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ABSTRACT

Firms with similar characteristics display similar expected returns. Defining neighbouring

assets as those with the most similar set of characteristics, I show that past returns of an

asset’s neighbours predict its future expected returns. If a majority of an asset’s neighbours

have performed poorly (well) in the past, it is likely that this asset also performs poorly

(well) in the future. By classifying each asset into a decile portfolio based on the past

performance of its neighbours, with 94 characteristics, a long-short portfolio generates an

out-of-sample annualized Sharpe ratio of 1.15 with a monthly alpha of 2.72% (t = 8.86).
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If firm-level characteristics are determinants of expected stock returns, then firms with
similar characteristics should have similar expected rates of returns. This suggests that
past returns of firms which share similar characteristics should be similar to the future
returns of a firm which is alike in characteristics. The empirical asset pricing literature,
however, has discovered quite a large number of firm characteristics which relate to the
expected stock returns.1 With this zoo of characteristics, it is unclear how the similarity of
firms should be measured and according to which characteristics assets should be sorted
into portfolios (Cochrane (2011)). In this paper, I tackle this large-dimensionality challenge
and link similar firms through many characteristics.

For recognizing analogous firms, I start by finding neighbouring assets, identified as
those assets with the most similar set of characteristics. I measure this similarity between
two assets as the distance of their characteristics and define an asset’s neighbours as those
whose characteristics have the closest distance to this very asset. For instance, without loss
of generality suppose that there exist only three characteristics; In Figure 1, I show the
closest assets to asset j with red dots and define them as neighbouring assets for asset j.
More distant assets (shown with blue dots) are not considered neighbours of asset j. By
defining neighbouring assets in this way, each asset has almost the same characteristics as
its neighbours, and neighbouring assets display fundamental linkages in many dimensions
such as the similarity of accounting variables or financial ratios. If the cross-sectional
variation in expected stock returns roots in the cross-sectional variation in asset-specific
characteristics, naturally neighbouring assets should have similar expected returns.

Recognizing neighbouring assets has several attractive applications in asset pricing.
To begin with, grouping (separating) assets with similar (different) characteristics must
generate cross-sectional dispersion in expected returns. This assumption provides a new
method for cross-sectional return predictability through a large set of predictors in a flexible
setting. In order to produce cross-sectional dispersion in average returns through portfolios
of neighbouring assets, I classify each asset into one of the decile portfolios based on the
past performance of its neighbours, wherein decile 1 (10) is indicative of the loser (winner)
portfolio. For example, if a majority of an asset’s neighbours in the past, which have had
the same characteristics as the most recent characteristics of the asset in question now,
have belonged to decile portfolio 1, the loser portfolio, it is most likely that this asset
itself also belongs to the loser portfolio, decile 1. Intuitively, if assets with a specific set of
characteristics in the past have performed badly (well), it is likely that the assets in the
future with the same set of characteristics will perform badly (well), as well. Considering
the case with only two characteristics as an example, if assets with high momentum and low
size have produced a high expected return in the in-sample data, all the assets with high
momentum and low size in out-of-sample data are then grouped into a decile portfolio which
is supposed to generate a high expected return. This portfolio reflects the behaviour of high
momentum and low size stocks over time. Similarly, each decile portfolio is representative
of a potentially large set of characteristics, generating the corresponding expected returns.

1See, among many others, Green, Hand, and Soliman (2011), Harvey, Liu, and Zhu (2016), Hou, Xue, and
Zhang (2017), Green, Hand, and Zhang (2017), Li and Rossi (2020), and Chen and Zimmermann (2021).
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Figure 1. Definintion of neighbouring assets in the characteristics space

Without loss of generality, if there exist only three characteristics, the k closest assets to the asset j (shown as
red dots) are defined as the neighbours of asset j. If expected returns are a function of firm characteristics,
regardless of the functional form, neighbouring assets display similar expected returns.

More formally, suppose that an asset j at time t has a set of most recent characteristics
xj,t−1 and an expected return E(rj,t). All assets at time t − t′, the in-sample period, with a
set of characteristics xt−t′−1, are assigned into one of the decile portfolios based on their
mean returns at time t − t′, E(rt−t′), which is observable to the investor at time t. Hence,
each asset in the in-sample data is assigned to a decile portfolio. For classifying an asset
j at time t, I first find the k nearest neighbours of this asset in the in-sample data, i.e.
those k assets with the most similar set of characteristics in the in-sample data, and put
asset j into the decile portfolio in which the majority of its k neighbours belonged to in the
past. Following Ali and Hirshleifer (2020), I also assume that closer neighbours, having a
smaller distance of characteristics, must contribute more in decile prediction, so I weigh
all of the k nearest neighbouring assets by the inverse of their distance to the asset j.2

The in-sample period is considered a rolling window consisting of τ = 120 months before
time t, which allows for the time-varying relationship between characteristics and expected
returns. Figure 2 panel (a) visualizes this concept.

I find that this strategy generates a fairly large dispersion in the cross-section of stock
returns. Recognizing neighbouring assets according to 94 firm characteristics,3 a value-

2Ali and Hirshleifer (2020) define the connection between two firms as the number of shared analyst
coverage. For the return predictability, they assume that stocks which have more co-covered analysts are more
likely to be similar, and hence they weigh stocks by the number of co-covered analysts (see equation 1 in their
paper). In my analysis, although I follow Ali and Hirshleifer (2020) by weighting neighbouring assets with the
inverse of their distance, the results are robust if I weigh all neighbouring assets equally.

3These characteristics are listed in Table A1. I thank Dacheng Xiu for providing the characteristics data on
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and equally-weighted long-short strategy of extreme decile portfolios generate a monthly
Fama-French three (FF3) alpha of 1.77% (t = 8.89) and 1.77% (t = 12.30), respectively,
even after excluding the smallest 5% of stocks.4 The corresponding annualized Sharpe
ratios in the period 1980-2021 inclusively are 1.34 and 1.87 for value- and equally-weighted
portfolios. Even after excluding micro caps (those which are below 20% NYSE percentile),
the FF3 monthly alphas are 1.02% (t = 6.68) and 1.15% (t = 9.43), with Sharpe ratios of
0.95 and 1.26. These results suggest that the performance is not derived from the microcap
stocks.

If past returns of an asset’s neighbours at an individual level have predictive powers,
then portfolios consisting of each asset’s neighbours should also predict future returns of
this asset. To test this, for each asset j at time t, I create a portfolio at each time t − 1,
t − 2, · · · , t − τ (τ = 120 months) which contains the nearest neighbours of asset j at each
month in the past. Then I predict the future return of asset j based on the average returns
of its neighbouring portfolios. Figure 2 panel (b) provides a visualisation. Forming decile
portfolios based on this method, I find that an out-of-sample value-weighted long-short
portfolio generates a monthly FF3 alpha of 1.78% (t = 6.56) with an annualized Sharpe ratio
of 0.95. The monthly FF3 alpha for an equally-weighted counterpart long-short portfolio
increases to 2.87% (t = 13.98) with an annualized Sharpe ratio of 2.12.

What mechanism drives the performance of neighbouring assets strategy? If exposures
to systematic risks are a function of firm characteristics (such as in Kelly, Pruitt, and Su
(2019) or Gu, Kelly, and Xiu (2021)), then stocks with similar characteristics have similar
exposure to the systematic risk factors. In turn, if the cross-sectional variation in expected
stock returns is caused by exposure to systematic risk factors, then neighbouring assets,
because of similar exposures, have similar expected returns. This holds regardless of
what the true sources of risks are and what the functional form between characteristics
and covariances is: as long as the compensation for exposure to risk factors—observed or
latent—drives the relationship between characteristics and expected returns, neighbouring
assets display similar expected returns and a long-short portfolio of neighbouring stocks
strategy is profitable.

Grouping adjacent assets into decile portfolios according to their past neighbours has
several economic interpretations. One interpretation is that an asset’s neighbours’ past
returns predict its future returns. From this point of view, my paper contributes to the
literature on finding peer firms by introducing a new way of defining related firms based on
the similarity of characteristics. The literature has defined various types of connections
between firms, including same industry linkage (Moskowitz and Grinblatt (1999)), same
principal customers (Cohen and Frazzini (2008)) and suppliers (Menzly and Ozbas (2010)),
same technology (Lee, Ma, and Wang (2016)), common active mutual fund owners (Anton
and Polk (2014)), and same analyst coverage (Ali and Hirshleifer (2020)), among others,
all yielding to cross-sectional predictability of returns. In this regard, I introduce a new

his website.
4The smallest 5% stocks are usually very illiquid and have many missing characteristics. I exclude them

from my analysis to make sure they do not distort the results, although they do not affect the results as long as
the portfolios are value-weighted.
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predicting decile portfolio
based on the past returns of
neighbours

neighbours of asset j at time t

(a) Individual neighbours
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(b) Portfolios of neighbouring assets

Figure 2. Neighbouring assets classification algorithm

Panel (a) shows the classification framework based on the neighbouring assets. For an asset j at time t, I
find its k neighbours in the in-sample data, from time t − τ to t − 1, which have had the closest distance of
characteristics to asset j at time t. If the majority of neighbours have performed poorly (well), it is likely that
asset j at time t also performs poorly (well). Hence, I put asset j at time t into the decile portfolio to which the
majority of its neighbours belonged in the past. The in-sample set is considered a rolling window. In panel (b),
for each asset j at time t, I create a portfolio of neighbouring assets in each month in the in-sample data. Blue
dots show the assets which have had the most similar characteristics to asset j at time t. Then I predict the
return of asset j at time t based on the average of in-sample neighbouring portfolios.

linkage between firms, that is, closeness of many characteristics at the same time.
Indeed, the economic link between firms with similar characteristics based on one or

two characteristics has been studied in the literature. For instance, Fama and French
(1995) document that earnings of firms with similar size and book-to-market are explained

5



by common factors. Or, Hirshleifer, Hou, and Teoh (2012) argue that firms with similar
accrual co-move. Considering seventeen characteristics one-by-one, Müller (2019) shows
that firms which are in the same quantile based on one characteristic have information
spillovers and can be considered economically linked firms. He, Wang, and Yu (2021) argue
that, because of investor attention, stocks with similar price, size, book-to-market, return
on assets, and investment-to-assets have spillover effects. I generalize all these approaches
by linking the firms based on many characteristics. If two firms are neighbours according to
my definition, they share similar characteristics, and their values are sensitive to the same
type of information. Also, other types of connections such as being in the same industry
or having the same supplier can lead firms to share similar characteristics, such as same
amount of sales, growth, industry momentum, etc. As an extreme case, suppose that two
firms are identical in all aspects: same products, same customers, same industry, etc; In this
case, there is no reason to expect that these two firms would have different expected rates
of returns. In fact, the similarity of characteristics is indicative of fundamental linkages.
Therefore, I show that the similarity and dissimilarity of characteristics account for the
cross-predictability of returns, and hence, using a neighbourhood definition based on the
characteristics is an effective way of recognizing related firms.

The neighbourhood connection, importantly, becomes stronger when I use more char-
acteristics for finding neighbouring assets. For instance, when only three characteristics,
namely, size, book-to-market, and momentum are used to find neighbouring assets, an
out-of-sample value-weighted long-short portfolio generates a monthly average returns
of 1.64% (t = 4.49, and Sharpe Ratio SR = 0.69) between 1980-2021. When adding 9
more characteristics to the previous ones,5 a long-short portfolio generates 1.96% (t = 5.57,
SR = 0.86) monthly average returns. Finally, by considering 94 characteristics, the monthly
average performance of this long short-portfolio increases to 2.36% (t = 7.42, SR = 1.15),
apparently suggesting that the predictive power of neighbouring assets increases when
the neighbourhood definition is expanded to many dimensions. This finding indicates
that a large set of characteristics jointly predict future expected returns and the factor
structure of expected returns is remarkably high-dimensional, which is also in line with the
emerging literature on the high-dimensionality of the factor structure of expected returns.
For instance, Kozak, Nagel, and Santosh (2020) and Jensen, Kelly, and Pedersen (2021)
show that there is little redundancy among a large set of documented anomalies, while
Bryzgalova, Huang, and Julliard (2022) find that a large set of characteristics are needed
to explain the variations in the cross-section of stock returns.

Return predictability through past returns, such as using a momentum strategy, has
been well documented in the literature to be robust and pervasive (Jegadeesh and Titman
(2001), Goyal and Wahal (2015)). However, a momentum strategy uses each asset’s own
past history to predict its future returns. In contrast, and unlike Kelly, Malamud, and

5These 9 characteristics are documented to be among the most important features in the literature. They
include 1-month momentum (Jegadeesh and Titman (1993)), change in momentum (Gettleman and Marks
(2006)), maximum daily return (Bali, Cakici, and Whitelaw (2011)), industry momentum (Moskowitz and
Grinblatt (1999)), return volatility (Ang, Hodrick, Xing, and Zhang (2006)), dollar trading volume (Chordia,
Subrahmanyam, and Anshuman (2001)), sales to price (Barbee Jr, Mukherji, and Raines (1996)), share turnover
(Datar, Naik, and Radcliffe (1998)), and asset growth (Datar et al. (1998)).
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Pedersen (2020) who use all asset’s signals to predict each individual returns, I use only
each asset’s neighbours past performance for return predictability of individual securities.
It is important to check, nevertheless, if neighbouring assets’ strategy is not just a proxy
for momentum. While a momentum factor which goes long (short) in the winner (loser)
stocks generates a monthly average of 0.54% (t = 2.69) in the period 1980-2021, it obtains
a negative alpha of -0.20% (t = −1.18) when regressed on a long-short portfolio from
neighbouring assets. On the other hand, this long-short portfolio of neighbouring assets
still generates an alpha of 0.92% (t = 5.70) with respect to the four-factor Carhart model.
This clearly indicates that my long-short portfolio spans the momentum factor.

Inspired by Martin and Nagel (2022) who discriminate between in-sample and out-of-
sample predictability, the focus of my paper is fully on out-of-sample prediction. My decile
portfolios generate a wide range of expected returns, namely from -0.91% (t = −2.01) in
the lowest decile to 1.44% (t = 3.55) in the highest decile in excess of the risk-free rate.
This spread persists over time and does not disappear after excluding tiny stocks or when
considering only large stocks. Most importantly, the profitability comes from both the long
leg and the short side. I track the pattern of characteristics in my decile portfolios in over
40 years of out-of-sample study (from 1980 to 2021), and find that most of these patterns
are either monotonically linear or a U-shape or an inverse of a U-shape or an M-shape. This
finding suggests that the characteristics-returns relationship could be up to the order of 4,
whereas most of the literature has focused on the linear part. These patterns seem to be
invariant over time and they are stronger when the universe of data includes tiny stocks.

Closely Related Literature. My paper contributes to the literature that tries to model
the future risk premium as a function of lagged stock-level characteristics, such as Fama
and French (2008). Traditional approaches for mapping characteristics to the expected
returns include employing cross-sectional regressions used by Haugen and Baker (1996),
Lewellen (2015) and Light, Maslov, and Rytchkov (2017) or portfolio sorts such as Daniel,
Grinblatt, Titman, and Wermers (1997). Newer methods include machine learning methods
surveyed by Gu, Kelly, and Xiu (2020). Gu et al. (2021), Feng, Polson, and Xu (2018b)
and Feng, He, and Polson (2018a) use deep neural networks to map characteristics to the
risk premiums, while Chen, Pelger, and Zhu (2019) estimate Stochastic Discount Factor
with generative adversarial networks. In Seyfi (2023), I develop a new method to find
the most eminent characteristics. Li and Rossi (2020) employ boosted regression trees for
predicting mutual funds returns based on their characteristics. My method deviates from
the literature, however, by (1) the way the classification is defined, that is, forming decile
portfolio sorts and (2) the tool that I pick for solving this classification problem, which
is analogous to k-Nearest Neighbours6 (kNN) borrowed from machine learning and has
clear economic interpretations. Whereas machine learning methods often suffer from high
computational costs, over-fitting, and lack of transparency, my proposed approach is highly
transparent, simple, and non-parametric. There is no risk of over-fitting in my approach
because kNN does not need any training procedure.

My paper also alleviates the curse-of-dimensionality problem in the cross-sections of
6Cover and Hart (1967)
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returns. For example, Giglio, Liao, and Xiu (2021) argue that the curse of dimensionality
brings statistical inference problems. Of the most famous methods for handling the curse
of dimensionality is to apply dimension reduction approaches. Among others, Kozak,
Nagel, and Santosh (2018), Kozak et al. (2020), Lettau and Pelger (2020) use PCA-based
methods and Rapach, Strauss, and Zhou (2013), Feng, Giglio, and Xiu (2020) and Freyberger,
Neuhierl, and Weber (2020) opt LASSO-type approaches in order to pick the most important
variables. While these methods are based on handpicking potentially the most useful
features, I deviate from the literature by unifying the joint effect of characteristics zoo in
the neighbouring assets, a novel method for working with many characteristics at once.

