors.

• With our preferred instruments, using the BAA-AAA spread in the place of the excess
bond premium.

• With our preferred instruments plus the cyclically adjusted price-earnings (CAPE)
ratio.

• With our preferred instruments and a lag of consumption growth.

• With our preferred instruments and the “shadow spread” used by Lenel et al. [2019].

• With instruments-by-factor interactions as factors (allowing for time-varying betas).

• With non-durable goods consumption per capita as opposed to non-durable goods +
services per capita.

• With a data sample ending in December 2019 (pre-COVID 19).

Our results are essentially identical across all of these variations, demonstrating that our
key conclusion (that the consumption Euler equation cannot be rejected when applied to
the zero-beta rate) is robust to various perturbations with regards to our choices of equity
portfolios, factors, instruments, and consumption data.

30



6 Monetary Policy

Monetary policy aims to exploit the Euler equation as a structural relationship. Raising
interest rates is meant to lower consumption and output. However, there is a large and
time-varying spread between the safe rates that central banks control as policy instruments
and the zero-beta rate that enters the Euler equation. If this spread is exogenous to monetary
policy, raising the safe rate also raises the zero-beta rate one-to-one. This is what is assumed
in applied work such as Smets and Wouters [2003, 2007]. But, as Chari et al. [2009] and
Fisher [2015] point out, if the spread is endogenous to monetary policy, movements in the
safe policy rates may have surprising effects on the zero-beta rate.

In this section, we explore the effects of a monetary policy shock. We carry out an exercise
analogous to the one behind Figures 1 and 3, but conditional on monetary shocks. We
regress the predictors Zt on measures of monetary policy shocks, and then use our predictive
regression coefficients to calculate the effect on expected consumption growth, expected real
Treasury bill returns, and the real zero-beta rate (call them γc, γb, and γ0, respectively).
Implicitly, we are assuming that the relationship between Zt and these variables is structural.
We run regressions of the form:

γj · (Zt+h − Zt−1) = ϕ0,h + ϕ1,h ·mpshockt + ϵt+h, (17)

where mpshockt is either the Romer and Romer [2004] shock or the Nakamura and Steinsson
[2018] shock,24 aggregated to the monthly frequency, and j ∈ {c, b, 0}. The Romer and
Romer [2004] shocks are available from 1973 through 2007; the Nakamura and Steinsson
[2018] shocks are available from 2000 through 2019. We use the coefficients from our ridge
estimation (see Appendix Section B), as these are less likely to suffer from over-fitting. Figure
5 shows our results graphically.

Both of the shocks are estimated to increase Treasury bill yields on impact by roughly the
same amount, but the Romer and Romer [2004] shocks are more transitory. In both cases,
the zero-beta rate is estimated to fall in response to the shock, but the effect of the Romer
and Romer [2004] shocks is considerably smaller. In Appendix Section D we decompose the
impact of each predictor in Zt. A higher bill yield raises the zero-beta rate, other things
equal. But monetary shocks also flatten the term yield curve and increase credit spreads,
and these lower the zero-beta rate. These effects dominate the direct effect of the increase
in Treasury bill yields.

This result may seem surprising. A monetary contraction is supposed to work by raising
the cost of current consumption, but it actually makes it cheaper. However, it is perfectly

24As updated by Wieland and Yang [2020] and Acosta [2022], respectively.
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Figure 5: Effects of a Monetary Policy Shock on Real Rates and Consumption Growth

Notes: This figure plots the coefficients ϕ1,h from our monetary policy shock regressions (17), for three
different γj vectors (ones for the real zero-beta rate, the expected real Treasury bill return, and expected
consumption growth), with a horizon h from one to twelve months. The γj vectors are generated from our
ridge specification (as in Figure 3 and Appendix Section B), and the vector for the real zero-beta rate is
scaled down by a factor of five, consistent with an IES of 0.2. The left panel plots the results for the Romer
and Romer [2004] shocks, the right for the Nakamura and Steinsson [2018] shocks. Both shocks are scaled
to represent a one percent increase in the federal funds rate on impact.

in line with facts and theory. It is well-known that a monetary contraction lowers expected
consumption growth, also shown in Figure 5. Through the Euler equation, the interest rate
should fall as households, correctly expecting lower consumption in the future, try to save.
Our point estimates are consistent with the Euler equation holding in response to monetary
shocks with an IES of roughly 0.2 (σ = 5), in line with our previous results.

This is not exactly a restatement of our previous results in Figures 1 and 3—that the
Euler equation works with the zero-beta rate—because this is conditional on a monetary
shock. That is, while the zero-beta rate and expected consumption growth strongly co-
move because they load similarly on Zt, the relationship is not exact. It could have been
the case that consumption growth and zero-beta returns loaded differently on the specific
combination of movements in Zt that results from a monetary policy shock, leading them
not to conditionally co-move. To be clear, the GMM analysis in the previous section fails to
reject the Euler equation for any source of variation in Zt, including monetary shocks, once
estimation errors are all properly accounted for. But the concern is that because monetary
policy shocks are a small part of the overall variation in Zt, we may fail to reject even if
the point estimates of the conditional co-movement are inconsistent with the Euler equation
(because those point estimates have large standard errors). Here we show that the point
estimates are consistent with the Euler equation conditional on monetary shocks.
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Through the lens of the Euler equation, it is the rise of the expected real Treasury bill
return that is puzzling in light of the fall of consumption growth after a monetary policy
shock. Conversely, if one takes the rise in the Treasury yield as the defining feature of a
contractionary shock, the fall in consumption growth is puzzling if one has in mind the
conventional Euler equation applied to the Treasury return. In other words, if we use the
expected real Treasury bill return, the Euler equation fails not only unconditionally, but also
conditionally on a monetary shock. A standard way of addressing the conditional failure
of the Euler equation is to introduce consumption habit formation into the model (as in
Christiano et al. [2005] or Smets and Wouters [2007]), which generates a modified Euler
equation and the kind of “hump-shaped” impulse response found in the data. However, this
does not resolve the unconditional failure of the Euler equation (Canzoneri et al. [2007]),
which is why Smets and Wouters [2007] still need wedges in this equation to match the
data. It is also inconsistent with evidence on marginal propensities to consume (Auclert
et al. [2020]). Specifically, after receiving a transfer, households tend to spend a substantial
fraction of the transfer immediately, with the level of increased spending decaying over time.
This pattern, which those authors call “micro jumps,” is inconsistent with habit preferences.
They propose informational frictions to reconcile the micro evidence with the hump-shaped
response of impulse response functions.

