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Abstract

We study persistent fluctuations in characteristic-sorted portfolio returns through the
lens of a statistical model. The model provides a simple formula for adjusting the
standard errors of expected return estimates. With plausible parameter values, ad-
justed standard errors double, casting doubt on the interpretation that the historical
performance of characteristic-sorted portfolios represents unconditional return premia.
Similarly, maximum likelihood estimates indicate that the historical data are consis-
tent with a wide range of return processes. Finally, our Bayesian analysis shows that
investor posteriors about expected returns are highly dependent on their priors about
persistence, even after observing close to 60 years of data.
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A large and growing literature links firm characteristics, such as valuation ratios, to expected

stock returns. While the evidence documented in this literature convincingly rejects the

CAPM, going beyond this rejection and interpreting alternatives has proven to be challeng-

ing. In particular, it is an open question whether the historical links between characteristics

and returns represent permanent economic forces that will continue to shape returns in the

future, or transitory forces that will gradually dissipate.

A case in point is the value premium. The historical tendency of value stocks to out-

perform growth stocks, shown by Fama and French (1992) and others, has weakened in the

most recent period. Yet as Fama and French (2021) point out in a recent study, we cannot

confidently conclude that the value premium post-1991 is different than the value premium

pre-1991. Although the value premium is quite high in the early period, and is not statisti-

cally significant in the latter period, the returns are sufficiently noisy that we cannot reject

the hypothesis that they are drawn from identical distributions.1

This paper examines the returns of characteristic-sorted portfolios through the lens of a

statistical model that allows expected returns to vary over time. The central feature of our

model, persistent fluctuations in expected returns, are likely to arise because the underlying

forces that link returns to characteristics change over time.2 Our objective is to use this

model to analyze how these fluctuations influence our inferences about characteristic-sorted

portfolio returns. As we show, accounting for these fluctuations have important implications

for how we evaluate the historical performance of characteristic-sorted portfolios, as well as

how information from historical returns are incorporated into portfolio strategies.

In our model, small but persistent shocks accumulate over time and generate conditional

expected returns that deviate substantially from unconditional expected returns. These de-

viations lead to positive serial correlation in returns, implying that there are effectively fewer

independent observations relative to the i.i.d. case. As a result, inferences about uncondi-

tional expected returns become less precise. Put differently, persistent time variations make

it difficult to distinguish between a high unconditional expected return and the realizations

of conditional expected returns that happened to be relatively high in the sample period.

1Another example of long-term fluctuations in characteristic-sorted portfolio returns is the strengthening
profitability effect, documented by Novy-Marx (2013).

2We provide further motivation for the theoretical underpinnings of our statistical model in Section 1.1.
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Our analysis formalizes this intuition and provides three main contributions. First, we

use our model to derive a simple formula that adjusts the standard errors of unconditional

expected return estimates to account for persistent variation in returns. We show that,

given plausible persistence parameters, this adjustment can double the standard errors of

unconditional expected return estimates. Second, we estimate the full model, including the

persistence parameters, using maximum likelihood. We find that the persistence parameters

are estimated with very little precision. In particular, the historical data are consistent with

very different return processes, ranging from those with conditional expected returns ex-

hibiting persistent fluctuations around zero unconditional means to those with i.i.d. returns

and large unconditional means. Given these diverse possibilities, it is natural to ask how

Bayesian investors with different prior beliefs interpret the historical time series and forecast

future returns. This leads to our third main finding, which is that the posterior beliefs and

portfolio choices of Bayesian investors are highly sensitive to their priors about the degree

of persistence, even after observing close to 60 years of data.

The main focus of our empirical analysis is on the returns of the value, investment, prof-

itability, and size portfolios studied in Fama and French (2015).3 As a first step we report

return autocorrelation estimates for these portfolios. We find that all four exhibit posi-

tive autocorrelation over yearly horizons, and while only the size portfolio’s autocorrelation

estimate is significant on its own, a joint test of the four portfolios strongly rejects the zero-

autocorrelation null hypothesis. These autocorrelation estimates, however, are sufficiently

imprecise that they are consistent with a wide variety of return processes, with persistence

lasting from months to decades.

We then use our model to assess how return autocorrelation patterns affect inferences

about expected returns. Specifically, we derive a closed-form formula for adjusting the

standard errors of unconditional expected return estimates as a function of the model-implied

first-order return autocorrelation and its decay rate over time. This adjustment results in

higher standard errors when returns exhibit more persistent variation – that is, when the

first-order autocorrelation is more positive and decays more slowly.

3Throughout the paper, we analyze returns of market-neutral portfolios that are constructed using value-
weighted quintiles of the individual characteristics.
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As our estimates illustrate, different assumptions about the magnitude of persistent vari-

ation in characteristic-sorted portfolio returns, all consistent with the historical data, gen-

erate substantially different inferences about unconditional expected returns. If returns are

assumed to be i.i.d., meaning they have no persistence, standard errors are low and the hy-

pothesis of zero unconditional expected returns is strongly rejected. However, if returns are

assumed to exhibit plausible degrees of persistence, the model-adjusted standard errors are

substantially higher and the hypothesis is often not rejected. For example, standard errors

nearly double, relative to the case where returns are i.i.d., when return autocorrelation is

5% at one-quarter lag and decays with a half-life of five years. In contrast, we find that

the commonly-used Newey and West (1987) procedure generates negligible standard error

adjustments when applied to persistent return time series.

In addition to estimating standard errors using assumed parameters, we use maximum

likelihood to estimate the model’s parameters, including those that determine the magnitude

of persistent variation in returns. Consistent with the highly noisy autocorrelation estimates

in our reduced-form regressions, we find that the persistence parameters are imprecisely

estimated. Given these imprecise estimates, we cannot rule out a wide variety of a plausible

alternative explanations for the historical performance of the characteristic-sorted portfolios.

Indeed, likelihood ratio tests fail to strongly reject the hypothesis that unconditional expected

returns are zero, but conditional expected returns are both variable and highly persistent.4

While the results discussed so far are expressed from a frequentist statistical perspective,

our focus on how assumptions about time-variation affect inferences about unconditional

expected returns has a natural Bayesian interpretation. For example, our OLS estimates are

similar to a Bayesian analysis with dogmatic priors about the degree of persistent variation in

expected returns, while the maximum likelihood estimates are similar to a Bayesian analysis

with agnostic priors. This analogy is limited, however, to priors about persistence, as the

frequentist analysis assumes fully agnostic priors about unconditional expected returns.

To assess how priors about unconditional expected returns and return persistence inter-

act, we embed our statistical model into a Bayesian framework. Specifically, we consider an

4With time-variation, p-values for the null of zero unconditional means are 15.7%, 3.4%, 4.4%, and
36.7%, for value, investment, profitability, and size portfolios, respectively. Without time-variation, p-values
are 5.5%, 0.1%, 0.1%, and 93.5%.
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investor with prior beliefs about the model parameters that he updates based on the observed

historical return series. We analyze a number of economically plausible prior beliefs. For

example, an investor guided by predictions of the CAPM may have the prior belief that the

expected returns of characteristic-sorted portfolios cannot deviate substantially from zero.

In contrast, an investor with less confidence in the CAPM may allow for larger and more

persistent fluctuations in expected returns.

We find that prior beliefs about persistence substantially affect how investors update their

beliefs about unconditional expected returns after observing the return history. If investors

have strong priors that expected returns fluctuate very little, then their posterior beliefs

about unconditional expected returns tend to be relatively tight and not highly sensitive to

priors about unconditional expected returns. However, if investors’ priors put more weight

on the possibility of persistent fluctuations, then their posterior beliefs about unconditional

expected returns become more diffuse and more sensitive to their priors. Thus, investors

learn less from data and rely more on their priors when returns exhibit more persistence.

We also use our Bayesian approach to generate estimates of conditional expected returns

and Sharpe ratios at each point in time in our sample. We find that Bayesian investors who

allow for the possibility of time-varying returns have very different views of conditional ver-

sus unconditional expected returns. The reason is that while data from the early and later

parts of the sample are equally important for estimating unconditional expected returns,

conditional expected return estimates at any point in time put more weight on the more

recent observations when returns are persistent. For example, because the value portfolio

performed particularly poorly towards the end of the sample, the conditional value premium

in 2022, measured as the mean of the posterior, is generally around a quarter of the un-

conditional value premium, and is close to zero in many specifications. The profitability

portfolio exhibits the opposite pattern: because the returns were stronger in recent decades,

the posteriors for the conditional expected return in 2022 are higher than the posteriors for

the unconditional expected return.