My paper also contributes to the literature of building basis assets, that is, how test
portfolios should be created. Ahn, Conrad, and Dittmar (2009) use return correlations to
sort assets into portfolios, while Moritz and Zimmermann (2016) and Bryzgalova, Pelger,
and Zhu (2020) use Trees to group similar assets into portfolios. As stated by Nagel
and Singleton (2011), managed portfolios are the optimal tools for hypothesis testing in
conditional asset pricing. Inspired by Lewellen, Nagel, and Shanken (2010) who suggest
that using double-sort portfolios provides a low hurdle for asset pricing models, I use 94
characteristics to form portfolios of neighbouring assets which is a new way of creating
test assets based on many characteristics. The portfolios I create span the investment
opportunity set, and can be used for testing asset pricing models.

Lastly, my paper proposes a new way of defining connected firms through neighbouring
assets, complementary to the literature trying to find linked firms, such as Barberis and
Shleifer (2003), Bouwman (2011), Shue (2013), Leary and Roberts (2014), and Kaustia and
Rantala (2015), among others.

I. Neighbouring Assets and Expected Returns

A. Motivation

The primitive intuition behind the idea of classifying assets based on their characteris-
tics lies in one key assumption. That is, the future risk premium of assets is a time-varying
function of their lagged characteristics. My cross-sectional classification of assets into decile
portfolios maps a large set of firm characteristics to the expected returns in a non-linear
setting. To highlight the importance of this application, consider a case where hundreds
of characteristics are available and non-linearities and interactions between these return
predictors are important. If non-linearities and interactions are naively added to the
set of return predictive signals, the number of predictors easily exceeds the number of
observations in each cross-section (Kozak (2020)).7 This large-dimensionality of predictors
exacerbated by complex functional forms makes standard approaches considered in Fama
and French (2008) practically infeasible: neither does it allow investors to create charac-

7If there are 100 firm characteristics available, for example, and one aims to consider all of the interac-
tions and non-linearities only up to the second order for predicting expected returns (such as size × bm,
momentum × size, β2, ...), then the number of predictors exceeds 5000, which is even more than the
number of stocks in each cross-section. In this case, even running cross-sectional regressions is no longer
feasible.
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teristic sorted portfolios nor to run cross-sectional regressions for deriving the joint, and
possibly complex, relationship between characteristics and expected returns (Green, Hand,
and Zhang (2014)). For this reason, Karolyi and Van Nieuwerburgh (2020) argue that "new
methods for the cross-section of returns" are needed to deal with the large-dimensionality
challenge of characteristics. In this paper, I show that through neighbouring assets, in-
vestors can map a large set of stock return predictors to the expected returns at once.
Or equivalently, one can derive the relationship between predictors, jointly, and expected
returns.

Indeed, the time-varying functional form of the characteristics-risk premium rela-
tionship can be complex. To capture this complexity, researchers recently started using
state-of-the-art machine learning tools pioneered by Gu et al. (2020). I model this functional
form based on only the training sample: I do not consider any closed functional form
for the relationship between characteristics and future returns and let past data derive
this relationship instead. This data-driven functional form addresses the aforementioned
concerns regarding if non-linearities and interactions matter, and if so, how they should
enter the model. I assume that every form of relationship a set of characteristics have had
with expected returns in the past will hold for the future, allowing for this relationship to
vary with time in the long term.

Modelling future risk premiums as a function of characteristics is a prediction problem.
I convert this prediction problem to a classification one in a novel way. I argue that
the problem of explaining/predicting variations in the expected returns through their
characteristics is equivalent to creating decile portfolios in which their expected (mean)
returns line up monotonically. Predicting a decile portfolio which is a function of rank
of expected returns is a multiclass classification which also reduces the noise. For the
out-of-sample study, I predict the decile portfolio that each asset belongs to, instead of
predicting the returns directly. These decile portfolios should generate dispersion in the
long run.

My approach for cross-sectional returns prediction, therefore, can be seen as a supervised
classification problem wherein I predict a decile portfolio (class) for each asset based on its
characteristics (features). One can analogize my methodology to the k-Nearest Neighbours
algorithm in machine learning. Basically, kNN is a simple classifier which classifies each
observation to a class based on the majority of its neighbours’ labels in the training sample.
In my approach, the training sample is the in-sample rolling window of panel data, labels
are decile portfolios and characteristics serve as features. From this perspective, this
paper is the first to suggest a pure machine learning supervised classification approach
for predicting the cross-sectional variation in stock returns. Machine learning papers
in asset pricing, so far, have focused on the regression, and not classification, wing to
tackle prediction problems (Kelly and Xiu (2021)). Classification methods, thus far, have
been considered useful mostly for binary types of problems like a corporate default8 and
consequently, asset pricing researchers neglected them in the cross-sections and inclined
to regression methods (Nagel (2021)). By defining features as lagged-characteristics and

8As an example, see Lessmann, Baesens, Seow, and Thomas (2015).
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target variables as decile portfolios based on the future expected returns, in this paper, I
introduce a new way of employing machine learning classifiers for cross-sections of returns.

Rather than clear economic interpretations that kNN has in this context, I briefly
motivate employing this classifier from a statistical point of view. The desired tool for
classifying assets into portfolios must have several features. First and foremost, it must be
transparent and the logic behind that should be interpretable. There are strong machine
learning classifiers, among which deep neural networks, but if the mapping function is
not interpretable, it does not teach us any lesson about the economy behind the result.
Sometimes, the situation is even worse; that is, the mapping function cannot even be seen
by the investor, which is referred to as black-box machines. Second, everything else equal,
we are interested in the simpler methods, as the complexity comes with a cost. Third, the
classifier must be able to handle multi-class data, as the behaviour of expected returns
cannot be summarized in only two portfolios or any other binary set. Forth, because we
know the asset returns are affected by both themselves and other assets’ past returns
and characteristics, the classifier must be able to combine time-series and cross-sectional
information at the same time. More importantly, the classifier must be able to handle large
datasets, either in the sample size or in the dimension. Fifth, the classifier must be able
to work with different types of distributions. I do not impose any prior assumption on the
distribution of characteristics. We are not necessarily interested in linear classifiers, as we
want to study the relationship between characteristics and expected returns from a broader
perspective. Hence, functional form flexibility also matters. Sixth, the classifier must be
supervised, because each asset has a target variable.

Among machine learning classifiers, kNN congregates all the above-mentioned features
at once. Specifically, kNN is reputed for being quite intuitive and simple. It is a non-
parametric classification technique which makes it very flexible when the relationship
between characteristics and expected returns is complex. It also handles unbalanced panel
data where the number of assets varies in each cross-section. The return predictability for
each asset comes from its neighbours that share similar characteristics in many dimensions.
This transparent intuition is a generalization of portfolio sorts in the literature where
grouping similar assets together in only two or three dimensions. Also defining neighbouring
assets in a novel way unifies the joint effect of characteristics. There is one key message
in using this classifier: past returns of an asset’s neighbours predict its future expected
returns.

Another reason why the neighbouring assets algorithm should generate cross-sectional
dispersion is that there exists a strong clustering effect between neighbouring assets,
which allows me to group these assets into portfolios sorted based on the expected returns.
Basically, the clustering effect occurs when observations in the same cluster or group have
a similar behaviour. In the asset pricing context, it can be interpreted as, all assets in each
portfolio/cluster (which have the same features) have similar expected returns (behaviour).
So, the same behaviour of each cluster/portfolio is similarity of expected returns. By forming
portfolios of assets with similar characteristics, in fact, I group assets with similar expected
returns together.
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B. Estimation of Expected Stock Returns

In this section, I explain how to predict the future return premium of each asset given
a large set of lagged characteristics through neighbouring stocks. This return prediction
requires first defining the target variable for both in-sample and out-of-sample sets. I define
target variables in the in-sample set as the decile portfolio that each asset belonged to. To
do so, I sort all assets at time t0 < t into one of the decile portfolios based on their expected
returns at time t0. Realized returns at each time consist of two components. One is the
idiosyncratic part which is the noisy constituent, and the other is the systematic element
which we are interested in predicting.

I model rj,t, the realized return for asset j at time t, as

rj,t = E(rj,t) + ϵj,t, (1)

where the first part is the expected return at time t and the second part is the idiosyncratic
noise. I aim for predicting classes in out-of-sample based on E(rj,t), that is I assume that
the systematic part is a function of most recent characteristics:

E(rj,t) = Ft−1(xj,t−1). (2)

Here Ft−1(.) is a function that maps the most recent characteristics to the expected returns
through neighbouring assets and allows for time-varying relationship between characteris-
tics and expected returns. I need then to estimate E(rj,t) to be used as my target variable
in the in-sample set. I proxy this unconditional expected return in the in-sample data as

E(rj,t) =
1
T

T−1

∑
t′=0

rj,t−t′ . (3)

Here T determines how much information from past we want to include in the target vari-
able. If T = 1, then I assume that realized returns are a function of lagged characteristics:

rj,t = Ft−1(xj,t−1) + ϵj,t. (4)

For T > 1, while E(rj,t) is capturing the information at time t, it assumes that previous
information in the past T − 1 months is also important for predicting the expected returns.
However, if T is becoming larger than enough, very far information might be irrelevant for
the estimation of future expected returns, and hence worsens the accuracy of the model
for predicting the true decile. Finally, I rank each asset based on its target variables to a
decile portfolio and in the out-of-sample set predict the portfolio to which each asset should
belong.

C. Methodology

In this section, I formally describe the framework of asset classification through neigh-
bouring assets. Forming managed portfolios is, indeed, a classification problem. I deviate
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from the literature by predicting the decile portfolio that each asset belongs to, instead of
predicting the expected returns directly. I denote decile portfolio i by ci, such that c1 and
c10 are loser and winner portfolios respectively. Suppose that asset j at time t0, aj,t0 , has
the most recent characteristics xj,t0−1, with an expected return E(rj,t0). At each month in
the in-sample period, I sort all assets based on their expected returns to one of the decile
portfolios, implying to have a balanced dataset in the in-sample period. The decile portfolio
Ct0 for asset aj,t0 at each time is a monotonic function of its expected returns:

Ct(aj,t0) = h(E(rj,t0)|Rt0), (5)

where Rt0 is the whole cross-section of returns at time t0. Apparently, as h(.) is a decile
maker function, all the assets in the cross-sections belong to one of c1, c2, . . . , and c10, with
the same number of assets in each one. These decile portfolios are the target variable which
the model aims to predict, while the set of lagged-characteristics xj,t0−1 are the explanatory
variables for asset j at time t0. Ultimately, I aim to map lagged-characteristics xj,t−1 to the
decile portfolios Ct(aj,t) ∈ {c1, c2, . . . , c10} at each time t in the out-of-sample period.

For classifying each asset at time t, the in-sample period includes all available informa-
tion up to time t − 1. I consider τ months for the length of the rolling window of in-sample
data. Therefore, the in-sample set potentially includes all data points in

St =

{(
xs,t−t′−1, Ct−t′(as,t−t′)

)}
(6)

where t′ = 1, . . . , τ and for all assets aj,t−t′ in this time period, where target variables
Ct−t′(aj,t−t′) are already known to the investors at time t. Finally, St is the in-sample set I
use for time t, and the out-of-sample includes the whole cross-section of assets at time t.

In this paper, I use a distance-weighted scheme for decile prediction. I assume that
closer assets would contribute more than further assets even after identifying the k nearest
ones. I define the distance weights for asset as,t−t′ when comparing to the asset aj,t as:

ω(as,t−t′ |aj,t) =


1

l(xs,t−t′−1,xj,t−1)
, if as,t−t′ ∈ k neighbours of aj,t

0, otherwise
(7)

for some distance measure l. Clearly, in equation 7 assets which are among the k neighbours
of aj,t get a weight proportional to the inverse of their distance, while other assets get a
weight of zero, i.e., they are ignored for decile prediction. I show that the model performance
is robust to different measures of l. I consider a euclidean distance measure in this context
and treat all the features equally, that is, I weigh characteristics evenly assuming that they
contribute equally to separating assets with different expected returns.

Finally, for classifying asset aj,t, I sum over the weights of each class and put aj,t into
the decile portfolio which has the highest summation. Mathematically,

Ct(aj,t) = arg max
c∈{c1,...,c10}

∑
s∈St

ω(as,t−t′ |aj,t)δ(c, Ct−t′(as,t−t′)), (8)
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where δ(., .) is a Kronecker delta function:

δ(x1, x2) =

1, if x1 = x2

0, otherwise
. (9)

Intuitively, asset aj,t goes to decile portfolio c ∈ {c1, . . . , c10} if the summation of weights
of assets in portfolio c in the in-sample data is the highest. For an equally weighted
(versus distance weighted) scheme, the equation 8 will simply become a mode function.
Therefore equation 8 can be seen as a weighted mode function. Indeed, this algorithm is
a local classifier so that its viewing angle stretches only to the kth neighbour. However, if
k approaches |St|, the number of entire assets in the training set, the method becomes a
global classifier.

D. Bayesian Perspective of Neighbouring Assets Algorithm

Now, I estimate the posterior probability that asset aj,t belongs to portfolio ci for i =
1, . . . , 10. For the sake of simplicity, I first consider the case that each neighbouring asset in
the in-sample data has equal weight, that is, uniform weighting. For each asset aj,t with
characteristics xj,t−1, consider a region R in characteristics hyperspace with the center
xj,t−1 such that R captures a set of k assets from set St, namely as′,t−t′−1 for t′ = 1, . . . τ, with
characteristics xs′,t−t′−1, and s′ = 1, . . . , k (without loss of generality). It is clear that

l(xs′,t−t′−1, xj,t−1) ≤ l(xs,t−t′−1, xj,t−1)

for all s which is not among the set s′ ∈ {1, . . . , k}, and for some distance measure l. I denote
the volume of R in characteristic hyperspace as V and suppose that it contains ni assets
which belong to decile portfolio ci. Moreover, I denote the whole number of assets belonging
to portfolio ci in the entire set St by Ni, so that

∑
i

Ni = |St|.

Then the conditional decile portfolio estimation for asset aj,t with set of characteristics xj,t−1

is:
p(aj,t|ci; xj,t−1) =

ni

NiV
. (10)

Likewise, the unconditional probability would be

p(aj,t|xj,t−1) =
∑i ni

|St|V
=

k
|St|V

. (11)

And the prior labels of portfolios are

p(ci) =
ni

|St|
. (12)
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Now using Bayes’ theorem we observe that the posterior probability that asset aj,t belongs
to portfolio i at time t is given by:

p(ci|aj,t; xj,t−1) =
p(aj,t|ci; xj,t−1)p(Ci)

p(aj,t|xj,t−1)
=

ni

k
. (13)

Next, I weigh all ni points in the R by the inverse of their distance from asset aj,t, that
is,

ω(as,t−t′ |aj,t) =
1

l(xs′,t−t′−1, xj,t−1)

for all assets j in the region R centered by lagged-characteristics of asset aj,t. In this case,
the posterior probability of asset classification is

p(ci|aj,t; xj,t−1) =
∑k

s′=1 ω(as′,t−t′ |aj,t)δ(ci, Ct−t′(as′,t−t′))

∑k
s′=1 ω(as′,t−t′ |aj,t)

, (14)

where δ(., .) is defined according to equation 9. Equation 14 means that the posterior
probability of asset aj,t belongs to portfolio ci given a set of characteristics is proportional to
the sum of the weights of its neighbours which belonged to portfolio ci. Therefore, in order
to maximise the probability of true classifications, one should put aj,t to portfolio ci that has
the highest summation of weights, ∑k

s′=1 ω(as′,t−t′ |aj,t)δ(ci, Ct−t′(as′,t−t′)):

Ct(aj,t) = arg max
c∈{c1,...,c10}

p(c|aj,t; xj,t−1). (15)

In a case where all weights are equal, equation 14 becomes as equation 13. Intuitively, it is
most likely that asset aj,t belongs to portfolio ci if the majority of its closest neighbours have
belonged to this portfolio in the past.

