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1 Introduction

Many assets, including most financial assets, are traded over-the-counter (OTC) in inter-

mediated markets. In these markets, dealers serve as intermediaries, while investors trade with

dealers bilaterally. Decentralized investor-dealer trading exhibits inherent search and matching

frictions, causing significant market illiquidity.1 Importantly, the investor-dealer relationship is

strategic in nature. If there is gain from trade, the investor and the dealer engage in strategic

bargaining to determine the terms of trade and divide the joint trade surplus between them.

The investor’s intrinsic type thus affects not only their outside option (that is, their alternatives

to immediate trade) but also their bargaining power (that is, their ability to capture the joint

surplus). For example, an investor with imminent liquidity needs is more concerned with meeting

their constraints in the short run, and the alternative to immediate trade is less attractive.

Furthermore, bargaining delays can be particularly costly to such investor, and they are more

willing to accept whatever terms of trade are offered to them and unable to capture much of the

surplus.

Given the above features of intermediated asset markets, how does asset liquidity, defined

as the ease of trading an asset, affect investors’ dynamic portfolio choice and equilibrium asset

prices? Specifically, how do investors allocate capital across assets with differential liquidity, and

what is the relationship between asset liquidity and asset prices?

In this paper, I answer these questions by developing a highly tractable search-theoretic model

with strategic bargaining. In the model, a continuum of mean-variance investors allocate capital

across N assets traded in semi-centralized markets characterized by random search between

investors and dealers.2 The assets differ in their trading liquidity, due to heterogeneous search and

matching frictions. Investors experience idiosyncratic shocks to their patience levels (or discount

rates), giving rise to portfolio rebalancing and trading motives. The paper contributes to the

theoretical literature on OTC markets in two aspects. First, I allow investors to simultaneously
1The literature on OTC markets primarily focuses on the search and matching frictions, which give rise to

illiquidity. For example, Duffie et al. (2005, 2007), Vayanos and Weill (2008), Garleanu (2009), Lagos and Rocheteau
(2009) are among some of the seminal papers.

2The market structure is similar to that of Lagos and Rocheteau (2009).
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hold a portfolio of heterogeneous assets with unrestricted holdings. This facilitates the study

of investors’ portfolio choice problem in intermediated search markets. Tractability stems from

the semi-centralized market structure and the assumption that assets have i.i.d. cash flows.

Second, as a result of strategic bargaining, modeled as Rubinstein-style sequential bargaining,

investors’ patience types influence both their continuation values and their bargaining powers.

The type-dependency of investors’ bargaining powers marks a key departure from the existing

literature.

Both asset liquidity and strategic bargaining affect investors’ dynamic portfolio choice. Illiq-

uidity exposes investors to the risk of holding imbalances, since trading is subject to delays when

rebalancing needs arise. To mitigate this risk, investors attenuate their asset demand towards the

average and hold less extreme positions. That is, compared to the benchmark with frictionless

trading, patient investors decrease their demand while impatient investors increase their demand

for the illiquid asset. Moreover and due to strategic bargaining, for a given asset, patient investors

attenuate their demand more than impatient investors, leading to a demand wedge. This is

because investors’ bargaining powers weaken when they experience shocks and become impatient.

Knowing that they will receive bad terms when selling the asset upon shocks, patient investors

internalize this by demanding less of the asset to begin with.

Consequently, a key result of the model is that the relationship between asset prices and asset

liquidity in intermediated markets is non-monotonic. The intuition is straightforward and stems

from investors’ portfolio choice. When an asset is perfectly illiquid, it would take an investor

infinite amount of time to meet a dealer. Trading and thus bargaining never takes place in this

limit. Because the demand wedge results from strategic bargaining, and bargaining is irrelevant in

this limit, demand wedge does not arise. Demand attenuations by patient and impatient investors

net out in aggregate, and asset price converges to that under the frictionless trading benchmark.

If the asset’s liquidity increases slightly, the effect of bargaining becomes pertinent and demand

wedge emerges, causing a decline in price. However, as asset liquidity increases further, demand

attenuations by both patient and impatient investors decrease, and the demand wedge gradually

shrinks. Once the asset becomes sufficiently liquid, the demand wedge is small enough that
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the asset’s price starts to rise. In the limit where the asset becomes perfectly liquid, demand

attenuations and thus the demand wedge converge to zero, and the price again converges to that

under the benchmark.

A novel prediction of the model is thus that the price-liquidity relationship is positive among

sufficiently liquid assets but negative among highly illiquid assets. More precisely, there exists

a liquidity threshold, such that among assets above the liquidity threshold, more liquid assets

trade at higher prices than less liquid assets. However, among assets below the liquidity threshold,

more liquid assets trade at lower prices instead. Moreover, the model suggests that the liquidity

threshold increases in investors’ shock intensity and shock magnitude, large values of which are

often associated with market stress when investors’ liquidity needs are high. Thus, the market

average price-liquidity relationship may turn negative during severe crises. These results contrast

with the existing literature (both theoretical and empirical) which suggests that more liquid assets

should command at least weakly higher prices than less liquid assets.

Another novel prediction of the model concerns transaction costs, which have long been a

main focus of the OTC markets literature and the microstructure literature. The model predicts

that transaction costs are asymmetric between investor-buy and investor-sell trades. Specifically,

transaction costs are higher for investors who sell to dealers than for investors who buy from

dealers. The result is also intuitive. Compared to buying investors, selling investors are more

impatient and have weaker bargaining powers, leading to higher transaction costs incurred by

them when trading with dealers.

I test the model predictions using U.S. corporate bond data from January 2005 to December

2021. Motivated by the model, I use transaction costs to measure bond liquidity. To test the

non-monotonic relationship between price and liquidity, I divide the sample into sub-samples

containing relatively liquid and illiquid bonds based on common liquidity proxies. To address

endogeneity concerns of regressing credit spreads on transaction costs, I exploit the institutional

feature that newly-issued bonds tend to be significantly more liquid than older bonds of the

same issuer, and instrument transaction costs with an instrumental variable constructed based

on whether a bond is newly-issued. I show that while more liquid bonds (or bonds with lower
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transaction costs) trade at lower credit spreads in sub-samples containing relatively liquid bonds,

the reverse is true for sub-samples containing highly illiquid bonds. In the time-series, I plot the

average credit spread difference between newly-issued bonds and matched old bonds. I show that

the average spread differential is generally positive, but noticeably negative from Q4 2008 to

Q2 2009 following the Lehman Brothers collapse and in the depth of the Great Financial Crisis.

Finally, I examine the transaction cost differential between investor-buy and investor-sell trades,

and find that selling investors incur on average 3-6 bps higher transaction costs than buying

investors.

1.1 Related Literature

This paper is related to the literature on OTC markets. Early models in the literature (e.g.,

Duffie et al. (2005, 2007), Vayanos and Weill (2008), Weill (2008)) assume that investors are risk-

neutral and hold zero or one unit of an asset. Lagos and Rocheteau (2009) relax investors’ holding

restrictions, while maintaining tractability by modeling the trading market as semi-centralized.

That is, investor-dealer trading is bilateral, but dealers have continuous access to a competitive

inter-dealer market. I follow their approach. The paper thus falls under the body of literature

with risk-averse agents and unrestricted holdings (e.g., Garleanu (2009), Afonso and Lagos (2015),

Üslü (2019)). The paper makes two theoretical contributions.

First, this paper explicitly models investors’ portfolio choice problem. In the model, investors

can simultaneously hold a portfolio of intermediated assets with arbitrary holdings. This contrasts

with existing multi-asset models of OTC markets (e.g., Vayanos and Wang (2007), Vayanos and

Weill (2008), Weill (2008), Milbradt (2017), An (2022), Sambalaibat (2022)), where investors

can only search for one asset at a time. A recent paper by Üslü and Velioǧlu (2021) also allows

investors to hold portfolios of OTC assets. In their model, trading is fully decentralized, and

the authors focus instead on liquidity outcomes (e.g., price dispersion, trading volume and price

impact), rather than the relationship between liquidity and asset prices, which is the focus of this

paper.
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Second, motivated by the asset pricing literature, I model investors’ idiosyncratic shocks

as discount rate shocks, which in turn affect the equilibrium outcomes of strategic bargaining

between investors and dealers. Similar to Duffie et al. (2007) and Farboodi et al. (2019), I model

the investor-dealer bargaining problem as a sequential bargaining game with alternating offers

(e.g., Rubinstein (1982), Rubinstein and Wolinsky (1985)). However, the solutions to the strategic

bargaining problem in my model are no longer the same as those under the axiomatic approach

to bargaining, as investors with higher discount rates have not only lower continuation values

but also weaker bargaining powers. In other words, investors’ intrinsic types affect both their

bargaining powers and their outside options. The type-dependent bargaining powers, which result

from strategic bargaining, mark a key departure from the literature.

This paper also contributes to a large literature in asset pricing that examines the effect of

illiquidity on asset prices, including earlier theoretical work such as Amihud and Mendelson (1986),

Constantinides (1986), Aiyagari and Gertler (1991), Heaton and Lucas (1996), Vayanos (1998),

and more recent empirical studies such as Pastor and Stambaugh (2003), Acharya and Pedersen

(2005). The paper is particularly relevant to the growing literature on liquidity and asset prices in

fixed income markets, for example, Longstaff et al. (2005), Chen et al. (2007), Lin et al. (2011),

Acharya et al. (2013) among others for the corporate bond market, and Amihud and Mendelson

(1991), Pasquariello and Vega (2009), Favero et al. (2010) among others for the Treasuries market.

While the common belief in the existing literature is that liquid assets should trade at higher

prices than illiquid assets, a few recent empirical papers find that liquidity premium appears

to be negative during severe market stress (e.g., Boudoukh et al. (2019), Choi et al. (2019)). A

concurrent paper by Choi et al. (2022) documents that the price-liquidity relationship in the

corporate bond market is positive during normal periods but negative during crises. The authors

construct a model based on Vayanos and Wang (2007) to explain the phenomenon. In their model,

trading is concentrated in the more liquid asset, and when sellers are the marginal investors, they

drive down the price of the more liquid asset. The mechanism of my model is thus very different.

Importantly, the non-monotonic relationship between asset liquidity and prices in my model is a

cross-sectional statement, and the price-liquidity relationship is negative among assets that are
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sufficiently illiquid. The negative relationship between asset liquidity and prices simply becomes

more prevalent during times of stress.

The rest of this paper is organized as follows. Section 2 describes the model setup. Section 3

derives the stationary equilibrium in closed form, and establishes existence and uniqueness. Section

4 discusses the main equilibrium properties and presents key model predictions. Section 5 tests

the model predictions empirically using corporate bond transaction data. Section 6 concludes.

2 Model Environment

Time is continuous and infinite, with t ∈ [0,∞). I fix a probability space (Ω,F ,Pr) and a

filtration {Ft : t ≥ 0} of sub-σ-algebras satisfying the usual conditions. The filtration represents

the resolution of commonly available information over time. The economy is populated by a

continuum of agents, who produce and consume a perishable numéraire good. Agents enjoy

consuming the numéraire good, with marginal utility of consumption normalized to one.

2.1 Assets

There are N long-lived risky assets, indexed by i ∈ {1, 2, . . . , N}. Each asset is in fixed supply

s > 0. From time t to t+ dt, asset i produces dDi
t units of consumption in the form of dividends.

For tractability, I assume that the assets have i.i.d. dividend flows.3 Asset i’s cumulative dividend

flow Di
t follows the Brownian motion

dDi
t = D̄dt+ σdZi

t (2.1)

where D̄ > 0 and σ > 0 are constants, and Zi
t is a standard Brownian motion with respect to the

given probability space and filtration. For any two assets i 6= i′, the standard Brownian motions

Zi
t and Zi′

t are independent.
3The assumption of i.i.d. dividend flows provides tractability. The mechanism remains unchanged if the assets

have correlated dividend processes.
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The assets are traded over-the-counter in semi-centralized markets intermediated by dealers.

I normalize the measure of dealers to one. The market structure resembles that of Lagos and

Rocheteau (2009). Investors must trade with dealers, and investor-dealer trading is fully bilateral.

Assets are traded individually by dealers, in the sense that each dealer can trade only one of the

N assets with an investor in a given trading session. By contrast, dealers can continuously trade

in a competitive inter-dealer market. Investors thus have indirect access to the inter-dealer market

through dealers. Dealers discount time at a constant rate r > 0. Dealers do not hold inventories,

and their instantaneous utility is their numéraire consumption.4

Due to imperfect search and matching typical in over-the-counter (OTC) markets, investor

trading is not instantaneous but subject to delays. Following the random search framework, I

assume that investors wishing to trade asset i randomly contact dealers and are met with a dealer

at independent Poisson arrival times with intensity λi > 0. Hence, the average trading delay for

asset i is 1/λi. The meeting intensity λi, an asset-level characteristic, thus captures the asset’s

liquidity defined as the ease of trading it and related to trading frictions. An asset with higher

meeting intensity is more liquid, as trading it takes less time thanks to more effective search and

matching. Without loss of generality, I assume that λ1 > λ2 > · · · > λN .