We repeat the Bayesian estimation procedure at the end of each calendar year using

only prior observations to form posterior beliefs and compute optimal portfolio weights for

an investor. This out-of-sample exercise relates to the performance of factor-timing strate-

4



gies discussed in the recent literature.5 We find that investors with different priors about

unconditional expected returns choose substantially different portfolios early in the sample

but quickly converge to similar choices. However, investors with different priors about per-

sistence have ongoing differences in portfolio choices driven by the extent of market timing

they pursue. This timing behaviour is particularly strong for the size portfolio, which de-

spite having near-zero average returns in the full sample has large variations in conditional

expected returns.6

Our final analysis contributes to the ongoing debate about what Cochrane (2011) termed

the ‘factor zoo’ by applying our approach to a broad set of 174 characteristic-sorted portfolios

described in Chen and Zimmermann (2021). We find that admitting the possibility of time-

variation in conditional expected returns significantly reduces the number of these portfolios

that exhibit strong evidence against zero unconditional expected returns. Specifically, only

four (42) of the 174 portfolio have p-values below 0.1% (1%) using our maximum likelihood

estimator, compared to 58 (81) using the standard OLS approach. Failure to meet these

lower p-value thresholds is particularly relevant since p-values between 1% and 5% can easily

arise because of data mining (Harvey, Liu, and Zhu, 2016).

While we are among the first to analyze time variation in the expected returns of

characteristic-sorted portfolios, there is a well-established literature that explores a num-

ber of related issues within the context of the aggregate market portfolio. For example,

Ferson, Sarkissian, and Simin (2003) consider the predictability of aggregate market returns

using predictor variables such as price/dividend ratios. They present simulations that show

that OLS regressions can overstate the significance of such relationships in finite samples

when expected returns are persistent, even when the Newey and West (1987) standard er-

rors adjustment is used. Although our application is different, our framework is similar and

we also show that the Newey and West (1987) correction is not effective in dealing with the

problem. In addition, we explore frequentist remedies, such as OLS standard error correc-

tions when the level of persistence in expected returns is known, and maximum likelihood

when the level of persistence is estimated.

5See Gupta and Kelly (2019) and Ehsani and Linnainmaa (2022).
6Brown, Kleidon, and Marsh (1983), Conrad and Kaul (1988), and Guidolin and Timmermann (2008)

also find evidence of time-variation in conditional size portfolio returns.
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Pástor and Stambaugh (2009, 2012) and Avramov, Cederburg, and Lučivjanská (2018)

also conduct Bayesian analyses of time-varying expected returns and, like us, find that the

priors about the return generating process substantially affect the posteriors about expected

returns. Our study differs from these papers in both application and focus. Specifically, our

analysis concerns characteristic-sorted portfolios rather than the aggregate market portfolio,

and we put greater emphasis on prior beliefs about persistence.7

We are aware of only two studies that use Bayesian methods to study time variation in

characteristic-sorted portfolio returns: Pástor (2000) and Smith and Timmermann (2022).

In contrast to our analysis, persistence plays no role in Pástor (2000) as expected returns are

assumed to be constant. Smith and Timmermann (2022) assume that there are occasional

structural breaks where return premia of all characteristic-sorted portfolios, as well as the

market factor, change at the same time and then remain constant until the next structural

break occurs. Our approach complements Smith and Timmermann (2022) by examining

continuous variations in return premia that are specific to an individual characteristic-sorted

portfolio. Continuous variations permit out-of-sample forecasting – structural breaks can

only be identified in hindsight – as well as standard error corrections for in-sample inference.

Finally, our analysis is related to a number of recent papers that combine evidence from

several characteristic-sorted portfolios to show that there is persistent time-variation in con-

ditional expected returns, e.g., Lewellen (2002), McLean and Pontiff (2016), Avramov et al.

(2017), Gupta and Kelly (2019), Arnott et al. (2021a), and Ehsani and Linnainmaa (2022).

We contribute to this literature by providing model-based estimates of the magnitude of

persistent variation in returns, and by studying the implications of persistence for inferences

on expected returns.

The remainder of the paper is organized as follows. Section 1 describes our statistical

model of the return-generating process. Section 2 documents the historical performance

and return autocorrelations of the four characteristic-sorted portfolios we study. Section 3

presents the frequentist estimations of the model. Section 4 presents the Bayesian analysis.

Section 5 summarizes results for 174 characteristic-sorted portfolios. Section 6 concludes.

7Other papers in the literature that employ Bayesian methods to study aggregate market returns in-
clude Kandel and Stambaugh (1996), Barberis (2000), Wachter and Warusawitharana (2009), and Johannes,
Korteweg, and Polson (2014).
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1. Statistical Model

Our empirical analyses of characteristic-sorted portfolios apply a statistical model in which

conditional expected returns exhibit persistent fluctuations. In this section, we first provide

a brief discussion of the theoretical motivation for our model. We then present the model

specification and describe the return patterns that the model generates.

1.1. Model Motivation

In traditional asset pricing tests, such as tests of the CAPM, the null hypothesis is

that expected excess returns are always zero – that is, at each point in time – not just

on average. Thus, under the null, returns are serially uncorrelated. As we discuss in the

Introduction, these tests, which appropriately assume independent residuals, convincingly

reject the CAPM.

The traditional tests provide less guidance, however, if we want to distinguish between

various alternatives to the CAPM null. For instance, leading behavioral explanations of

the value premium are based on the idea that investor overconfidence (Daniel, Hirsleifer,

and Subrahmanyam, 1998) or optimism in evaluating new technologies (Shiller, 2000) cause

growth stocks to be overpriced. However, as modeled in Altı and Titman (2019), behavioral

biases can also generate persistent cycles whereby the value effect is positive in some episodes

and negative in others. More generally, characteristic-sorted portfolio returns may exhibit

both unconditional and conditional deviations from the CAPM benchmark.8

The statistical model described below allows for not just deviations in unconditional ex-

pected returns from the CAPM benchmark, but also allows for time-variation in expected

returns. Estimates of the model thus capture a broader set of alternatives to the CAPM.

8Rational theories of characteristic-based return predictability can also generate persistent fluctuations in
expected returns. For instance, Gârleanu, Kogan, and Panageas (2012) and Kogan, Papanikolaou, and Stoff-
man (2020) provide theories where rational investors hold lower-returning growth stocks to hedge technology
shocks. One might expect the economic fundamentals that drive these rational explanations to fluctuate
over time, causing time-variation in the value premium.
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1.2. Model Specification

We assume that the time-series of the zero-cost portfolio returns rt satisfies:

rt+1 = µt + εt+1, (1)

µt+1 = µ+ λ(µt − µ+ δt+1), (2)

where µt and µ are the conditional and unconditional expected returns, respectively. The

shocks to unexpected returns εt and the shocks to expected returns δt are i.i.d. and follow a

joint normal distribution with variances σε and σδ, respectively, and correlation ρ ∈ (−1, 1).9

We expect ρ to be negative, since positive shocks to expected returns, ceteris paribus, reduce

an investment’s value.10

The parameter λ ≥ 0 in Equation (2) determines the persistence of shocks to µt. To

facilitate interpretation of economic magnitudes, we express λ in our empirical analyses in

terms of the annualized half-life of shocks to expected returns, H:

H =
log(0.5)

log(λ)

1

N
, (3)

where N is the number of periods per year (e.g. four for quarterly data).

The econometrician does not observe µt, but can estimate it – along with other model

parameters – from the observed return realizations R = [r1, r2, . . . , rT ]′. Conditional on

parameters Ω = [µ, λ, σε, σδ, ρ, ], R has the following mean and covariance matrix:

E(R|Ω) = µ, (4)

Cov (R|Ω) = Σ(Ω), Σ(Ω)i,j =


λ2σ2

δ

1−λ2 + σ2
ε if i = j

λ|i−j|
(
λ2σ2

δ

1−λ2 + ρσδσε

)
if i 6= j

. (5)

Equation (5) shows that shocks to both the expected and unexpected returns contribute to

9Conrad and Kaul (1988) uses the same specification but assume ρ = 0.
10In Equation (2) we multiply the shock δt+1 by λ so that returns are i.i.d. when λ = 0. With δt+1 outside

the parenthesis and λ = 0, cov(ri,t, ri,t−1) = ρσ2
δ , meaning that one would also need to assume ρ = 0 for

returns to be independent across time.
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the volatility of returns (the terms σ2
δ and σ2

ε , respectively). Note also that the covariance

between ri and rj decays at a constant rate λ as |i− j| grows.

1.3. Identification

The model is over-parameterized in the sense that multiple values of Ω lead to the same

predicted moments E(R|Ω) = µ and Cov(R|Ω) = Σ(Ω). To see this, consider the variance

and one-lag autocorrelation of returns:

σ2
r(Ω) = Var(rt) =

λ2σ2
δ

1− λ2
+ σ2

ε , (6)

γ(Ω) = Corr(rt+1, rt) = λ
λ2σ2

δ + (1− λ2)ρσδσε
λ2σ2

δ + (1− λ2)σ2
ε

. (7)

Using this alternative notation, the covariance matrix becomes:

Σ(Ω)i,j =

σ2
r if i = j,

λ|i−j|−1γσ2
r if i 6= j.

(8)

Inspecting Equation (8), we see that any two parameterizations Ω and Ω̃ which yield the

same λ, σr, and γ will result in the same covariance matrix Σ for returns.