E. Portfolios of Neighbouring assets

In this section, I consider another case wherein portfolios of neighbouring assets would
predict future returns of individual assets. Considering in-sample panel data from the past
τ months, for each asset j at time t, I create a portfolio which contains asset j neighbours in
each month. Formally, without loss of generality, assume that assets a1,t−t′ , · · · , ak,t−t′ are
the k nearest neighbours of asset j at time t − t′. For this month, I create a portfolio of these
k assets:

r∗pj,t−t′ =
1
k

k

∑
s=1

rs,t−t′ , (16)

where r∗pj,t−t′ is the return of portfolio of neighbouring assets of asset j at time t − t′, for
t′ = 1, 2, · · · , τ.9 Then I predict a return for asset j at time t (out-of-sample) as:

r̂j,t =
1
τ

τ

∑
t′=1

rpj,t−t′ . (17)

9I find that the model is robust to distance-weighting or equally-weighting portfolios of neighbours.
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Finally, I sort assets into decile portfolios based on the predicted returns and update
portfolios monthly. Intuitively, when a set of assets with the same set of characteristics as
asset j have generated an average return of r∗pj,t−t′ in the past, it is likely, then, that asset j
at time t will have similar performance to the average performance of its neighbours in the
past.

II. Empirical Analysis

In this section, I present the empirical analysis which contains 42 years of out-of-sample
study.

A. Data

I obtain monthly individual stock returns from CRSP for all firms in the NYSE, AMEX,
and NASDAQ for the period starting from January 1970 until the end of 2021. This
universe of data contains more than 3.7 million individual observations.10 For labelling
the data, each firm must have at least T = 12 past returns. Considering this removes the
samples without labels, yielding more than 3.4 million observations. However, in the case
that I consider the rank based on the realized returns for the in-sample data, I do not
remove these observations. In the beginning, I remove the smallest 5% stocks based on
their lagged market capitalization. These stocks are mostly very illiquid and have many
missing characteristics. In fact, because of their small sizes, including them does not distort
the results as long as we use a value-weighting scheme. However, removing them assures
that the results are not affected by very tiny stocks. After removing them still the data set
includes more than 3.2 million observations with 28,611 unique assets. Next, I consider
three sets of data for my analysis. First is the universe of all data except the 0.05 tiniest
which I refer to all stocks. Second, is the stocks which have a market capitalization above
20% of NYSE, which I refer to this as all-but-tiny stocks. Third, I consider only large
stocks which include only stocks with a market cap higher than the NYSE median. These
three data sets are useful for studying the clustering effect and the relationship between
characteristics and expected returns while ensuring that these relationships are not derived
from a specific set of stocks.

For the out-of-sample study, I start the analysis in January 1980 and consider the whole
data set before that for the in-sample analysis. Of course, the in-sample set is a rolling
window which moves before the out-of-sample set. For the out-of-sample study, the average
number of stocks per month for all stocks exceeds 5600 assets, while more than 2800 and
1400 for all but tiny and large stocks, respectively.

For the characteristics, I use data provided by Green et al. (2017) and Gu et al. (2020)
who build a large-collection of 94 stock predictors.11 I use the same acronyms used by Gu

10I follow Gu et al. (2020) by including stocks with prices below $5, share codes beyond 10 and 11, and
financial firms, to make the data as large as possible. However, applying common filters, such as using only
share codes 10 and 11, does not change the results.

11I download data from Dacheng Xiu website.
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et al. (2020) and list them in Table A1 in the Appendix. One issue is the missing character-
istics, which I follow Gu et al. (2020) by imputing them by the cross-sectional median. For
finding neighbouring assets, all the features must have the same scale, otherwise, some
features with larger scales dominate others, and the results will be extracted based on
just those features. Therefore, I cross-sectionally demean all characteristics and make
them unite variance. In order to alleviate the effect of outliers, I also winsorize data in
0.01 and 0.99 levels. I obtain risk-free rate data from Fama and French library, as well as
market returns, size, value, operating profitability, and investment factors. I download q
and augmented q model (q5) from the work based on Hou, Mo, Xue, and Zhang (2019) and
Hou, Mo, Xue, and Zhang (2021).

B. Model Parameters

The neighbouring assets framework requires only one hyper-parameter to be fixed before
the analysis starts, which is a small number compared to other machine learning tools.
This parameter is k, the number of neighbours for each asset. As I use a distance-weighted
scheme, the role of k becomes less important, as the further neighbours receive lower
weights, sometimes closer to zero. I show that results in the distance-weighted scheme
are robust for large enough ks. I choose k = 1000 for the main analysis and later consider
different k in the robustness checks and show that the model is not sensitive to the amount
of k.

Moreover, in the data processing stage, there are three hyper-parameters which must be
tuned (fixed) for defining the target classes and explanatory variables. One is T in equation
3 which determines the labels. Intuitively, T captures the information I want to include in
the target class of my in-sample data. The case T = 1 is equivalent to mapping the most
recent characteristics to the realized returns. I consider two cases where T = 1, and T = 12.
For the latter case, I consider one year including the current month for predicting the labels
based on the average of last year’s returns. I show that the model performs well in both
cases.

Another parameter which is also related to defining the set St is τ in equation 6.
Intuitively, τ determines how much information from the past must be considered in
the in-sample set, St. I assume that past data in the neighbourhood of asset aj,t carry
predictive information. However, very far data might be irrelevant as the pattern of
characteristics might change over time. Although I find that the characteristic patterns are
almost constant and do not vanish over time, the model still has the flexibility to recognize
structural changes in characteristic patterns when creating decile portfolios. I show that
model performance is robust over the various amounts of τ when it captures at least 3 years
of in-sample data. For the main analysis, I set τ = 120, which means I include 10 previous
years in St that can be used in the out-of-sample predictions.

Lastly, I consider different distance metrics rather than Euclidean distance and show
the results do not change with respect to the distance measure.
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C. Out of Sample Study of Cross-Sections

I begin the out-of-sample study from January 1980 with a 10-years in-sample rolling
window (τ = 120). The class labels are observable only in the in-sample set. I consider the
whole 94 characteristics at once for finding neighbouring assets. Based on the neighbouring
assets I predict the decile portfolio for each asset in each period, and update portfolios
month by month.

Table 1 shows the results for value-weighted portfolios when 94 characteristics are
considered for finding the neighbouring assets. The first four columns show the case when
the decile portfolios are based on the realized returns. For example, if an asset’s realized
return has been among the lowest 10%, then its rank (class) is 1. In this case, the target
variables are predicted based on rt, only the realized returns. The last four columns, on the
other hand, are the counterpart results when assets labels are determined based on the
rank of last year’s average returns, 1

12 ∑11
t′=0 rt−t′ . For instance, in the in-sample data, an

asset whose last year’s average returns has been among the lowest 10% has a rank of 1.
Although the focus of my analysis is only on value-weighted portfolios, I report equally-
weighted counterpart portfolios in the appendix Table A2. The mean columns show the
average of monthly excess realized returns of decile portfolios in the period 1980-2021 in
percentage, while t-stat tests if the realized mean returns are significantly different from
zero. The columns SR report annualized Sharpe ratios. Panel (a) shows the results when
the universe of stock includes all but the 5% tiniest stocks, whereas panels (b) and (c) show
the results when considering all but tiny and large stocks, respectively. The "LS" shows
the performance of a long-short portfolio which goes long in decile 10 and short in decile
1. On the left side, in panel (a), the average returns vary between -0.46% (t = −1.14) and
1.25% (t = 3.14) in the lowest and highest decile portfolio, with a 1.71% (t = 8.66) of average
returns for the long-short portfolio. The annualized Sharpe ratio in this case is the highest,
1.34. An equally weighted portfolio even has a higher Sharpe ratio of 1.87 as shown in
Table A2. In the right side of Table 1, the decile 1 average is -0.91%, while decile 10 has a
mean average of 1.44%, yielding to a performance of 2.36% for a long-short portfolio with
t = 7.42 with a Sharpe ratio of 1.15. The dispersion for panel (b) is lower, 0.93 (t = 6.18) on
the left side, and 1.33% (t = 5.18) on the right side, significantly different than zero. The
Sharpe ratio on the left side stands at 0.95. Not surprisingly, when I consider only large
stocks this dispersion drops to 0.63 (t = 4.12) and 0.88% (t = 3.39) in the left and right
side of the Table 1 respectively. Apparently, decile 1 (10) has the lowest (highest) average
realized returns and all decile portfolios fairly line up monotonically.

Next, I evaluate my long-short portfolios with common factor models. I consider six
famous factor models, namely CAPM, Fama French three-factor model (FF3), Carhart
four-factor model (Carhart), Fama French five-factor model (FF5), q model and augmented
q model with expected growth (q5). These factor models are based on a small set of, yet
important, characteristics and have been shown to explain many anomalies. I show alphas
of a value-weighted long-short portfolio, their t−statistics, as well as adjusted R2 for all
six-factor models in the panel (a) of Table 2 in time-series regressions. Again the first three
columns are related to the case when rt is used as the target variable and the last three
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Target variable: rt Target variable: E(rt)

mean std t-stat SR mean std t-stat SR

Panel (a): All data

1 -0.46 9.07 -1.14 -0.18 -0.91 10.19 -2.01 -0.31
2 0.21 7.63 0.61 0.09 0.23 7.87 0.65 0.10
3 0.45 6.15 1.65 0.26 0.59 5.88 2.26 0.35
4 0.68 4.77 3.20 0.49 0.60 5.15 2.62 0.40
5 0.72 3.99 4.03 0.62 0.61 4.33 3.16 0.49
6 0.69 3.94 3.90 0.60 0.66 4.38 3.38 0.52
7 0.83 4.34 4.28 0.66 0.78 4.40 3.99 0.62
8 0.80 5.15 3.48 0.54 0.96 5.18 4.16 0.64
9 0.94 7.12 2.98 0.46 0.91 6.62 3.09 0.48
10 1.25 8.90 3.14 0.48 1.44 9.11 3.55 0.55
LS 1.71 4.43 8.66 1.34 2.36 7.13 7.42 1.15

Panel (b): All but tiny stocks

1 0.22 8.35 0.58 0.09 -0.11 9.18 -0.26 -0.04
2 0.52 6.44 1.81 0.28 0.52 6.47 1.81 0.28
3 0.70 5.44 2.90 0.45 0.64 5.41 2.63 0.41
4 0.77 4.47 3.87 0.60 0.70 4.41 3.55 0.55
5 0.79 3.98 4.44 0.69 0.73 4.21 3.90 0.60
6 0.67 4.13 3.62 0.56 0.67 4.17 3.58 0.55
7 0.79 4.46 3.96 0.61 0.73 4.47 3.69 0.57
8 0.74 5.08 3.26 0.50 0.89 4.71 4.26 0.66
9 0.85 6.18 3.10 0.48 0.83 5.62 3.32 0.51
10 1.15 7.92 3.26 0.50 1.22 8.09 3.40 0.52
LS 0.93 3.39 6.18 0.95 1.33 5.77 5.18 0.80

Panel (c): Large stocks

1 0.38 7.92 1.07 0.16 0.22 8.54 0.57 0.09
2 0.43 6.33 1.52 0.24 0.49 6.13 1.80 0.28
3 0.74 5.16 3.24 0.50 0.62 5.10 2.73 0.42
4 0.62 4.34 3.22 0.50 0.74 4.47 3.72 0.57
5 0.69 3.95 3.94 0.61 0.79 4.19 4.26 0.66
6 0.84 4.25 4.43 0.68 0.60 4.31 3.13 0.48
7 0.75 4.45 3.79 0.58 0.77 4.37 3.93 0.61
8 0.83 5.02 3.69 0.57 0.82 4.78 3.83 0.59
9 0.91 6.11 3.34 0.52 0.83 5.31 3.50 0.54
10 1.01 7.45 3.04 0.47 1.09 7.50 3.26 0.50
LS 0.63 3.45 4.12 0.64 0.88 5.81 3.39 0.52

Table 1- The performance of portfolios based on 94 characteristics in 1980-2021

This table reports the average monthly out-of-sample performance of value-weighted portfolios based on the
all 94 characteristics listed in table A1. The four left columns show the results when the in-sample labels
are ranked based on the realized returns (according to equation 4), while the four right columns show the
counterpart results when the labels are based on the average of last year returns (T = 12 in equation 3).
Columns titled "mean" show the average monthly excess returns of created portfolios from Jan 1980 to Dec
2021 in percentage. std is the monthly standard deviation of portfolios. t−stat shows if the risk premiums
are significantly different from zero and SR demonstrates the annualized Sharpe ratio. Panel (a) considers all
data except the 5% tiniest for creating portfolios, while panel (b) and (c) includes all but tiny (above 20% NYSE
percentile) and large stocks (above NYSE median), respectively. LS shows the performance of a long-short
portfolio which goes long (short) in decile 10 (1). The number of neighbours is considered k = 1000 with τ = 120
the number of months included in the in-sample data. The equally-weighted counterparts are shown in table
A2.
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columns show the results when the target variable is 1
12 ∑11

t′=0 rt−t′ . The equally-weighted
portfolio alphas are shown in Table A3. For the case of all data in the right side of Table
2 panel (a), a FF3 model generates the highest monthly alpha of 2.72% with t = 8.86. The
left side FF3 is equally significant: FF3 monthly alpha 1.77% with t = 8.89, which is the
highest t−value. Still, the equally-weighted portfolio has a higher significant alpha: 1.77%
with t = 12.30, as shown in Table A3. In the right side of Table 2, as the target variables
are correlated with the momentum, a Carhart model adjusted R2 varies between 0.57 and
0.63. Still, in all cases, alphas from a Carhart model are significantly different than zero:
for all data with 1.81% (t = 8.39). On the left side, the t−values are almost equal to the
right side in all cases.

These portfolios are very well diversified. Panel (b) of Table 2 shows the average number
of assets in each portfolio in the out-of-sample set. Of course, portfolios in the in-sample
have an equal number of assets.

Now I consider two simpler models, one with three well-known characteristics including
size, book-to-market and 12-month momentum and the second model which adds 9 more
characteristics to the previous ones. These 9 characteristics are documented to be among
the most important features by Gu et al. (2020) among others. The second model, therefore,
contains 12 characteristics including 1-month momentum (Jegadeesh and Titman (1993)),
change in momentum (Gettleman and Marks (2006)), maximum daily return (Bali et al.
(2011)), industry momentum (Moskowitz and Grinblatt (1999)), return volatility (Ang et al.
(2006)), dollar trading volume (Chordia et al. (2001)), sales to price (Barbee Jr et al. (1996)),
share turnover (Datar et al. (1998)), and asset growth (Datar et al. (1998)) as well as the 3
characteristics in the first model. The neighbouring assets will be found only using these
characteristics and the portfolios are updated monthly. The results for value-weighted
portfolios are shown in Table 3. Panel (a) shows the case when the target variable is rt,
while panel (b) shows the counterpart results for the case when the target variable is
1
12 ∑11

t′=0 rt−t′ . Mean (1), (10) and (LS) show the average returns for the lowest and highest
deciles, and a long-short portfolio, respectively. SR shows the annualized Sharpe ratio
of the long-short portfolio. In both panels in all data sets the Sharpe ratios and t-values
increase by increasing the number of characteristics, suggesting that the predictive power of
neighbouring assets increases when more characteristics are taken into account for finding
the neighbours. Even for large stocks, in most cases alphas are significant. For all data, the
Sharpe ratio almost doubles once we move from 3 characteristics to 94 characteristics. The
equally-weighted portfolios are shown in Table A4.