2.2 Investors

There is a continuum of investors in the economy. Without loss of generality, the total measure

of investors is assumed to be one. Investors make portfolio allocation decisions among the N

assets. An investor holding x ≡ (x1, x2, . . . , xN) units of the assets derives mean-variance flow

benefit of

u(x) =
N∑
i=1

D̄xi − γ

2

N∑
i=1

σ2(xi)2 (2.2)

4The restriction on dealer inventories can be relaxed by assuming that dealers derive utility (e.g., a mean-
variance benefit) from holding assets, such that dealers’ optimal asset holdings are non-zero. Relaxing the restriction
complicates the exposition, without affecting the economics. I thus keep the restriction that dealers hold no
inventories, since it is immaterial for steady-state analysis and imparts all the key intuition.
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D̄xi is the instantaneous expected dividend payment from the investor’s asset i holding, and

σ2(xi)2 is the instantaneous variance of the dividend payment. Because the assets’ dividend flows

are i.i.d., the two sums on the right-hand side of (2.2) are the instantaneous mean and variance

of the portfolio cash flows respectively. The coefficient γ captures investors’ risk aversion towards

fundamental risks. A large γ means that investors are more averse to cash flow uncertainty.

Investors are risk-neutral towards jump risks such as transition in types and arrival of trading

opportunities.5 The instantaneous utility function of an investor has the quasi-linear form u(x)+c,

where c ∈ R is the investor’s numéraire consumption. In the model, investors could be interpreted

as mean-variance optimizers of short-term trading profits. In practice, most institutional investors

are subject to frequent mark-to-market for performance measurement and compliance purposes.

Investors experience idiosyncratic patience shocks, arising from imminent liquidity needs. For

example, an investor facing significant fund outflows must raise cash quickly, in order to meet the

looming redemption deadlines. I assume that an investor is either in a normal state or a shock

state. An investor in the normal state is patient and discounts time at the rate r. An investor

in the shock state becomes impatient and discounts time at a higher rate r + ε, where ε > 0.

Thus, impatient investors assign greater value to immediate consumption. Such investors are more

likely to consume, than to hold onto the asset for future consumption. Consequently, impatient

investors have lower asset demand than patient investors.

I use ξ ∈ {h, l} to denote an investor’s patience type. A high type (or type h) investor is

in the normal state and is patient. A low type (or type l) investor is in the shock state and is

impatient. Investors transition, randomly and pairwise-independently, from type h to type l with

intensity ζhl > 0, and from type l to type h with intensity ζlh > 0. Switching of patience types

gives rise to trading motives by investors. Importantly, when an investor’s type changes, they

wish to adjust their holdings in all portfolio assets. Let π denote the proportion of investors that

are impatient in the steady state. It is immediate that the steady-state proportions of type l and
5The specification of mean-variance investors follows Üslü (2019), and can be derived from the specification

where investors maximize CARA utility with respect to their intertemporal consumption, up to a suitable first-
order approximation (e.g., Duffie et al. (2007), Vayanos and Weill (2008), Garleanu (2009), Üslü (2019). The
approximation retains risk aversion towards fundamental risks, and linearizes preferences over jumps. Garleanu
(2009) provides numerical examples and demonstrates the accuracy of the approximation under reasonable
parameter assumptions.
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type h investors are respectively given by

π =
ζhl

ζhl + ζlh
and 1− π =

ζlh
ζhl + ζlh

(2.3)

2.3 Strategic Bargaining

When an investor and a dealer meet in a trading session for asset i ∈ {1, 2, . . . , N}, they

enter into a Rubinstein-style bargaining game that occurs in virtual time.6 The terms of trade,

including the trade price and the trade quantity, are determined by bargaining. The bargaining

game is sequential with alternating offers, à la Rubinstein and Wolinsky (1985). The timing of

the bargaining game is illustrated in Figure 1. At the beginning of a bargaining round, one party

is selected at random to suggest a partition of the joint trade surplus. Specifically, the dealer is

selected to make an offer with probability z ∈ (0, 1), and the investor is selected with probability

1− z.7 The other party immediately accepts or rejects the offer. The bargaining game ends if the

offer is accepted. Otherwise, the game continues with the initiation of a new round, again with

one party randomly selected (dealer with probability z and investor with probability 1− z) to

make an offer. The game begins with round one, and continues until an offer is accepted and the

game ends.

During a trading session between an investor and a dealer, the investor and the dealer bargain

over the division of the joint trade surplus. The actual division rule is an equilibrium outcome

of the strategic bargaining game described above. As will become clear later, a key feature of

the model is that an investor’s patience type affects not only their outside option, but also their

bargaining power defined as the fraction of the joint trade surplus the investor can capture.
6The assumption that bargaining occurs in virtual time greatly simplifies the model, while keeping the mechanism

unchanged. Given the assumption, the investor does not switch types during bargaining and there is no need to
keep track of changing discount rates. The assumption is also realistic, as bargaining in practice takes little time
compared to trading delays and investors’ time horizons.

7Dealers’ offer probability z is assumed to be exogenous. It depends on dealers’ general market powers and
bargaining skills, which are outside the model.
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Figure 1: Bargaining Game

Note: The figure illustrates the timing of the sequential bargaining game between an investor and a dealer. In
each round of the bargaining game, the dealer is randomly selected with probability z and the investor is randomly
selected with probability 1− z to make an offer. If the other party accepts the offer, the trade takes place and the
game ends. Otherwise, the game proceeds to the next round.

Patient (type h) investors enjoy greater bargaining powers than impatient (type l) investors and

extract greater surplus from trade.

3 Equilibrium Analysis

In this section, I characterize and derive the stationary equilibrium for the economy.

3.1 Value Functions

Given my focus on the stationary equilibrium, I henceforth suppress the time argument,

unless otherwise specified. Let Vξ(x) denote the expected value of an investor with patience type

ξ ∈ {h, l} and asset holdings x ≡ (x1, x2, . . . , xN) ∈ RN . Let P i
ξ(x) and qiξ(x) denote the trade

price and the trade quantity of asset i when the investor meets a dealer in a trading session for

the asset.

Consider the value function of a type h investor with asset holdings x. From time t to t+ dt,

the investor receives a mean-variance benefit of u(x)dt from their asset holdings. The investor

switches from patience type h to patience type l with probability ζhldt. The investor meets a

dealer for the asset i with probability λidt. Thus, Vh(x) at time t can be written as the expected
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value of the investor at time t+ dt, discounted at the investor’s time-t discount rate r. That is,

Vh(x) = (1− rdt)
{
u(x)dt+

(
1− ζhldt−

N∑
i=1

λidt
)
Vh(x) + ζhldtVl(x)

+
N∑
i=1

λidt
[
Vh
(
x1, . . . , xi + qih(x), . . . , xN

)
− P i

h(x)qih(x)
]} (3.1)

Rearrange (3.1), the investor’s value function satisfies the following Hamilton-Jacobi-Bellman

(HJB) equation

rVh(x) =
N∑
i=1

D̄xi − γ

2

N∑
i=1

σ2(xi)2 + ζhl

[
Vl(x)− Vh(x)

]
+

N∑
i=1

λi
[
Vh
(
x1, . . . , xi + qih(x), . . . , xN

)
− Vh(x)− P i

h(x)qih(x)
] (3.2)

The first two terms on the right-hand side correspond to the mean-variance flow benefit derived

by the investor. The bracketed term Vl(x)−Vh(x) represents the change in value due to switching

of patience type. The bracketed term in the summand represents the change in value due to

trading asset i. Analogously, the HJB equation for a type l investor with asset holdings x is

(r + ε)Vl(x) =
N∑
i=1

D̄xi − γ

2

N∑
i=1

σ2(xi)2 + ζlh

[
Vh(x)− Vl(x)

]
+

N∑
i=1

λi
[
Vl
(
x1, . . . , xi + qil(x), . . . , xN

)
− Vl(x)− P i

l (x)qil(x)
] (3.3)

3.2 Bargaining

When a type ξ investor with asset holdings x meets a dealer in a trading session for asset i,

the trade price P i
ξ(x) and the trade quantity qiξ(x) are solutions to the strategic bargaining game

described in Section 2.3. Given the trade price and the trade quantity, the investor’s gain from

trade is Vξ
(
x1, . . . , xi + qiξ(x), . . . , xN

)
− Vξ(x)− P i

ξ(x)qiξ(x). Let P̄ i denote asset i’s inter-dealer

clearing price, the main object of interest in this paper. Then the dealer’s gain from trade is

P i
ξ(x)qiξ(x)− P̄ iqiξ(x), the dealer’s intermediation profit for trading asset i. Hence, the joint trade
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surplus between the investor and the dealer is the sum of their respective gains from trade,

Vξ
(
x1, . . . , xi + qiξ(x), . . . , xN

)
− Vξ(x)− P̄ iqiξ(x).

The investor and the dealer bargain over the trade price and the trade quantity to divide the

join trade surplus between them. In a given bargaining round, one party is randomly selected to

suggest a price and a quantity to split the joint surplus. The suggested terms of trade are such

that the other party is indifferent between accepting and rejecting the offer. The solutions to

the bargaining game with respect to asset i are presented in the following lemma. The detailed

derivations are in Appendix A.1.

Lemma 1. When an investor with patience type ξ ∈ {h, l} and asset holdings x = (x1, x2, . . . , xN )

meets a dealer in a trading session for asset i, the trade price P i
ξ(x) and the trade quantity qiξ(x)

satisfy

Vξi
(
x1, . . . , xi + qiξ(x), . . . , xN

)
= P̄ i (3.4)

P i
ξ(x)qiξ(x) = (1− θξ)

[
Vξ
(
x1, . . . , xi + qiξ(x), . . . , xN

)
− Vξ(x)

]
+ θξP̄

iqiξ(x) (3.5)

where the subscript i of Vξi in (3.4) denotes derivative of Vξ with respect to the i-th argument, and

θξ =
(1− z)r

r + zεI{ξ=l}
(3.6)

Equation (3.4) says that the trade quantity qiξ(x) equates the post-trade marginal value of

the investor to the inter-dealer price of the asset. As discussed previously, when the inter-dealer

market is competitive, investors can be viewed as having indirect access to the inter-dealer market

through dealers. Thus, the inter-dealer price is also the marginal cost of purchasing the asset.

Hence, equation (3.4) means that the marginal value from trading must equal the marginal cost.

Note that the trade quantity that solves (3.4) also maximizes the joint trade surplus between the

investor and the dealer. If the actual trade quantity deviated from qiξ(x), there would be Pareto

improvement by setting the quantity to qiξ(x) instead.
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Equation (3.5) says that the trade price P i
ξ(x) and the trade quantity qiξ(x) divide the joint

trade surplus, in such a way that the type ξ investor receives a fraction θξ of the joint surplus.

To see this, substitute (3.5) into the investor’s gain from trade. The investor’s gain from trade

can thus be written as θξ[Vξ
(
x1, . . . , xi + qiξ(x), . . . , xN

)
− Vξ(x)− P̄ iqiξ(x)]. That is, the investor

receives a fraction θξ of the joint trade surplus between the investor and the dealer. Similarly, the

dealer receives a fraction 1− θξ of the joint trade surplus. Thus, θξ and 1− θξ correspond to the

investor’s and the dealer’s relative bargaining powers respectively.

The bargaining powers are equilibrium outcomes of the strategic bargaining problem. The

investor’s bargaining power θξ is given by (3.6). The indicator I{ξ=l} equals one if the investor

is type l, and zero otherwise. The investor’s bargaining power depends on their patience type

ξ. From (3.6), it is immediate that θh > θl. That is, patient investors have stronger bargaining

powers than impatient investors, and extract greater surplus from trade. Furthermore, the more

impatient a type l investor, the worse their bargaining power is relative to patient investors, since

θl decreases in ε. In the extreme case that an investor only values current consumption (i.e.,

infinitely impatient), the investor is willing to accept an offer with zero surplus from trade.

Equations (3.4) and (3.5) are solutions to the strategic bargaining game described earlier. They

are, however, analogous to the Nash bargaining results typical in the literature on OTC markets.