Our results suggest instead that the Euler equation holds both unconditionally and con-
ditionally on a monetary shock. Habits or informational frictions on the consumption side
seem less important, at least at the aggregate level, although frictions on the supply side
or in the transmission of monetary policy might still be important (e.g. it takes time for
firms to fire workers and adjust productions plans, and trading frictions may affect money
velocity).

6.1 Interpreting the effect of monetary policy shocks

Our results call into question the role of safe rates in the transmission of monetary policy.
After a monetary contraction safe rates go up on impact, but this mostly reflects a reduction
of convenience spreads. Monetary policy can still be correctly described in terms of policy
rules for safe rates, just as it could be described in terms of any other endogenous variable.
But the central fact is that the intertemporal price of consumption does not rise on impact,
it falls. So how does a monetary contraction cause a reduction in consumption growth in
the first place?

We propose an example of how this may come about in the model from Section 2. This is
a standard New Keynesian model, augmented with convenience on safe assets. To make the
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Figure 6: Effects of a Monetary Policy Shock in the Model

Notes: This figure plots the effects of a monetary contraction. In period one, the central bank sells bonds in
exchange for base money. This contracts the supply of broad money (labeled Money Supply) with a delay, in
period two, and the supply of safe bonds (Bond Supply) contracts in period two to restore the convenience
spread (Spread) to its original value. The impact of this shock on the level of consumption, the zero-beta
rate, and the safe bond rate is shown in the remaining three sub-figures.

mechanism transparent, everything happens in three periods, prices are completely sticky
and the shock is permanent. The economy starts in period 0 at a steady state. In period 1,
the Central Bank conducts an (unexpected) open market operation that increases the supply
of safe bonds. The money multiplier takes one period to work its way through the banking
system, so M only falls in period 2, and remains permanently low. From period 2 onwards,
the supply of safe bonds adjusts to bring the safe rate spread back to steady state, and all
quantities and prices are constant. What we have in mind is that the private supply of safe
assets is endogenous and adjusts with some delay until the spread returns to its steady state
value. We pick parameters to match a steady state spread of 8% and real zero-beta rate
10%, and pick σ = 5. Figure 6 shows the impulse responses.

The first column shows the shock itself. In period 1 there is an increase in the supply of
bonds of just under 1%, and from period 2 onwards there is a permanent fall in the money
supply of about 1.5%. The magnitudes are chosen to match the effect of an average-sized
Nakamura and Steinsson [2018] shock that raises the safe rate by 2.7 bps.25 The bond supply

25The movements in money and safe bond supply are relatively large compared to the movements in interest
rates they generate. This is because the log specification of preferences implies a high interest-elasticity of
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falls in period 2 to return spreads back to their steady state.
The second column shows the effect on consumption and spreads. Consumption falls on

impact and then falls further when the money supply actually contracts in period 2, so that
consumption growth also falls by 3.6 bps. The spread falls on impact due to both the fall in
consumption (which reduces liquidity demand) and the increase in bond supply.

The third column shows the effect on interest rates. The zero-beta rate falls by 20
bps.With σ = 5 this is consistent with the magnitude of the fall in consumption growth.
The fall in spreads and in zero-beta rates push the safe rate in opposite directions. In this
example, the spread falls enough that the safe rate rises by 2.7 bps. All these magnitudes
are in line with Figure 5 (scaled by the size of the shock).

Overall, the shock looks like a relatively standard monetary contraction: an open market
operation that contracts the money supply with some delay, raises the safe interest rate
and lowers consumption and consumption growth. It may seem surprising that the relevant
interest rate for intertemporal decisions, the zero-beta rate, falls instead of rising, but this is
actually consistent with the intertemporal pattern of money supply and consumption. The
assumption that the shock to money supply is permanent and prices completely fixed implies
that consumption remains permanently depressed. If we allowed money supply to revert to
its original level, or prices to eventually adjust, consumption would return to its original
level. In this case, the Euler equation implies that there would be a period of above-steady-
state zero-beta rates as consumption recovers, and the contemporaneous impact of the shock
on the level of consumption would be different. The purpose of this analysis is to show that
a rise in safe rates accompanied by a fall in consumption growth and in the zero-beta rate
is consistent with a basic New Keynesian model augmented with convenience on safe assets.

7 Conclusion

The interest rate plays a prominent role in macro and asset-pricing. The conventional view
is that safe rates are the correct intertemporal price, which implies that there is no stable
aggregate Euler equation and that convenience yields are small. We propose instead that
the zero-beta rate is the correct intertemporal price, which implies that there is a stable
aggregate Euler equation and that convenience yields are large and volatile. Our perspective
is supported by the striking relationship in the time series between zero-beta rates and
expected consumption growth.

money and safe bond demand.
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Online Appendix for “The Zero-Beta
Rate,” Di Tella, Hébert, Kurlat, Wang

A Data Details

A.1 Equity Portfolios

We use equity returns in CRSP which can be matched to a firm in COMPUSTAT, from 1973
to 2020, excluding the bottom 20% of stocks by market value in each month. The CRSP
returns are augmented with the delisted returns also from CRSP. For each firm, we compute
the book-to-market ratio, market value, operational profitability and investment according
to Fama and French [1993, 2015].