C.1. Stochastically shrinking the in-sample set

The in-sample set includes 120 months of data, and in each month there are several
thousands of assets. Therefore, in-sample data contains several hundred thousand assets.
Finding k = 1000 nearest neighbours through several hundred thousand is computationally
time-consuming. When I use the average returns to define the target variables, it is likely
that most of the observations in the in-sample data do not affect the results. In other words,
if one considers a smaller set of data the results should not change. However, as I assume
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Target variable: rt Target variable: E(rt)

All data All but tiny Large
stocks

All data All but tiny Large
stocks

Panel (a): Performance of long-short portfolios

αCAPM 1.70 0.99 0.72 2.51 1.50 1.03
t-stat 8.51 6.52 4.71 7.85 5.86 4.00
adj R2 0.00 0.01 0.02 0.01 0.03 0.03

αFF3 1.77 1.02 0.77 2.72 1.68 1.26
t-stat 8.89 6.68 5.02 8.86 6.88 5.21
adj R2 0.02 0.01 0.04 0.10 0.13 0.16

αCarhart 1.34 0.65 0.41 1.81 0.92 0.52
t-stat 7.78 5.18 3.20 8.39 5.70 3.17
adj R2 0.29 0.36 0.36 0.57 0.63 0.62

αFF5 1.56 0.88 0.64 2.52 1.50 1.08
t-stat 7.63 5.59 4.02 7.90 5.90 4.33
adj R2 0.04 0.03 0.06 0.11 0.14 0.17

αq 1.33 0.70 0.47 1.95 1.02 0.67
t-stat 6.75 4.62 3.09 6.40 4.28 2.77
adj R2 0.13 0.13 0.15 0.20 0.25 0.24

αq5 1.18 0.56 0.29 1.73 0.73 0.27
t-stat 5.61 3.52 1.78 5.32 2.88 1.05
adj R2 0.14 0.14 0.17 0.20 0.27 0.27

Panel (b): The average number of assets in each portfolio

1 1001 489 188 620 271 103
2 412 115 49 565 258 96
3 322 147 83 476 233 125
4 498 223 148 551 303 184
5 509 415 239 692 352 217
6 1052 526 274 697 338 185
7 724 378 202 599 309 157
8 555 244 108 512 256 117
9 585 213 87 551 274 119
10 446 371 184 365 238 115

Table 2- Risk adjusted returns for value-weighted long-short portfolios

Panel (a) of this table reports monthly alphas, t−values and adjusted R2 for out-of-sample performance of
value-weighted long-short portfolios. The three left columns show the results when the in-sample stocks
are ranked based on the realized returns (according to equation 4), while the three right columns show the
counterpart results when the labels are based on the average of last year returns (T = 12 in equation 3). All
data includes the universe of stocks except the 5% tiniest for creating portfolios, while all but tiny and large
stocks include the assets with above 20% and 50% NYSE market-cap, respectively. I consider six factor models
and report alpha and their t−stats based on them. These six models include CAPM, Fama French three factor
model (FF3), Carhart four factor model (Carhart), Fama French 5 factor model (FF5), q model and augmented q
model with expected growth (q5). The number of neighbours is considered k = 1000 with τ = 120 the number of
months included in the in-sample data. The counterpart results for equally-weighted portfolios are shown in
table A3 in the appendix. Penal (b) shows the average number of assets in each portfolio.
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All data All but tiny Large stocks

3 char 12 char 3 char 12 char 3 char 12 char

Panel (a): Predicting rt

mean (1) 0.23 -0.23 0.36 0.10 0.47 0.25
t-stat 0.61 -0.57 1.11 0.26 1.58 0.74
mean (10) 1.25 1.37 1.17 1.28 1.16 1.17
t-stat 3.63 3.72 3.83 3.85 4.00 3.69
mean (LS) 1.02 1.60 0.82 1.18 0.68 0.92
t-stat 4.29 8.22 3.92 6.79 3.30 5.68
SR 0.66 1.27 0.61 1.05 0.51 0.88
αCAPM 1.16 1.69 0.91 1.30 0.76 1.00
t-stat 4.88 8.64 4.34 7.52 3.66 6.14
αFF3 1.28 1.75 1.03 1.33 0.91 1.04
t-stat 5.52 8.93 5.09 7.67 4.59 6.44
αCarhart 0.60 1.29 0.36 0.87 0.24 0.62
t-stat 3.64 7.87 2.97 6.47 2.10 4.88
αFF5 1.03 1.41 0.84 1.10 0.80 0.85
t-stat 4.30 7.17 4.00 6.19 3.89 5.11
αq 0.60 1.19 0.47 0.88 0.44 0.64
t-stat 2.73 6.37 2.39 5.20 2.24 4.07
αq5 0.46 1.05 0.28 0.69 0.29 0.44
t-stat 1.96 5.30 1.35 3.82 1.36 2.66
Panel (b): Predicting E(rt)
mean (1) -0.32 -0.67 -0.02 -0.17 0.17 0.00
t-stat -0.72 -1.44 -0.04 -0.42 0.47 0.00
mean (10) 1.32 1.29 1.30 1.15 1.15 1.11
t-stat 3.89 3.54 4.19 3.46 3.98 3.54
mean (LS) 1.64 1.96 1.31 1.32 0.99 1.11
t-stat 4.49 5.57 4.05 4.46 3.11 3.92
SR 0.69 0.86 0.63 0.69 0.48 0.60
αCAPM 1.88 2.22 1.53 1.57 1.18 1.32
t-stat 5.16 6.34 4.75 5.36 3.73 4.71
αFF3 2.13 2.45 1.77 1.78 1.43 1.52
t-stat 6.08 7.30 5.74 6.42 4.79 5.64
αCarhart 0.91 1.37 0.64 0.83 0.33 0.61
t-stat 4.84 6.47 4.56 5.33 2.47 3.92
αFF5 1.82 2.19 1.44 1.59 1.16 1.34
t-stat 5.02 6.29 4.53 5.51 3.75 4.79
αq 1.05 1.50 0.77 1.01 0.56 0.81
t-stat 3.16 4.64 2.61 3.70 1.89 3.04
αq5 0.69 1.00 0.41 0.57 0.22 0.39
t-stat 1.94 2.93 1.31 1.97 0.68 1.38

Table 3- The performance of value-weighted portfolios based on 3 and 12 characteristics in
1980-2021

This table reports the average monthly out-of-sample performance of value-weighted portfolios based on 3
and 12 characteristics. Panel (a) show the results when the in-sample labels are ranked based on the realized
returns (according to equation 4), while panel (b) show the counterpart results when the labels are based on
the average of last year returns (T = 12 in equation 3). Rows titled "mean (1), (10) and (LS)" show the average
monthly excess returns of portfolios 1, 10 and long-short portfolio from Jan 1980 to Dec 2021 in percentage and
SR demonstrates the annualized Sharpe ratio. The number of neighbours is considered k = 1000 with τ = 120
the number of months included in the in-sample data. The equally-weighted counterpart results are presented
in table A4.
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that the past data up to 10 years contain predictive information, instead of shortening
the length of the in-sample rolling window, I propose a stochastically selection of assets
that yields shrinking the in-sample set. In this case, I uniformally draw a sample from the
training set and make the out-of-sample prediction based on the selected observations in
the in-sample. By doing so, outliers are very likely to be removed from the in-sample set,
helping to increase the model performance. Kusner, Tyree, Weinberger, and Agrawal (2014)
point out that using the stochastic selection in the in-sample data makes the kNN classifier
substantially more robust in noisy environments.12 With a stochastic selection of assets in
the in-sample data, it turns out that the performance of the model does not come from a
specific group of stocks. This suggests that the factor structure embedded in cross-sections
of returns exists even in a smaller group of randomly selected stocks. Here I show that the
dispersion does not disappear, if not getting stronger, when the size of in-sample data is
stochastically shrunk.

I consider a parameter π which affects the size of in-sample data St. π = 1 means that
the whole universe of stocks is included for finding the neighbours (no stochastic selection).
A π < 1 samples from the universe of data and finds the neighbouring assets among them.
A small π reduces the sample size with the order of 1 − π. A combination of π and τ

provides a wealth of information from the time-series and the cross-sections with reducing
the noise effect. While a large τ (in this 120 months) assures that the past information from
long enough is included in the in-sample, π prunes this sample by removing the outliers
and noisy data. With a stochastic selection, in order to keep the in-sample size relatively
small for the three data sets, I repeat the analysis with π = 0.05 for three different
data sets, meaning that only 5% of assets in the in-sample are used for out-of-sample
predictions. In section II.G.4, I show that the results are robust for different amounts of
π. The average returns of long-short portfolios for all panels increase by increasing the
number of characteristics, implying, again, that many characteristics jointly contribute
to the cross-sectional variation in expected returns. For the case of 94 characteristics,
the mean realized returns for all, all but tiny, and large stocks value-weighted long-short
portfolios are 2.41% (t = 7.03), 1.75% (t = 5.96) and 1.30% (t = 3.65), respectively. The
realized returns line up fairly monotonically, with decile 1 (10) having the lowest (highest)
average realized returns.

Considering 3, 12 and 94 characteristics, Table 4 shows the performance of value-
weighted long-short portfolios when there is a stochastic selection with π = 0.05. In most
cases, alphas and t-statistics increase by increasing the number of characteristics. When
94 characteristics are considered in the third column, a FF3 model generates the highest
monthly alpha of 2.70% with t = 8.15. With 94 characteristics, for all but tiny and large
stocks FF3 alphas are 2.11% (t = 7.53) and 1.71% (t = 4.94), respectively. Almost all alphas
are economically and statistically significant. For all data, all monthly alphas are above
1.65%. The counterpart results for equally-weighted portfolios are shown in Table A5.

12Hinton and Roweis (2002) and Tarlow, Swersky, Charlin, Sutskever, and Zemel (2013) propose stochastic
selections for a k-nearest neighbours classifier in a machine learning setting.
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All data All but tiny Large stocks

3 char 12 char 94 char 3 char 12 char 94 char 3 char 12 char 94 char

αCAPM 1.92 1.99 2.46 1.59 1.61 1.88 1.28 1.44 1.50
t-stat 5.41 5.81 7.08 4.89 5.87 6.35 3.97 4.94 4.20
adj R2 0.03 0.01 0.00 0.03 0.02 0.01 0.02 0.03 0.02

αFF3 2.14 2.23 2.70 1.83 1.81 2.11 1.52 1.62 1.71
t-stat 6.21 6.79 8.15 5.92 6.86 7.53 4.95 5.77 4.94
adj R2 0.10 0.10 0.10 0.13 0.11 0.13 0.13 0.10 0.09

αCarhart 0.94 1.23 1.85 0.70 0.96 1.36 0.42 0.75 0.93
t-stat 5.05 5.48 7.04 4.92 5.77 6.29 2.76 4.00 3.16
adj R2 0.74 0.59 0.45 0.82 0.66 0.50 0.79 0.61 0.36

αFF5 1.78 2.06 2.56 1.51 1.68 1.96 1.26 1.47 1.69
t-stat 5.03 6.04 7.41 4.73 6.15 6.72 3.98 5.02 4.67
adj R2 0.12 0.10 0.10 0.15 0.12 0.13 0.14 0.11 0.09

αq 1.03 1.47 1.93 0.83 1.19 1.49 0.64 0.94 1.12
t-stat 3.20 4.47 5.78 2.77 4.44 5.20 2.09 3.31 3.16
adj R2 0.29 0.19 0.18 0.28 0.17 0.17 0.22 0.18 0.14

αq5 0.72 1.00 1.65 0.49 0.78 1.16 0.31 0.56 0.58
t-stat 2.11 2.88 4.63 1.55 2.77 3.81 0.96 1.86 1.54
adj R2 0.30 0.21 0.18 0.29 0.20 0.19 0.23 0.20 0.17

Table 4- Risk adjusted returns for a value-weighted long-short portfolio with a stochastic
selection

This table reports monthly alphas, t−values and adjusted R2 for out-of-sample performance of value-weighted
long-short portfolios where there is a stochastic selection in the training sample with π = 0.05. The results are
shown for the case three cases when 3 characteristics, 12 characteristics and 94 characteristics are used to
find neighbouring assets. The target variables are defined based on the average of last year returns (T = 12 in
equation 3). All data includes the universe of stocks except the 5% tiniest for creating portfolios, while all but
tiny and large stocks include the assets with above 20% and 50% NYSE market-cap, respectively. I consider
six factor models and report alpha and their t−stats based on them. These six models include CAPM, Fama
French three factor model (FF3), Carhart four factor model (Carhart), Fama French 5 factor model (FF5), q
model and augmented q model with expected growth (q5). The number of neighbours is considered k = 1000
with τ = 120 of months included in the in-sample data. The counterpart results for equally-weighted portfolios
are shown in table A5 in the appendix.

C.2. Portfolios of Neighbouring Assets

In this section, I create portfolios of neighbouring assets according to section I.E. I use all
but the 5% tiniest stocks for creating portfolios. For each asset at each month between Jan
1980 and Dec 2021, I create τ = 120 months past portfolios, which contain k = 50 nearest
neighbours at each month.13 By monthly updating portfolios, I show the out-of-sample
performance of decile portfolios in Table 5 panel (a). On average there are 643 assets in
each portfolio. The left side shows the results for a value-weighted portfolio while the right
side presents the equally-weighted counterparts. Again, the average realized returns line
up monotonically, and a value-weighted long-short portfolio generates a monthly average
return of 1.66% (t = 6.17), with an annualized Sharpe ratio of 0.95. The equally-weighted
long-short portfolio has a higher average monthly return of 2.79% (t = 13.74) with a Sharpe

13I find that the results are robust to different values of k.
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value-weighted equally-weighted

mean t−stat SR mean t-stat SR

Panel (a): Decile portfolios

1 -0.37 -1.08 -0.17 -0.61 -1.68 -0.26
2 0.35 1.36 0.21 0.45 1.75 0.27
3 0.47 2.21 0.34 0.57 2.60 0.40
4 0.61 2.84 0.44 0.60 2.73 0.42
5 0.64 3.02 0.47 0.75 3.42 0.53
6 0.72 3.31 0.51 0.85 3.81 0.59
7 0.77 3.56 0.55 0.93 4.05 0.63
8 0.77 3.44 0.53 1.05 4.42 0.68
9 0.92 3.64 0.56 1.26 4.89 0.75
10 1.29 4.20 0.65 2.18 6.44 0.99
LS 1.66 6.17 0.95 2.79 13.74 2.12

Panel (b): Risk adjusted returns of long-short portfolios

alpha t−stat adj R2 alpha t−stat adj R2

CAPM 1.70 6.23 0.00 2.83 13.72 0.00
FF3 1.78 6.56 0.02 2.87 13.98 0.02
Carhart 1.05 5.04 0.45 2.38 14.03 0.35
FF5 1.38 5.00 0.06 2.61 12.44 0.05
q 1.03 3.91 0.17 2.36 11.64 0.13
q5 0.82 2.91 0.18 2.19 10.12 0.14

Table 5- Out-of-sample performance of decile portfolios formed by the portfolios of neigh-
bouring assets

This table reports the out-of-sample performance of decile portfolios predicted based on the portfolios of
neighbouring assets. For each asset, I create a portfolio containing 50 assets of its nearest neighbours for each
month in all past 120 months. Then I predict future return of this asset based on the monthly average of its
120 past neighbouring portfolios. Finally, I sort assets into decile portfolios based on the predicted returns.
I update decile portfolios monthly from Jan 1980 till Dec 2021. The average number of assets in each decile
portfolio is 643 assets. Panel (a) shows the out-of-sample performance of decile portfolios. Column "mean"
shows the monthly average returns of each portfolio, and SR shows the annualized Sharpe ratio. LS is a
long-short portfolio. In panel (b), I show monthly risk-adjusted returns of long-short portfolios with respect
to six factor models. adj R2 shows the adjusted R2 of time-series regressions. The left (right) side presents
value-weighted (equally-weighted) portfolios.

ratio of 2.12. Panel (b) shows the risk-adjusted returns for long-short portfolios. The CAPM
monthly alpha for a value-weighted long-short portfolio is 1.70% (t = 6.23), while for an
equally-weighted counterpart, it increases to 2.83% (t = 13.72).

The dispersion increases when I increase the number of portfolios. Sorting assets into
25 portfolios leads to a Sharpe ratio of 1.29 (2.81) for a value-weighted (equally-weighted)
long-short portfolio with a monthly average return of 3.14% with t = 8.37 (4.52%, t = 18.21).
The results stay the same when I create a distance-weighting portfolio of neighbours, that
is, weighting each asset based on the inverse of their distance according to equation 7.
The results also are robust to changing the number of neighbours in each portfolio in
the in-sample data. The results are weaker when I remove tiny stocks. For example, a
value-weighted long-short portfolio from all but tiny stocks generates a monthly FF3 alpha
of 0.89% (t = 3.84). This alpha drops to 0.46% (t = 2.21) when considering only large stocks.
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D. The Dispersion over Time

In the long run, my long-short portfolios generate huge cumulative returns. The
cumulative returns of a long-short portfolio are almost ascending in over 40 years. Figure
3 shows the cumulative returns of all decile portfolios in the period 1980-2021 where
the target variable is the average of the past 12 months. Panel (a), (b) and (c) illustrate
cumulative returns when all, all but tiny, and large stocks are considered for creating the
portfolios. The cumulative returns are shown in the vertical axis on a logarithmic scale. In
panel (a), the decile portfolio 1 and 2 generate extremely negative cumulative returns. For
other panels, decile portfolio 1 produces negative cumulative returns constantly. In all cases,
the cumulative returns fairly line up monotonically with the number of decile portfolios.
There are four periods that the behaviour of long-short portfolios turn to descending and
they are known as the financial crisis shown in grey colour: The first period is the 1992
Sterling crisis, the second is the early 2000s recession, the third is the 2008 global financial
crisis, and the last one is 2019 Covid crisis. All of these crisis affects the performance of a
long-short portfolio but still the return trend is recovered after the crisis period ends. The
cumulative returns for the case where there is a stochastic selection are shown in Figure
A2. When the target variable is the current realized returns, the cumulative returns are
shown in Figure A1.