The difference is that under strategic bargaining, investors’ bargaining powers are endogenous

and depend on their types. By contrast, bargaining powers are exogenous under the axiomatic

approach commonly followed in the literature. The above results thus suggest that the investor’s

patience type affects both their bargaining power and their outside option. Because an impatient

investor faces more costly bargaining delays off-equilibrium, they are more willing to accept

whatever deal is offered to them by the dealer. Hence in equilibrium, the investor receives worse

terms of trade and captures less of the joint trade surplus. At the same time, the impatient

investor discounts the future at a higher rate, leading to lower continuation value and diminished

outside option.
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3.3 Walrasian Benchmark

Before proceeding further, I present the stationary equilibrium of a benchmark economy where

all assets are traded in frictionless Walrasian markets. The Walrasian benchmark serves as the

basis for comparison and highlights the effects of frictions. In the benchmark economy, investors

optimize while taking the Walrasian market prices P̄ 1,w, P̄ 2,w, . . . , P̄N,w as given. Investors have

the usual demand functions of mean-variance agents (details are contained in Appendix B). The

optimal asset i demand by type h and type l investors are respectively given by

xi,wh =
D̄ − rP̄ i,w

γσ2
and xi,wl =

D̄ − (r + ε)P̄ i,w

γσ2
(3.7)

for all i ∈ {1, 2, . . . , N}. Market clearing of asset i requires that (1− π)xi,wh + πxi,wl = s, where π

is the steady-state proportion of impatient investors as given by (2.3). Thus, the asset’s market

price is determined as

P̄ i,w =
D̄ − γσ2s

r + πε
(3.8)

3.4 Equilibrium

By substituting (3.5) into investors’ HJB equations (3.2) and (3.3), I rewrite the HJB equations

of type h and type l investors respectively as

rVh(x) =
N∑
i=1

D̄xi − γ

2

N∑
i=1

σ2(xi)2 + ζhl

[
Vl(x)− Vh(x)

]
+

N∑
i=1

λiθh

[
Vh
(
x1, . . . , xi + qih(x), . . . , xN

)
− Vh(x)− P̄ iqih(x)

] (3.9)
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and

(r + ε)Vl(x) =
N∑
i=1

D̄xi − γ

2

N∑
i=1

σ2(xi)2 + ζlh

[
Vh(x)− Vl(x)

]
+

N∑
i=1

λiθl

[
Vl
(
x1, . . . , xi + qil(x), . . . , xN

)
− Vl(x)− P̄ iqil(x)

] (3.10)

To solve for investors’ expected values, I use a guess-and-verify approach. I conjecture (and

verify) that Vh(x) and Vl(x) are quadratic in their arguments. I then substitute the conjectured

value functions into (3.9) and (3.10), and differentiate with respect to xi to get the expressions

for investors’ marginal values from trading asset i. The solutions for the marginal values are then

obtained using the method of undetermined coefficients. As shown in Appendix A.2, the marginal

values of type h and type l investors with respect to asset i ∈ {1, 2, . . . , N} satisfy

Vhi(x)− P̄ i =
(r + ε+ ζlh + ζhl + λiθl)(D̄ − γσ2xi − rP̄ i)− εζhlP̄ i

(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh
(3.11)

Vli(x)− P̄ i =
(r + ζlh + ζhl + λiθh)[D̄ − γσ2xi − (r + ε)P̄ i] + εζlhP̄

i

(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh
(3.12)

Due to the i.i.d. dividend flows assumption, investors’ other asset holdings do not enter

the right-hand sides of (3.11) and (3.12). Since an investor trading asset i with a dealer has

post-trade marginal value equal to the asset’s inter-dealer price, the investor’s optimal asset i

holding depends only on their patience type. In other words, type h investors’ optimal asset i

holding xih is such that the indifference condition Vhi(x)|xi=xih = P̄ i holds, and type l investors’

optimal asset i holding xil is such that Vli(x)|xi=xil = P̄ i. The optimal asset i holdings of type h

and type l investors can be obtained by substituting the indifference conditions into (3.11) and

(3.12) evaluated at xih and xil respectively. I present the results in the proposition below. The

detailed derivations and proofs can be found in Appendix A.2.
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Proposition 2. For all i ∈ {1, 2, . . . , N}, the optimal asset i holdings by type h and type l

investors are respectively

xih =
D̄ − (r + ζhlε

r+ε+ζlh+ζhl+λiθl
)P̄ i

γσ2
(3.13)

xil =
D̄ − (r + ε− ζlhε

r+ζlh+ζhl+λiθh
)P̄ i

γσ2
(3.14)

According to Proposition 2, the optimal asset i holdings for type h and type l investors are xih
and xil respectively, for all i. An investor has incentive to trade an asset, if their holding in that

asset deviates from the desired level. Upon trading, the investor rebalances their asset holding

to the optimal level. The investor’s holding in the asset again becomes sub-optimal, when the

investor’s patience type switches. Thus, in the steady state, there are only two holding levels for

each asset i, xih and xil. It is easy to verify that xih > xil, that is, patient investors have higher

asset demand than impatient investors. Hence, in equilibrium, patient investors holding xil units

of asset i wish to purchase asset i, while impatient investors holding xih units of asset i wish to

sell the asset. Notice that so far I have assumed that when an investor trades with a dealer, the

dealer knows the investor’s patience type. In this model, because buying investors must be patient

and selling investors must be impatient, investors’ patience types are perfectly revealed by their

trading behavior.

Compared to the Walrasian benchmark, investors’ optimal asset holdings are less extreme when

assets are illiquid. From (3.13), a type h investor’s optimal asset i demand is ζhlε
r+ε+ζlh+ζhl+λiθl

P̄
γσ2

lower than that in the benchmark case xi,wh . From (3.14), a type l investor’s optimal asset i

demand is ζlhε
r+ζlh+ζhl+λiθh

P̄
γσ2 higher than that in the benchmark case xi,wl . That is, when an asset

is illiquid, investors attenuate their demand for the asset towards the average so that the desired

holdings by patient and impatient investors are closer to each other. Moreover, patient investors

attenuate their demand more than impatient investors. Intuitively, illiquidity exposes investors to

the risk of holding imbalances, since trading is subject to delays when rebalancing needs arise.

Investors thus “hedge” against this risk by holding less extreme positions. Naturally, the hedging
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motive decreases with asset liquidity.8 On the other hand, asymmetric demand attenuations by

patient and impatient investors result from strategic bargaining. Investors’ bargaining powers

weaken when they experience patience shocks and become impatient. Knowing that they will

receive bad terms when trading upon shocks, patient investors demand less of the asset to begin

with, in order to internalize the effect of weaker bargaining powers in the shock state.

Let Φ(x, ξ) denote the steady-state joint distribution of investors’ asset holdings and patience

types. There are two patience types ξ ∈ {h, l}. As discussed above, there are only two holding

levels for each asset in the steady state, namely xih and xil for i ∈ {1, 2, . . . , N}. Hence, (x, ξ) ∈

T = {x1
h, x

1
l }×{x2

h, x
2
l }× · · ·×{xNh , xNl }×{h, l}. Let µ(x1, x2, . . . , xN , ξ) denote the steady-state

measure of investors with asset holdings (x1, x2, . . . , xN ) and patience type ξ, where xi ∈ {xih, xil}

and ξ ∈ {h, l}. Stationarity of investors’ measures requires that

0 =− ζξξ′µ(x1, x2, . . . , xN , ξ) + ζξ′ξµ(x1, x2, . . . , xN , ξ′)

−
N∑
i=1

λiµ(x1, . . . , xi, . . . , xN , ξ)I{xi 6=xiξ}

+
N∑
i=1

λiµ(x1, . . . , xi′, . . . , xN , ξ)I{xi=xiξ}

(3.15)

where ξ′ 6= ξ ∈ {h, l} and xi′ 6= xi ∈ {xih, xil} for all i ∈ {1, 2, . . . , N}. The stationarity condition

says that in the steady state, the measure of investors with asset holdings {x1, x2, . . . , xN} and

patience type ξ must be constant. ζξξ′ is the intensity at which an investor transitions from

patience type ξ to patience type ξ′. The first two terms on the right-hand side of (3.15) are thus

outflow from and inflow into the investor population due to patience type switches. The third

term on the right-hand side is the outflow from the investor population due to trade. I{xi 6=xiξ} is

an indicator that equals one if asset i holding xi is not optimal, and zero otherwise. Investors

with sub-optimal asset i holding wish to trade, and they come across a dealer at rate λi. Investors

with optimal asset i holding do not trade the asset. Similarly, the last term on the right-hand side
8In the limit with λi →∞, trading delays in asset i become infinitesimally small, investors’ demand attenuations

(relative to the Walrasian benchmark) converge to zero, and the optimal asset holdings converge to those in the
benchmark case.
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is the inflow due to trade. I{xi=xiξ} is an indicator equal to one if the asset i holding is optimal,

and thus xi′ is sub-optimal.

Since dealers do not hold any inventory, the entire supply of an asset is held by investors.

Market clearing of asset i, where i ∈ {1, 2, . . . , N}, thus requires that

EΦ[xi] = s ∀ i (3.16)

where EΦ denotes expectation over the steady-state joint distribution Φ(x, ξ) of investors’ asset

holdings and patience types. The left-hand side of (3.16) is the mean asset i holding by investors.

Since there is a measure one of investors, it equals the aggregate asset i holding by investors.

Market clearing requires that the aggregate asset i holding must equal the asset’s supply s.

Definition 1. A stationary equilibrium is a collection of (i) inter-dealer prices {P̄ i}i∈{1,2,...,N},

(ii) pricing functions P i : T → R, ∀ i ∈ {1, 2, . . . , N}, (iii) trade quantity functions qi : T → R,

∀ i ∈ {1, 2, . . . , N}, and (iv) joint distribution Φ(x, ξ) of investors’ asset holdings and patience

types, such that

1. Optimality: given (i)-(iv), the expected values of type h and type l investors satisfy the HJB

equations (3.2) and (3.3) respectively;

2. Bargaining: (ii) and (iii) are solutions to the sequential bargaining problem described in

Section 2.3, and satisfy (3.4)-(3.6);

3. Stationarity: given (iii), the joint distribution Φ(x, ξ) satisfies the inflow-outflow balance

condition (3.15), and investors’ measures sum to one;

4. Market clearing: all asset markets clear, such that (3.16) is satisfied.

In the following proposition, I show that the stationary equilibrium defined above exists and

is unique. The proof can be found in Appendix A.3.

Proposition 3. There exists a unique stationary equilibrium in the economy.

I now proceed to solutions. Let µ(xiξ′ , ξ) denote the steady-state measure of investors with asset

i holding xiξ′ and patience type ξ, where ξ′, ξ ∈ {h, l}. For instance, µ(x1
h, h) is the steady-state
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measure of investors with patience type h, and holding x1
h units of asset 1 (while there are 2N−1

different combinations of other asset holdings). In the steady state, the stationarity condition

(3.15) can be rewritten as

0 = −ζhlµ(xih, h) + ζlhµ(xih, l) + λiµ(xil, h) (3.17)

0 = −ζhlµ(xil, h) + ζlhµ(xil, l)− λiµ(xil, h) (3.18)

0 = −ζlhµ(xih, l) + ζhlµ(xih, h)− λiµ(xih, l) (3.19)

0 = −ζlhµ(xil, l) + ζhlµ(xil, h) + λiµ(xih, l) (3.20)

for all i ∈ {1, 2, . . . , N}. Take equation (3.17) for example. This is the inflow-outflow balance

condition for investors with patience type h and asset i holding xih. The first term on the right-hand

side represents outflow from the investor population, due to switching of patience type from type

h to type l. The second term on the right-hand side represents inflow due to switching of patience

type. The last term on the right-hand side represents inflow into the investor population due

to trading by investors with patience type h but sub-optimal asset i holding. Although there is

trading in other assets, it simply leads to flows among type h investors holding xih units of asset i,

and does not result in inflow into or outflow from this population. Because investors’ measures

sum to one, then

µ(xih, h) + µ(xih, l) + µ(xil, h) + µ(xil, l) = 1 (3.21)

The steady-state measures, µ(xih, h), µ(xih, l), µ(xil, h) and µ(xil, l) are determined by the

inflow-outflow balance conditions (3.17)-(3.20), and that investors’ measures sum to one as given

by (3.21). As shown in Appendix A.4, the measures are given by

µ(xih, l) = µ(xil, h) =

ζhlζlh
ζhl+ζlh

ζlh + ζhl + λi
(3.22)

µ(xih, h) = 1− π − µ(xil, h) and µ(xil, l) = π − µ(xih, l) (3.23)
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for all i ∈ {1, 2, . . . , N}. Let X i denote the total asset i holdings by investors. Then

X i = [µ(xih, h) + µ(xih, l)]x
i
h + [µ(xil, h) + µ(xil, l)]x

i
l =

D̄ − (r + πε+ ∆i)P̄ i

γσ2
(3.24)

where

∆i =
ζhlζlhε

ζhl + ζlh

λi(θh − θl)− ε
(r + ε+ ζlh + ζhl + λiθl)(r + ζlh + ζhl + λiθh)

(3.25)

The wedge ∆i modifies investors’ aggregate demand for the asset. Compared to the Walrasian

benchmark, investors’ aggregate asset i demand in the economy is lower by ∆iP̄ i

γσ2 . When ∆i = 0,

the aggregate asset demand coincides with that under the Walrasian benchmark. It is the case

when, for example, λi → ∞. If the demand wedge is positive ∆i > 0, X i is lower than that in

the benchmark case. If the demand wedge is negative ∆i < 0, X i is higher than that under the

benchmark.

3.5 Discussion

Before assessing the equilibrium properties, I wish to briefly discuss the importance of type-

dependent bargaining powers of investors in this model. The existing literature on OTC markets

generally assumes that investors’ bargaining powers are constant.9 Those models typically take an

axiomatic approach to bargaining, and assume that trading parties Nash bargain and divide the

joint trade surplus according to exogenously specified bargaining powers. In this model, investors’

bargaining powers depend on their patience types. Importantly, the type-dependency of investor

bargaining powers is an equilibrium outcome from strategic bargaining between investors and

dealers, rather than an assumption. It thus marks a key departure from the literature.