1. Book-to-market ratio

For portfolio in year t, it is measured with accounting data for the fiscal year ending
in year t− 1 and is the ratio between book equity (BE) and market value (ME). Book
equity at t is shareholder equity (SEQ) minus deferred taxes and investment tax credit
(TXDITC) minus preferred stock redemption value (PSTKRV).

2. Market value

For portfolio in year t, it is measured with accounting data for the fiscal year ending
in year t− 1 and is share outstanding (SHROUT) times price (PRC).

3. Operational profitability

For portfolio in year t, it is measured with accounting data for the fiscal year ending
in year t − 1 and is revenues (REVT) minus cost of goods sold (COGS), minus sell-
ing, general, and administrative expenses (XSGA), minus interest expense (XINT) all
divided by book equity.

4. Investment

For portfolio in year t, is the change in total assets (AT) from the fiscal year ending in
year t− 2 to the fiscal year ending in t− 1, divided by t− 2 total assets.

We compute the market beta of each stock using rolling 5-year, monthly linear regressions
with the market return provided on Ken French’s website.26 We limit the sample to have at
least 24 months of data points in the 5-year window.

26https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html
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At the end of each June, stocks are allocated to three groups according to NYSE break-
points, on 30% percentile and 70% percentile, with respect to: Market Beta, Book-to-Market,
Market Value, Operational Profitability and Investment. We then take the intersections of
these groups to create portfolios. In particular, we construct 27 (3x3x3) portfolios on market
beta, size, and book-to-market. We then augmented these portfolios with the 49 industry
portfolios provided on Ken French’s website.27 These 76 portfolios are our baseline test
assets.

In our robustness exercises, we include two additional sorts on market beta, size, and
operational profitability, 27 (3x3x3), and on market beta, size, and investment, 27 (3x3x3).

A.2 Factors

The Fama and French factors are downloaded directly from Ken French’s website. The
Treasury bond factor is the return of the 6-10y Treasury bonds over the one-month Treasury
bill (the latter as defined below).28 The default factor is the return of long-term corporate
bonds less the return of long-term Treasury bonds.29 The consumption factor is built using
the same consumption series used when testing the Euler equation.

A.3 Main Specification Instruments

1. Treasury bill yield

One-month Treasury bill yield from Fama and French [2015].

2. Rolling average inflation

Rolling average of the previous twelve months of inflation, which is the log-change in
CPI index. CPI index from FRED30.

3. Term spread

Difference in the yields of 10-year treasury bond31 and 1-month treasury bill.

4. Excess bond premium
27https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_49_ind_port.html
28Specifically, we use the Fama maturity portfolio with maturity greater than 60 months and less than

120 months from CRSP Treasury as our long-term bond return measure.
29We use the ICE BofA 15+ Year US Corporate Index Total Return Index from FRED

(https://fred.stlouisfed.org/series/BAMLCC8A015PYTRIV) and the 10+ Fama bond portfolio from CRSP.
30https://fred.stlouisfed.org/series/CPILFESL
31https://fred.stlouisfed.org/series/GS10
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From Gilchrist and Zakrajšek [2012]32.

5. Unemployment rate

From FRED33.

A.3.1 Additional Instruments

1. CAPE

From Campbell and Shiller [1988]34

2. Shadow spread

Following Lenel et al. [2019], we evaluate equation (9) in Gurkaynak et al. [2007] at
maturity 1/12 for their estimated parameter values.

ft (1/12, 0) = β0+β1 exp (−1/12/τ1)+β2 (1/12/τ1) exp (−1/12/τ1)+β3 (1/12/τ2) exp (−1/12/τ2)

We then use the estimated 1-month forward rate to proxy for the one month yield.
The shadow spread is then the difference between this estimate and the one-month
yield from data.

3. Corporate bond spread

Difference between the yield of Moody’s seasoned BAA corporate bonds 35 and Moody’s
seasoned AAA corporate bonds36

B Ridge Estimation

In this appendix section, we describe the details of our regularized estimation (“ridge”) pro-
cedure used to construct the zero-beta rate and expected consumption growth presented in
Figure 3.

We will treat the projection moments as restrictions in our GMM estimation, which is
to say that we require that they hold exactly. Loosely, this can be thought of as putting
infinite weight on these moments, relative to other moments. The benefits of this approach
are two-fold. First, it allows us to compute the regression coefficients (α, β) analytically,

32https://www.federalreserve.gov/econres/notes/feds-notes/updating-the-recession-risk-and-the-excess-
bond-premium-20161006.html

33https://fred.stlouisfed.org/series/UNRATE
34http://www.econ.yale.edu/~shiller/data.htm
35https://fred.stlouisfed.org/series/BAA
36https://fred.stlouisfed.org/series/AAA
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which greatly reduces the time required to compute the estimator. Second, it simplifies the
interpretation of our procedure (as described in Section 3.3).