The dispersion generated by decile portfolios persists over time. In Figure 4, I plot the
rolling average of realized returns for deciles 1 and 10 with a stochastic selection. The left
column shows the 240 months (20 years) of rolling averages, the middle column shows a
10-year rolling average, and the right column shows 5 years moving average of realized
returns. Panel (a), (b) and (c) show portfolios consisting of all, all but tiny, and large stocks,
respectively. For 20 years moving averages, deciles 1 and 10 always produce the moving
average spread of more than 1.26% for all data, more than 0.84% for all but tiny, and more
than 0.51% for large stocks. The averages of these rolling spreads for a 20-year rolling
window are 2.56% (with std = 0.64), 1.45% (std = 0.25) and 1.04% (std = 0.18) for all, all
but tiny and large stocks, respectively. The spread, naturally, decreases in shorter periods.
The average of rolling spread when considering only 5 years reaches 2.35% (std = 1.34),
1.28% (std = 0.83) and 0.89% (std = 0.67) for all, all but tiny and large stocks. All of the
means are significantly positive. As Figure 4 shows for the rolling windows of 120 and 60,
the mean returns of two deciles approach each other when the 2008 financial crisis occurs.
However, after the crisis ends again the spread starts getting larger. In the 2019 Covid
crisis, these two deciles in the 60 months rolling window, do not touch each other. For the
period 120 and 240 months, the long-short portfolio average returns are always positive
even in a crisis time. I show the counterpart graphs with a stochastic selection in Figure
A3 and when the target variable is the realized returns in Figure A5.

I also show the behaviour of annualized Sharpe ratio for deciles 1 and 10 as well as a
long-short portfolio, all value-weighted, in Figure 5. I show the crisis periods with grey. It is
clear that all Sharpe ratios react to the crisis period, especially since there is a decreasing
trend in the 2008 financial crisis. However, for shorter rolling periods such as 5 years
rolling windows as shown in the right columns, the Sharpe ratio for a long-short portfolio
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(a) All data

(b) All but tiny stocks

(c) Large stocks

Figure 3. Cumulative returns of decile portfolios for the period 1980-2021

This figure shows the cumulative returns of all portfolios from 1980-2020 in the main analysis when k = 1000
and the target variables are defined based on the average of last year’s returns (T = 12 in equation 3). Panel (a)
shows portfolios consisting of all but 5% tiniest ones. Panel (b) and (c) show portfolios containing all but tiny
(above 20% NSYE percentile) and large stocks (above NYSE median). Four crisis periods are shown in grey
and they include the 1992 Sterling crisis, the Early 2000s recession, 2008 global financial crisis and 2019 Covid
crisis. The long-short portfolio strategy reacts to crisis periods. The y-axis is in a logarithmic scale.
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recovers to 1.11 in January 2015 in panel (a) for all data. The increasing pattern also can
be seen in all but tiny and large stocks. For all but tiny stocks, the average of a long-short
portfolio Sharpe ratio is 0.83 for all rolling windows. Results for the case with a stochastic
selection and with predicting realized returns are shown in figures A4 and A6.

D.1. Subsample analysis

Now I consider three different time horizons and study the performance of value-
weighted long-short portfolios in these horizons. First, I consider the first 20 years, i.e. from
the beginning of 1980 until the end of 1999 (1980-2000). Second I consider the time after
2000 till the end of 2021 (2000-2021). Lastly, I focus on the performances of the last 12
years (2010-2021). Table 6 shows the results. The first three left columns show the results
for the case that the realized returns, while the second three columns show the counterpart
results for the case where the decile portfolios show the case where the target variable
is a decile portfolio based on 1

12 ∑11
t′=0 rt−t′ . Panel (a) shows the results for the all data. In

the first three columns in panel (a), all of the alphas are economically meaningful and
statistically significant. The Sharpe ratio for the last 12 years is 0.88. For the counterpart
case in the second three columns, the Sharpe ratio is 0.98 in the last 12 years. Panels (b)
and (c) show the results for all but tiny and large stocks. In most cases, the mean returns
and alphas are statistically significant and economically large. Overall the results seem
robust in different time horizons.
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(a) All data

(b) All but tiny stocks

(c) Large stocks

Figure 4. Rolling average of spreads between decile 1 and 10 in the period 1980-2021

This figure shows the rolling average of the spread generated from decile portfolios 1 and 10. The left column
shows the rolling average when the rolling window is 240 months, while the middle and right columns show
the counterpart 120 and 60 months of rolling windows. Panel (a) shows the decile portfolios created by all
except 5% tiniest stocks, panel (b) shows the portfolios with all but tiny stocks, and panel (c) includes only
large stocks. In this graph, the value-weighted portfolios are created with considering 94 characteristics. The
target variables are defined based on the average of last year’s returns (T = 12 in equation 3) with τ = 120 the
number of months included in the in-sample data, and k = 1000.
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(a) All data

(b) All but tiny stocks

(c) Large stocks

Figure 5. Rolling average of Sharpe Ratio for decile 1 and 10 and a long-short portfolio in
the period 1980-2021

This figure shows the rolling average of the Sharpe Ratios generated from decile portfolios 1 and 10 and also a
long-short portfolio. The left column shows the rolling average when the rolling window is 240 months, while
the middle and right columns show the counterpart 120 and 60 months of rolling windows. Panel (a) shows
the decile portfolios created by all except 5% tiniest stocks, panel (b) shows the portfolios with all but tiny
stocks, and panel (c) includes only large stocks. In this graph, the value-weighted portfolios are created with
considering 94 characteristics. The target variables are defined based on the average of last year’s returns
(T = 12 in equation 3) with τ = 120 the number of months included in the in-sample data, and k = 1000. The
crisis periods are shown in grey.
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Predicting rt Predicting E(rt)

1980-2000 2000-2021 2010-2021 1980-2000 2000-2021 2010-2021

Panel (a): All data
mean 2.40 1.08 0.90 3.18 1.61 1.77
t-stat 8.74 3.90 3.06 8.06 3.32 3.40
SR 1.95 0.83 0.88 1.80 0.71 0.98
αCAPM 2.17 1.22 0.95 3.01 1.95 2.25
t-stat 8.04 4.46 3.08 7.54 4.20 4.29
αFF3 2.39 1.21 0.84 3.34 2.02 1.85
t-stat 8.90 4.41 2.72 8.77 4.46 3.81
αCarhart 2.00 0.95 0.70 2.39 1.46 1.50
t-stat 7.53 4.33 2.43 7.20 5.15 3.81
αFF5 2.66 0.76 0.73 3.67 1.52 1.72
t-stat 9.71 2.74 2.35 9.35 3.25 3.49
αq 2.40 0.70 0.67 2.72 1.28 1.84
t-stat 7.91 2.84 2.27 6.45 3.01 3.67
αq5 2.32 0.57 0.63 2.34 1.19 1.74
t-stat 6.93 2.21 2.08 5.07 2.67 3.38
Panel (b): All but tiny
mean 1.09 0.79 0.85 1.63 1.06 1.13
t-stat 5.74 3.43 3.19 5.24 2.65 2.33
SR 1.28 0.73 0.92 1.17 0.56 0.67
αCAPM 1.09 0.88 0.78 1.58 1.35 1.58
t-stat 5.63 3.85 2.82 4.99 3.55 3.23
αFF3 1.13 0.89 0.58 1.90 1.42 1.16
t-stat 5.69 3.88 2.23 6.25 3.85 2.66
αCarhart 0.67 0.66 0.45 0.94 0.97 0.83
t-stat 3.75 3.71 1.89 4.13 4.20 2.42
αFF5 1.30 0.52 0.53 2.07 1.01 1.14
t-stat 6.41 2.24 2.03 6.55 2.63 2.56
αq 0.97 0.48 0.56 1.17 0.76 1.15
t-stat 4.41 2.31 2.18 3.45 2.29 2.61
αq5 0.92 0.34 0.51 0.80 0.56 0.98
t-stat 3.77 1.61 1.94 2.17 1.63 2.19
Panel (c): Large stocks
mean 0.76 0.52 0.33 1.14 0.64 0.66
t-stat 3.95 2.20 1.30 3.52 1.61 1.30
SR 0.88 0.47 0.38 0.79 0.34 0.38
αCAPM 0.77 0.66 0.39 1.07 0.93 1.23
t-stat 3.91 2.86 1.48 3.25 2.45 2.44
αFF3 0.82 0.65 0.20 1.35 1.02 0.72
t-stat 4.10 2.87 0.81 4.19 2.92 1.71
αCarhart 0.40 0.43 0.09 0.32 0.61 0.36
t-stat 2.16 2.40 0.41 1.34 2.62 1.19
αFF5 0.98 0.30 0.13 1.48 0.62 0.67
t-stat 4.76 1.30 0.51 4.39 1.71 1.57
αq 0.66 0.28 0.23 0.62 0.46 0.76
t-stat 2.99 1.35 0.92 1.74 1.40 1.71
αq5 0.55 0.10 0.12 0.18 0.16 0.47
t-stat 2.23 0.49 0.45 0.47 0.48 1.07

Table 6- Subsample Analysis
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Continued from previous page - This table reports the performance of value-weighted long-short
portfolios in different subsamples. The first three left columns show the results when the in-sample stocks are
ranked based on the average of last year’s returns (T = 12 in equation 3), while the second three right columns
show the counterpart results when the labels are based on the realized returns (according to equation 4). The
results show different time horizons: Jan 1980 till Dec 1999, Jan 2000 till Dec 2021, and Jan 2010 till Dec 2021.
Panel (a), (b) and (c) show the results for all, all but tiny and large stocks, respectively.

E. Momentum Anomalies

The momentum factor is made up of a long-short portfolio that goes long (short) in
portfolios with high (low) momentum. My long-short portfolios also go long (short) in high
(low) decile portfolios. Especially, when the target variable is based on the average of the
last 12 months, the portfolios might show a high correlation with the momentum factor. It
is reasonable, then, to see if it can span the momentum factor or if they are just a proxy
for the momentum factor. Also, I test if my long-short portfolios as a factor can explain
momentum anomalies.

To begin, I consider a list of 41 momentum anomalies provided by Hou, Xue, and
Zhang (2020). Table A6 in the Appendix describes these anomalies. I make long-short
value-weighted portfolios from these momentum anomalies and regress them on my value-
weighted long-short portfolio from all but tiny stocks when the target variable is the rank
based on the realized returns. I treat this long-short portfolio as a Neighbouring factor
(Neighb). This long-short portfolio, of course, is highly correlated with other long-short
portfolios that I make (for example, it shows a correlation of 0.73 with another long-short
portfolio when the target variable is the average returns for the last 12 months). With
a critical value of |t| ≥ 3.09, only 1 anomaly portfolio can generate a significant alpha
when exposed to my factor. As shown in Table 7 panel (a), other methods generate more
significant alphas. For |t| ≥ 1.96 only 7 alphas stand significant with my factor, while
even a Carhart model cannot explain 14 of these momentum anomalies. Only the q5 model
competes closely with my factor; still, the Neighb factor solely is better than the rest,
including q and q5 which contain 4 and 5 factors. The average of absolute values of alphas
for 41 momentum anomaly is 0.20 with an average absolute value of t = 1.03. Neighb factor
has the lowest average absolute t values among all other factor models in explaining the
anomalies similar to the five-factor model q5. The next best is the four-factor q model. A
Carhart model generates an average absolute t value of 1.53 and other methods (CAPM,
FF3, FF5) produce average absolute values of t greater than 2.62.

Next, I regress my Neighb factor on the momentum factor. I consider three long-short
portfolios as a proxy for the momentum factor. First, I collect the up-minus-down factor
from Fama and French library which is the momentum factor. Second, I sort assets into
7 and 10 decile portfolios based on their momentum and create long-short portfolios from
extreme deciles. Table 7 panel (b) shows the regression result. In fact, the momentum
factor, as a tradable portfolio, no longer generates a profit when exposed to the Neighb
portfolio. The intercept simply is -0.20% with t = −1.18, not distinguishable from zero and
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with a negative sign. The Neighb factor coefficient, in this case, is 0.79 (t = 16.57), meaning
that the Neighb factor strongly explains the momentum factor. When using a 7 long-short
momentum portfolio as a proxy for momentum factor, the alpha is still negative, namely
-0.05 with t = −0.19. For a 10 long-short momentum portfolio, the alpha magnitude is
even higher: -0.86 (t = −3.05). To make sure that Neighb factor is not simply a proxy for
the momentum factor, next I regress momentum factors on my long-short portfolio. Panel
(c) shows the results. With momentum factors, 7 and 10 long-short momentum portfolios,
Neighb portfolio generates a statistically significant positive alpha of 0.69, 0.64, and 0.81
with t-statistics of 5.65, 5.10, and 6.81, respectively. The result suggests that only one
factor, which is a reflection of all characteristics at once, strongly explains a large number
of anomalies as well as the momentum factor, while a momentum factor cannot explain
it. In other words, my long-short portfolio spans the momentum factor. The results are
similar for long-short portfolios constructed but all but 5% tiniest and large stocks (above
50% NYSE percentile).

F. Characteristics Patterns

The created portfolios through neighbouring assets are characteristic-managed port-
folios because they are formed such that assets with similar characteristics are grouped
together. Each portfolio has specific properties with respect to each characteristic. As decile
portfolios fairly line up monotonically, we can attribute the set of obtained characteristics
to the mean realized returns. Naturally, these portfolios are the right tools for studying the
relationship between characteristics-mean return.

To begin with, considering all 94 characteristics, I find the average of characteristics in
each portfolio. Then I find the time-series average of all characteristics from 1980-2021 for
each decile portfolio. Then I rank the average of each characteristic from 1 to 10. Doing
so gives a 94 × 10 matrix of ranked characteristics for each decile portfolio. I group all
characteristics into a few categories. First are those characteristics which increase with
mean returns. For example, momentum is among these features. These features are almost
linearly related to the expected returns. The second category is for those characteristics
which first decrease and then increase, having a U-shape relationship with expected returns.
Among 94 characteristics, I categorize 29 in this group. Another category which has an
opposite behaviour is for those that first decrease on mean returns and then increase. These
characteristics have an inverse-U shape relationship with mean returns. In my sample
22 out of 94 characteristics belong to this group. These two groups of characteristics seem
to be related to the mean returns non-linearly and in the order of 2. The next category
is the group of characteristics which first decrease and then increase, and again repeat
decreasing and increasing. For example, for Industry sales concentration (href) the decile
portfolio 1 has a mean standardized value of 0.01. For decile 2, it increases to 0.11, then
decreases to -0.12 for decile 5. For decile 9 it reaches 0.14 and then decreases to 0.05 in
decile 10. These characteristics have an M-shape and their relationship is from the order
of 4. a small number of characteristics have an opposite shape which is a W-shape. Also,
some characteristics have the highest values in decile 1 but decrease weakly for other
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avg |α| avg |t| num
|t| ≥
1.94

num
|t| ≥
2.58

num
|t| ≥
3.09

avg
|βNeighb.|

avg
|t(βNeighb.)|

Panel (a): Regressing momentum anomalies on different models
Neighb. 0.20 1.03 7 1 1 0.44 9.28
Neighb. + Market 0.21 1.04 6 2 1 0.29 7.82
CAPM 0.49 2.78 33 23 15
FF3 0.57 3.35 39 30 25
Carhart 0.22 1.53 14 7 4
FF5 0.46 2.62 32 20 11
q model 0.19 1.17 8 5 3
q5 model 0.18 1.03 6 2 1

Panel (b): Regressing momentum factors on Neighbouring Assets long-short factor

Regressand alpha t−stat βNeighb. t(βNeighb.)

Momentum factor -0.20 -1.18 0.79 16.57
7 LS Mom Portfolio -0.05 -0.19 1.17 15.83

10 LS Mom Portfolio -0.86 -3.05 1.39 17.39

Panel (c): Regressing Neighbouring Assets long-short factor on momentum factors

Regressor alpha t−stat βMOM t(βMOM)

Momentum factor 0.69 5.65 0.45 16.57
7 LS Mom Portfolio 0.64 5.10 0.28 15.83
10 LS Mom Portfolio 0.81 6.81 0.27 17.39

Table 7- Performance of neighbouring assets long-short portfolio as a factor on momentum
anomalies

This table shows the regression results when a long-short portfolio formed from neighbouring assets is used as
a tradeable factor (Neighb factor). I collect 41 momentum anomalies provided by Hou et al. (2020) and check
if my Neighb factor can explain a long-short strategy from those anomalies. Panel (a) shows the results of
time-series regression of Neighb factor as well as other factor models on momentum anomalies. In panel (b), I
regress momentum factors on my Neighb factor. I consider three different portfolios as a proxy for momentum
anomalies: (i) momentum factor from Fama and French data library, (ii) a long-short portfolio from 7 portfolios
sorted on the momentum (7 LS Mom Portfolio) and (iii) a long-short portfolio from decile portfolios sorted on
the momentum (10 LS Mom Portfolio). Panel (c) shows the regression results when these momentum factors
are regressed on the Neighb Portfolio. I use a value-weighted long-short portfolio from all but tiny stocks with
a stochastic selection with πall but tiny = 0.02 with a target variable based on the average of last year returns
(T = 12 in equation 3) as Neighb factor.

portfolios. I group these characteristics, though weakly, as a descending group. Lastly, for
some characteristics, their patterns are not as strong as previous ones, and I categorise
them in others.