To facilitate comparison with existing models, I shut down strategic bargaining in this model

such that investors have a constant bargaining power θ ∈ (0, 1) when trading with dealers. That

is, I set θh = θl ≡ θ. Notice that when ε is relatively small, the first-order approximation of (3.25)
9For example, Duffie et al. (2005, 2007), Lagos and Rocheteau (2009), Afonso and Lagos (2015), Atkeson et al.

(2015), Üslü (2019), Hugonnier et al. (2020) among others.
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is given by

∆i .=
ζhlζlhε

ζhl + ζlh

λi(θh − θl)
(r + ε+ ζlh + ζhl + λiθl)(r + ζlh + ζhl + λiθh)

(3.26)

Under the condition that θh = θl, the demand wedge ∆i .= 0 and investors’ aggregate asset i

holdings X i .= D̄−(r+πε)P̄ i

γσ2 .10 In this case, asset i’s inter-dealer clearing price P̄ i first-order converges

to the price under the Walrasian benchmark. That is, when investors are not subject to holding

restrictions, asset illiquidity can have large implications for portfolio holdings, but little impact on

price level. Intuitively, when an asset’s liquidity increases, type h investors’ demand for the asset

increases while type l investors’ demand for the asset decreases. Hence, the aggregate demand is

little affected, leading to hardly any impact on price.11 However, the above result no longer holds

if θh 6= θl. As discussed in the next section, when strategic bargaining leads to type-dependency

of investor bargaining powers, asset liquidity affects both portfolio choice and asset prices.

4 Equilibrium Properties

In this section, I provide the equilibrium properties. I show how asset liquidity affects portfolio

choice and asset pricing, and discuss the intuition behind these results. I also document the model

implications for transaction costs, which have been the main focus of the literature on OTC

markets and microstructure. The results in this section give rise to several novel predictions, that

are testable with data.

4.1 Portfolio Choice

Proposition 2 suggests that an investor’s optimal demand for an asset depends on the asset’s

liquidity. As explained before, when an asset is illiquid, investors attenuate their demand (relative
10In this model, investors experience idiosyncratic shocks to their discount rates, which enter the marginal value

functions non-linearly. The second-order term in (3.25) results from the non-linear impact of discount rates.
11This result is consistent with Garleanu (2009), who shows that asset price in a search market is the same as

that in a Walrasian market, and the price is independent of the asset’s liquidity. As in this paper, Garleanu (2009)
relaxes the {0, 1} binary holding restriction typical in the OTC literature. He shows that the positive relation
between price and liquidity documented in prior studies (e.g., Duffie et al. (2005, 2007), Weill (2008)) largely result
from binding portfolio constraints.
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to the Walrasian benchmark) towards the market average. Their demand attenuations are greater

when the asset is more illiquid. Since λ1 > λ2 > · · · > λN , Proposition 2 implies that

x1
h > x2

h > · · · > xNh and x1
l < x2

l < · · · < xNl (4.1)

That is, patient investors tilt their portfolios towards the more liquid assets, while impatient

investors hold more of the illiquid assets. When a patient investor experiences a patience shock and

becomes impatient, they wish to sell more of the liquid assets and less of the illiquid assets. This

helps explain why during market stress when investors’ aggregate liquidity needs are high, investors

tend to sell liquid assets more aggressively. The observation that selling pressure concentrates in

more liquid assets during crises (e.g., Ma et al. (2022)) results from investors’ dynamic portfolio

choice. Moreover, from (3.25) and (3.26), it is immediate that for small enough ε, the demand

wedge ∆i > 0 for all i. In other words, asset illiquidity results in lower aggregate demand for the

asset, relative to the Walrasian benchmark. The positive demand wedge arises because patient

investors attenuate their demand more than impatient investors, due to strategic bargaining.

In equilibrium, investors with sub-optimal holdings wish to trade. Type l investors holding

xih units of asset i wish to sell their holdings down to xil, while type h investors holding xil

units of asset i wish to increase their holdings to xih. The intensity of trading is λi. Hence, the

instantaneous trading volume in asset i is V i = λi
[
µ(xih, l) + µ(xil, h)

]∣∣xih − xil∣∣. Using (3.22), I

provide the expression for V i below.

Proposition 4. The instantaneous trading volume by investors in asset i is

V i =
2ζhlζlh
ζhl + ζlh

λi

ζlh + ζhl + λi
∣∣xih − xil∣∣ ∀ i ∈ {1, 2, . . . , N} (4.2)

The trading volume V i increases in the asset’s liquidity λi. Thus, more liquid assets tend to

have higher trading volumes. On the extensive margin, investors are more likely to find dealers to

trade when an asset is more liquid. On the intensive margin, because investors hold more extreme

positions in more liquid assets, their desired trade quantities are larger when an asset is more

liquid.
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4.2 Asset Prices

A key goal of the paper is to study how asset prices depend on asset liquidity in the cross-

section. In the model, I assume that the assets have i.i.d. dividend flows and the same fixed supply,

and differ only in their liquidity as captured by their respective meeting intensities. Investors’

aggregate asset holdings and market clearing jointly pin down the central inter-dealer clearing

price of an asset.

Proposition 5. The market clearing price of asset i in the inter-dealer market is

P̄ i =
D̄ − γσ2s

r + πε+ ∆i
(4.3)

for all i ∈ {1, 2, . . . , N}, and ∆i is given by (3.25).

The derivations for Proposition 5 can be found in Appendix A.4. Throughout the paper, I

measure the price level of an asset using the asset’s inter-dealer clearing price. The idea is that in

semi-centralized markets intermediated by dealers, dealers effectively trade in the central inter-

dealer market on the investors’ behalf at the prevailing inter-dealer price. Hence, the inter-dealer

price can be thought of as the price at which the market clears. The difference between the

inter-dealer clearing price and an investor-dealer trading price thus represents a transaction cost

incurred by the investor in exchange for the dealer’s intermediation services.

Consider two assets i and j with λi > λj (i.e., asset i is more liquid than asset j), which

asset should trade at higher price? From (4.3), whether P̄ i is higher or lower than P̄ j depends

on the relative sizes of the two assets’ demand wedges ∆i and ∆j. If ∆i > ∆j, then P̄ i < P̄ j;

if ∆i < ∆j, then P̄ i > P̄ j. From (3.25), an asset’s demand wedge is a function of the asset’s

liquidity (or meeting intensity for that asset). Let λ denote an asset’s meeting intensity with

λ ∈ {λ1, λ2, . . . , λN}. The asset’s demand wedge can be written as a function of λ, that is,

∆(λ) =
ζhlζlhε

ζhl + ζlh

λ(θh − θl)− ε
(r + ε+ ζlh + ζhl + λθl)(r + ζlh + ζhl + λθh)

(4.4)
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Thus, whether ∆(λ) is increasing or decreasing in λ is of interest. If ∆′(λ) < 0, the demand

wedge is decreasing in asset liquidity, and the price is increasing in asset liquidity. By contrast, if

∆′(λ) > 0, the demand wedge is increasing in asset liquidity, and the price is decreasing in asset

liquidity.

Lemma 6. ∆′(λ) > 0 if λ < λ̄, and ∆′(λ) < 0 if λ > λ̄, where

λ̄ =
εθlθh +

√
ε2θ2

l θ
2
h + (θh − θl)θlθh[(θh − θl)k1k2 + ε(k1θh + k2θl)]

(θh − θl)θlθh
(4.5)

with k1 = r + ε+ ζlh + ζhl and k2 = r + ζlh + ζhl. Moreover, ∆′′(λ) < 0.

The proof for Lemma 6 is shown in Appendix A.5. The lemma states that the effect of asset

liquidity on the asset’s demand wedge, and thus asset price, is non-monotonic. When an asset is

sufficiently liquid (λ > λ̄), increasing the asset’s liquidity raises its price. However, when the asset

is highly illiquid (λ < λ̄), increasing the asset’s liquidity reduces its price instead.

4.2.1 Intuition

I now explain the intuition underlying Lemma 6. As explained before, although both patient

and impatient investors attenuate their demand, patient investors attenuate more than impatient

investors.12 Demand attenuations result from investors’ desire to hedge against possible holding

imbalances due to asset illiquidity and inability to trade. Asymmetry in demand attenuations

by patient and impatient investors stems from strategic bargaining, as patient investors further

lower their asset demand to internalize the effect of weaker bargaining powers when they are in

the shock state. The demand wedge is due to the asymmetric demand attenuations by investors,

which are caused by strategic bargaining.

I start by considering the limit case with λ→ 0. In this case, the asset is perfectly illiquid, and

it would take an investor infinite amount of time to meet a dealer. Trading, and thus bargaining,

never takes place in this limit. Because demand wedge results from strategic bargaining, and
12Demand attenuations are relative to the Walraisian benchmark demand. Patient investors decrease their

demand relative to the benchmark, while impatient investors increase their demand relative to the benchmark.
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bargaining is irrelevant in this limit case, there is no demand wedge with λ → 0. For a small

increase in λ, the effect of bargaining becomes pertinent, and a positive demand wedge emerges

(since patient investors attenuate their demand more than impatient investors), leading to a

decrease in the asset price. However, an increase in λ also decreases demand attenuations by both

patient and impatient investors. This is because investors attenuate their asset demand and hold

less extreme positions to hedge against future holding imbalances. This hedging motive decreases

when the asset becomes more liquid and easier to trade. Thus, as λ continues to increase, the

demand wedge shrinks and the asset price rises. As λ→∞ (that is, the asset becomes perfectly

liquid), investors no longer feel the need to attenuate their asset demand, and the demand wedge

again converges to zero.

In other words, an increase in the asset’s liquidity λ has two countervailing effects. First, an

increase in asset liquidity makes the aforementioned bargaining consideration more salient, because

investors are more likely to come across dealers and engage in bargaining. The amplification

of the bargaining consideration tends to result in greater asymmetry in demand attenuations

by patient and impatient investors, leading to larger demand wedge and lower asset price. This

is the bargaining effect, and is captured by the numerator of the second fraction term on the

right-hand side of (4.4). Second, an increase in asset liquidity makes it easier to trade the asset,

leading to lower demand attenuations by both patient and impatient investors. The lower demand

attenuations tend to decrease the demand wedge (which is a weighted average of the signed

demand attenuations by investors) and increase the asset price. This is the demand attenuations

effect, and is captured by the denominator of the second fraction term on the right-hand side

of (4.4). When λ is low, the former effect dominates and asset price decreases in asset liquidity.

When λ is sufficiently high, the latter effect dominates and asset price increases in asset liquidity.

4.2.2 Numerical Example

I illustrate the results from Lemma 6 with a simple numerical example, shown in Figure 2.

The baseline parameter values are D̄ = 10, σ = 0.1, s = 0.2, r = 0.05, γ = 5, z = 0.5, ζlh = 10,

ζhl = 5 and ε = 0.15.
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Figure 2: Numerical Example

Note: The figure plots the demand wedge ∆(λ) and the inter-dealer clearing price P̄ against the meeting intensity
λ, for various values of ζhl and ε. The baseline parameter values are as follows: D̄ = 10, σ = 0.1, s = 0.2, r = 0.05,
γ = 5, z = 0.5, ζlh = 10, ζhl = 5 and ε = 0.15. The top two panels plots the functions for ζhl = 2, 5, 8. The bottom
two panels plots the functions for ε = 0.1, 0.15, 0.2.

The switching intensities ζhl = 5 and ζlh = 10 imply that a patient investor remains patient

for 0.2 years on average, while an impatient investor recovers from their shock within 0.1 years on

average. Dealers and patient investors discount time at 5% per annum, which roughly matches

the risk-free rate in the U.S. Impatient investors discount time at 20%, reflecting their imminent

liquidity needs. The supply of asset is 0.2, a fraction of the total measure of investors. Investors’

risk aversion coefficient is 5, which is commonly used in the asset pricing literature. Dealers’ offer

probability, which captures their market powers or bargaining skills outside the model, is 0.5.
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Under the baseline parameter values, the bargaining powers of patient and impatient investors

are θh = 0.5 and θl = 0.2 respectively. In Figure 2, the orange lines (in the middle) plot the

demand wedge ∆(λ) against the asset liquidity λ under the baseline parameter values. The

liquidity threshold λ̄ at the inflection point is roughly 49 in the base case. A meeting intensity of

49 means that it takes approximately 5 trading days to successfully transact in the given asset.13

The top two panels of Figure 2 plot the demand wedge and the clearing price against the

asset liquidity, for various values of ζhl. The bottom two panels plot the demand wedge and the

clearing price against the asset liquidity, for various values of ε. The liquidity threshold λ̄ appears

to increase in both ζhl and ε.

4.2.3 Asset Liquidity and Prices

Proposition 7. Suppose λ1 > · · · > λi > λ̄ > λi+1 > · · · > λN . Then, among the first i assets,

P̄ 1 > · · · > P̄ i; among the last N − i assets, P̄ i+1 < · · · < P̄N .

Proposition 7 follows directly from Lemma 6, and provides the key result of the model. That

is, the relationship between asset prices and asset liquidity is non-monotonic in the cross-section.