To better understand identification in our model, note that we use the sample mean of

returns to estimate the unconditional expected return µ (Equation (4)), and the average rate

at which the covariance between ri and rj decays as |i− j| grows to estimate the persistence

parameter λ (Equation (5)). The identification problem arises because we have three other

model parameters to be identified (σε, σδ, and ρ), but only two other moments that can be

estimated: the variance of returns σ2
r in Equation (6) and the one-lag autocorrelation γ in

Equation (7).11 Intuitively, the identification problem arises because one cannot distinguish

between different channels that generate return variance and autocorrelation. An increase in

the volatility of expected return shocks σδ increases both return variance and autocorrelation,

11Note from Equation (8) that return covariances at longer lags do not provide any additional information
about the model parameters, because all these covariance terms are scaled by γσ2

r .
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but the same increases can also be generated from increases in the volatility of unexpected

return shocks σε and the correlation parameter ρ.

We address this identification problem in our frequentist analysis by estimating the four

moments θ = [µ, λ, σr, γ], which we can identify, rather than the full set of underlying param-

eters Ω. In doing so, we apply the constraint that there must be a parameterization Ω which

is consistent with θ and satisfies σε > 0, σδ > 0, λ ≥ 0, and ρ ∈ (−1, 1). The identification

problem does not arise in our Bayesian analysis because we compute a posterior distribution

for parameter values, which is unique given a set of priors and observed data, rather than a

single point estimate, which is not unique.

1.4. The Sign of Return Autocorrelations

Although our model can generate both positive and negative return autocorrelations,

negative autocorrelations of material magnitude tend to occur only when expected returns

exhibit very little persistence. Time variation in expected returns is a source of positive

return autocorrelation because current and recent past returns have similar expected returns.

A negative return autocorrelation requires a negative correlation between realized returns

and changes in expected returns. However, unless shocks to expected returns are quickly

mean-reverting, the information in past returns about a single period’s change in expected

return is less relevant than the information about the ongoing level of expected returns.

We can see this formally using Equation (7), which specifies the first-order return au-

tocorrelation γ as a function of λ, ρ, σε, and σδ. The first term in the numerator, λ2σ2
δ ,

represents the effect of persistent expected return variations and is always positive. The

second term in the numerator, (1−λ2)ρσδσε, represents the effect of the correlation between

shocks to expected and unexpected returns and is negative when ρ < 0. Comparing these two

terms, we see that the sign of γ is determined by the relative magnitudes of λ and |ρσε/σδ|.
In particular, when λ is close to one, as is the case for the highly-persistent variations that

motivate our analysis, γ < 0 only if σε/σδ is sufficiently large – that is, if shocks to expected

returns exhibit very little variation relative to shocks to unexpected returns.

In Appendix Table 1, we quantify how small λ (or, equivalently, H) needs to be for γ to

be negative. We assume ρ = −1 to provide an upper bound on the prevalence of negative
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autocorrelations, and consider various combinations of H and σε/σδ. We find that materially

negative γ values obtain only when H is half a year or less.

2. Characteristic-Sorted Portfolios

We apply our statistical model to study the portfolios that are formed by sorting stocks

based on value, investment, profitability, and size. We focus on these four characteristic-

sorted portfolios because they are the basis of the Fama and French (2015) five-factor model

and have been extensively studied elsewhere. In Section 5 we extend our analysis to a broader

set of 174 portfolios that have also been analyzed in previous literature.

2.1. Data and Characteristic Definitions

We use data on the historical returns of characteristic-sorted portfolios from Ken French’s

website.12 Each portfolio combines a long position in a value-weighted portfolio of firms in

one extreme quintile of the characteristic with a short position in the other extreme.

The characteristics are defined following Fama and French (2015). Value is the ratio of

the book value of equity (Bi,y) to the market value of equity (Mi,y) as of the end of the prior

fiscal year y. Investment is the growth rate in the book value of assets (Assetsi,y/Assetsi,y−1).

Profitability is revenues minus cost of goods sold, interest expense, and selling, general, and

administrative expenses in year y divided by book equity in year y − 1. Size is Mi,y.

In contrast to most of the literature, which examines the monthly returns of characteris-

tic sorted portfolios, we analyze quarterly returns. As we show in Appendix A, the monthly

returns of three of the four portfolios we study exhibit strong positive first-order autocorre-

lations.13 While these short-term autocorrelations are consistent with time-varying expected

returns, they could also be driven by lead-lag effects and other short-term microstructure

effects. To focus our analysis on longer-term autocorrelations driven by persistent variations

in expected returns, we estimate our model using quarterly returns.

12http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
13This is consistent with the evidence in Gupta and Kelly (2019) that 47 of 65 characteristic-based port-

folios have significantly positive first-order autocorrelation.
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Since the market risk premium is not our focus, we use market-neutral versions of each

portfolio’s returns throughout, calculated as:

rβ=0
i,t = ri,t − β̂i(rm,t − rf,t), (9)

where ri,t is the quarterly return of the long-short portfolio i, rm,t−rf,t is the quarterly excess

market return, and β̂i is the full-sample market beta. The average return and Sharpe ratio of

this market-neutral portfolio are equivalent to the alpha and information ratio, respectively,

of the underlying long-short portfolio.

2.2. Historical Performance of Characteristic-Sorted Portfolios

Table 1 summarizes the historical performance of the characteristic-sorted portfolios. The

value, investment, and profitability portfolios have annualized mean returns above 4% and

Sharpe ratios between 0.3 and 0.5, while the size portfolio’s mean return is close to zero.

Based on standard errors calculated under the assumption of i.i.d. returns, we strongly reject

the null hypothesis of zero expected returns for the first three portfolios.14

We also examine the historical performance of the portfolios in the first and second halves

of our sample period, 1963–1992 and 1993–2021. As discussed in McLean and Pontiff (2016),

Linnainmaa and Roberts (2018), and Fama and French (2021), the value strategy’s average

returns are smaller in the second half of the sample and are not statistically different from

zero. However, as emphasized by Fama and French (2021), the difference between the two

halves of the sample is not statistically significant.15

The investment, profitability, and size portfolios each show different return patterns

across subsamples. The investment portfolio’s returns are largely consistent over time and

statistically significant in both halves of the sample. The profitability portfolio follows the

14We compute the i.i.d. standard errors by taking the standard deviation across simulated samples formed
by re-sampling historical data with replacement.

15Recent studies provide two potential explanations for the decline of the value premium: book value may
have worsened as a proxy for the value of assets in place (Choi, So, and Wang, 2021; Eisfeldt, Kim, and
Papanikolaou, 2022; Goncalves and Leonard, 2023), or a series of shocks may have widened the difference
in multiples between growth and value stocks (Israel, Laursen, and Richardson, 2020; Arnott et al., 2021b).
Both imply time variation in expected returns and thus are consistent with our model.
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opposite pattern as the value portfolio, performing better in the second half of the sample

than the first, though again the difference is statistically insignificant. The size portfolio has

small and statistically insignificant returns in both halves of the sample.16

2.3. Autocorrelation Estimates in Model Simulations and Historical Data

As discussed in the Introduction, a number of recent studies document short-term au-

tocorrelation in characteristic-sorted portfolio returns, or more generally analyze portfolio

timing strategies that are premised upon time-variation in expected returns. Before we

estimate our model, we present similar reduced-form analyses using both model-simulated

return data and the historical returns of the four characteristic-sorted portfolios that we

analyze.

Estimates of the autocorrelation structure for individual portfolios are inherently impre-

cise because realized returns are quite volatile relative to the plausible variations in expected

returns. Furthermore, autocorrelation estimates have a well-document downward bias in

small samples (Kendall, 1954; Marriott and Pope, 1954). To illustrate these issues, we first

present autocorrelation estimates that we generate with model-simulated data samples under

a variety of assumptions about H and γ. In these simulations, we fix the model parameters

and generate 50,000 samples with 234 observations, which is the number of quarters in our

empirical sample.17 For each simulated return series, we estimate return autocorrelations

using regressions of quarterly returns on averages of returns over the previous L quarters:

rt = a+ bL

(
1

L

L∑
l=1

rt−l

)
+ εt. (10)

Panel A of Table 2 presents average values, as well as 95% confidence intervals, for the

autocorrelation coefficient b̂L across samples that are simulated under a variety of parametric

16The absence of a significant size effect in the early part of the sample is in part due to our use of value
weights in portfolio construction.

17The remaining model parameters we use for the simulations are µ = 0 and σr = 7.57%, which is the
full-sample return standard deviation for the value portfolio. These choices have no effect on the results we
report in this section as autocorrelation estimates from regressions with intercepts are invariant to linear
transformations of rt.
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assumptions. Specifically, we consider (H, γ) combinations where the half-life of shocks H

equals 2.5, five, and ten years, and the first-order return autocorrelation γ equals 2.5%, 5%,

and 10%. For each parameterization we also compute σ̂sr, which denotes the volatility of the

annualized Sharpe ratio conditional on past returns. More specifically, σ̂sr is the volatility

of the conditional Sharpe ratio computed by an investor who knows the model parameters

and observes an infinite history of past return realizations, but not the realizations of the

conditional expected returns µt. As Table 2 shows, the volatilities of conditional Sharpe

ratios generated by these parameterizations are roughly comparable to the historical Sharpe

ratios of characteristic-sorted portfolios reported in Table 1.