We use a ridge regression approach to avoid over-fitting with regards to the γ parameters.
Specifically, we penalize the square norm of the γ vector, according to a weight ψ ≥ 0. We
choose ψ using cross-validation, in a manner described below. We exclude the γ0 parameter
(which reflects the average difference between the zero beta rate and the safe rate) from
the penalty term. This form of penalization has the effect of shrinking our estimate of R0,t

towards Rb,t plus a constant, biasing us against finding in-sample time variation in the spread
between R0,t and Rb,t. Introducing this kind of bias is useful in that it can reduce the variance
of our out-of-sample forecast error, and can be interpreted as imposing a Bayesian prior.37

Our GMM analysis thus solves

θ̂1 ∈ argmin
θ

L∑
l=0

(
T−1

T∑
t=1

w(θ)′ · (α(θ) + ϵ̂t(θ))Zl,t−1

)2

︸ ︷︷ ︸
Instrumented Asset Pricing Moment Squared

+ ψ
L∑
l=1

γl(θ)
2

︸ ︷︷ ︸
Ridge Penalty

subject to

(
T−1

T∑
t=1

ϵ̂i,t(θ)Fj,t

)
︸ ︷︷ ︸

Projection Errors

= 0,∀i, j.

The problem is exactly identified (the number of asset pricing moments is equal to the
number of predictor variables plus one, and the number of projection moments is equal to
the number of (αi, βij) parameters). As a consequence of the restrictions, conditional on γ,
the (αi, βij) point estimates will be the usual OLS estimates, as in the main text.38

We select the ridge penalty ψ via cross-validation. Given a candidate ψ, we divide our
data sample into ten equal-length, non-overlapping subsets, {T1, . . . , T10}, and estimate our
model leaving out one particular Tm, producing a parameter estimate θ̂m(ψ). In the left-out

subset, we compute the squared moment,
(
w
(
θ̂m(ψ)

)′
· ϵ̂t+1

(
θ̂m(ψ)

))2

, which is the out-

of-sample variance of the surprise return of zero-beta portfolio. We repeated this process for
37See Hastie et al. [2009].
38The restriction approach is necessary for this result due to the ridge penalty. Absent the ridge penalty

(as in the main text), the asset pricing moments would be zero at the estimated θ̂ and the estimates of β̂
would coincide with OLS estimates even if these moments received finite weight. With the ridge penalty and
finite weight on the projection moments, the asset pricing moments will be non-zero at θ̂ and the estimator
will distort β̂ to reduce asset pricing errors at the expense of larger projection errors. There is nothing
incorrect about such an approach, but it complicates the computation and interpretation of the estimator.
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each m, computing the sum of squared moments, and choose ψ to minimize this value:

ψ̂ ∈ argmin
ψ≥0

10∑
m=1

(
w
(
θ̂m(ψ)

)′
· ϵ̂t+1

(
θ̂m(ψ)

))2

.

Once the value of ψ̂ is chosen, we compute θ̂ using this value and the full sample.39

C Placebo Test

Figure 7 below presents the results of a regression that the predicts the real return of a
Treasury bond portfolio (the Fama 6-10y portfolio) using our instruments. The purpose of
this placebo test is to demonstrate that there is nothing mechanical about results: our Zt
variables do not perfectly co-move, and there is no guarantee that the same combination
of them that predicts bond returns will predict consumption growth. Moreover, our theory
predicts that expected real bond returns should (generically) not line up with expected
consumption growth, for two reasons. First, longer maturity bonds may inherit some of
the convenience of shorter maturity bonds, because they can also be used to back short-
dated safe claims (such as deposits or repo). Second, it is well-known (Campbell and Shiller
[1991]) that the excess return of bonds over bills is predicted by the term spread (one of our
instruments), which is to say that there is a time-varying risk premium for longer-maturity
bonds. For both these reasons, we should not expect to two series to be aligned.

39This tenfold cross-validation procedure follows the recommendation of Hastie et al. [2009].
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Figure 7: Expected Consumption Growth vs. Expected Real Tsy. Bond (6-10y) Returns

Notes: This figure plots the expected real return of a 6-10y Treasury bond portfolio against expected
consumption growth, over time. Expected nominal returns are generated from predictive regressions using
the instruments described in Section 4, which are the same instruments used to construct the zero-beta rate,
and then converted to real returns by subtracting expected inflation (predicted with those same instruments).
The right vertical axis is consumption growth, centered at its mean, with limits equal to +/- four standard
deviations. The left vertical axis is the same for the expected real bond return. All series are annualized.

D Decomposition of the Effects of a Monetary Shock

In this appendix section, we present in table form some of the point estimates shown in
Figure 5. Specifically, in the first four columns of Tables 2 and 3 we present point estimates
for six-month changes (h = 5), for each of the three variables shown in Figure 5 (the real
zero-beta rate, the real expected Treasury bill return, and consumption growth), as well as
the spread (Conv) between the zero-beta rate and Treasury bill yield. Columns 5-9 in these
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tables show the coefficients (ϕl0, ϕ
l
1) of the regression

γ̂l · (Zl,t+5 − Zl,t−1) = ϕl0 + ϕl1 ·mpshockt + ϵlt+5,

for each of our L instruments, where γ̂l is the point estimate from our GMM analysis with
ridge penalization.

The sum of the coefficients ϕl1, for l ∈ {1, . . . , L}, is the coefficient on the spread regression
in column 4, by (14). The tables thus illustrate the key drivers of the result that a monetary
shock can simultaneously increase the safe rate while decreasing the zero-beta rate.

Both shocks increase the safe rate (the Treasury bill yield), and for this reason would
be expected to increase the zero-beta rate if all else were equal. However, all else is not
equal. The Romer and Romer [2004] shock results in a significant flattening of the yield
curve, which more than offsets the effect of the increase in short rates (see column 8 of
Table 2). The Nakamura and Steinsson [2018] shock has this effect, and also involves a
significant increase in the excess bond premium (see columns 7 and 8 of Table 3). The two
shocks differ in both their construction and in the periods in which they are available (and
the conduct of monetary policy has changed over time), either of which might explain the
observed differences between their effects. Note also that neither of these tables includes
standard errors.