Specifically, the price-liquidity relationship is positive for assets with meeting intensities above

the liquidity threshold λ̄, but negative for assets with meeting intensities below λ̄. In other words,

among sufficiently liquid assets, relatively more liquid assets trade at higher prices. However,

among highly illiquid assets, relatively more liquid assets trade at lower prices instead.

The proposition above makes a cross-sectional statement. However, notice that the liquidity

threshold λ̄ depends on other model parameters. As the numerical example illustrates, under

appropriate parameter values, λ̄ increases in both ζhl and ε. Since ζhl measures how likely investors

are to experience patience shocks and ε captures the magnitude of such shocks, large values of ζhl

and ε are often associated with times of stress when investors’ liquidity needs are high. Hence, the

negative relationship between asset prices and liquidity is more prevalent during market stress.

The average price-liquidity relationship may become negative during severe crises.
13In practice, many OTC assets take considerably longer time to trade. For example, many corporate bonds

often take days if not weeks to transact.
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4.3 Transaction Costs

The inter-dealer price P̄ i of asset i is the market clearing price of the asset, and has been

my focus so far. However, due to the bilateral nature of investor-dealer trading, investors’ actual

transaction prices differ from the clearing price. The difference between an investor’s trade price

and the inter-dealer price can be viewed as the transaction cost paid by the investor in exchange

for the dealer’s intermediation services. Let Costi,sell denote the transaction cost incurred by

a selling investor of asset i, and let Costi,buy denote the transaction cost incurred by a buying

investor of asset i. The transaction costs Costi,sell and Costi,buy are defined as the percentage

deviation of the trade prices from the inter-dealer clearing price. That is,

Costi,sell =
P̄ i − P i

l (x)|xi=xih
P̄ i

and Costi,buy =
P i
h(x)|xi=xil − P̄

i

P̄ i
(4.6)

since in equilibrium, type l investors holding xih units of asset i wish to sell, and type h investors

holding xil units of asset i wish to buy. As shown in Appendix A.6, the transaction costs are given

by the following proposition.

Proposition 8. The transaction cost paid by selling investors of asset i and the transaction cost

paid by buying investors of asset i, where i ∈ {1, 2, . . . , N}, are

Costi,sell =
(1− θl)ε

2(r + ε+ ζlh + ζhl + λiθl)
(4.7)

Costi,buy =
(1− θh)ε

2(r + ζlh + ζhl + λiθh)
(4.8)

Proposition 8 suggests that transaction costs decrease in asset liquidity. That is, more liquid

assets have lower transaction costs. Hence, although the relationship between asset prices and

asset liquidity is non-monotonic, transaction costs are monotonically decreasing in liquidity. The

proposition thus provides justification for commonly used liquidity measures such as transaction

costs and bid-ask spreads. The model also has the potential to rationalize the empirical pattern

that transaction cost and trade size are negatively related (e.g., Edwards et al. (2007)), since

transaction cost decreases in asset liquidity while trade size increases in asset liquidity. Moreover,
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and new to the literature, the proposition implies that transaction costs are asymmetric depending

on the trade direction. Given a relatively small ε, selling investors incur higher transaction costs

than buying investors, when trading with dealers.

4.4 Empirical Predictions

I summarize the model’s main empirical predictions that are novel to the literature. I then

test these predictions empirically in Section 5.

Prediction 1a. Among sufficiently liquid assets, more liquid assets tend to trade at higher prices.

Among highly illiquid assets, more liquid assets tend to trade at lower prices instead. The effect

of asset liquidity on prices is generally increasing in the liquidity level.

The above prediction makes a cross-sectional statement about the non-monotonic relationship

between asset prices and liquidity. Specifically, the price-liquidity relationship is positive among

sufficiently liquid assets, but negative among highly illiquid assets. Furthermore, an increase in

asset liquidity exerts more positive impact on price for assets that are more liquid already. This

result follows from the convexity of prices with respect to asset liquidity.

Prediction 1b. The negative relationship between asset prices and asset liquidity is more prevalent

during market stress. In severe crises, the average price-liquidity relationship may become negative.

During market stress when investors have greater liquidity needs, the liquidity threshold

(below which the price-liquidity relationship is negative) is higher. Hence, more assets tend to

exhibit negative price-liquidity relationship. When market stress is severe, the liquidity threshold

may be high enough such that on average the price-liquidity relationship is negative in the market.

Prediction 2. Transaction costs are higher for selling investors than for buying investors.

Compared to buying investors, selling investors are more impatient and have weaker bargaining

powers, resulting in higher transaction costs incurred by them when trading with dealers.

29



5 Empirical Evidence

In this section, I use the U.S. corporate bond market as the empirical setting and test the

model predictions. Corporate bonds in the U.S. are traded over-the-counter and intermediated

by dealers. The market has a two-tiered structure: Investors must trade with dealers bilaterally

through sequential search and bargaining, while dealers can also trade with each other in a more

centralized inter-dealer market. The corporate bond market has garnered significant research

interests, given its large size and significance in firms’ financing decisions.14 Transaction-level

data are available for U.S. corporate bonds, through FINRA’s Trade Reporting and Compliance

Engine (TRACE).

5.1 Data

The main dataset used for my empirical analysis is the enhanced version of TRACE, which

is provided by the Financial Industry Regulatory Authority (FINRA). The enhanced TRACE

dataset contains detailed trade-level information on U.S. corporate bond transactions, including

bond CUSIP, trade price and quantity, trade execution date and time, a counterparty identifier

that separates inter-dealer trades from dealer-customer trades, a dealer buy/sell indicator which

specifies whether a trade is a dealer buy or sell, and a trading market indicator that shows whether

a trade is a primary market transaction or a secondary market transaction.

For bonds included in the TRACE data, I use the Mergent Fixed Income Securities Database

(FISD) to obtain information on the characteristics of each bond, including issuance and maturity

dates, issue amount, and credit ratings. For corporate bonds’ credit ratings, the FISD dataset

contains a complete history of rating changes by each of the three major rating agencies: Standard

& Poor’s (S&P), Moody’s, and Fitch. To construct a credit rating measure for each bond on each

day, I use the median rating as the composite credit rating. Specifically, I assign a numeric value

to each notch of S&P ratings, with 1, 2, 3, 4, ... denoting AAA, AA+, AA, AA-, ..., respectively. I

then follow the same approach and assign numeric values for Moody’s and Fitch ratings. A bond’s
14The U.S. corporate bond market is estimated to be over $10 trillion in size as of Q3 2022, representing over

20% of the total fixed income market in the U.S. (Source: SIFMA).
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composite rating on a given day is the median of its ratings on that day. Table 1 documents

the credit rating scales and associated numeric values by the three rating agencies. Bonds with

composite ratings below 11 are considered investment-grade (IG), otherwise they are high-yield

(HY).

Table 1: Rating Scales

Moody’s S&P Fitch Value

Aaa AAA AAA 1
Aa1 AA+ AA+ 2
Aa2 AA AA 3
Aa3 AA- AA- 4
A1 A+ A+ 5
A2 A A 6
A3 A- A- 7
Baa1 BBB+ BBB+ 8
Baa2 BBB BBB 9
Baa3 BBB- BBB- 10
Ba1 BB+ BB+ 11
Ba2 BB BB 12
Ba3 BB- BB- 13
B1 B+ B+ 14
B2 B B 15
B3 B- B- 16
Caa1 CCC+ CCC+ 17
Caa2 CCC CCC 18
Caa3 CCC- CCC- 19
Ca CC CC 20
C C C 21

D DDD 22
DD 23
D 24

Note: This table reports the credit rating scales and associated numeric values assigned by the three major credit
rating agencies, namely Moody’s, S&P and Fitch. Credit ratings data for corporate bonds are obtained from the
Mergent Fixed Income Securities Database (FISD). A numeric value below 11 is considered investment-grade (IG)
while a numeric value equal or above 11 is considered non-investment grade or high-yield (HY).

I obtain bond transaction data from TRACE for the period between January 1, 2005 and

December 31, 2021. I follow the literature and apply standard filtering procedures (e.g., Dick-

Nielsen (2014)) to clean the TRACE datasets. Following the literature, I also restrict my sample to
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U.S. corporate debentures that have fixed coupons and are not convertible, putable, asset-backed,

exchangeable, privately-placed, perpetual, or preferred securities. I further exclude any secured

lease obligations and bonds quoted in foreign currencies. I then delete observations whose trade

dates occur on or after the bond maturity dates, and observations with non-positive reported

prices. To focus on secondary market trades, I exclude trades with trading market indicator

“P1” which are primary market transactions. The ending sample contains more than 119 million

transactions in 23,371 unique corporate bonds issued by 4,920 different issuers.

Price Measure. The TRACE dataset reports transaction prices for all investor-dealer and

inter-dealer corporate bond transactions. Guided by the model, I calculate the price for each bond

on each day by averaging the inter-dealer prices of the bond on that day. To facilitate comparison

across bonds, I compute the yield-to-maturity for each bond on each day based on the price, and

then calculate the bond-day level credit spread by subtracting the yield of the corresponding

Treasury security.15

Liquidity Measure.My main measure for bond liquidity is transaction cost, which is a commonly

used liquidity measure in the literature and justified by the model results. I estimate the transaction

cost for each investor-dealer trade k as

Costk = ln
( Trade Pricek
Benchmark Pricek

)
× Trade Directionk (5.1)

where Trade Pricek is the reported price for bond trade k, and Benchmark Pricek is the most

recent inter-dealer trade price prior to trade k. TradeDirectionk takes the value +1 for an investor

purchase and −1 for an investor sale. I then multiply Costk by 10,000 to get the transaction

cost in basis points.16 To limit noise, I follow the literature and exclude retail-sized trades (that

is, trades with size below $100,000) from the calculation. The bond-day level transaction cost

measures are obtained by averaging transaction costs for each bond on each day.
15The Treasury yield data are from the Gürkaynak et al. (2007) database available through the Federal Reserve,

with linear interpolations between provided maturities when necessary.
16The transaction cost measure follows the literature (e.g., Hendershott and Madhavan (2015) and O’Hara and

Zhou (2021)) and is a direct analog of how transaction costs are defined in the model.
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5.2 Asset Prices and Liquidity

I start by examining the relationship between corporate bond prices (measured by credit

spreads) and liquidity (measured by transaction costs) in the cross-section. To eliminate differences

across bonds due to heterogeneity in collateral values and seniority rankings, I restrict my attention

to senior unsecured notes only. To mitigate noise due to outliers, I trim the top and the bottom 1%

of the credit spread measures from my analysis. I also exclude observations with time-to-maturity

below one year and observations with missing credit ratings, to be consistent with the literature.

The theory predicts that the credit spreads of sufficiently liquid bonds are positively related to

transaction costs, while the credit spreads of illiquid bonds are negatively related to transaction

costs. However, regressing credit spreads directly on transaction costs may be problematic due to

endogeneity concerns. One challenge is omitted variables. Transaction costs are potentially related

to price measures through factors other than bond liquidity, such as bond characteristics, issuer

credit risk, and market conditions. The omitted variables bias can be mitigated by including

appropriate controls. Another challenge is simultaneity. Transaction costs are calculated using

prices, thus creating a bidirectional and simultaneous relationship between them.

To address these issues, I adopt a two-stage least squares (2SLS) approach and rely on an

instrument that exploits plausibly exogenous variation in bond liquidity. In particular, I exploit

the institutional feature that newly-issued bonds tend to be more liquid than older bonds issued

by the same issuer.17 The idea is that when new bonds are issued, investors actively trade them

until they are gradually absorbed into the holdings of long-term investors. Because long-term

investors tend to have longer time horizons and trade less frequently, trading volume and liquidity

decrease with bond age. Figure 3 plots the decay in trading volume as bond age increases. The

decline in volume is particularly steep during the first 12 months or so from issuance. Hence, I

construct an instrumental variable based on whether a bond is newly-issued within the past year.

The instrument is a dummy variable New Bondit which equals one if bond i’s time from issuance
17E.g., see Sarig and Warga (1989), Houweling et al. (2005), Edwards et al. (2007), Mizrach (2015).
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is below one year as of day t, and zero otherwise.18 Table 2 reports the summary statistics of

newly-issued and older bonds respectively.

Figure 3: Monthly Trading Volume from Issuance

Note: The figure plots the average monthly investor-dealer trading volume in the issuance month and forward,
using corporate bond transaction data from the enhanced TRACE and bond characteristics data from the Mergent
FISD for the period between 1/1/2005 and 12/31/2021.

A valid instrument must satisfy both the relevance condition and the exclusion restriction.

The discussion above supports that the instrument New Bondit satisfies the relevance condition.

Figure 4 provides further evidence by showing that newly-issued bonds have lower transaction

costs and higher trading volumes than older bonds. Furthermore, the exclusion restriction is

plausibly satisfied, as bond age is unlikely to directly affect bond yield or credit spread beyond

its impact on liquidity, particularly if potential confounding factors such as fundamental risks,

bond characteristics and market conditions are controlled for.