The first row of Panel A in Table 2 reports the autocorrelation estimates when H = 0

and thus returns are distributed i.i.d. As expected, the average estimated autocorrelation

coefficients are negative due to the aforementioned downward bias: because the in-sample

mean is used to calculate the autocorrelation coefficient, the data appears to be mean-

reverting even when there is no true mean reversion. The bias is stronger the longer the past

return window because there is a smaller effective sample size. To take an extreme example,

if one were to divide the sample into two observations, one half would appear above-average

and the other below-average, resulting in apparent mean reversion in every random sample.

The other rows in Panel A of Table 2 show autocorrelation estimates when expected re-

turns exhibit persistent variation, i.e., H > 0 and γ > 0. Two observations emerge from the

reported estimates. First, the downward bias continues to affect autocorrelation estimates

even when expected returns are persistent, especially with longer past return windows. Sec-

ond, and more importantly, the confidence intervals for the autocorrelation estimates are

quite wide and include negative values in every parameterization – even those with large γ.

Panel B of Table 2 presents estimates of Equation (10) for the historical samples of the

quarterly returns of the value, investment, profitability, and size portfolios. The first column

shows that all four portfolios have positive b4, indicating that past-year returns positively

predict next-quarter returns. The second and third columns show that longer past-return

windows have point estimates with varying signs.

We do not report standard errors or bias corrections in Panel B of Table 2 because Panel

A shows that both depend heavily on the magnitude and persistence of the variations in
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expected returns. In most cases, the confidence intervals for different parameterizations in

Panel A include all of the point estimates in Panel B, which means that one cannot reject

any of the posited autocorrelation structures. Even economically large regression coefficients,

such as b̂20 = −0.30 for the investment portfolio, lie in the 95% confidence interval for every

parameterization from i.i.d. to H = 10 and γ = 5%.

For three out of the four characteristic-sorted portfolios, the autocorrelation estimates do

not reject any reasonable parameterization of our model. The size portfolio is the exception;

we convincingly reject the i.i.d. null in the regression with both the one-year and five-year

lags. In addition, in a pooled regression that combines the returns of the four portfolios, the

i.i.d. null hypothesis is rejected for one-year and five-year returns with p-values of 0.0% and

2.2%, respectively.18 In a pooled regression with only value, investment, and profitability,

we reject the i.i.d null with the one year lag with a p-value of 2.8%. The reason we can

jointly but not individually reject the null is that the coefficients for the value, investment,

and profitability portfolios are each above the i.i.d. benchmark, but not by enough to reject

on an individual basis.

3. OLS and Maximum Likelihood Estimations

As the previous section shows, the autocorrelation patterns observed in the historical re-

turns of characteristic-sorted portfolios are consistent with a range of assumptions about

the magnitude of persistent variation in conditional expected returns. In this section, we

formally analyze the impact of such variation on the estimates of unconditional expected

returns using OLS regressions and maximum likelihood estimations.

3.1. OLS Estimation With Model-Corrected Standard Errors

We start by estimating the unconditional expected return µ and its standard error using

OLS regressions of observed returns rt on a constant. The OLS estimate µ̂OLS is a consistent

18We conduct this test comparing the sum of the individual estimates from observed data to the distribution
of this sum in samples simulated under the i.i.d. assumption.

15



estimator of µ, even when conditional expected returns vary, as in our model. The correct

standard errors for µ̂OLS depend on the covariance matrix of the residuals ψt = rt − µ.19

The typical approaches used to adjust standard errors are the White (1980) correction

for potential heteroskedasticity and Newey and West (1987), which corrects for both het-

eroskedasticity and autocorrelations up to a small number of lags. When expected returns

are time-varying and persistent, both of the standard approaches produce understated stan-

dard errors. The reason is that persistent variations in expected returns generate small but

long-lasting correlations in ψt that extend beyond the windows considered by Newey and

West (1987). Formally, our model generates the residuals

ψt = µt−1 − µ+ εt, (11)

which implies that ψt has long-lasting autocorrelation due to persistent variations in µt. As

we show below, even if we extend the number of lags in Newey and West (1987) to match or

exceed the half-lives of shocks to expected returns, standard errors remain under-estimated

because the lags are too large a fraction of the observed time series for the asymptotic results

in Newey and West (1987) to hold.

If the first-order return autocorrelation γ and the half-life of shocks H are known, we can

correct the OLS standard errors for the resulting autocorrelation in the residuals ψt using

the structure of our model.20 Specifically, the asymptotic standard error of µ̂OLS satisfies

SE(µ̂OLS) =

√
1′Σ1

T 2
(12)

=

(
σr√
T

)√
1 + 2γ

[
λT + T (1− λ)− 1

T (1− λ)2

]
.

In Equation (12), T is the number of observations, 1 is a T × 1 vector of ones, and Σ is the

19We use ‘correct standard errors’ as an informal shorthand for the correct specification of the asymptotic
distribution of µ̂.

20Note that the model structure can also be used to obtain Generalized Least Squares (GLS) estimates.
As detailed in Appendix B, we find that the GLS estimates differ only slightly from the OLS estimates for
the four characteristic-sorted portfolios we study.
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covariance matrix of returns. The first line is the general formula for computing standard

errors with a known covariance matrix (see Section 4.5 of Cameron and Trivedi (2005)). In

our model, Σ is fully specified by γ and λ, as shown in Equation (8). Substituting from

Equation (8) results in the formula in the second line of Equation (12) after some algebraic

manipulation. Note that the first term in this formula, σr/
√
T , is the unadjusted OLS

standard error. Thus, the second term in square roots is the adjustment factor, which is a

function of T , γ, and λ. For large T , Equation (12) approximates to:

SE(µ̂OLS) ≈
(
σr√
T

)√
1 +

2γ

1− λ
. (13)

The standard error adjustments in Equations (12) and (13) can also be stated in terms of the

annualized half-life H instead of λ by substituting λ = 0.5
1
HN , which follows from Equation

(3), where N is the number of return observation periods per year.

Table 3 shows how different assumptions about γ and H affect the t-statistics for uncon-

ditional expected return estimates that obtain with model-adjusted standard errors given by

Equation (12). For comparison, we also report t-statistics corrected using Newey and West

(1987) with the number of lags matching the half-life of shocks H. Across all four portfo-

lios, we find that Newey-West t-statistics differ very little from the unadjusted t-statistics.

Model-implied t-statistics, by contrast, are substantially lower. For instance, the model ad-

justment cuts t-statistics approximately by half when H = 5 years and γ = 5%. Overall, the

results in Table 3 indicate that accounting for plausible magnitudes of persistent variation

in expected returns can result in inferences about unconditional expected returns that differ

materially from the inferences that obtain with the assumption of i.i.d. returns.

3.2. Maximum Likelihood Tests

This subsection describes maximum likelihood estimates of our statistical model. In con-

trast to the ordinary least squares regressions described in the previous subsection, maximum

likelihood estimation requires distributional assumptions, but allows us to estimate all of the

model parameters. In particular, we estimate, rather than assume, the model parameters

that determine the magnitude of persistent variations in expected returns.
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3.2.1. Tests for µ = 0

We test the null hypothesis that the unconditional expected return µ equals zero under a

variety of assumptions about the structure of time-variation in conditional expected returns.

For each assumption, we estimate the model using maximum likelihood twice, first with no

restrictions on µ and then under the restriction of µ = 0. In both cases we restrict H to be

less than or equal to 20 years because µ is not identified when H approaches infinity. Using

these estimates, we compute the p-value for the µ = 0 null using a likelihood ratio test.

The first three columns in Panel A of Table 4 test whether µ = 0 assuming no time

variation in expected returns (i.e., H = 0 and thus returns are i.i.d.). Testing µ = 0

under this assumption is analogous to using OLS with no standard error correction. Not

surprisingly, the likelihood-ratio p-values strongly reject the null for the investment and

profitability portfolios, and reject with a p-value of 5.5% for the value portfolio.

The next five columns in Panel A of Table 4 relax the i.i.d. assumption and estimate the

values of H and γ that maximize the likelihood of observing the historical data.21 We find

that when we allow for the possibility of time-varying means, the p-value for the hypothesis

that µ = 0 increases for the three previously-significant portfolios. As the panel shows, when

µ is restricted to be zero, the model fits the data by using large values of H combined with

positive values of γ. This combination explains the historical returns as arising from positive

realizations of persistent expected returns that eventually dissipate. Because such persistent

variation is more-difficult to reject empirically, it offers a plausible alternative to large µ,

increasing the p-value for rejecting the µ = 0 hypothesis.