Table 2: Decomposition of the Effects of a Romer-Romer Shock
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Real Bill Real Z.B. Ex. C. Gr. Conv g_RF g_UMP g_EBP g_TSP g_CPI_Rolling
RR_shock 0.338 -1.467 -0.312 -1.805 0.168 -0.227 -0.434 -2.457 0.0574

Constant -0.0273 -0.0225 -0.0106 0.00474 -0.00283 0.000943 -0.00963 0.0222 0.00229
Observations 413 413 413 413 417 417 417 417 417

Table 3: Decomposition of the Effects of a Nakamura-Steinsson Shock
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Real Bill Real Z.B. Ex. C. Gr. Conv g_RF g_UMP g_EBP g_TSP g_CPI_Rolling
NS_shock 1.801 -9.717 -1.945 -11.52 0.178 -1.687 -8.849 -2.746 0.0920

Constant -0.0856 -0.0550 0.00417 0.0305 -0.00354 -0.00532 0.0202 -0.0235 -0.00171
Observations 230 230 230 230 234 234 234 234 234
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E Robustness Exercises

This appendix section contains our robustness exercises. We first provide an index of the
various exercises, with a label used to identify the specification.

• NoDrop20: With the bottom two deciles of stocks included in the data sample.

• FF5Industry: With Fama-French 5-factor sorted + industry portfolios and instead of
3-factor + industry portfolios.

• Sigma1: With a σ = 1 instead of σ = 5 used to construct the consumption factor

• LinearCons: With a linear consumption factor F8,t = ∆ct+1 instead of a non-linear
consumption factor in the SDF.

• NoCons: With no consumption factor in the SDF.

• MktOnly: With only the market and non-linear consumption factors.

• FF3Only: With only the market, size, and value factors of Fama and French [1993],
plus the non-linear consumption factor.

• AltBAAS: With our preferred instruments, using the BAA-AAA spread in the place
of the excess bond premium.

– The EBP and BAA-AAA spread are highly correlated conditional on our other
instruments, and for this reason we don’t include them both.

• AltCAPE: With our preferred instruments plus the cyclically adjusted price-earnings
(CAPE) ratio.

• LagCons: With our preferred instruments and a lag of consumption growth.

• Shadow: With our preferred instruments and the “shadow spread” used by Lenel et al.
[2019].

• VaryingBetas: With instruments-by-factor interactions as factors (allowing for time-
varying betas).

– i.e. with the seven factors of our main specification (excluding the consumption
factor), plus 35 factors F̃j′′,t+1 = Fj,t+1Zl,t for j ∈ {1, . . . 7} and l ∈ {1, . . . 5}, plus
the consumption factor (43 factors total). This specification is isomorphic to a
model in which the betas to the seven main specification factor are linear in the
Zt variables
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• NDOnly: With non-durable goods consumption per capita as opposed to non-durable
goods + services per capita.

• NoCOVID: With a data sample ending in December 2019 (pre-COVID 19).
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Figure 8: NoDrop20: Results with Bottom Decile Stocks Included

Notes: Both panels present results for the “NoDrop20” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).

Figure 9: FF5Industry: Results with FF5+Industry Portfolios

Notes: Both panels present results for the “FF5Industry” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).

51



Figure 10: Sigma1: Results with σ = 1

Notes: Both panels present results for the “Sigma1” robustness exercise (Appendix Section E). The left panel plots the estimated
real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal zero-beta
rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive regressions
using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth, centered at its
mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta rate, and both
series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which is constructed
using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market return. The
dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of freedom equal to
the number of instruments (5).

Figure 11: LinearCons: Results with a Linear Consumption Factor

Notes: Both panels present results for the “LinearCons” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).
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Figure 13: MktOnly: Results with only the Market and Consumption Factors

Notes: Both panels present results for the “MktOnly” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).

Figure 12: NoCons: Results with No Consumption Factor

Notes: Both panels present results for the “NoCons” robustness exercise (Appendix Section E). The left panel plots the estimated
real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal zero-beta
rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive regressions
using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth, centered at its
mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta rate, and both
series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which is constructed
using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market return. The
dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of freedom equal to
the number of instruments (5).
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Figure 14: FF3Only: Results with only the FF3 and Consumption Factors

Notes: Both panels present results for the “FF3Only” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).

Figure 15: AltBAAS: Results with the BAA-AAA Spread instead of the EBP

Notes: Both panels present results for the “AltBAAS” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).
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Figure 16: AltCAPE: Results with the CAPE Instrument Included

Notes: Both panels present results for the “AltCAPE” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (6).

Figure 17: LagCons: Results with the Lagged Consumption Growth Instrument Included

Notes: Both panels present results for the “LagCons” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (6).
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Figure 18: Shadow: Results with the Shadow Spread Instrument Included

Notes: Both panels present results for the “Shadow” robustness exercise (Appendix Section E). The left panel plots the estimated
real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal zero-beta
rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive regressions
using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth, centered at its
mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta rate, and both
series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which is constructed
using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market return. The
dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of freedom equal to
the number of instruments (6).

Figure 19: VaryingBetas: Results with Linear Betas

Notes: Both panels present results for the “VaryingBetas” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).
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Figure 20: NDOnly: Results with Non-Durable Goods Consumption

Notes: Both panels present results for the “NDOnly” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).