To test whether the price-liquidity relationship is non-monotonic in the cross-section of

corporate bonds, I conduct split-sample analysis. I divide the full estimation sample into sub-

samples containing relatively liquid bonds and illiquid bonds respectively, based on prior month’s

transaction costs, credit ratings, and time-to-maturity. I then estimate the following first-stage
18Here, I define a newly-issued bond as one issued within the past year (i.e., the bond’s age is below one year).

The one-year bond age cutoff is based on the result presented in Figure 3. In untabulated results, using alternative
bond age cutoffs (e.g., 90 days, 2 years or 3 years) yields similar results.

34



Table 2: Bond Characteristics of New Bonds and Old Bonds

New Bonds Old Bonds
Num of Obs (n = 1, 560, 158) Num of Obs (n = 8, 149, 719)

Mean Q1 Median Q3 Mean Q1 Median Q3
Price 101.7 98.8 101.0 104.4 105.2 99.9 104.3 110.1
Credit Spread 185.1 77.6 125.6 224.1 234.0 81.3 144.7 281.1
Transaction Cost 17.5 0.0 9.4 27.7 23.5 0.0 10.3 34.7
Trading Volume 6.8 0.2 1.2 6.1 2.2 0.0 0.2 1.3
Rating 8.0 6.0 8.0 10.0 9.0 7.0 9.0 10.0
Time-to-Maturity 10.2 4.8 9.1 9.8 8.6 3.3 5.7 8.8
Bond Age 0.5 0.2 0.5 0.7 5.7 2.5 4.2 7.0
Issue Amount 984.3 500.0 750.0 1250.0 834.9 400.0 600.0 1000.0

Note: This table reports summary statistics for newly-issued bonds (i.e., bonds aged below one year) and older
bonds, using the enhanced TRACE data and the Mergent FISD data from 1/1/2005 to 12/31/2021. Observations
are at the bond-day level. Price represents the average inter-dealer price. Credit Spread is the corresponding credit
spread expressed in basis points. Transaction Cost represents the average transaction cost estimated using Eq. (5.1),
reported in basis points. Trading Volume is the gross daily investor-dealer transaction volume expressed in $millions.
Rating is the numerical composite bond rating where AAA = 1, AA+ = 2, AA = 3, . . . . Time-to-Maturity and
Bond Age are time left until maturity and time since issuance, respectively, in years. Issue Amount is offering
amount in $millions.

specification for each sub-sample

Transaction Costit = φNew Bondit + Controls+ αjt + εit (5.2)

where i indexes bond, j indexes issuer, and t indexes day. Transaction Costit, denoting the

transaction cost of bond i on day t, is the main liquidity measure. Controls include bond-day

level characteristics such as time-to-maturity and the logarithm of issue amount. The key controls

are the issuer-day fixed effects αjt, which account for time-varying fundamental differences at

the issuer-level. The specification thus compares the same issuers’ bonds on the same day, while

controlling for differences due to maturities and issue sizes. Standard errors are clustered at the

bond and the day levels.

The first-stage results are reported in Panel A of Table 3. The estimation sample is partitioned

into sub-samples using cutoffs based on prior month’s transaction costs, credit ratings, and

time-to-maturity. Specifically, bonds whose transaction costs in the prior month are below the

75th percentile (Low Cost), bonds rated investment-grade (IG), and short-term bonds with

35



Figure 4: Transaction Cost and Trading Volume by Bond Age

Note: The figure plots the average monthly transaction cost and the average monthly investor-dealer trading
volume from 1/1/2006 to 12/31/2021 for new bonds and old bonds respectively. New bonds are those with bond
age below one year, and old bonds are those with bond age over a year. The sample is constructed using data
from the enhanced TRACE and the Mergent FISD.

time-to-maturity below 3 years (ST) are considered relatively liquid. By contrast, bonds whose

transaction costs in the prior month are above the 75th percentile (High Cost), bonds rated

below investment-grade or high-yield (HY), and long-term bonds with time-to-maturity above 3

36



years (LT) are considered relatively illiquid.19 Across all sub-samples, the transaction costs of

newly-issued bonds (that is, New Bondit = 1) are 3-6 bps, or 13-25%, lower than those of older

bonds. All of the estimates are highly statistically significant.

By estimating the first-stage specification (5.2), I obtain the predicted values for the transaction

cost measures ̂Transaction Costit for each sub-sample. In the second stage of the 2SLS analysis,

I regress the outcome variable of interest, credit spreads, on these predicted values from the first

stage. I estimate the following second-stage specification for each sub-sample

Credit Spreadit = ψ ̂Transaction Costit + Controls+ αjt + εit (5.3)

The coefficient of interest is ψ. Positive ψ means that more liquid bonds (i.e., bonds with lower

transaction costs) trade at lower credit spreads or higher prices, while negative ψ means that more

liquid bonds trade at higher credit spreads or lower prices instead. Panel B of Table 3 reports the

second-stage regression results. Columns (1), (3) and (5) correspond to sub-samples of relatively

liquid corporate bonds, while Columns (2), (4) and (6) correspond to sub-samples of relatively

illiquid bonds, based on prior month’s transaction costs, credit ratings and time-to-maturity.

In the sub-samples containing relatively liquid bonds, the slope estimates on the instrumented

transaction cost measures are always positive and highly statistically significant. By contrast,

in the sub-samples of high-cost bonds and HY bonds, the slope estimates are negative and

statistically significant at the conventional levels. In the sub-sample of long-term bonds, the

slope estimate is still positive, but is much lower in magnitude compared to that of Column (5).

In summary, the regression results presented so far confirm Prediction 1a and show that the

relationship between prices and liquidity is non-monotonic in the cross-section.

In Figure 5, I plot the quarterly time series of the average credit spread differential between

newly-issued bonds (that is, bonds aged one year or below) and matched old bonds. The matching

procedure is such that each newly-issued bond is matched to the same issuer’s old bonds (aged

three years or above) with maturity dates no more than one year before or one year after the
19It is well documented that corporate bonds with higher credit ratings and shorter maturities tend to be more

liquid (e.g., Edwards et al. (2007)).
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Table 3: Effect of Transaction Costs on Credit Spreads

Panel A: First Stage
Transaction Cost (bps)

(1) (2) (3) (4) (5) (6)
New Bond -3.061∗∗∗ -6.026∗∗∗ -4.631∗∗∗ -2.852∗∗∗ -2.529∗∗∗ -5.415∗∗∗

(0.135) (0.768) (0.163) (0.574) (0.205) (0.188)

Time-to-Maturity 0.520∗∗∗ 0.822∗∗∗ 0.681∗∗∗ 0.672∗∗∗ 2.383∗∗∗ 0.576∗∗∗

(0.017) (0.123) (0.016) (0.205) (0.138) (0.031)

Issue Amount -3.967∗∗∗ -15.48∗∗∗ -6.282∗∗∗ -10.89∗∗∗ -2.992∗∗∗ -8.480∗∗∗

(0.165) (1.036) (0.226) (1.133) (0.244) (0.366)

Panel B: Second Stage
Credit Spread (bps)

(1) (2) (3) (4) (5) (6)
Transaction Cost 0.424∗∗∗ -0.502∗ 0.801∗∗∗ -2.760∗∗∗ 2.538∗∗∗ 0.938∗∗∗

(0.156) (0.297) (0.094) (1.017) (0.368) (0.097)

Time-to-Maturity 2.520∗∗∗ 2.570∗∗∗ 2.329∗∗∗ 3.866∗∗∗ 10.18∗∗∗ 1.658∗∗∗

(0.101) (0.269) (0.071) (0.921) (0.959) (0.079)

Issue Amount 6.319∗∗∗ -16.56∗∗∗ 8.237∗∗∗ -46.70∗∗∗ 9.010∗∗∗ 5.338∗∗∗

(0.978) (5.432) (0.816) (12.84) (2.147) (1.178)
Sample Low Cost High Cost IG HY ST LT
Issuer-Day FE Yes Yes Yes Yes Yes Yes
R2 0.461 0.433 0.331 0.505 0.465 0.368
Observations 3,303,875 563,984 3,527,369 835,465 485,363 3,381,645
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table reports the 2SLS regression estimates. Panel A reports the estimates from the first-stage
regressions of transaction costs (measured in basis points) on the instrument New Bondit. Panel B reports
the estimates from the second-stage regressions of credit spreads on the instrumented transaction costs. The
instrumented transaction costs are the predicted values obtained from the first-stage regressions. Observations
are at the bond-day level. All specifications control for bond characteristics including time-to-maturity measured
in years and the logarithm of issue amount, and include the issuer-day fixed effects. Standard errors, which are
clustered at the bond and the day levels, are reported in parentheses. The estimation sample is constructed using
the enhanced TRACE data and the Mergent FISD data from 1/1/2005 to 12/31/2021. Sub-samples include bonds
whose transaction costs in the prior month are below the 75th percentile (Low Cost), bonds whose transaction
costs in the prior month are above the 75th percentile (High Cost), bonds rated investment-grade (IG), bonds
rated high-yield (HY), short-term bonds with time-to-maturity below 3 years (ST), and long-term bonds with
time-to-maturity above 3 years (LT).

maturity date of the given new bond. In line with the previous results, the average credit spread

differential between the more liquid new bonds and the less liquid matched old bonds is mostly
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positive throughout the sample period. However, and consistent with Prediction 1b, the credit

spread differential is noticeably negative from Q4 2008 to Q2 2009, following the Lehman Brothers

collapse and in the depth of the Great Financial Crisis. The differential remains positive in

Q1 2020 during the COVID-19 shock. This may be due to the Fed’s swift responses, such as

the announcement of the Corporate Credit Facilities, which quickly reversed the credit market

conditions.20

Figure 5: Credit Spread Differential Between Matched Old and New Bonds (in bps)

Note: This figure plots the quarterly time series of the average credit spread differential between new bonds and
matched old bonds from Q1 2006 to Q4 2021. New bonds are bonds with age below one year. Olde bonds are the
same issuers’ old bonds aged three years or above, and with maturity dates within one year of that of the new
bond. Corporate bond transaction data are from the enhanced TRACE and bond characteristics data are from
the Mergent FISD.

5.3 Asymmetric Transaction Costs

In this section, I compare the transaction costs incurred by selling investors and those incurred

by buying investors. I compute the average transaction costs at the bond-trade size-trade direction-

day level.21 As before, I follow the literature and exclude observations with time-to-maturity
20E.g., Gilchrist et al. (2021), O’Hara and Zhou (2021), Boyarchenko et al. (2022).
21I follow the literature convention as well as industry practice and divide trade sizes into four categories,

including micro trades (<$100,000), odd-lot trades ($100,000 - $1 million), round-lot trades ($1 - 5 million) and
block trades (≥ $5 million). Micro trades are considered retail-sized, and are excluded from my analysis.
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below one year and observations with missing credit ratings. To minimize noise, I also exclude

observations with defaulted bonds (that is, bonds rated D or below) from the sample.

To estimate the transaction cost differential between investor-buy trades and investor-sell

trades, I estimate the following specification

Transaction Costitds = δInvestor Sellitds + αits + εitds (5.4)

where i indexes bond, t indexes day, d indexes trade direction, and s indexes trade size.

Transaction Costitds is the average transaction cost of bond i with trade direction d and trade

size s on day t. Investor Sellitds is a dummy variable indicating the direction of the trade, and

equals one if the trade is an investor sale and zero if the trade is an investor purchase. The

key controls are the issue-trade size-day fixed effects αits, which control for time-varying impact

of bond-level and trade-level characteristics on transaction costs. The specification above thus

compares investor-buy and investor-sell trades of the same size bucket in the same bond on the

same day. Standard errors are clustered at the bond and the day levels.

The coefficient of interest is δ. If selling investors incur higher transaction costs than buying

investors, then δ should be positive. The regression results are presented in Table 4. Column (1)

reports the coefficient estimate for the full sample. The coefficient estimate is indeed positive,

and statistically significant at the 10% level. The result suggests that the transaction costs of

investor-sell trades are 2.5 bps higher on average than those of investor-buy trades. Given that

the average transaction cost is just over 20 bps, the transaction cost differential of 2.5 bps is

substantial in magnitude.