3.2.2. Restrictions on H and γ

Next, we use maximum likelihood estimates to assess the plausibility of the various

assumptions about H and γ that we made in our OLS analyses in Section 3. For each

assumption, we re-estimate the model by restricting H and γ to their assumed values, and

21As discussed in Section 1, we estimate the parameters summarizing the covariance matrix of returns
θ = [µ,H, σr, γ] directly rather than the underlying parameters Ω = [µ, λ, σε, σδ, ρ, ] because the later are
not fully identified. We restrict our estimates of θ to the range for which there exists at least one possible Ω
yielding the same covariance matrix of returns.
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calculate likelihood ratios relative to the unrestricted model to test whether we can reject

the restriction. We also use likelihood ratios to test whether we can reject the hypothesis

that µ = 0 given the restrictions on H and γ.

Panel B of Table 4 presents the results. For value, investment, and profitability portfolios,

we cannot reject any of the restrictions on the structure of time-variation in expected returns,

including the i.i.d. hypothesis and the possibility of extremely-persistent and economically

large shocks (H = 10 years, γ = 5%). Similar to the results reported in Table 3, Panel B of

Table 4 also shows that these alternative assumptions have material effects on our inferences

about µ = 0. For instance, p-values for µ = 0 increase from 0.1% in the i.i.d. case to above

10% in some specifications for both investment and profitability portfolios.

While the results for value, investment, and profitability portfolios suggest that the data

offer very little guidance about the magnitude of persistent variations in expected returns,

the results for the size portfolio show that this is not always the case. Consistent with the

reduced-form evidence in Table 2, our estimates for the size portfolio in Table 4 suggest

strong positive autocorrelation in returns with a half-life between one and two years. As a

result, the maximum likelihood estimations strongly reject both the i.i.d. restriction and the

restriction that H = 10. The contrast between the results for the size portfolio and the other

characteristic-sorted portfolios shows that the model tests can have power, but the return

patterns for value, investment, and profitability portfolios are particularly inconclusive.

4. Bayesian Analysis

The analysis in the previous section shows that the historical data are consistent with a

variety of substantially different return generating processes. Given this, one might expect

that investors learn slowly about the parameters governing the return generating process

and put relatively more weight on their priors. A natural next step, therefore, is to ask

how investors with different prior beliefs interpret the historical data, and how this in turn

influences their investment decisions. We examine these normative questions in this section.

Specifically, we pursue a Bayesian analysis that specifies prior likelihoods of different model
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parameterizations and uses the observed data to calculate posterior likelihoods. We also

compute posteriors for moments that affect investors’ portfolio timing decisions, such as the

conditional Sharpe ratios at each point in time.

4.1. Prior Beliefs About Model Parameters

To facilitate economic intuition, our Bayesian analysis specifies prior beliefs on a trans-

formation of the model parameters expressed in terms of Sharpe ratios rather than expected

returns.22 Specifically, we specify priors over µsr, the unconditional Sharpe ratio of portfolio

returns; σr, the volatility of portfolio returns; H, the half-life of shocks to expected returns;

σsr, the volatility of conditional Sharpe ratios; and ρ, the correlation between unexpected and

expected return shocks. The mapping between these annualized parameters in annualized

terms and the underlying model parameters Ω = [µ, λ, σε, σδ, ρ, ] is given by the following

equations, where N = 4 is the number of periods per year:

µsr =
µ

σε

√
N, σr =

√(
λ2σ2

δ

1− λ2
+ σ2

ε

)
N, (14)

H =
log(0.5)

log(λ)

1

N
, σsr =

√(
λ2σ2

δ/(1− λ2)

σ2
ε

)
N, ρ = ρ.

We consider a variety of priors on µsr and H, which are summarized in Panel A of Table 5.

For µsr, we first consider normal prior distributions centered at −0.4, 0, and 0.4, all with a

standard deviation of 0.4.23 For the value portfolio, these three investors can be viewed as

having growth, neutral, or value inclinations. We also examine an uninformative prior where

µsr is distributed uniformly between −2 and 2.24

22Another advantage of this transformation is that the same Sharpe ratio priors can be applied across all
characteristic-sorted portfolios regardless of their volatility levels.

23We use ±0.4 as the center for the unconditional Sharpe ratio distributions to roughly match the US
equity market’s estimated Sharpe ratio.

24Uniform distributions over wider supports give nearly-identical results because the data strongly reject
unconditional Sharpe ratios above 2 or below −2 for for the portfolios we study when H is less than 20 years.
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To illustrate how prior beliefs about H influence Bayesian inferences about expected

returns, we consider three dogmatic priors and one agnostic prior. The dogmatic priors

assert that H = 0 (making returns i.i.d.), H = 2.5 years, or H = 5 years with certainty. The

agnostic prior, by contrast, views H as unknown and uniformly distributed between 0 and

10 years.

We consider uniform priors over wide ranges for the remaining parameters. The prior

for the volatility of annual returns, σr, is uniformly distributed between 10% and 20%. The

prior for the volatility of conditional Sharpe ratios, σsr, is uniformly distributed between

0 and 1. The correlation between unexpected and expected return shocks, ρ, is likely to

be negative given the inverse relation between prices and expected returns. In contrast to

aggregate market returns, however, characteristic-sorted portfolio returns should be driven

primarily by cash-flow news rather than discount rate news. Based on these observations,

we specify the prior on ρ to be uniformly distributed in the interval [−0.5, 0].

To provide intuition for economic magnitudes, Panel B of Table 5 reports summary

statistics for a number of moments that are implied by the priors specified in Panel A. We

calculate these moments by simulating 50,000 draws from each prior and calculating the

value of each moment implied by each parameter draw. The first set of columns shows

that µ, the unconditional expected return, has a prior mean that equals −5.3%, zero, or

5.3%, depending on the prior specification. The middle set of columns show that the prior

mean values of one-lag return autocorrelation, γ, are positive in all cases, indicating that the

positive effect due to persistence of expected returns typically outweighs the negative effect

due to ρ < 0, although the 95% confidence intervals do include negative values.

The parameter σsr governs the volatility of the true conditional Sharpe ratio, defined as

the conditional expected return µt in Equation (2) divided by the volatility of unexpected

return shocks σε. This Sharpe ratio is unlikely to be perfectly observable to investors in prac-

tice. If an investor forecasts expected returns based on past return realizations, combined

with his beliefs about the model parameters, then the relevant measure of the time variation

in conditional Sharpe ratios is σ̂sr, defined earlier in Section 2.3. The last set of columns in

Panel B in Table 5 report summary statistics for σ̂sr for each prior specification we consider.

Note that, while the Sharpe ratio conditional on past returns can be quite volatile, it is not
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as volatile as the unobserved conditional Sharpe ratio. In particular, both the means and

the 95% confidence intervals for σ̂sr are about half as large as those for σsr.

4.2. Posteriors for Unconditional Expected Returns and Sharpe Ratios

We compute posterior distributions given each (H,µsr) prior specification and each of the

four characteristic-based portfolios, resulting in 64 prior-data pairs. For each pair, we char-

acterize the posterior distributions by generating 50,000 posterior draws using the M.C.M.C.

procedure detailed in Appendix C. We compute the posterior distributions for the full pa-

rameter vector Ω, but for brevity we report the results only for a subset of parameters and

moments that are of economic interest.

The results are summarized in Table 6, which reports summary statistics for the posterior

distributions of a number of model parameters and moments, and Figure 1, which plots

summary statistics for posterior distributions of µsr in the black lines on the left. As the

table and the figure show, different priors about H result in substantially different posterior

beliefs about unconditional expected returns µ and Sharpe ratios µsr. For instance, the

95% confidence intervals for µ and µsr become wider as priors for H increase, making the

possibility of zero or negative unconditional expected returns much more likely. The intuition

for this result is the same as in the frequentist analysis above: the data do not strongly reject

the possibility that the historical return performance of characteristic-sorted portfolios is

explained by persistent but dissipating positive shocks to conditional expected returns.

The Bayesian analysis also produces an insight that is distinct from the frequentist anal-

ysis: the extent to which priors about µsr affect posteriors about µ and µsr depends on the

prior about H. Bayesian investors who believe H = 0 have similar posteriors about µ and

µsr despite large differences in priors. On the other hand, Bayesian investors whose priors

are that H is, or might be, large have substantial differences in their posterior beliefs about

µ and µsr despite observing 58 years of data. For example, means of posteriors about the

value portfolio’s µsr are clustered between 0.19 and 0.27 for the H = 0 prior, but vary from

0.11 to 0.27 for the H ∼ U(0, 10) prior.

The reason the sensitivity of posteriors to priors depends on H is that Bayesian investors

‘shrink’ observed in-sample average returns towards the mean of their priors, and the extent
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of this adjustment depends on H. If an investor believes H equals zero and thus returns

are i.i.d., the data are more informative about unconditional expected returns and thus the

posterior hews closer to the in-sample average. If the investor believes H is or may be larger

than zero, the return data are less informative about unconditional expected returns and so

the posterior depends more on the prior.