I show the first four groups of characteristics in Figure 6. Panel (a) shows the charac-
teristics which are linearly and monotonically related to the expected returns. Panel (b)
and (c) plot those characteristics which have a U-shape or an inverse-U-shape relationship
with mean returns. Panel (d) contains characteristics with an M-shape. The black line
demonstrates the average of these characteristics. Figure 6 confirms the non-linearity of
characteristics-expected returns relationship. This figure shows the average of charac-
teristics and portfolios when all stocks except the smallest 5% are used for creating the
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(a) Characteristics with an ascending rela-
tionship

(b) Characteristics with a U-shape relation-
ship

(c) Characteristics with an inverse-U shape re-
lationship (d) Characteristics with a M-shape relationship

Figure 6. Relationship between characteristics and mean realized returns in 1980-2021

This figure shows the pattern of characteristics and realized returns. Panel (a) shows characteristics which
monotonically and linearly increase with the decile portfolio. Panel (b) shows characteristics which first
decrease and then increase with the decile portfolio, yielding to have a U-shape relationship with realized
returns. Panel (c) illustrates characteristics with an inverse-U shape with mean returns. The relationship
between characteristics and mean returns are in the order of 2 in panels (b) and (c). Panel (d) shows the
characteristics which first increase, then decrease, and then again increase and decrease, having an M-shape
pattern. In this case, the relationship of the characteristics-mean return is from the order of 4. The black line
shows the average of bars in a decile portfolio. The x-axis shows the decile portfolios, while the y-axis shows
the mean of characteristics. The characteristics are from portfolios containing all but the tiniest 5% stocks. The
list of characteristics is defined in Table A1. Before creating portfolios, all characteristics are cross-sectionally
standardized and winsorised at 0.01 level. I use value-weighted long-short portfolios from all stocks and target
variables based on the average of last year’s returns (T = 12 in equation 3) to study the characteristics patterns.

portfolios. The patterns also persist strongly among all but tiny and large stocks. However,
these relationships are stronger when the universe of data includes all.

Neither size (mvel1) nor book-to-market (bm) seem to have a linear relationship with
mean realized returns, and this is why a model containing factors based on these char-
acteristics fails to explain the portfolios created by these characteristics in a non-linear
setting. I confirm Kozak (2020)’s argument that while Fama and French (2016) link the
market-to-book M

B to expected earnings E(Y), investment ∆B, and discount rate in a linear
way as

Mt

Bt
=

1
Bt

∞

∑
s=1

E(Yt+s − Bt+s)

(1 + r)s , (18)

the discount rate itself is a function of other characteristics and book-to-market itself. It
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is not, therefore, determined independently, and hence the equation above links book-to-
market in a non-linear way to the expected returns. Moreover, based on the equation 18
these characteristics have interdependencies. Therefore, including them at once provides a
wealth of information while creating portfolios.

G. Robustness Checks

In this section, I show that the results are not sensitive to the neighbourhood definition,
nor to the distance measurement. I show that the results are robust to different rolling
years embedded in the in-sample set. I also investigate the role of π which determines the
in-sample set size. I create portfolios for the case when the target variable is 1

12 ∑11
t′=0 rt−t′ ,

but the results are similar for the case that the target variable is rt.

G.1. Different Number of Neighbours

I start with checking how the results are sensitive to the number of neighbours con-
sidered for classifying assets into portfolios. For robustness checks, I hold everything
else constant and change k, and report the dispersion produced by value-weighted decile
portfolios 1 and 10. I repeat the analysis for three sets of data in Table 8. I change k from
100 to 5000 and report the performance of a value-weighted long-short portfolio. In order
to just focus on k, I fix everything else, including π for all three datasets on 10% to make
sure that the number of neighbours k is less than the size of the in-sample set, |St|, for all k
in all data set and for each cross-section. When considering all but 5% tiniest stocks, the
average realized return of a long-short portfolio does not go below 2.06%. The performance
of the model starts increasing by increasing k, and it reaches its maximum around between
k = 900 and k = 1200. The annualized Sharpe ratio is 1.19 for k = 900. In all k from 100
to 5000, all the risk-adjusted alphas in six different factor models are both statistically
and economically different from zero. Needless to say, the closer assets have the highest
weights and they are most likely to determine the label class. It is not surprising that the
performance does not significantly change when I still use a distance weighting scheme.
However, the further assets also contain information relevant to the classification problem.
This can be confirmed from panel (b) and (c) when the performance of long-short portfolios
from all but tiny and large stocks increase by increasing the k. However, for k ≥ 2000 the
Sharpe ratios drop for all three datasets, and the extra profitability comes from the short
legs. In fact for panel (a), the average return of the long portfolio is 1.39% (std = 0.11) with
an average t−statistics of 3.16. The average long-portfolios for panel (b) is 1.22% (std =
0.05) with an average of t = 3.05. For large stocks in panel (c), the long-legs generate on
average 1.28% (std = 0.09) with an average t of 3.30. Overall the results are suggestive that
the clustering effects are not sensitive to the neighbourhood definition and persist strongly
over all three data sets.
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k 100 300 700 900 1200 1500 2000 2500 5000

Panel (a): All data
mean 2.06 2.31 2.40 2.48 2.48 2.30 2.35 2.33 2.29
t-stat 6.55 7.02 7.25 7.69 7.55 7.25 7.21 6.79 6.02
SR 1.01 1.08 1.12 1.19 1.17 1.12 1.11 1.05 0.93

αCAPM 2.20 2.40 2.47 2.54 2.52 2.36 2.38 2.34 2.32
t-stat 6.96 7.22 7.34 7.78 7.59 7.33 7.20 6.75 6.01

αFF3 2.41 2.61 2.67 2.75 2.73 2.55 2.58 2.56 2.57
t-stat 7.89 8.12 8.22 8.72 8.51 8.19 8.04 7.66 6.96

αCarhart 1.50 1.68 1.76 1.88 1.85 1.73 1.76 1.73 1.74
t-stat 7.03 7.28 7.30 7.91 7.63 7.14 6.89 6.39 5.54

αFF5 2.23 2.40 2.49 2.58 2.56 2.35 2.42 2.33 2.36
t-stat 7.03 7.19 7.35 7.85 7.66 7.27 7.24 6.70 6.14

αq 1.67 1.86 1.93 2.06 2.00 1.78 1.82 1.74 1.82
t-stat 5.51 5.80 5.94 6.48 6.25 5.74 5.64 5.12 4.75

αq5 1.41 1.57 1.72 1.81 1.77 1.47 1.48 1.42 1.48
t-stat 4.38 4.59 4.96 5.35 5.19 4.46 4.30 3.93 3.63

Panel (b): All but tiny stocks
mean 1.04 1.35 1.59 1.63 1.70 1.73 1.73 1.77 1.91
t-stat 4.09 5.39 6.21 6.19 6.20 6.24 5.97 5.82 5.90
SR 0.63 0.83 0.96 0.96 0.96 0.96 0.92 0.90 0.91

αCAPM 1.20 1.49 1.73 1.77 1.84 1.86 1.87 1.92 2.05
t-stat 4.74 5.93 6.74 6.71 6.69 6.67 6.42 6.28 6.26

αFF3 1.37 1.66 1.89 1.94 2.03 2.05 2.09 2.14 2.28
t-stat 5.65 6.91 7.64 7.65 7.71 7.66 7.51 7.31 7.34

αCarhart 0.62 0.96 1.17 1.23 1.30 1.32 1.34 1.37 1.57
t-stat 3.83 5.59 6.60 6.54 6.60 6.51 6.29 6.01 5.99

αFF5 1.14 1.50 1.77 1.85 1.91 1.96 1.97 2.02 2.18
t-stat 4.55 6.02 6.86 6.98 6.97 7.01 6.80 6.63 6.73

αq 0.71 1.04 1.31 1.41 1.48 1.51 1.51 1.54 1.75
t-stat 3.03 4.45 5.39 5.50 5.54 5.56 5.33 5.20 5.41

αq5 0.44 0.75 1.06 1.09 1.14 1.19 1.17 1.20 1.42
t-stat 1.75 3.00 4.10 4.01 4.05 4.14 3.90 3.81 4.14

Panel (c): Large stocks
mean 0.97 1.06 1.24 1.29 1.36 1.51 1.63 1.60 1.99
t-stat 3.89 4.04 4.30 4.35 4.44 4.69 4.86 4.48 4.37
SR 0.60 0.62 0.66 0.67 0.68 0.72 0.75 0.69 0.67

αCAPM 1.13 1.21 1.36 1.44 1.48 1.67 1.79 1.79 2.05
t-stat 4.52 4.59 4.71 4.84 4.76 5.15 5.31 4.99 4.43

αFF3 1.34 1.42 1.57 1.64 1.68 1.86 2.02 2.02 2.29
t-stat 5.71 5.66 5.66 5.73 5.63 5.96 6.24 5.82 5.07

αCarhart 0.65 0.71 0.88 0.96 0.96 1.13 1.27 1.33 1.58
t-stat 3.92 3.85 3.92 4.06 3.92 4.33 4.68 4.30 3.72

αFF5 1.21 1.31 1.50 1.56 1.56 1.77 1.92 1.97 2.10
t-stat 4.96 5.03 5.19 5.25 5.02 5.43 5.70 5.43 4.46

αq 0.77 0.84 1.04 1.09 1.07 1.25 1.38 1.55 1.63
t-stat 3.24 3.37 3.71 3.76 3.54 3.92 4.18 4.33 3.43

αq5 0.45 0.48 0.73 0.75 0.77 0.95 0.99 0.98 1.17
t-stat 1.81 1.82 2.45 2.44 2.38 2.79 2.81 2.61 2.32

Table 8- Performance of a value-weighted long-short portfolio for different values of k
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Continued from previous page - This table reports performance of a value-weighted long-short portfolio
formed based on different number of neighbours k with a target variable based on the average of last year
returns (T = 12 in equation 3). All 94 characteristics are taken into account while creating portfolios. I consider
six factor models and report alpha and their t−stats based on them. These six models include CAPM, Fama
French three factor model (FF3), Carhart four factor model (Carhart), Fama French 5 factor model (FF5), q
model and augmented q model with expected growth (q5). The regression periods captures realized returns in
percentage from 1980 to 2021. In order to keep everything else constant rather than k, I fix π large enough
so that k is always less than size of training sample, |St|. So πlarge = πall but tiny = πall = 0.1. The number of
months included in the in-sample data is considered τ = 120. Panel (a) reports the results for all but 5% tiniest
stocks, panel (b) shows the counterpart results for all but tiny stocks, and panel (c) represents the results for
large stocks.

G.2. Different Rolling Windows in the In-sample Set

Naturally, the choice of τ, the number of months included in the training sample, could
potentially affect the results because of the long-term dependency structure of the time-
series data. In my framework, I assume that not merely last month, but observations from
several years ago are also relevant for classifying a new asset. Including previous years in
the in-sample data helps capture this interdependency structure of stock returns. The main
analysis is based on 10 years (τ = 120 months) rolling window. In this section, I repeat the
calculations from 2 to 14 years of rolling windows and show that the results do not change
significantly.

Table 9 shows the performance of value-weighted long-short portfolios for different τ

from 1980 to 2021. To keep everything else constant, again, I fix π = 0.1 for all three
datasets to make sure that there are enough neighbours in each cross-section. I set k = 1000
as the main analysis. In panel (a) which contains all but 5% tiniest stocks, for all columns,
the mean is over 2.06%, and the Sharpe ratio goes over 1 when I consider τ greater than 4
years (48 months). All models produce a significant alpha. Panel (b) shows the counterpart
results for all but tiny stocks. Again all risk-adjusted alphas are significantly greater than
zero. Large stocks are shown in panel (c) that produce significant alphas as well. The
results from the whole table suggest that the model performance is not sensitive to the
rolling window considered in the in-sample set, and the clustering effect persists even in
shorter horizons. The portfolios are well diversified.

G.3. Different Distance Measures

In this section, I show that the results are not sensitive to distance measurement.
Basically, different distance measurements must lead to almost the same neighbours. The
distance measurement I use for the whole analysis is based on a Euclidean distance, which
is l2-norm, and then I use a distance weighting scheme. For a robustness check, I consider
a uniform distance weighting such that all neighbouring assets receive equal weights. In
other words, ω(as,t−t′ |aj,t) in equation 7 will be equal across all assets (for s = 1, . . . , k) in
the neighbourhood of asset aj,t. Next, I deviate from a l2-norm measurement to a l-norm.
I show that the patterns persist among different definitions of distance and uniformly
weighting. Table 10 shows the performance of value-weighted long-short portfolios based
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τ 24 36 48 96 132 144 156 168

Panel (a): All data
mean 2.31 2.06 2.30 2.21 2.25 2.16 2.29 2.15
t-stat 5.90 5.47 6.46 6.63 6.97 6.57 7.24 6.67
SR 0.91 0.84 1.00 1.02 1.08 1.01 1.12 1.03

αCAPM 2.28 2.13 2.34 2.28 2.30 2.23 2.34 2.23
t-stat 5.74 5.58 6.49 6.76 7.02 6.69 7.29 6.83

αFF3 2.56 2.39 2.60 2.51 2.49 2.44 2.53 2.43
t-stat 6.76 6.56 7.56 7.78 7.80 7.61 8.15 7.67

αCarhart 1.72 1.49 1.74 1.65 1.64 1.56 1.71 1.55
t-stat 5.31 5.04 6.28 6.63 6.64 6.44 7.09 6.54

αFF5 2.38 2.26 2.42 2.40 2.32 2.30 2.35 2.24
t-stat 6.05 5.95 6.75 7.13 6.99 6.89 7.30 6.80

αq 1.74 1.59 1.79 1.82 1.82 1.72 1.84 1.75
t-stat 4.49 4.37 5.12 5.61 5.64 5.34 5.94 5.46

αq5 1.42 1.23 1.53 1.55 1.60 1.48 1.69 1.57
t-stat 3.44 3.18 4.10 4.49 4.67 4.28 5.09 4.57

Panel (b): All but tiny stocks
mean 2.04 1.69 1.89 1.66 1.50 1.48 1.45 1.50
t-stat 5.31 4.98 6.23 5.88 5.52 5.49 5.36 5.83
SR 0.82 0.77 0.96 0.91 0.85 0.85 0.83 0.90

αCAPM 2.13 1.82 2.08 1.81 1.63 1.66 1.59 1.65
t-stat 5.50 5.31 6.85 6.39 5.96 6.15 5.85 6.40

αFF3 2.40 2.12 2.32 2.01 1.81 1.84 1.77 1.82
t-stat 6.49 6.73 8.10 7.40 6.90 7.10 6.79 7.30

αCarhart 1.63 1.41 1.57 1.24 1.06 1.10 1.02 1.12
t-stat 5.03 5.27 7.02 6.20 5.54 5.81 5.41 6.06

αFF5 2.23 2.03 2.22 1.87 1.70 1.77 1.68 1.72
t-stat 5.80 6.17 7.44 6.63 6.22 6.54 6.18 6.62

αq 1.74 1.58 1.71 1.40 1.23 1.29 1.16 1.26
t-stat 4.57 4.78 5.85 5.08 4.66 4.93 4.52 5.03

αq5 1.34 1.08 1.31 1.08 0.92 1.03 0.88 0.93
t-stat 3.32 3.09 4.25 3.70 3.31 3.72 3.23 3.49

Panel (c): Large stocks
mean 2.14 1.43 1.32 1.31 1.42 1.26 1.36 1.25
t-stat 4.29 3.51 3.58 4.32 5.03 4.44 4.78 4.56
SR 0.66 0.54 0.55 0.67 0.78 0.68 0.74 0.70

αCAPM 2.24 1.52 1.49 1.46 1.59 1.40 1.53 1.41
t-stat 4.44 3.69 3.99 4.79 5.62 4.88 5.36 5.14

αFF3 2.50 1.76 1.70 1.69 1.78 1.60 1.71 1.59
t-stat 5.05 4.38 4.70 5.83 6.58 5.83 6.26 5.99

αCarhart 1.71 1.04 0.97 0.95 1.08 0.89 1.02 0.93
t-stat 3.68 2.83 3.03 4.12 5.06 4.10 4.66 4.34

αFF5 2.54 1.53 1.55 1.59 1.69 1.46 1.59 1.49
t-stat 4.93 3.67 4.12 5.25 5.99 5.09 5.58 5.37

αq 2.01 1.12 1.18 1.13 1.25 0.99 1.14 1.09
t-stat 3.93 2.71 3.11 3.83 4.57 3.57 4.13 3.97

αq5 1.27 0.90 0.60 0.71 0.94 0.69 0.80 0.76
t-stat 2.35 2.02 1.51 2.28 3.23 2.33 2.73 2.61

Table 9- Performance of a value-weighted long-short portfolio for different values of τ
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Continued from previous page - This table reports performance of a value-weighted long-short portfolio
formed based on different length of rolling window, τ, with a target variable based on the average of last year
returns (T = 12 in equation 3). All 94 characteristics are taken into account while creating portfolios. I consider
six factor models and report alpha and their t−stats based on them. These six models include CAPM, Fama
French three factor model (FF3), Carhart four factor model (Carhart), Fama French 5 factor model (FF5), q
model and augmented q model with expected growth (q5). The regression periods captures realized returns in
percentage from 1980 to 2021. In order to keep everything else constant rather than k, I fix π large enough
so that k is always less than size of training sample, |St|. So πlarge = πall but tiny = πall = 0.1. The number of
months included in the in-sample data is considered τ = 120. Panel (a) reports the results for all but 5% tiniest
stocks, panel (b) shows the counterpart results for all but tiny stocks, and panel (c) represents the results for
large stocks.

on both uniform weighting and l-norm distance. In all of the portfolios, I employ the entire
past data (π = 1) for the in-sample set. Panel (a) shows the case where the target variable
is based on the realized returns at each month. For all data, when uniform weighting the
average return of a long-short portfolio is 1.73% (t = 9.08) with a Sharpe ratio of 1.40. The
FF3 alpha is 1.78% with t = 9.21. Similarly, in panel (b) the FF3 alpha is 2.69% (t = 8.81).
The results are suggestive that the model performance is not sensitive to changing the
distance metrics.