Figure 21: NoCOVID: Results Excluding 2020

Notes: Both panels present results for the “NoCOVID” robustness exercise (Appendix Section E). The left panel plots the
estimated real zero-beta rate against expected consumption growth. Expected real returns are constructed using the nominal
zero-beta rate less expected inflation. Expected inflation and expected consumption growth are generated from predictive
regressions using the same instruments used to construct the zero-beta rate. The right vertical axis is consumption growth,
centered at its mean, with limits equal to +/- four standard deviations. The left vertical axis is the same for the real zero beta
rate, and both series are annualized. The right panel plots the log of the Ŝ(σ) statistic for values of σ from 0.25 to 10, which
is constructed using the Euler equation moments (16) as applied to the zero-beta rate, Treasury bill yield, and CRSP market
return. The dotted threshold line is the log of the 95th percentile critical value of a chi-square distribution with degrees of
freedom equal to the number of instruments (5).
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F Details on the Covariance Matrix Estimator

The Ledoit and Wolf [2017] covariance matrix estimator, as we apply it, can be thought of
as a function of the estimated β parameters, the sample covariance matrix of factor returns
Σ̂K(γ), and the sample covariance matrix of excess returns,

Σ̂(γ) = T−1

T∑
t=1

(Rt+1 −R0,t(γ)) (Rt+1 −R0,t(γ))
′ .

Note that Σ̂K(γ) depends on γ via the dependence of first factor (the excess return of the
market) on R0,t.

We begin by pre-conditioning (as in section 4.2 of Ledoit and Wolf [2017]) using our
factor model. Define

Σ̂F (θ) = βΣ̂K(γ)β
′ + diag

(
Σ̂(γ)− βΣ̂K(γ)β

′
)
,

where diag(M) is a diagonal matrix whose diagonal is equal to that of M . The covariance
matrix Σ̂F can be thought of as the covariance matrix implied by an exact factor model,
with our chosen factors.

We next transform the excess return data, to generate

Yt(θ) =
(
Σ̂F (θ))

− 1
2 (Rt+1 −R0,t(γ)

)
,

where (·)− 1
2 is the symmetric matrix square root. We then apply the Ledoit and Wolf [2017]

shrinkage estimator to estimate the covariance matrix of Yt(θ) (call this Σ̂c(θ)), and finally
generate our estimate of the variance-covariance matrix of returns using

Σ̂ =
(
Σ̂F (θ)

) 1
2
Σ̂c(θ)

(
Σ̂F (θ)

) 1
2
.

This pre-conditioning in effect imposes a uniform prior about the orientation of the eigen-
vectors of Σ̂c(θ), as opposed the about the orientation of the same for Σ̂. The former is
more appropriate in light of the co-movement of stocks with, for example, the market factor.
Our procedure differs from the empirical exercise in Ledoit and Wolf [2017] in that it uses
our K-factor model for pre-conditioning instead of a single factor model, which seems more
appropriate for our application.

We also modify their procedure in one additional respect, by using the analytical non-
linear shrinkage estimator of Ledoit and Wolf [2020] in the place of the “non-linear” shrink-
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age estimator. The two methods offer similar out-of-sample performance in the minimum-
variance portfolio problem, and the analytical method is substantially faster to compute.

G Relationship to Shanken [1986]

Our starting point when developing our procedure was the MLE approach of Shanken [1986],
described in Campbell et al. [1998]. The Shanken [1986] procedure is designed to extract a
constant (over the sample period) risk-free rate. The key way in which we have modified
the procedure is via our assumption on the structure of the zero-beta rate, equation (14),
which replaces the assumption of a constant zero-beta rate. Aside from this difference,
our procedure deviates from the MLE estimator by using a regularized covariance matrix
estimator.

To begin, let us suppose that the residuals in the projection regressions (15), ϵ̂t, are
Gaussian and i.i.d. with variance–covariance matrix Σϵ, and that all of the factors are
tradable. Shanken [1986] derives an MLE estimator for a constant zero-beta rate under
these assumptions.40 Using Σϵ has one particular disadvantage: Σϵ may not be full rank (for
example, if the value-weighted sum of the test assets is the market portfolio). In contrast,
our procedure handles this case without modification. In the discussion that follows, assume
Σϵ is invertible.

Under these assumptions, the log-likelihood function is, ignoring constants,

f(Rt+1, Ft+1, Zt; θ,Σϵ) =
1

2
ln
(
det(Σ−1

ϵ )
)
− 1

2
ϵ̂t+1 (θ)

′ · Σ−1
ϵ · ϵ̂t+1 (θ) ,

where ϵ̂t+1(θ) is defined from (Rt+1, Ft+1, Zt) as in (15).
Maximizing the log-likelihood over θ, it follows, given the MLE estimate of γ, that

the maximum likelihood (α, β) estimates are exactly the OLS coefficients of the projection
regression. Specifically, they solve

E
[
Fj,te

′
i · Σ−1

ϵ · ϵ̂t+1(θ)
]
= 0

for i ∈ {1, . . . , N} and j ∈ {0, . . . , K}, where ei ∈ RN denotes the basis vector that selects
the i-th asset. Because this must hold for all i and Σ is full rank, it is equivalent to E[Fj,t ·
ϵ̂i,t+1(θ)] = 0 for all (i, j), which are the moment conditions associated with the time series
regressions (11).

40Shanken [1986] in fact assumes a single factor model, but the extension to multi-factor models with
tradable factors is straightforward.
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The first order condition with respect to γ yields

E

(ι− β·,1)
′ · Σ−1

ϵ︸ ︷︷ ︸
wMLE

·ϵ̂t+1(θ)Zt

 = 0.

We will next show that under the stated assumptions, the “portfolio weight” wMLE =

(ι− β·,1)
′ · Σ−1

ϵ is equal to our w(θ).
Consider our procedure, applied to an augmented set of test assets that includes the

factors themselves (which are now by assumption tradable). Specifically, let RN+j,t+1 = Fj,t+1

for j = {1, . . . , K}. Note that, because the non-market factors are assumed to be zero-
investment, our procedure would have to be modified by re-defining the ι ∈ RN+K to be
equal to one for its first N + 1 elements and zero otherwise.