Table 6 also shows that the posterior distributions for H, γ, and σ̂sr for the value, invest-

ment, and profitability portfolios differ very little from the corresponding prior distributions

reported in Table 5. This finding is consistent with the evidence in Tables 2 and 4 that the

data offer little guidance on the autocorrelation patterns of these portfolios. The size port-

folio, by contrast, has posterior distributions for H with means well below the prior mean of

five years, indicating that the data push Bayesian investors towards lower H. Furthermore,

unlike the other three portfolios, the posteriors for size portfolio’s γ and σ̂sr have much higher

means compared to priors and confidence intervals that exclude zero, suggesting that the

evidence tilts in favor of positive autocorrelation. Still, posteriors for the size portfolio’s H,

γ, and σ̂sr are quite wide, leaving room for many potential interpretations of the data.

Just as priors about persistence affect posteriors about unconditional expected returns,

priors about unconditional expected returns can also affect posteriors about persistence.

For example, investors with negative priors on µsr are more amenable to interpreting posi-

tive historical returns as arising from large and persistent variations in conditional expected

returns – i.e., higher posteriors for H, γ, and σ̂sr – relative to investors with positive pri-

ors on µsr. Table 6 shows this is indeed the case for the value, investment, and profitability

portfolios, which exhibited substantial average return performance during our sample period.

4.3. Posteriors for Conditional Sharpe Ratios

In addition to unconditional expected returns and Sharpe ratios, the Bayesian analysis

allows us to compute posterior distributions of conditional Sharpe ratios at each point in time

during our sample period.25 Figure 2 plots the time series of posterior means of these condi-

25The conditional Sharpe ratio distributions reported in this subsection are the posterior beliefs that
obtain after observing the full historical sample of return data. Thus, the magnitudes should be interpreted
as measuring in-sample economic significance rather than informing real-time portfolio choices. We consider
out-of-sample portfolio choices in the next subsection.
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tional Sharpe ratios that obtain with the ‘agnostic’ prior specification with µsr ∼ U(−2, 2)

and H ∼ U(0, 10) for the four characteristic-sorted portfolios we study. As the figure shows,

the fluctuations in conditional Sharpe ratios are large, generally varying between zero and

0.8 on an annualized basis. Despite having unconditional Sharpe ratio estimates near zero,

the conditional Sharpe ratios of the size portfolio are especially volatile, varying from −0.75

to above one. These relatively larger fluctuations are a reflection of the more positive return

autocorrelations that the size portfolio exhibits during our sample period.

We also compute posterior distributions of forward-looking conditional Sharpe ratios for

the quarter following the end of our sample period (Q1 of 2022). These posteriors differ

from the unconditional posteriors because they rely on recent trends to extrapolate future

performance. When γ > 0, the extrapolation is positive, meaning that conditional expected

returns are higher (lower) than unconditional expected returns when recent returns are higher

(lower) than the full-sample average. When γ < 0, the extrapolation is negative, meaning

that conditional expectations are inversely related to recent trends.

The grey lines on the right in Figure 1 present the means and 95% confidence intervals for

posterior beliefs about the 2022 conditional Sharpe ratio of each portfolio. As the first rows

show, conditional and unconditional Sharpe ratios are by definition the same when H = 0.

When H > 0, however, both the value and investment portfolios have smaller conditional

Sharpe ratios compared to their unconditional Sharpe ratios. For the value portfolio, which

had particularly poor recent performance, the pessimistic or neutral Bayesian investors be-

lieve that the conditional Sharpe ratios in 2022 are centered near zero and could even be

quite negative. Because the profitability portfolio performed better in recent years than ear-

lier in the sample, we find the opposite effect in Panel C of Figure 1: posteriors about 2022

Sharpe ratios are higher than posteriors about the unconditional Sharpe ratio. As with the

bearish view of value and investment, the bullish view for profitability is stronger for larger

values of H than smaller ones.

4.4. Out-of-Sample Forecasts

In the final part of our Bayesian analysis, we consider the portfolio choice problem of a

risk-averse investor whose beliefs about the distribution of future returns are influenced by
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his prior beliefs as well as past return data. To facilitate this analysis, we repeat the Bayesian

estimation procedure at the end of each calendar year in our sample, using only past data

available up to that point in time. This expanding-window out-of-sample approach allows us

to quantify how different prior beliefs about persistence and unconditional expected returns

affect Bayesian investors’ portfolio choices through the sample period.

For each calendar year y in our sample, 1963–2021, we calculate posterior belief distribu-

tions about model parameters based on quarterly data available through y and given each of

the prior beliefs described in Section 4.1.26 While most out-of-sample forecasting exercises

wait for a ‘training’ period to avoid over-fitting extremely short samples, we start in 1963

after observing only two quarterly observations because Bayesian investors rely on their prior

distributions – and thus do not ‘over-fit’ – even with very few data observations.

Next, we generate 50,000 random draws from the posterior parameter distribution and

for each parameter draw, generate 10 random observations from the implied return distri-

bution for the next-year. Combined, we get 500,000 draws from the posterior distribution of

next-year returns r̃y+1. Given these draws, we compute out-of-sample portfolio weights w∗y

allocated to the (zero-cost) characteristic-sorted portfolio for an investor with CRRA utility:

w∗y = arg max
w

Ey
(

(1 + rf,y + w · r̃y+1)1−γ

1− γ

)
, (15)

where rf,y is the risk-free rate as of year y. To avoid adding covariance parameters to our

Bayesian estimation, we assume that the investor optimizes only over the amount allocated

to a single characteristic-sorted portfolio and not all four portfolios simultaneously. Our

portfolio weights should therefore be interpreted as economically meaningful summaries of

the posterior return distribution for each characteristic-sorted portfolio rather than weights

for an optimal multi-asset portfolio.

Figure 3 illustrates the main results of the out-of-sample analysis by plotting differences

in portfolio weights for investors with different prior beliefs. The solid lines in the figure show

26We repeat the exercise once per year instead of each quarter to save computational time. Given the
slow-moving changes in expected returns we are interested in, we would not expect large quarter-to-quarter
variations in conditional distributions of either model parameters or returns.
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how learning about the unconditional expected return µ affects portfolio choices. Specifically,

the solid lines plot the difference in weights chosen by an investor with a bullish prior

(µsr ∼ N(0.4, 0.4)) and an investor with a neutral prior (µsr ∼ N(0.0, 0.4)), where both

investors believe H = 0. While the bullish investor initially puts much more weight in each

characteristic-sorted portfolio than the neutral investor, this difference gradually dissipates

over time as more data becomes available and the investors place less weight on their priors.

The dotted lines in Figure 3 show how differences in H priors lead to differences in the

aggressiveness of market timing. Specifically, the dotted lines plot the difference in weights

chosen by an investor who accounts for the possibility of persistent variations in returns

(H ∼ U(0, 10)) and an investor who believes returns are i.i.d. (H = 0), where both investors

have neutral priors about µ. Because the investor with H ∼ U(0, 10) priors uses recent past

returns to ‘time’ the characteristic-sorted portfolio, while the H = 0 investor does not, there

are large variations in the differences between these two investors’ portfolio weights. These

differences do not dissipate over time because, as discussed above, the data offer very little

guidance on the true value of H.

5. Broader Analysis and Implications

Our analysis up to this point focuses on the four prominent examples of characteristic-sorted

portfolios. As we show, estimates of the unconditional expected returns of these portfolios

become less precise once we account for the possibility of persistent variations in conditional

expected returns. We also find that there is relatively low power to estimate the magnitude

of persistent variations for the value, investment and profitability portfolios, while there is

stronger evidence of persistent variation for the size portfolio.

In this section we consider a broader set of portfolios in order to assess the prevalence

of the findings discussed above. Specifically, we apply our model to a set of 174 long-short

equity portfolios studied in the prior literature. In addition to the four portfolios we have

considered so far, these portfolios include all strategies described in the March 2022 update

of the “Open Source Cross-Sectional Asset Pricing” dataset (Chen and Zimmermann, 2021)
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with at least 120 months of historical data. Our analysis continues to focus on quarterly

market-neutral returns using value-weighted quintiles.

5.1. Frequentist Analysis of the “Factor Zoo”

The apparent ease with which research uncovers significant relationships between firm

characteristics and average stock returns is inconsistent with traditional asset pricing theories

(Cochrane, 2011). As Harvey, Liu, and Zhu (2016) and others discuss, this evidence may be

partly due to p-hacking; i.e., researchers testing many different characteristics and reporting

only those that turn out to have a statistically-significant relation to future returns. Harvey,

Liu, and Zhu (2016) suggests addressing p-hacking by requiring higher t-statistic (or lower

p-value) thresholds for rejecting the no-predictability null hypothesis. As Chen and Zim-

mermann (2021) show, however, higher significance thresholds do not necessarily eliminate

the anomaly. For instance, 58 of the 174 portfolios in our sample have p-values below 0.1%,

which is extremely unlikely under the null even with p-hacking.