The full sample includes periods when market uncertainty is low and investors are mostly

buying. During these periods, selling investors may not be significantly more impatient than

buying investors. Moreover, factors outside the model suggest that investor-sell trades may incur

lower transaction costs during these specific periods. For instance, high buying pressure by

investors leads to negative dealer inventories in the short run, and dealers tend to charge lower

transaction costs for investor-sell trades that offset their inventory imbalances. Hence, I exclude
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Table 4: Transaction Cost Asymmetry Between Investor-Sell and Investor-Buy Trades

Transaction Cost (bps)
(1) (2) (3) (4)

Investor Sell 2.544∗ 6.161∗∗∗ 4.523∗∗∗ 3.337∗∗

(1.376) (1.936) (1.701) (1.537)
Sample Full VIX Filter DEF Filter B/S Filter
Issue-Day-Size FE Yes Yes Yes Yes
R2 0.050 0.044 0.038 0.052
Observations 6,591,026 4,556,170 5,203,854 5,374,874
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: This table reports the regression estimates examining the differential transaction costs between investor-buy
trades and investor-sell trades. Investor Sell is a dummy variable equal to one if the trade is an investor sale and
zero otherwise. Observations are at the bond-trade size-trade direction-day level. All regressions control for the
issue-trade size-day fixed effects. Standard errors, which are clustered at the bond and the day levels, are reported
in parentheses. Transaction data are from the enhanced TRACE. The full estimation sample covers trades from
1/1/2005 to 12/31/2021. VIX Filter excludes periods when the VIX value is below the 25th percentile. DEF Filter
excludes periods when the credit spread differential between BBB-rated corporate bonds and AAA-rated corporate
bonds is below the 25th percentile. B/S Filter excludes periods when the investor buy-sell ratio is above the 75th
percentile.

these periods from the sample and re-estimate the specification (5.4). The results are provided in

columns (2)-(4) of Table 4. Column (2) excludes periods when the VIX index value is below the

25th percentile (around 13.96) from the estimation sample. Column (3) excludes periods when

the credit spread difference between BBB-rated corporate bonds and AAA-rated corporate bonds

is below the 25th percentile (around 79 bps) from the estimation sample. Column (4) excludes

periods when the investor buy-sell ratio is above the 75th percentile (around 1.65) from the

sample. In all columns, the coefficient estimates are positive and highly statistically significant.

On average, selling investors incur 3-6 bps higher transaction costs than buying investors.

6 Conclusion

Many assets, such as fixed income securities, repurchase agreements and derivatives, are traded

over-the-counter in intermediated markets, which feature trading illiquidity due to imperfect

search and matching as well as strategic bargaining between investors and dealers. At the same

time, these assets are often systemically important, due to their size and significance in financing
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to firms and financial institutions. In this paper, I examine the effect of asset liquidity on portfolio

choice and asset prices in intermediated markets. To do so, I build a highly tractable search-

theoretic model that accommodates both strategic bargaining and portfolio choice. Tractability

stems from investors’ quadratic preferences, the semi-centralized market structure, and i.i.d.

asset cash flows. The model generates several predictions novel to the literature. The model

predicts that the relationship between asset prices and asset liquidity in intermediated markets

is non-monotonic. The price-liquidity relationship is positive for sufficiently liquid assets, but

negative for highly illiquid assets. The average price-liquidity relation may turn negative during

severe crises. The model also predicts that selling investors incur higher transaction costs than

buying investors.

The non-monotonic price-liquidity relationship, in particular, contrasts with conventional

wisdom. Strategic bargaining, a feature of the intermediated markets, plays a crucial role in

generating the non-monotonicity. Hence, the paper sheds light on how market structure can affect

not only short-term market outcomes but also long-term equilibrium asset prices. Thus, policies

aimed at boosting market liquidity should take into account market structure and design issues.

More research is needed, however, to understand how specific market structure features interact

with (and potentially amplify) other financial frictions in affecting equilibrium outcomes.
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Appendix

A.1 Strategic Bargaining Game

The bargaining game occurs in virtual time. Let dt be the time interval between bargaining rounds. I

first treat dt as a small discrete increment, and then return to the continuous time case by setting dt → 0.

Consider an investor with patience type ξ ∈ {h, l} and asset holdings x, who meets a dealer to trade asset

i. Let Vξ(x) denote the investor’s expected value. The investor discounts time at rate β ≡ r + εI{ξ=l},

where I{ξ=l} equals one if the investor is type l and zero otherwise. Let P i = P iξ(x) and qi = qiξ(x) denote

the trade price and quantity. The investor’s gain from trade is

Vξ(x
1, . . . , xi + qi, . . . , xN )− Vξ(x)− P iqi (A.1)

Gξ(P i, qi|x) ≡ Vξ(x1, . . . , xi + qi, . . . , xN )− Vξ(x) is the change in the investor’s value due to purchasing

qi units of the asset. P iqi is the amount paid by the investor. The dealer’s gain from trade is its

intermediation profit from trading asset i, that is

P iqi − P̄ iqi (A.2)

where P̄ i is the inter-dealer market price of the asset.

When a party is chosen to make an offer, the selected party suggests both a trade price and a trade

quantity. Let P ic and qic denote the price and quantity suggested by the investor (or customer). Let P id
and qid denote the price and quantity suggested by the dealer. Given the dealer’s and the investor’s offer

probabilities, the expected price, quantity and trade amount (product of price and quantity) are

E[P i] = (1− z)P ic + zP id (A.3)

E[qi] = (1− z)qic + zqid (A.4)

E[P iqi] = (1− z)P icqic + zP idq
i
d (A.5)

Similarly, the investor’s expected change in value due to trading is E[Gξ(P i, qi|x)] = (1−z)Gξ(P ic , qic|x)+

zGξ(P id, qid|x). The selected party makes an offer that leaves the other party indifferent between accepting
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and rejecting the offer. That is,

Gξ(P id, qid|x)− P idqid = e−βdt(E[Gξ(P i, qi|x)]− E[P iqi]) +O(d2
t ) (A.6)

P icq
i
c − P̄ iqic = e−rdt(E[P iqi]− P̄ iE[qi]) +O(d2

t ) (A.7)

For example, in (A.6), the dealer is selected to make an offer and suggests {P id, qid}. If the investor

accepts the offer, their immediate gain from trade is Gξ(P id, qid|x) − P idqid. If the investor rejects the

offer, their expected gain from trade in the next round is E[Gξ(P i, qi|x) − P iqi]. The present value

of rejecting the offer is the expected gain from trade discounted at the investor’s discount rate β.

Setting dt → 0, in the limit, limdt→0 P
i
c = limdt→0 P

i
d ≡ P i and limdt→0 q

i
c = limdt→0 q

i
d ≡ qi. Thus,

limdt→0 P
i
cq
i
c = limdt→0 P

i
dq
i
d = P iqi, and limdt→0 Gξ(P ic , qic|x) = limdt→0 Gξ(P idqid|x) = Gξ(P i, qi|x) since

Gξ(·, ·|x) is continuous. From (A.6) and (A.7),

P iqi =
z(1− e−βdt)Gξ(P i, qi|x) + (1− z)(1− e−rdt)P̄ iqi

z(1− e−βdt) + (1− z)(1− e−rdt)

=
zβ

zβ + (1− z)r
Gξ(P i, qi|x) +

(1− z)r
zβ + (1− z)r

P̄ iqi
(A.8)

The second equality follows from limdt→0 1− e−ydt = ydt. Let

θξ ≡
(1− z)r

(1− z)r + zβ
=

(1− z)r
r + zεI{ξ=l}

(A.9)

It is immediate that θh > θl. Then, (A.8) can be written as

P iqi = (1− θξ)
[
Vξ(x

1, . . . , xi + qi, . . . , xN )− Vξ(x)
]

+ θξP̄
iqi (A.10)

Substituting (A.10) into (A.1) yields the investor’s gain from trade θξ
[
Vξ(x

1, . . . , xi + qi, . . . , xN )−

Vξ(x)− P̄ iqi
]
. Substituting (A.10) into (A.2) gives the dealer’s gain from trade (1− θξ)

[
Vξ(x

1, . . . , xi +

qi, . . . , xN ) − Vξ(x) − P̄ iqi
]
. Pareto optimality requires that the quantity maximizes Vξ(x1, . . . , xi +

qi, . . . , xN )− Vξ(x)− P̄ iqi, and thus

Vξi(x
1, . . . , xi + qi, . . . , xN ) = P̄ i (A.11)
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where the subscript i denotes derivative with respect to the i-th argument. If the selected party suggests

a quantity other than what is given above, the party can make both parties better off by choosing q as

given by (A.11) instead.

Following Rubinstein (1982), this is a unique subgame perfect equilibrium.

A.2 Proof of Proposition 2

I conjecture (and verify) that Vh(x) is quadratic in its arguments, that is,

Vh(x) = Hh +
∑
i

Iihx
i +
∑
i

Lih(xi)2 +
∑
j 6=i

Lijh (xi)(xj) (A.12)

Differentiate with respect to xi,

Vhi(x) = Iih + 2Lihx
i +
∑
j 6=i

(Lijh + Ljih )xj (A.13)

Note that for any qi and i ∈ {1, 2, . . . , N},

Vh
(
x1, . . . , xi+qi, . . . , xN

)
− Vh(x)

= Vhi
(
x1, . . . , xi + qi, . . . , xN

)
qi − Lih(qi)2

(A.14)

Moreover, from (3.4),

Vhi
(
x1, . . . , xi + qi, . . . , xN

)
= P̄ i (A.15)

Substituting (A.13) into the left-hand side of (A.15) and rearranging gives

qih(x) =
P̄ i − Vhi(x)

2Lih
(A.16)

The joint trade surplus between the type h investor and the dealer becomes

Vh
(
x1, . . . , xi+qih(x), . . . , xN

)
− Vh(x)− P̄ iqih(x)

= −Lihqih(x)2 = − [P̄ i − Vhi(x)]2

4Lih

(A.17)
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The first equality follows from (A.14) and (A.15). The HJB equation (3.9) becomes

rVh(x) =

N∑
i=1

D̄xi − γ

2

N∑
i=1

σ2(xi)2 + ζhl

[
Vl(x)− Vh(x)

]
+

N∑
i=1

λiθh

[
− [P̄ i − Vhi(x)]2

4Lih

] (A.18)

This is the HJB equation for a type h investor with asset holdings x. I then differentiate with respect to

xi on both sides to get the HJB equation for the marginal value of the investor,

rVhi(x) =D̄ − γσ2xi + ζhl

[
Vli(x)− Vhi(x)

]
+ λiθh

[
P̄ i − Vhi(x)

]
+
∑
j 6=i

λjθh
Lijh + Ljih

2Ljh

[
P̄ j − Vhj(x)

] (A.19)

I similarly conjecture (and verify) that Vl(x) is quadratic in its arguments, that is,

Vl(x) = Hl +
∑
i

Iilx
i +
∑
i

Lil(x
i)2 +

∑
j 6=i

Lijl (xi)(xj) (A.20)

Take derivative with respect to xi,

Vli(x) = Iil + 2Lilx
i +
∑
j 6=i

(Lijl + Ljil )xj (A.21)

I follow the derivations above to rewrite the HJB equation (3.10) and then differentiate with respect to xi

on both sides to get the HJB equation for the marginal value of the type l investor with asset holdings x,

(r + ε)Vli(x) =D̄ − γσ2xi + ζlh

[
Vhi(x)− Vli(x)

]
+ λiθl

[
P̄ i − Vli(x)

]
+
∑
j 6=i

λjθl
Lijl + Ljil

2Ljl

[
P̄ j − Vlj(x)

] (A.22)
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Substitute (A.13) and (A.21) into (A.19),

(r+ζhl + λiθh)
[
Iih + 2Lihx

i +
∑
j 6=i

(Lijh + Ljih )xj
]

= D̄ − γσ2xi

+ ζhl

[
Iil + 2Lilx

i +
∑
j 6=i

(Lijl + Ljil )xj
]

+
[
λiθhP̄

i +
∑
j 6=i

λjθh
Lijh + Ljih

2Ljh
P̄ j
]

−
∑
j 6=i

λjθh
Lijh + Ljih

2Lih

[
Ijh + 2Ljhx

j +
∑
k 6=j

(Ljkh + Lkjh )xk
]

(A.23)

Substitute (A.13) and (A.21) into (A.22),

(r+ε+ ζlh + λiθl)
[
Iil + 2Lilx

i +
∑
j 6=i

(Lijl + Ljil )xj
]

= D̄ − γσ2xi

+ ζlh

[
Iih + 2Lihx

i +
∑
j 6=i

(Lijh + Ljih )xj
]

+
[
λiθlP̄

i +
∑
j 6=i

λjθl
Lijl + Ljil

2Ljl
P̄ j
]

−
∑
j 6=i

λjθl
Lijl + Ljil

2Ljl

[
Ijl + 2Ljlx

j +
∑
k 6=j

(Ljkl + Lkjl )xk
]

(A.24)

From the two equations above, and use the method of undetermined coefficients, ∀ j 6= i ∈ {1, 2, . . . , N},

[
r + ζhl + (λi + λj)θh

]
(Lijh + Ljih ) = ζhl(L

ij
l + Ljil ) (A.25)[

r + ε+ ζlh + (λi + λj)θl

]
(Lijl + Ljil ) = ζlh(Lijh + Ljih ) (A.26)

Hence, it must be that

Lijh + Ljih = Lijl + Ljil = 0 ∀ j 6= i (A.27)

Substitute into (A.19) and (A.22), and rewrite the two equations as

rVhi(x) = D̄ − γσ2xi + ζhl

[
Vli(x)− Vhi(x)

]
+ λiθh

[
P̄ i − Vhi(x)

]
(A.28)

(r + ε)Vli(x) = D̄ − γσ2xi + ζlh

[
Vhi(x)− Vli(x)

]
+ λiθl

[
P̄ i − Vli(x)

]
(A.29)
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Rearranging (A.28) and (A.29) yields

(r + ζhl + λiθh)Vhi(x)− ζhlVli(x) = D̄ − γσ2xi + λiθhP̄
i (A.30)

(r + ε+ ζlh + λiθl)Vli(x)− ζlhVhi(x) = D̄ − γσ2xi + λiθlP̄
i (A.31)