G.4. Different size for the training sample, π

In my framework, π plays a role in defining the size of in-sample data. Maybe one
drawback of a kNN is the high computational cost which requires the calculation of pairwise
distances. By shrinking the training sample, the computational cost significantly decreases.
More importantly, the outliers and noisier data are more likely to be removed. In this
section, I show that how changing π can affect the results. All in all, I show that the results
are fairly robust with respect to different choices of π.

For studying the effect of stochastic selection, I repeat the main analysis with π =

0.5, 0.25 and 0.1, that is, to stochastically select assets from in-sample data such that each
asset has a probability of π to be selected. I keep k = 1000 and τ = 120 months and
focus on a value-weighted long-short portfolio which contains all 94 characteristics. The
performance of this portfolio is presented in Table 11. For all data, the performance of a
long-short portfolio roughly remains the same, with a Sharpe ratio changing from 1.10 to
1.12. For all but tiny and large stocks, the performance of the model increases by decreasing
π, suggesting that the model becomes more robust to label the noise after pruning. For
large stock the average monthly returns increases to 1.29% (t = 4.45) when π = 0.1. In this
case, a long-short portfolio of large stocks generates significant alphas with respect to all
considered factor models.
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All data All but tiny stocks Large stocks

uniform l-norm uniform l-norm uniform l-norm

Panel (a): Predicting rz

mean 1.73 1.56 0.93 0.87 0.63 0.73
t-stat 9.08 7.84 6.38 5.41 4.28 4.30

SR 1.40 1.21 0.98 0.84 0.66 0.66
αCAPM 1.72 1.58 0.98 0.96 0.72 0.82
t-stat 8.89 7.83 6.63 5.93 4.85 4.81

αFF3 1.78 1.64 1.00 1.00 0.76 0.90
t-stat 9.21 8.15 6.74 6.19 5.15 5.35

αCarhart 1.37 1.22 0.66 0.58 0.41 0.48
t-stat 8.13 6.92 5.27 4.56 3.36 3.54

αFF5 1.56 1.43 0.86 0.80 0.63 0.77
t-stat 7.89 6.89 5.61 4.84 4.14 4.42

αq 1.34 1.23 0.70 0.60 0.48 0.59
t-stat 7.05 6.12 4.74 3.78 3.27 3.50

αq5 1.21 1.19 0.57 0.43 0.32 0.30
t-stat 5.94 5.52 3.60 2.54 2.04 1.71

Panel (b): Predicting E(r)

mean 2.34 2.24 1.33 1.29 0.90 0.92
t-stat 7.42 6.84 5.23 4.71 3.57 3.38

SR 1.14 1.05 0.81 0.73 0.55 0.52
αCAPM 2.47 2.39 1.50 1.46 1.06 1.10
t-stat 7.79 7.26 5.91 5.35 4.18 4.06

αFF3 2.69 2.61 1.69 1.65 1.27 1.34
t-stat 8.81 8.27 6.97 6.29 5.39 5.30

αCarhart 1.80 1.67 0.94 0.82 0.58 0.57
t-stat 8.22 7.56 5.81 4.82 3.45 3.30

αFF5 2.50 2.39 1.52 1.46 1.11 1.16
t-stat 7.89 7.30 6.07 5.39 4.54 4.45

αq 1.95 1.81 1.06 0.91 0.72 0.69
t-stat 6.41 5.84 4.48 3.67 3.03 2.77

αq5 1.69 1.55 0.78 0.61 0.32 0.24
t-stat 5.22 4.70 3.11 2.32 1.30 0.91

Table 10- Performance of a value-weighted long-short portfolio for different distance
measures

This table reports the performance of value-weighted long-short portfolios created with uniform weighting
scheme and distance weighting with l-norm distance metrics. The regression period is from Jan 1980 till Dec
2021. The uniform column shows the case when I use equal weights for neighbouring assets when making
the prediction. (All the portfolios are still value-weighted with market-cap). l−norm shows the case when I
use absolute-value norm (instead of Euclidean norm) to find k closest assets. Panel (a) shows the case where
the target variable is the asset’s ranks based on the realized returns, while in panel (b) the target variable is
defined based on the average of last year returns (T = 12 in equation 3).
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All data All but tiny stocks Large stocks

π 0.5 0.25 0.1 0.5 0.25 0.1 0.5 0.25 0.1

mean 2.24 2.31 2.36 1.41 1.35 1.62 1.02 1.10 1.36

std 7.18 7.20 7.33 5.94 5.80 6.13 5.93 5.89 6.57

t-stat 7.00 7.19 7.21 5.32 5.21 5.94 3.88 4.17 4.64

SR 1.08 1.11 1.11 0.82 0.80 0.92 0.60 0.64 0.72

αCAPM 2.35 2.38 2.44 1.57 1.50 1.76 1.20 1.22 1.50
t-stat 7.28 7.32 7.37 5.95 5.78 6.42 4.55 4.61 5.10

αFF3 2.56 2.58 2.64 1.76 1.68 1.95 1.42 1.42 1.72
t-stat 8.22 8.21 8.22 7.01 6.76 7.45 5.76 5.68 6.18

αCarhart 1.66 1.68 1.75 1.00 0.94 1.24 0.70 0.74 1.03
t-stat 7.38 7.33 7.27 5.80 5.40 6.22 3.98 3.88 4.56

αFF5 2.36 2.39 2.46 1.61 1.54 1.85 1.31 1.34 1.66
t-stat 7.29 7.31 7.38 6.14 5.96 6.78 5.11 5.14 5.71

αq 1.84 1.81 1.89 1.10 1.05 1.40 0.82 0.86 1.24
t-stat 5.88 5.80 5.89 4.48 4.31 5.32 3.41 3.46 4.28

αq5 1.60 1.59 1.73 0.81 0.70 1.05 0.49 0.57 0.87
t-stat 4.79 4.78 5.05 3.10 2.72 3.77 1.94 2.15 2.82

Table 11- Performance of value-weighted long-short portfolios for different values of π

This table reports the performance of value-weighted long-short portfolios, for different π, in the period 1980-
2021 for all but tiniest 5%, all tiny stocks which have a market cap below 20% NYSE percentile, and large
stocks (above NYSE median). All 94 characteristics are taken into account for creating portfolios. π = 0.5
indicates that the in-sample set is shrunk to half stochastically. Similarly, π = 0.25 and 0.1 are representative
of the case when the in-sample is shrunk and only 25% and 10% of in-sample data are used for finding the
neighbouring assets. The number of neighbours is considered k = 1000 with τ = 120 the number of months
included in the in-sample data. Target variables are defined with a target variable based on the average of last
year returns (T = 12 in equation 3).
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III. Summary and Conclusion

If two firms are alike in terms of characteristics, it is likely that they display similar
expected rates of returns. The similarity of firms in the characteristics is an indicator
of fundamental linkages. By considering a large set of characteristics, for each firm, I
recognize the firms that most resemble it. Identifying them as neighbouring firms (assets),
I find that neighbouring assets tend to produce similar expected returns over time. This
simply is implied by assuming that firm-level characteristics determine expected returns.
Hence, because each asset has a fundamental connection with its neighbours in many
aspects, each asset should have similar expected returns as its neighbours.

My results, therefore, strongly show that past returns of each asset’s neighbours are a
strong predictor of its future returns. I borrow the so-called k-nearest neighbours classifier
from machine learning to find assets with the most similarity. Grouping assets to decile
portfolios based on the past performance of their neighbours can generate a high dispersion
in the cross-sections of returns. These portfolios are indicative of a bunch of characteristics
and their expected returns reflect properties of characteristics. Not surprisingly, common
factor models cannot explain the behaviour of these portfolios. First, these factors are
designed in a linear setting, while the relationship between returns and characteristics can
be complex. Second, these factors are based on a few characteristics while neighbouring
stocks use a large number of characteristics to predict the future expected returns. The
out-of-sample performance of neighbouring stocks is remarkable in a long run and across
different types of data.

Time-series and cross-sectional features of stock returns contain massive amounts of
information that asset pricing models try to find and explain. In this paper, I map a large
set of firm characteristics to their expected returns in a non-linear setting. This sheds light
on the relationship between firm characteristics and expected returns. My method also
alleviates the curse of dimensionality implied by the zoo of characteristics. I propose a novel
way of forming test portfolios by grouping neighbouring assets to decile portfolios. Finally, I
develop a method to unify the joint effect of characteristics between connected firms.
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Appendices

Acronym Firm characteristic Acronym Firm characteristic

absacc Absolute accruals mom36m 36-month momentum
acc Working capital accruals mom6m 6-month momentum
aeavol Abnormal earnings announcement ms Financial statement score
age # years since first Compustat coverage mvel1 Size
agr Asset growth mve ia Industry-adjusted size
baspread Bid-ask spread nincr Number of earnings increases
beta Beta operprof Operating profitability
betasq Beta squared orgcap Organizational capital
bm Book-to-market pchcapx_ia ia Industry adjusted % change in capital expenditures
bm _ia ia Industry-adjusted book to market pchcurrat % change in current ratio
cash Cash holdings pchdepr % change in depreciation
cashdebt Cash flow to debt pchgm_pchsale % change in gross margin - % change in sales
cashpr Cash productivity pchquick % change in quick ratio
cfp Cash flow to price ratio pchsale_pchinvt % change in sales - % change in inventory
cfp _ia Industry-adjusted cash flow to price ratio Asness pchsale_pchrect % change in sales - % change in A/R
chatoia Industry-adjusted change in asset turnover pchsale_pchxsga % change in sales - % change in SG&A
chcsho Change in shares outstanding pchsaleinv % change sales-to-inventory
chempia Industry-adjusted change in employees pctacc Percent accruals
chinv Change in inventory pricedelay Price delay
chmom Change in 6-month momentum ps Financial statements score
chpmia Industry-adjusted change in profit margin quick Quick ratio
chtx Change in tax expense rd R&D increase
cinvest Corporate investment rd _mve R&D to market capitalization
convind Convertible debt indicator rd_sale R&D to sales
currat Current ratio realestate Real estate holdings
depr Depreciation / PP&E retvol Return volatility
divi Dividend initiation roaq Return on assets
divo Dividend omission roavol Earnings volatility
dolvol Dollar trading volume roeq Return on equity
dy Dividend to price roic Return on invested capital
ear Earnings announcement return rsup Revenue surprise
egr Growth in common shareholder equity salecash Sales to cash
ep Earnings to price saleinv Sales to inventory
gma Gross profitability salerec Sales to receivables
grCAPX Growth in capital expenditures secured Secured debt
grltnoa Growth in long term net operating assets securedind Secured debt indicator
herf Industry sales concentration sgr Sales growth
hire Employee growth rate sin Sin stocks
idiovol Idiosyncratic return volatility sp Sales to price
ill Illiquidity std_dolvol Volatility of liquidity (dollar trading volume)
indmom Industry momentum std_turn Volatility of liquidity (share turnover)
invest Capital expenditures and inventory stdacc Accrual volatility
lev Leverage stdcf Cash flow volatility
lgr Growth in long-term debt tang Debt capacity/firm tangibility
maxret Maximum daily return tb Tax income to book income
mom12m 12-month momentum turn Share turnover
mom1m 1-month momentum zerotrade Zero trading days

Table A1- List of acronyms and characteristics provided by Gu et al. (2020)
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Target variable: rt Target variable: E(rt)

mean std t-stat SR mean std t-stat SR

Panel (a): All data

1 -0.23 9.25 -0.56 -0.09 -0.20 10.08 -0.44 -0.07
2 0.41 6.91 1.33 0.20 0.41 7.13 1.28 0.20
3 0.66 5.61 2.65 0.41 0.58 5.42 2.42 0.37
4 0.69 4.39 3.53 0.55 0.64 4.41 3.28 0.51
5 0.79 3.38 5.23 0.81 0.74 3.95 4.21 0.65
6 0.76 3.60 4.72 0.73 0.87 3.96 4.95 0.76
7 0.94 4.29 4.91 0.76 0.97 4.31 5.05 0.78
8 1.02 5.24 4.36 0.67 1.06 4.95 4.82 0.74
9 1.10 6.59 3.75 0.58 1.14 6.39 4.01 0.62
10 1.49 8.25 4.05 0.62 1.03 8.52 2.70 0.42
LS 1.72 3.18 12.11 1.87 1.22 5.46 5.02 0.78

Panel (b): All but tiny stocks

1 0.14 8.59 0.38 0.06 -0.04 9.28 -0.11 -0.02
2 0.63 6.24 2.26 0.35 0.60 6.46 2.10 0.32
3 0.73 5.06 3.24 0.50 0.72 5.17 3.14 0.49
4 0.78 4.16 4.19 0.65 0.77 4.53 3.82 0.59
5 0.78 3.81 4.59 0.71 0.82 4.00 4.60 0.71
6 0.80 4.03 4.47 0.69 0.77 3.98 4.37 0.67
7 0.90 4.36 4.63 0.71 0.90 4.50 4.50 0.70
8 1.01 5.05 4.47 0.69 0.99 4.76 4.65 0.72
9 1.03 5.89 3.93 0.61 1.00 5.62 4.01 0.62
10 1.17 7.49 3.51 0.54 1.16 8.01 3.24 0.50
LS 1.03 2.82 8.16 1.26 1.20 5.04 5.35 0.83

Panel (c): Large stocks

1 0.34 8.14 0.92 0.14 0.25 8.79 0.63 0.10
2 0.72 5.99 2.69 0.42 0.63 6.27 2.24 0.35
3 0.72 5.04 3.20 0.49 0.73 5.14 3.20 0.49
4 0.73 4.52 3.63 0.56 0.81 4.70 3.86 0.60
5 0.79 3.90 4.55 0.70 0.86 4.23 4.57 0.71
6 0.85 4.25 4.48 0.69 0.73 4.25 3.88 0.60
7 0.85 4.43 4.33 0.67 0.86 4.48 4.30 0.66
8 0.92 4.96 4.17 0.64 0.86 4.66 4.12 0.64
9 0.96 5.51 3.90 0.60 0.87 5.28 3.71 0.57
10 0.98 7.10 3.11 0.48 1.00 7.41 3.04 0.47
LS 0.65 3.11 4.67 0.72 0.76 5.49 3.09 0.48

Table A2- The performance of equally-weighted portfolios with 94 characteristics in 1980-
2021