We offer an alternative interpretation of the factor zoo: by ignoring the possibility of per-

sistent variations in expected returns, the published analyses may overstate the statistical

significance of estimates of unconditional expected returns. Figure 4 summarizes our main

findings in this regard.27 As the figure shows, relative to OLS estimates that assume i.i.d.

returns, rejections of the µ = 0 null hypothesis are much weaker in our maximum likelihood

estimates that allow for time-variation in expected returns. The gap between the MLE and

OLS tests are particularly large for p-values of 0.1% and 1%, which MLE achieve for only 4

and 42 portfolios, respectively, compared to 58 and 81 using OLS.

5.2. Bayesian Analysis of Time-Variation in Conditional Sharpe Ratios

Our next set of results focus on the magnitude of persistent return variation for the

broader set of 174 portfolios. To facilitate this analysis, we employ the full-sample Bayesian

approach described in Section 4. We report results that obtain with the neutral unconditional

27The complete results for our frequentist and Bayesian analyses of the 174 portfolios are reported in
Appendix Table 3.
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Sharpe ratio prior µsr ∼ N(0, 0.4) and the agnostic half-life prior H ∼ U(0, 10).28

Panel A of Figure 5 presents the frequency distribution of the posterior mean for σ̂sr,

the volatility of the Sharpe ratio conditional on past returns. As the panel shows, there

are substantial differences across portfolios in terms of time-variation in returns. While

the posterior means for σ̂sr for many of the portfolios are similar to value, investment, and

profitability and cluster near or below the center of the prior distribution (0.23, reported in

Table 5), a substantial minority are similar to size and have posterior means that are much

larger than the prior mean. In unreported analysis, we also find that portfolios that exhibit

higher (absolute) return correlation with the size portfolio tend to have higher posterior

means for σ̂sr. Examples include portfolios sorted on illiquidity, share price, and idiosyncratic

volatility. This result indicates that understanding what drives variations in conditional size

premia may also help explain time-variations in a variety of other portfolios.

Panel B of Figure 5 presents the frequency distribution of the difference between the

posterior means of 2022 conditional Sharpe ratio and the unconditional Sharpe ratio. The

main result from this panel is that there does not appear to be a broad negative time trend in

portfolio returns: if anything, the difference between 2022 Sharpe ratios and unconditional

Sharpe ratios is slightly positive on average. This result may seem surprising given the

evidence in McLean and Pontiff (2016) and Smith and Timmermann (2022) that return

anomalies have weakened over time. Two differences between our analysis and prior work

explain the discrepancy. First, the posterior means of unconditional Sharpe ratios tend to

be below in-sample Sharpe ratios, as these Bayesian posteriors are influenced by prior beliefs

that are centered around zero.29 Second, the average portfolio in our sample performed well

toward the end of the sample period, which receives the most weight in Bayesian forecasts

of 2022 returns.30

28Results using other priors are available upon request.
29The across-portfolio average of posterior means for unconditional Sharpe ratios is 0.27, while the average

in-sample Sharpe ratio is 0.33.
30For instance, realized returns in 2021 averaged 7.54% compared to the full-sample average of 4.14%.
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6. Conclusion

Traditional tests of the CAPM assume independently distributed residuals. As we show

in this paper, these tests overstate the statistical significance of estimates of unconditional

expected returns when conditional expected returns vary over time. Our analysis, however,

should not be viewed as a critique of traditional tests of the CAPM. Under the CAPM

null, expected excess returns are always zero, implying that the residuals are independently

distributed. Thus, ignoring benchmark problems (i.e., Roll (1977)), traditional tests appro-

priately reject the CAPM null. Having established this rejection, however, it is natural to

allow for the possibility of time variation in expected returns. We propose a statistical model

that allows for this possibility and conduct both frequentist and Bayesian tests based on the

model.

Our results have implications for practitioners as well as academics who are interested

in characteristic-sorted portfolios. Financial institutions now offer a multitude of relatively

passive investment products, such as ETFs and mutual funds, that aim to exploit the long-

term links between returns and characteristics that have been identified in academic research.

At the same time, there exist active hedge funds that attempt to time the variations in

characteristic return premia that are described in the more recent literature. Our analysis

offers guidance for both groups as to how much they should use past performance while

forming their near-term performance outlooks for these portfolios.
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Figure 1: Posterior Sharpe Ratios

This figure reports the means and 95% confidence intervals for posterior distributions of Sharpe ratios for
value, investment, profitability, and size portfolios, as defined in the header of Table 1. Posteriors for the
unconditional Sharpe ratio are in black on the left, and the conditional Sharpe ratio as of Q1 of 2022 are
in grey on the right. Each panel shows the posteriors for 16 different (H,µsr) combinations of prior beliefs,
where H is the half-life of shocks to expected returns in years, and µsr is the unconditional Sharpe ratio.
All Sharpe ratios are annualized. Our sample consists of 234 quarterly observations from Q3 1963 through
Q4 2021.

Panel A: Value

Panel B: Investment
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Figure 1: Posterior Sharpe Ratios (continued)

Panel C: Profitability

Panel D: Size
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Figure 2: Posteriors on Conditional Sharpe Ratios Across Time

This figure shows means of posterior belief distributions for conditional Sharpe ratios of value, investment,
profitability, and size portfolios, as defined in the header of Table 1. Posterior distributions are computed
using the full sample of historical data and the prior beliefs that the unconditional Sharpe ratio µsr is
distributed N(0, 0.4) and the half-life of shocks to expected returns H is distributed U(0, 10). Our sample
consists of 234 quarterly observations from Q3 1963 through Q4 2021.

Panel A: Value

Panel B: Investment
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Figure 2: Posteriors on Conditional Sharpe Ratios Across Time (continued)

Panel C: Profitability

Panel D: Size
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Figure 3: Out-of-Sample Portfolio Choices

This figure presents differences in portfolio weights wt chosen by Bayesian investors with different priors who
calculate posteriors using only past data available at each point in time. The solid line shows the difference
in wt chosen by an investor with priors that the half-life of shocks to expected returns H = 0 and that the
unconditional Sharpe ratio µsr is distributed N(0.4, 0.4) (‘Bull’), and an investor with priors that H = 0
and µsr is distributed N(0, 0.4) (‘Neutral’). The dotted line shows the difference in wt chosen by an investor
with priors that H is distributed U(0, 10) and that µsr is distributed N(0, 0.4), and an investor with priors
that H = 0 and that µsr is distributed N(0, 0.4). For each prior and characteristic-sorted portfolio, we
compute the posterior distribution of next-year returns and the corresponding optimal portfolio weights in
the risk-free asset and the characteristic-sorted portfolio for an investor with CRRA utility and relative risk
aversion of 2.

Panel A: Value

Panel B: Investment
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Figure 3: Out-of-Sample Portfolio Choices (continued)

Panel C: Profitability

Panel D: Size
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Figure 4: Unconditional Expected Return Inferences for 174 Portfolios

This figure reports the number of characteristic-sorted portfolios for which the null hypothesis that the
unconditional expected return µ is zero is rejected at different p-value thresholds. The blue bars use
OLS with White (1980) standard errors. The red bars use likelihood ratio tests based on the maximum
likelihood estimates of our statistical model, as described in Section 3.2.1. We conduct these tests for
quarterly returns of 174 long-short equity portfolios, which include the four portfolios that we focus on
in our main analysis and 170 portfolios analyzed by Chen and Zimmermann (2021). The sample pe-
riod varies across portfolios and consists of at most 234 quarterly observations from Q3 1963 through Q4 2021.
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Figure 5: Bayesian Posteriors for 174 Portfolios

This figure presents frequency distributions that summarize the Bayesian inferences about the conditional
Sharpe ratios of 174 long-short equity portfolios, which include the four portfolios that we focus on in
our main analysis and 170 portfolios analyzed by Chen and Zimmermann (2021). Panel A plots the
frequency distribution of the posterior mean for σ̂sr, the volatility of the Sharpe ratio conditional on past
returns. Panel B plots the frequency distribution of the difference between the posterior means for the 2022
conditional Sharpe ratio and the unconditional Sharpe ratio. All Sharpe ratios are annualized. The sample
period varies across portfolios and consists of at most 234 quarterly observations from Q3 1963 through Q4
2021.

Panel A: Volatility of conditional Sharpe ratios

Panel B: Conditional Sharpe ratios in 2022 relative to unconditional Sharpe ratios
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Table 1: Historical Performance of Characteristic-Sorted Portfolios

This table presents statistics summarizing the historical performance of value-weighted quintile portfolios
formed on value, investment, profitability, and size characteristics. The value portfolio is based on sorting
firms by their book-to-market ratios, the investment portfolio on sorting by the annual growth rate of total
assets, the profitability portfolio on sorting by operating profits divided by book equity, and the size portfolio
on sorting by market capitalization, as in Fama and French (2015). The investment portfolio is long firms
in the lowest quintile and short firms in the highest quintile, while the other three portfolios are long the
highest quintile and short the lowest. For each portfolio, we compute market-neutral returns by hedging out
market risk using the full-sample market β. We report the mean annualized quarterly return in percentage
terms and the annualized Sharpe ratio for the full sample, two subsamples, and the difference between the
subsamples. t-statistics based on iid re-sampling of the calendar quarters in each sample are in parenthesis.
Our sample consists of 234 quarterly observations from Q3 1963 through Q4 2021.