The covariance matrix ΣR for the augmented set of test assets can be written in block
form as

ΣR =

[
βΣKβ

′ + Σϵ βΣK

ΣKβ
′ ΣK

]
,

where ΣK is the covariance matrix of the factors.
The minimum-variance zero-beta unit-investment portfolio problem that defines w(θ) ∈

RN+K in this case is equivalent to solving

min
w̃∈RN

w̃′ ·
[
I −β

]
· ΣR ·

[
I

−β′

]
· w̃

subject to w̃′ ·
[
I −β

]
· ι = 1. Here, we have defined w =

[
I

−β′

]
· w̃ and in effect constructed

zero-beta portfolios by hedging out the tradable factors. Straightforward algebra shows
that this problem simplifies to a minimum variance portfolio problem, whose solution is
w̃∗ = wMLE = (ι− β·,1)

′ · Σ−1
ϵ . Thus, under the stated assumptions, our portfolio weights

are equivalent to the ones implied by the MLE procedure of Shanken [1986] conditional on
the estimate of Σϵ and ΣF .

More generally, whenever all factors are tradable and each of those factors lies in the
span of the test assets (e.g. using the Fama-French 25 portfolios and three factors), our
procedure’s w(θ) and wMLE will coincide (again, conditional on the covariance matrices).
Our procedure has the advantages of handling the case of non-tradable factors and of avoiding
the assumption that Σϵ is of full rank, but is otherwise similar.

The more significant difference between our procedure and the MLE estimator arise from
our use of the Ledoit and Wolf [2017] covariance matrix estimator. The MLE estimator for
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Σϵ (which can be derived from the first-order conditions) is the sample covariance matrix
of the residuals, and use of the Ledoit and Wolf [2017] estimator for ΣR avoids over-fitting.
Our GMM estimator is essentially the MLE estimator, modified to avoid overfitting.

H Details on the Application of Stock and Wright [2000]

In this appendix section, we describe in more detail the procedure we use when constructing
the S-sets described in Section 5 of the main text.

At a high level, our follows the approach of Stock and Wright [2000]. The only meaningful
modification we make to their approach is to use one set of moments for the purpose of
estimating the strongly-identified parameters (δ, θ = (α, β, γ)) (in particular, constructing
the zero-beta rate) and then using a different set moments (the consumption Euler equation)
for the purpose of constructing the test statistic. This approach (which is well-known, see
chapter 11.6 of Cochrane [2009]) has the advantage of being easily interpretable. It also has
the advantage, in our particular application, of allowing us to analytically compute the (α, β)
parameters given any value of γ, which facilitates computation, and it ensures that the zero-
beta rate described in Section 4 is the same as the zero-beta rate being tested in Section 5.
Stock and Wright [2000] present results under the assumption that the same weight matrix
used to estimate the well-identified parameters is also used to construct the test statistic; the
purpose of the appendix section is to show that their results can be generalized away from
this case. Those authors also assume (for convenience) a positive-definite weighting matrix;
our procedure is most naturally cast as involving a positive semi-definite matrix.

Note that we do not prove the standard GMM identification assumptions (global identifi-
cation, differentiability, etc...) in our setting, and instead assume that they apply. Necessary
conditions include that the factors Fj,t not be co-linear (as otherwise β cannot be identified)
and that the instruments Zt not be co-linear (as otherwise γ cannot be identified).

Recall the our moment conditions are

gt(θ, δ, σ) =


ϵ̂t+1(θ)⊗ Ft+1(σ, γ)

H(β) · (Rt+1 −R0,t(γ))⊗ Zt

(δ
c−σ
t+1

c−σ
t

R0,t(γ)

Pt+1/Pt
− 1)⊗ Zt


and that our weight matrix used in estimation is

WT (θ) =

I 0 0

0 wT (θ)Tw(θ)
′ 0

0 0 e0e
′
0

 .
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We have written WT as a function of the sample size because the zero-beta portfolio weight
vector wT involves an estimate of the variance-covariance matrix. Let Θ be the compact set
of possible parameters for (θ, δ, σ), which excludes parameters for which ι lies in the span of
β.

Define

mT (θ, δ, σ) = E

[
T−1

T∑
t=1

gt(θ, δ, σ)

]
and

ΨT (θ, δ, σ) = T− 1
2

T∑
t=1

(gt(θ, δ, σ)− E [gt(θ, δ, σ)]) .

We will assume ΨT (θ, δ, σ) converges to a Gaussian process Ψ(θ, δ, σ) (Assumption B of
Stock and Wright [2000]; those authors provide more primitive assumptions in which this
holds). Let Ω(θ, δ, σ) = E [Ψ(θ, δ, σ)Ψ(θ, δ, σ)′] be the limiting covariance matrix; we as-
sume it can be consistently estimated using heteroskedasticity-robust methods (Assumption
D′′ of Stock and Wright [2000]).41 We will also assume that WT (θ) converges uniformly in
probability to a symmetric positive semi-definite matrix-valued function W (θ) that is con-
tinuous in θ (Assumption D of Stock and Wright [2000], weakened to required only positive
semi-definiteness).

We will treat the parameter σ as weakly identified, and the parameters (θ, δ) as strongly
identified. Suppose (θ0, δ0, σ0) are the true parameters. We decompose

mT (θ, δ, σ) = m1T (θ, δ, σ, σ0) +m2(θ, δ, σ0),

where in our context,

m2(θ, δ;σ0) = E

[
T−1

T∑
t=1

gt(θ, δ, σ0)

]
and

m1T (θ, δ, σ;σ0) = E

T−1

T∑
t=1


ϵ̂t+1(θ)⊗ (Ft+1(σ, γ)− Ft+1(σ0, γ))

0(
δ

(
c−σ
t+1

c−σ
t

− c
−σ0
t+1

c
−σ0
t

)
R0,t(γ)

Pt+1/Pt

)
⊗ Zt


 .