This table reports the average monthly out-of-sample performance of equally-weighted portfolios based on
the all 94 characteristics listed in table A1. The four left columns show the results when the in-sample labels
are ranked based on the realized returns (according to equation 4), while the four right columns show the
counterpart results when the labels are based on the average of last year returns (T = 12 in equation 3).
Columns titled "mean" show the average monthly excess returns of created portfolios from Jan 1980 to Dec
2021 in percentage. std is the monthly standard deviation of portfolios. t−stat shows if the risk premiums
are significantly different from zero and SR demonstrates the annualized Sharpe ratio. Panel (a) considers all
data except the 5% tiniest for creating portfolios, while panel (b) and (c) includes all but tiny (above 20% NYSE
percentile) and large stocks (above NYSE median), respectively. LS shows the performance of a long-short
portfolio which goes long (short) in decile 10 (1). The number of neighbours is considered k = 1000 with τ = 120
the number of months included in the in-sample data. The value-weighted counterparts are shown in table 1.
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Target variable: rt Target variable: E(rt)

All data All but tiny Large
stocks

All data All but tiny Large
stocks

αCAPM 1.75 1.17 0.80 1.32 1.38 0.96
t-stat 12.21 9.58 5.96 5.41 6.18 3.96
adj R2 0.00 0.09 0.09 0.01 0.04 0.05

αFF3 1.77 1.15 0.80 1.44 1.52 1.15
t-stat 12.30 9.43 5.92 5.99 7.06 5.06
adj R2 0.00 0.09 0.08 0.05 0.12 0.17

αCarhart 1.43 0.81 0.46 0.69 0.79 0.40
t-stat 11.92 8.86 4.23 4.36 6.35 2.91
adj R2 0.33 0.50 0.43 0.61 0.71 0.71

αFF5 1.53 0.93 0.60 1.23 1.30 0.99
t-stat 10.63 7.63 4.38 4.93 5.88 4.18
adj R2 0.09 0.16 0.13 0.07 0.13 0.17

αq 1.31 0.74 0.42 0.69 0.81 0.49
t-stat 9.98 6.70 3.32 3.05 4.07 2.25
adj R2 0.26 0.33 0.26 0.24 0.31 0.30

αq5 1.16 0.63 0.27 0.50 0.61 0.20
t-stat 8.32 5.39 1.98 2.08 2.87 0.86
adj R2 0.27 0.33 0.28 0.25 0.32 0.32

Table A3- Risk adjusted returns for equally-weighted long-short portfolios

this table reports monthly alphas, t−values and adjusted R2 for out-of-sample performance of equally-weighted
long-short portfolios. The three left columns show the results when the in-sample stocks are ranked based
on the realized returns (according to equation 4), while the three right columns show the counterpart results
when the labels are based on the average of last year returns (T = 12 in equation 3). All data includes the
universe of stocks except the 5% tiniest for creating portfolios, while all but tiny and large stocks include the
assets with above 20% and 50% NYSE market-cap, respectively. I consider six factor models and report alpha
and their t−stats based on them. These six models include CAPM, Fama French three factor model (FF3),
Carhart four factor model (Carhart), Fama French 5 factor model (FF5), q model and augmented q model with
expected growth (q5). The number of neighbours is considered k = 1000 with τ = 120 the number of months
included in the in-sample data. The value-weighted counterparts are shown in Table 2.
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All data All but tiny Large stocks

3 char 12 char 3 char 12 char 3 char 12 char

Panel (a): Predicting rt

mean (1) 0.15 -0.28 0.39 0.05 0.49 0.17
t-stat 0.39 -0.71 1.22 0.14 1.70 0.48
mean (10) 1.00 1.63 1.03 1.22 0.99 1.10
t-stat 3.35 4.72 3.61 3.81 3.66 3.58
mean (LS) 0.86 1.91 0.64 1.17 0.50 0.93
t-stat 4.72 14.05 4.33 8.45 3.18 6.82
SR 0.73 2.17 0.67 1.30 0.49 1.05
αCAPM 1.01 2.01 0.75 1.32 0.59 1.06
t-stat 5.66 14.88 5.12 9.79 3.75 7.89
αFF3 1.06 2.01 0.80 1.30 0.66 1.06
t-stat 5.94 14.88 5.51 9.64 4.39 7.83
αCarhart 0.50 1.69 0.30 0.91 0.14 0.70
t-stat 4.26 15.06 3.75 9.43 1.70 6.69
αFF5 0.84 1.73 0.64 1.04 0.54 0.83
t-stat 4.61 13.19 4.28 7.74 3.47 6.06
αq 0.45 1.54 0.34 0.82 0.24 0.61
t-stat 2.78 12.85 2.53 6.75 1.68 4.95
αq5 0.36 1.39 0.17 0.69 0.10 0.45
t-stat 2.07 10.98 1.19 5.37 0.67 3.40
Panel (b): Predicting E(rt)
mean (1) -0.23 -0.13 -0.03 -0.12 0.20 0.03
t-stat -0.52 -0.29 -0.08 -0.29 0.56 0.08
mean (10) 1.34 1.04 1.30 1.17 1.12 1.05
t-stat 4.09 2.94 4.11 3.52 3.90 3.43
mean (LS) 1.57 1.17 1.32 1.29 0.92 1.02
t-stat 5.22 4.21 4.66 5.02 3.21 3.86
SR 0.81 0.65 0.72 0.77 0.50 0.60
αCAPM 1.73 1.35 1.53 1.51 1.11 1.25
t-stat 5.73 4.86 5.40 5.98 3.89 4.80
αFF3 1.89 1.48 1.71 1.69 1.30 1.42
t-stat 6.38 5.43 6.28 6.95 4.75 5.67
αCarhart 0.88 0.61 0.69 0.80 0.27 0.52
t-stat 5.23 3.50 6.18 7.02 2.45 4.25
αFF5 1.61 1.22 1.42 1.51 1.02 1.24
t-stat 5.26 4.33 5.05 5.99 3.61 4.77
αq 0.91 0.60 0.76 0.91 0.40 0.67
t-stat 3.30 2.35 2.99 3.90 1.52 2.74
αq5 0.69 0.36 0.49 0.57 0.14 0.33
t-stat 2.34 1.32 1.83 2.33 0.51 1.30

Table A4- The performance of equally-weighted portfolios based on 3 and 12 characteristics
in 1980-2021

This table reports the average monthly out-of-sample performance of equally-weighted portfolios based on 3
and 12 characteristics. Panel (a) show the results when the in-sample labels are ranked based on the realized
returns (according to equation 4), while panel (b) show the counterpart results when the labels are based on
the average of last year returns (T = 12 in equation 3). Rows titled "mean (1), (10) and (LS)" show the average
monthly excess returns of portfolios 1, 10 and long-short portfolio from Jan 1980 to Dec 2021 in percentage and
SR demonstrates the annualized Sharpe ratio. The number of neighbours is considered k = 1000 with τ = 120
the number of months included in the in-sample data. The value-weighted counterpart results are presented in
table 3.
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All data All but tiny Large stocks

3 char 12 char 94 char 3 char 12 char 94 char 3 char 12 char 94 char

αCAPM 1.74 1.32 1.24 1.61 1.62 1.54 1.21 1.48 1.39
t-stat 5.71 4.85 4.77 5.59 6.36 5.80 4.08 5.36 4.14
adj R2 0.02 0.02 0.00 0.04 0.04 0.04 0.03 0.05 0.04

αFF3 1.87 1.45 1.37 1.79 1.78 1.72 1.40 1.63 1.58
t-stat 6.25 5.43 5.41 6.46 7.26 6.71 4.94 6.07 4.84
adj R2 0.06 0.06 0.05 0.11 0.11 0.12 0.12 0.11 0.10

αCarhart 0.88 0.61 0.69 0.76 0.92 0.95 0.34 0.75 0.79
t-stat 4.89 3.50 3.54 6.46 7.12 5.33 2.85 4.58 2.95
adj R2 0.67 0.60 0.46 0.85 0.76 0.58 0.85 0.68 0.41

αFF5 1.52 1.21 1.15 1.48 1.62 1.54 1.10 1.48 1.49
t-stat 4.95 4.37 4.37 5.20 6.36 5.81 3.77 5.31 4.39
adj R2 0.09 0.07 0.07 0.14 0.12 0.12 0.14 0.11 0.10

αq 0.82 0.61 0.66 0.82 1.05 0.97 0.47 0.91 0.94
t-stat 2.99 2.45 2.67 3.17 4.38 3.97 1.74 3.42 2.86
adj R2 0.29 0.25 0.20 0.30 0.24 0.28 0.27 0.22 0.18

αq5 0.64 0.40 0.45 0.54 0.71 0.71 0.22 0.55 0.41
t-stat 2.19 1.48 1.72 1.97 2.82 2.76 0.75 1.95 1.19
adj R2 0.29 0.26 0.21 0.31 0.26 0.29 0.27 0.24 0.21

Table A5- Risk adjusted returns for an equally-weighted long-short portfolio with a stochas-
tic selection

This table reports monthly alphas, t−values and adjusted R2 for out-of-sample performance of equally-weighted
long-short portfolios where there is a stochastic selection in the training sample with π = 0.05. The results are
shown for the case three cases when 3 characteristics, 12 characteristics and 94 characteristics are used to
find neighbouring assets. The target variables are defined based on the average of last year returns (T = 12 in
equation 3). All data includes the universe of stocks except the 5% tiniest for creating portfolios, while all but
tiny and large stocks include the assets with above 20% and 50% NYSE market-cap, respectively. I consider six
factor models and report alpha and their t−stats based on them. These six models include CAPM, Fama French
three factor model (FF3), Carhart four factor model (Carhart), Fama French 5 factor model (FF5), q model and
augmented q model with expected growth (q5). The number of neighbours is considered k = 1000 with τ = 120
of months included in the in-sample data. The value-weighted counterpart results are shown in Table 4.
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Anomaly

1- cumulative abnormal returns around earnings announcement dates, 1-month holding period
2- cumulative abnormal returns around earnings announcement dates, 6-month holding period
3- cumulative abnormal returns around earnings announcement dates, 12-month holding period
4- customer industries momentum, 1-month holding period
5- customer industries momentum, 6-month holding period
6- customer industries momentum, 12-month holding period
7- customer momentum, 1-month holding period
8- customer momentum, 12-month holding period
9- changes in analyst earnings forecasts, 1-month holding period
10- changes in analyst earnings forecasts, 6-month holding period
11- changes in analyst earnings forecasts, 12-month holding period
12- industry lead-lag effect in earnings surprises, 1-month holding period
13- industry lead-lag effect in prior returns, 1-month holding period
14- industry lead-lag effect in prior returns, 6-month holding period
15- industry lead-lag effect in prior returns, 12-month holding period
16- industry momentum, 1-month holding period
17- industry momentum, 6-month holding period
18- industry momentum, 12-month holding period
19- the number of quarters with consecutive earnings increase, 1-month holding period
20- 52-week high, 6-month holding period
21- 52-week high, 12-month holding period
22- prior 6-month returns, 1-month holding period
23- prior 6-month returns, 6-month holding period
24- prior 6-month returns, 12-month holding period
25- prior 11-month returns, 1-month holding period
26- prior 11-month returns, 6-month holding period
27- prior 11-month returns, 12-month holding period
28- revisions in analyst earnings forecasts, 1-month holding period
29- revisions in analyst earnings forecasts, 6-month holding period
30- 6-month residual momentum, 6-month holding period
31- 6-month residual momentum, 12-month holding period
32- 11-month residual momentum, 1-month holding period
33- 11-month residual momentum, 6-month holding period
34- 11-month residual momentum, 12-month holding period
35- revenue surprises, 1-month holding period
36- supplier industries momentum, 1-month holding period
37- supplier industries momentum, 12-month holding period
38- segment momentum, 1-month holding period
39- segment momentum, 12-month holding period
40- standard unexpected earnings, 1-month holding period
41- standard unexpected earnings, 6-month holding period

Table A6- List of momentum anomalies provided by Hou et al. (2020)
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(a) All data

(b) All but tiny stocks

(c) Large stocks

Figure A1. Cumulative returns of decile portfolios for the period 1980-2021 when the
target variable is realized returns

This figure shows the cumulative returns of all portfolios from 1980-2020 in the main analysis when k = 1000
and the target variables are defined based on the realized returns (T = 1 in equation 3). Panel (a) shows
portfolios consisting all but 5% tiniest ones. Panel (b) and (c) show portfolios containing all but tiny (above
20% NSYE percentile) and large stocks (above NYSE median). Four crisis periods are shown in gray and they
include 1992 Sterling crisis, Early 2000s recession, 2008 global financial crisis and 2019 Covid crisis. The
long-short portfolio strategy reacts to the crisis periods. The y-axis is in a logarithmic scale.
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(a) All data

(b) All but tiny stocks

(c) Large stocks

Figure A2. Cumulative returns of decile portfolios for the period 1980-2021 with a
stochastic selection

This figure shows the cumulative returns of all portfolios from 1980-2020 in the main analysis when k =
1000, τ = 120, and π = 0.05 and the target variables are defined based on the average of last year returns
(T = 12 in equation 3). Panel (a) shows portfolios consisting all but 5% tiniest ones. Panel (b) and (c) show
portfolios containing all but tiny (above 20% NSYE percentile) and large stocks (above NYSE median). Four
crisis periods are shown in gray and they include 1992 Sterling crisis, Early 2000s recession, 2008 global
financial crisis and 2019 Covid crisis. The long-short portfolio strategy reacts to the crisis periods. The y-axis is
in a logarithmic scale.
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(a) All data

(b) All but tiny stocks

(c) Large stocks

Figure A3. Rolling average of spreads between decile 1 and 10 in the period 1980-2021

This figure shows the rolling average of the spread generated from decile portfolio 1 and 10. Left column
show the rolling average when the rolling window is 240 months, while the middle and right columns show
the counterpart 120 and 60 months of rolling windows. Panel (a) shows the decile portfolios created by all
except 5% tiniest stocks, panel (b) shows the portfolios with all but tiny stocks, and panel (c) includes only large
stocks. In this graph the value-weighted portfolios are created with considering 94 characteristics. The target
variables are defined based on the average of last year returns (T = 12 in equation 3) with τ = 120 the number
of months included in the in-sample data, and k = 1000. The setting is π = 0.05.
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(a) All data

(b) All but tiny stocks

(c) Large stocks

Figure A4. Rolling average of Sharpe Ratio for decile 1 and 10 and a long-short portfolio
in the period 1980-2021 with a stochastic selection

This figure shows the rolling average of the Sharpe Ratios generated from decile portfolio 1 and 10 and also
a long-short portfolio. Left column show the rolling average when the rolling window is 240 months, while
the middle and right columns show the counterpart 120 and 60 months of rolling windows. Panel (a) shows
the decile portfolios created by all except 5% tiniest stocks, panel (b) shows the portfolios with all but tiny
stocks, and panel (c) includes only large stocks. In this graph the value-weighted portfolios are created with
considering 94 characteristics. The target variables are defined based on the average of last year returns
(T = 12 in equation 3) with τ = 120 the number of months included in the in-sample data, and k = 1000. The
crisis periods are shown in gray. The setting is π = 0.05.
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(a) All data

(b) All but tiny stocks

(c) Large stocks

Figure A5. Rolling average of spreads between decile 1 and 10 in the period 1980-2021
when predicting based on realized returns

This figure shows the rolling average of the spread generated from decile portfolio 1 and 10. Left column
show the rolling average when the rolling window is 240 months, while the middle and right columns show
the counterpart 120 and 60 months of rolling windows. Panel (a) shows the decile portfolios created by all
except 5% tiniest stocks, panel (b) shows the portfolios with all but tiny stocks, and panel (c) includes only large
stocks. In this graph the value-weighted portfolios are created with considering 94 characteristics. The target
variables are defined based on the realized returns (T = 1 in equation 3) with τ = 120 the number of months
included in the in-sample data, and k = 1000.

59



(a) All data

(b) All but tiny stocks

(c) Large stocks

Figure A6. Rolling average of Sharpe Ratio for decile 1 and 10 and a long-short portfolio
in the period 1980-2021 when predicting based on realized returns

This figure shows the rolling average of the Sharpe Ratios generated from decile portfolios 1 and 10 and
also a long-short portfolio. The left column shows the rolling average when the rolling window is 240 months,
while the middle and right columns show the counterpart 120 and 60 months of rolling windows. Panel (a)
shows the decile portfolios created by all except 5% tiniest stocks, panel (b) shows the portfolios with all but
tiny stocks, and panel (c) includes only large stocks. In this graph the value-weighted portfolios are created
with considering 94 characteristics. The target variables are defined based on the realized returns (T = 1 in
equation 3) with τ = 120 the number of months included in the in-sample data, and k = 1000. The crisis periods
are shown in gray.
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