Solve for Vhi(x) and Vli(x),

Vhi(x) =
(r + ε+ ζlh + ζhl + λiθl)(D̄ − γσ2xi)

(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh

+
(r + ε+ ζlh + λiθl)λ

iθh + ζhlλ
iθl

(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh
P̄ i

(A.32)

and

Vli(x) =
(r + ζlh + ζhl + λiθh)(D̄ − γσ2xi)

(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh

+
ζlhλ

iθh + (r + ζhl + λiθh)λiθl
(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh

P̄ i
(A.33)

By the method of undetermined coefficients,

Lih = −1

2

(r + ε+ ζlh + ζhl + λiθl)γσ
2

(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh
(A.34)

Lil = −1

2

(r + ζlh + ζhl + λiθh)γσ2

(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh
(A.35)

Subtract the inter-dealer price P̄ i from (A.32) and (A.33),

Vhi(x)− P̄ i =
(r + ε+ ζlh + ζhl + λiθl)(D̄ − γσ2xi − rP̄ i)− εζhlP̄ i

(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh
(A.36)

Vli(x)− P̄ i =
(r + ζlh + ζhl + λiθh)[D̄ − γσ2xi − (r + ε)P̄ i] + εζlhP̄

i

(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh
(A.37)

Let xih(x) and xil(x) be the optimal asset i demand by a type h investor with asset holdings x and a

type l investor with asset holdings x respectively. Vhi(x)|xi=xih(x) = P̄ i and Vli(x)|xi=xil(x) = P̄ i. Solving
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for xih(x) and xil(x), I get

xih(x) ≡ xih =
D̄ − (r + ζhlε

r+ε+ζlh+ζhl+λiθl
)P̄ i

γσ2
(A.38)

xil(x) ≡ xil =
D̄ − (r + ε− ζlhε

r+ζlh+ζhl+λiθh
)P̄ i

γσ2
(A.39)

A.3 Proof of Proposition 3

The steady-state distribution Φ(x, ξ) is unique and determined by (3.15) and the fact that investors’

measures sum to one. For any asset i, the optimal holdings are given by (A.38) and (A.39), which are

strictly decreasing functions of the inter-dealer price of the asset P̄ i. The market clearing condition (3.16)

thus uniquely determines the price P̄ i. For any asset i, given P̄ i, xih and xil that satisfy (A.38) and (A.39)

are also uniquely determined. Given P̄ i, xih and xil, for all i ∈ {1, 2, . . . , N}, the trade prices P ih(x) and

P il (x) and trade quantities qih(x) and qil(x) are also uniquely determined. Therefore, there exists a unique

stationary equilibrium in the economy.

A.4 Proof of Proposition 5

Combine (3.17)-(3.20) and (3.21),

µ(xih, h) + µ(xih, l) + µ(xil, h) + µ(xil, l) = 1 (A.40)

−ζhlµ(xih, h) + ζlhµ(xih, l) + λiµ(xil, h) = 0 (A.41)

−ζhlµ(xil, h) + ζlhµ(xil, l)− λiµ(xil, h) = 0 (A.42)

−ζlhµ(xih, l) + ζhlµ(xih, h)− λiµ(xih, l) = 0 (A.43)

−ζlhµ(xil, l) + ζhlµ(xil, h) + λiµ(xih, l) = 0 (A.44)
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Notice that one of the equations is redundant. Thus, there is a unique solution to the system of linear

equations. Add up (A.41) and (A.42), using (A.40),

µ(xih, h) + µ(xil, h) =
ζlh

ζhl + ζlh
= 1− π (A.45)

µ(xih, l) + µ(xil, l) =
ζhl

ζhl + ζlh
= π (A.46)

Rearrange (A.42) and (A.43),

(ζhl + λi)µ(xil, h) = ζlhµ(xil, l) = ζlh(π − µ(xih, l)) (A.47)

(ζlh + λi)µ(xih, l) = ζhlµ(xih, h) = ζhl(1− π − µ(xil, h)) (A.48)

Thus,

µ(xil, h) = µ(xih, l) =

ζhlζlh
ζhl+ζlh

ζlh + ζhl + λi
(A.49)

µ(xih, h) = 1− π −
ζhlζlh
ζhl+ζlh

ζlh + ζhl + λi
and µ(xil, l) = π −

ζhlζlh
ζhl+ζlh

ζlh + ζhl + λi
(A.50)

From (A.49)-(A.50), µ(xih, h) + µ(xih, l) = 1− π and µ(xil, h) + µ(xil, l) = π. Let Xi denote the total asset

i holdings by investors. It is thus given by

Xi = [µ(xih, h) + µ(xih, l)]x
i
h + [µ(xil, h) + µ(xil, l)]x

i
l = (1− π)xih + πxil (A.51)

From (3.13) and (3.14),

Xi =
D̄ − (r + πε+ ∆i)P̄ i

γσ2
(A.52)

where

∆i =
(1− π)ζhlε

r + ε+ ζlh + ζhl + λiθl
− πζlhε

r + ζlh + ζhl + λiθh

=

ζhlζlhε
ζhl+ζlh

[λi(θh − θl)− ε]
(r + ε+ ζlh + ζhl + λiθl)(r + ζlh + ζhl + λiθh)

(A.53)
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The market clearing condition (3.16) requires that Xi = s. Substituting the market clearing condition

into (A.52) yields the asset’s inter-dealer price

P̄ i =
D̄ − γσ2s

r + πε+ ∆i
(A.54)

A.5 Proof of Lemma 6

∆(λ) is given by (4.4). From (3.6), θh = 1 − z and θl = (1−z)r
r+zε . Hence, θh − θl = z(1−z)ε

r+zε . Let

k1 ≡ r + ε+ ζlh + ζhl and k2 ≡ r + ζlh + ζhl, and

K(λ) ≡ λ(θh − θl)− ε
(k1 + λθl)(k2 + λθh)

(A.55)

Thus,

∆(λ) =
ζhlζlhε

ζhl + ζlh
K(λ) (A.56)

Differentiate K(λ) with respect to λ,

∂K(λ)

∂λ
=

(θh − θl)(k1k2 − θlθhλ2) + ε(k1θh + k2θl + 2θlθhλ)

(k1 + λθl)2(k2 + λθh)2
(A.57)

Let λ and λ denote the roots of the quadratic equation

(θh − θl)(k1k2 − θlθhλ2) + ε(k1θh + k2θl + 2θlθhλ) = 0 (A.58)

where λ < λ. Thus,

λ =
εθlθh −

√
ε2θ2

l θ
2
h + (θh − θl)θlθh[(θh − θl)k1k2 + ε(k1θh + k2θl)]

(θh − θl)θlθh
< 0 (A.59)

λ =
εθlθh +

√
ε2θ2

l θ
2
h + (θh − θl)θlθh[(θh − θl)k1k2 + ε(k1θh + k2θl)]

(θh − θl)θlθh
> 0 (A.60)

Because λ > 0, it is immediate that ∂K(λ)/∂λ > 0 if λ < λ̄, and ∂K(λ)/∂λ < 0 if λ > λ̄. From

(A.56), ∂∆(λ)/∂λ > 0 if λ < λ̄, and ∂∆(λ)/∂λ < 0 if λ > λ̄.
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A.6 Proof of Proposition 8

Note that for ξ ∈ {h, l},

Vξ
(
x1, . . . , xi + qiξ(x), . . . , xN

)
− Vξ(x)

= Vξi
(
x1, . . . , xi + qiξ(x), . . . , xN

)
qiξ(x)− Liξqiξ(x)2

(A.61)

From (3.4),

Vξ
(
x1, . . . , xi + qiξ(x), . . . ,xN

)
− Vξ(x) = P̄ iqiξ(x)− Liξqiξ(x)2 (A.62)

Substitute into (3.5), and divide both sides by qiξ(x),

P iξ(x) = P̄ i − (1− θξ)Liξqiξ(x) (A.63)

The transaction costs incurred by selling investors and buying investors are respectively

Costi,sell =
P̄ i − P il (x)|xi=xih

P̄ i
= − 1

P̄ i
(1− θl)Lil(xih − xil) (A.64)

Costi,buy =
P ih(x)|xi=xil − P̄

i

P̄ i
= − 1

P̄ i
(1− θh)Lih(xih − xil) (A.65)

From (A.38) and (A.39),

xih − xil =
1− ζlh

r+ζlh+ζhl+λiθh
− ζhl

r+ε+ζlh+ζhl+λiθl

γσ2
εP̄ i (A.66)

Moreover, Lih and Lil are given by (A.34) and (A.35) respectively. Substitute (A.66) and (A.35) into

(A.64),

Costi,sell =
(1− θl)ε

2

r + ζhl + λiθh − (r+ζlh+ζhl+λ
iθh)ζhl

r+ε+ζlh+ζhl+λiθl

(r + ζhl + λiθh)(r + ε+ ζlh + λiθl)− ζhlζlh

=
(1− θl)ε

2(r + ε+ ζlh + ζhl + λiθl)

(A.67)
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Similarly,

Costi,buy =
(1− θh)ε

2(r + ζlh + ζhl + λiθh)
(A.68)

B Walrasian Benchmark: Proofs

In the Walrasian benchmark case, all assets are traded in frictionless Walrasian markets. The markets

are not intermediated, and there is no role for dealers. Let P̄ i,w denote the clearing price of asset i. The

state space can be decomposed into an inaction region and an action region with respect to the assets.

In the inaction region, the Hamilton-Jacobi-Bellman (HJB) equation for a type h investor with asset

holdings x is given by

rV w
h (x) =

N∑
i=1

D̄xi − γ

2

N∑
i=1

σ2(xi)2 + ζhl

[
V w
l (x)− V w

h (x)
]

(B.1)

where V w
ξ (x) is the expected value of a type ξ ∈ {h, l} investor with asset holdings x ≡ (x1, . . . , xN ) in

the benchmark case. In the action region, the value function satisfies

V w
h (x) = max

{x̄i}i
V w
h (x̄1, . . . , x̄N )−

N∑
i=1

P̄ i,w(x̄i − xi) (B.2)

Analogously, the HJB equation for a type l investor with asset holdings x in the inaction region is given

by

(r + ε)V w
l (x) =

N∑
i=1

D̄xi − γ

2

N∑
i=1

σ2(xi)2 + ζlh

[
V w
h (x)− V w

l (x)
]

(B.3)

and the HJB equation for the type l investor in the action region is

V w
l (x) = max

{x̄i}i
V w
l (x̄1, . . . , x̄N )−

N∑
i=1

P̄ i,w(x̄i − xi) (B.4)

Because the investor has continuous access to trading in all asset markets, the investor dynamically

adjusts their asset holdings to re-optimize. Combining (B.1) and (B.4), the HJB equation for a type h
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investor with asset holdings x can be written as

rV w
h (x) =

N∑
i=1

D̄xi − γ

2

N∑
i=1

σ2(xi)2

+ ζhl

[
max
{x̄i}i

V w
l (x̄1, . . . , x̄N )− V w

h (x)−
N∑
i=1

P̄ i,w(x̄i − xi)
] (B.5)

Similarly, the HJB equation for a type l investor with asset holdings x is

(r + ε)V w
l (x) =

N∑
i=1

D̄xi − γ

2

N∑
i=1

σ2(xi)2

+ ζlh

[
max
{x̄i}i

V w
h (x̄1, . . . , x̄N )− V w

l (x)−
N∑
i=1

P̄ i,w(x̄i − xi)
] (B.6)

Using the first-order condition for asset position and the envelope theorem, ∀ i ∈ {1, 2, . . . , N},

V w
hi (x) = P̄ i,w (B.7)

V w
li (x) = P̄ i,w (B.8)

and

rV w
hi (x) = D̄ − γσ2xi + ζhl

[
P̄ i,w − V w

hi (x)
]

(B.9)

(r + ε)V w
li (x) = D̄ − γσ2xi + ζlh

[
P̄ i,w − V w

li (x)
]

(B.10)

Thus, the optimal asset i demand by type h and type l investors are respectively

xi,wh =
D̄ − rP̄ i,w

γσ2
(B.11)

xi,wl =
D̄ − (r + ε)P̄ i,w

γσ2
(B.12)

I now derive the steady-state proportions of type h and type l investors. Let πt denote the fraction of

impatient (type l) investors. The rate of change in πt follows

π̇t = −ζlhπt + ζhl(1− πt) (B.13)
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The solution to the above ODE is

πt = π0e
−(ζhl+ζlh)t +

ζhl
ζhl + ζlh

[
1− e−(ζhl+ζlh)t

]
(B.14)

As t→∞,

πt → π =
ζhl

ζhl + ζlh
(B.15)

π is the steady-state measure of type l investors. The steady-state measure of type h investors can be

similarly derived as

1− π =
ζlh

ζhl + ζlh
(B.16)

Market clearing in the asset i market requires that

(1− π)xi,wh + πxi,wl =
D̄ − (r + πε)P̄ i,w

γσ2
= s (B.17)

Thus, the equilibrium price is given by

P̄ i,w =
D̄ − γσ2s

r + πε
(B.18)
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