Note that, following Stock and Wright [2000], we have assumed that m2(·) does not depend
41Consistent with the equations of our model, we assume the residuals are serially uncorrelated (following

Hansen and Singleton [1982] and chapter 11.7 of Cochrane [2009]).
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on T , without imposing this assumption on m1T . In our main specification,

Ft+1(σ, γ)− Ft+1(σ0, γ) = e8

(
c−σt+1

c−σt
−
c−σ0t+1

c−σ0t

)
,

which is to say that only the non-linear consumption factor depends on σ. The potential for
weak identification is readily apparent: if the difference of the two consumption SDFs (with
σ and σ0) is only weakly related to stock returns and our instruments, the parameter σ will
be largely unidentified.

Our key assumption is that the moments m2(·) satisfy the usual GMM identification
conditions. We assume (following Assumption C of Stock and Wright [2000]) that:

1. The function T
1
2 (mT (θ, δ, σ)−m2(θ, δ;σ0)) converges uniformly to the functionm1(θ, δ, σ),

which is continuous and bounded on Θ and satisfies m1(θ0, σ0, δ0) = 0.

2. The function m2(θ, δ;σ0) satisfies m2(θ0, δ0;σ0) = 0 and W (θ)m2(θ, δ;σ0) ̸= 0 for all
(θ, δ) ̸= (θ0, δ0). The function m2(θ, δ;σ0) is continuously differentiable with respect
to (θ, δ) in the neighborhood of (θ0, δ0), with Jacobian R(θ, δ;σ0), and W (θ)R(θ, δ, σ0)

has full column rank.

The first part of this assumption is exactly part (i) of Assumption C of Stock and Wright
[2000]. The second part is a modified version of part (ii) of that assumption: we impose the
standard global and local GMM identification conditions on the weighted moments as op-
posed to the unweighted ones. This modification (which is standard in the GMM literature)
allows us to consider positive semi-definite weighting matrices.

First note that, under these assumptions,

(θ̂(σ0), δ̂(σ0)) = arg min
(θ,δ):(θ,δ,σ0)∈Θ

(T−1

T∑
t=1

gt(θ, δ, σ0))
′WT (θ)(T

−1

T∑
t=1

gt(θ, δ, σ0))

is a
√
T -consistent estimator for (θ0, δ0) given σ0.42 It follows that the usual GMM formula

applies,

√
T ((θ̂(σ0), δ̂(σ0))−(θ0, δ0)) ⇒ −[R(θ0, δ0, σ0)

′W (θ)R(θ0, δ0, σ0)]
−1R(θ0, δ0, σ0)

′W (θ)Ψ(θ0, δ0, σ0).

(18)
Likewise, the usual formula for the moments applies (via the delta method):

√
Tm2(θ̂(σ0), δ̂(σ0), σ0) ⇒ R̃(θ0, δ0, σ0)Ψ(θ0, δ0, σ0),

42This can be proven along the lines of Lemma A1 in Stock and Wright [2000]; the proof must be adapted
in relatively straightforward way to the positive semi-definite case.
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where

R̃(θ0, δ0, σ0) = (I −R(θ0, δ0, σ0)[R(θ0, δ0, σ0)
′W (θ0)R(θ0, δ0, σ0)]

−1R(θ0, δ0, σ0)
′W (θ0)).

Using this formula, we can define the variance-covariance matrix

VTest(σ0) = T−1WtestR̃(θ0, δ0, σ0)Ω(θ0, δ0, σ0)R̃(θ0, δ0, σ0)
′Wtest,

where

Wtest =

0 0 0

0 0 0

0 0 I − e0e
′
0

 .
Note that Wtest selects moments not used in the estimation; as a result, VTest(σ0) will gener-
ically have full rank. This matrix can be consistently estimated, conditional on σ0, as

V̂Test(σ0) = WtestR̃(θ̂(σ0), δ̂(σ0), σ0)Ω̂(θ̂(σ0), δ̂(σ0), σ0)R̃(θ̂(σ0), δ̂(σ0), σ0)
′Wtest

where

R̃T (θ0, δ0, σ0) = (I −R(θ0, δ0, σ0)[R(θ0, δ0, σ0)
′WT (θ0)R(θ0, δ0, σ0)]

−1R(θ0, δ0, σ0)
′WT (θ0)).

Using

(
1

T

T∑
t=1

gTest,t(θ̂(σ0), δ̂(σ0), σ0)) = Wtest(T
−1

T∑
t=1

gt(θ̂(σ0), δ̂(σ0), σ0)),

it follows via the usual arguments that the statistic Ŝ(σ0) is chi-squared distributed with L
degrees of freedom.

Note also that the standard errors associated with our parameter estimates (as in Table
1) can be computed using the standard GMM parameter covariance matrix,

Vθ((θ̂(σ0), δ̂(σ0), σ) = T−1GT (θ̂(σ0), δ̂(σ0), σ0)Ω̂(θ̂(σ0), δ̂(σ0), σ0)GT (θ̂(σ0), δ̂(σ0), σ0)
′

where

GT (θ̂(σ0), δ̂(σ0), σ0) = [R(θ̂(σ0), δ̂(σ0), σ0)
′WT (θ̂(σ0))R(θ̂(σ0), δ̂(σ0), σ0)]

−1R(θ̂(σ0), δ̂(σ0), σ0)
′WT (θ̂(σ0)).
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