Mean (annualized %) Sharpe ratio (annualized)
All 1963–1992 1993–2021 Diff All 1963–1992 1993–2021 Diff

Value 3.80 6.09 1.47 -4.62 0.25 0.45 0.09 -0.36
(1.92) (2.19) (0.52) -(1.17) (1.91) (2.40) (0.47) -(1.35)

Investment 4.75 4.81 4.68 -0.12 0.45 0.48 0.41 -0.07
(3.39) (2.46) (2.35) -(0.04) (3.36) (2.59) (2.18) -(0.26)

Profitability 4.91 3.40 6.45 3.05 0.45 0.36 0.54 0.18
(3.47) (1.71) (3.20) (1.08) (3.45) (1.92) (2.86) (0.69)

Size 0.16 1.97 -1.68 -3.65 0.01 0.12 -0.12 -0.24
(0.08) (0.69) -(0.58) -(0.90) (0.08) (0.64) -(0.62) -(0.89)
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Table 2: Autocorrelation Estimates with Simulated and Historical Data

This table presents statistics summarizing autocorrelation estimates with model-simulated and historical
portfolio returns. For each portfolio, we run overlapping time-series regressions of quarterly returns rt on a
constant and rolling averages of past returns from quarters t− L through t− 1:

rt = a+ bL

(
1

L

L∑
l=1

rt−l

)
+ εt. (16)

Panel A presents average coefficients bL and 95% confidence intervals from 50,000 simulated 234-quarter
samples under various parameterizations of the model. The parameter H is the half-life of shocks to expected
returns denoted in years, γ is the first-order autocorrelation of quarterly returns, and σ̂sr is the volatility
of the annualized Sharpe ratio conditional on past realized returns. Panel B show estimates for the value,
investment, profitability, and size portfolios, as defined in the header of Table 1. Standard errors based on
iid re-sampling of the calendar months in our sample are in parenthesis. The joint significance row presents
the fraction of i.i.d. simulations for which the sum of the b̂ across the four portfolios exceeds the sum in
observed data. The historical sample consists of 234 quarterly observations from Q3 1963 through Q4 2021.

Panel A: Model Simulations

Parameterization Average coefficient [95% confidence interval]

H γ σ̂sr b4 b10 b20

IID 0.00 -0.03 -0.09 -0.20
[-0.31,0.22] [-0.59,0.30] [-1.04,0.38]

2.5 2.5% 0.12 0.04 0.06 0.01
[-0.24,0.29] [-0.44,0.43] [-0.76,0.52]

2.5 5% 0.22 0.11 0.16 0.14
[-0.18,0.36] [-0.32,0.52] [-0.59,0.61]

2.5 10% 0.38 0.22 0.32 0.31
[-0.07,0.47] [-0.13,0.63] [-0.32,0.71]

5 2.5% 0.15 0.04 0.06 0.03
[-0.25,0.29] [-0.45,0.44] [-0.76,0.55]

5 5% 0.26 0.10 0.16 0.18
[-0.19,0.36] [-0.33,0.54] [-0.57,0.66]

10 2.5% 0.18 0.03 0.03 0.01
[-0.26,0.28] [-0.48,0.43] [-0.81,0.56]

10 5% 0.30 0.08 0.13 0.15
[-0.22,0.35] [-0.38,0.53] [-0.64,0.66]

Panel B: Estimates for historical data

b4 b10 b20

Value 0.12 -0.07 0.11
Investment 0.21 0.07 -0.24
Profitability 0.15 -0.18 -0.30
Size 0.42 0.48 0.18

Pooled 0.25 0.20 0.07
iid p-value 0.0% 2.2% 16.7%

Pooled (without size) 0.15 -0.05 -0.07
iid p-value 2.8% 48.9% 40.4%
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Table 3: OLS with Time-Varying Expected Returns

This table presents estimates of unconditional expected returns of value, investment, profitability, and size
portfolios, as defined in the header of Table 1, along with t-statistics calculated using a variety of approaches.
The first row reports the point estimate of the unconditional expected return, µ̂, in annualized percentage
terms. The ‘unadjusted t-statistic’ row reports the typical OLS standard error, which is calculated under
the assumption of independently distributed returns. The next three rows report standard errors calculated
using the Newey and West (1987) adjustment with 10, 20, or 40 quarterly lags. The remaining rows report
OLS standard errors corrected for autocorrelation using Equation (12) with different values of H, the half-
life of shocks to expected returns in years, and γ, the first-order autocorrelation of quarterly returns. Our
sample consists of 234 quarterly observations from Q3 1963 through Q4 2021.

Value Investment Profitability Size

µ̂ (annualized %) 3.80 4.75 4.91 0.16

Unadjusted t-statistic (1.93) (3.42) (3.49) (0.08)

Newey-West t-statistic (10 lags) (1.86) (3.01) (3.45) (0.06)
Newey-West t-statistic (20 lags) (1.87) (3.20) (3.81) (0.05)
Newey-West t-statistic (40 lags) (1.89) (3.48) (3.60) (0.06)

Model t-statistic (H = 2.5, γ = 2.5%) (1.47) (2.62) (2.67) (0.06)
Model t-statistic (H = 2.5, γ = 5%) (1.24) (2.21) (2.25) (0.05)
Model t-statistic (H = 2.5, γ = 10%) (0.99) (1.75) (1.79) (0.04)
Model t-statistic (H = 5, γ = 2.5%) (1.27) (2.26) (2.30) (0.05)
Model t-statistic (H = 5, γ = 5%) (1.02) (1.81) (1.84) (0.04)
Model t-statistic (H = 10, γ = 2.5%) (1.07) (1.91) (1.94) (0.05)
Model t-statistic (H = 10, γ = 5%) (0.83) (1.47) (1.50) (0.03)
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Table 4: Maximum Likelihood Hypothesis Tests

This table presents parameter estimates and hypothesis tests based on maximum-likelihood estimates of our
model for value, investment, profitability, and size portfolios, as defined in the header of Table 1. Panel A
reports estimates of µ, the unconditional expected return in annualized percentage terms; σr, the volatility
of returns in annualized percentage terms; H, the half-life of shocks to expected returns in years; and γ,
the first-order autocorrelation of quarterly returns. The rows labelled µ = 0 re-estimate the model with
µ restricted to be zero, and report the p-value for this restriction based on a likelihood ratio test. Panel
B presents a variety of hypothesis tests for different restrictions on H and γ. In each case, we report the
likelihood ratio p-value of the (H, γ) restriction (Rest. p-value), and the likelihood ratio p-value of the µ = 0
restriction given the (H, γ) restriction. Our sample consists of 234 quarterly observations from Q3 1963
through Q4 2021.

Panel A: Tests for µ = 0

IID Time-varying means
µ (%) σr (%) p-value (%) µ (%) σr (%) H (years) γ (%) p-value (%)

Value 3.80 15.10 3.96 15.10 20.00 -0.43
µ = 0 0.00 15.22 5.5% 0.00 15.21 20.00 2.03 15.7%

Investment 4.75 10.60 5.15 10.60 8.95 -0.96
µ = 0 0.00 10.87 0.1% 0.00 10.80 20.00 4.27 3.4%

Profitability 4.91 10.77 4.92 10.77 19.57 -0.44
µ = 0 0.00 11.05 0.1% 0.00 10.97 20.00 4.18 4.4%

Size 0.16 15.43 0.15 15.43 1.23 14.01
µ = 0 0.00 15.43 93.5% 0.00 15.43 2.07 13.01 36.7%

Panel B: Restrictions on H and γ

Restrictions H (years): 2.5 5 10

γ (%): IID - 2.5 5 - 2.5 5 - 2.5 5

Value Rest. p-value (%) 50.8 52.1 67.9 44.3 51.0 57.9 34.1 55.0 52.5 31.5
µ = 0 p-value (%) 5.5 12.4 15.4 23.9 15.4 24.1 36.8 18.2 35.1 51.2

Investment Rest. p-value (%) 27.1 30.1 56.9 47.1 36.2 39.2 26.7 90.7 30.0 19.3
µ = 0 p-value (%) 0.1 3.6 1.1 3.3 3.4 3.4 9.8 2.8 8.8 21.6

Profitability Rest. p-value (%) 51.4 52.3 55.2 32.3 51.8 50.5 27.4 58.3 49.1 28.0
µ = 0 p-value (%) 0.1 0.7 0.7 2.0 1.4 1.8 5.1 2.9 4.5 11.0

Size Rest. p-value (%) 0.1 25.4 4.2 13.2 4.6 2.1 4.4 1.0 1.0 1.5
µ = 0 p-value (%) 93.5 100.0 96.1 98.9 100.0 95.8 97.6 100.0 95.0 96.6
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Table 5: Prior Beliefs about Model Parameters

This table presents summary statistics for the prior distributions that we use for our Bayesian analyses.
Panel A lists the possible priors we consider for µsr, the annualized unconditional Sharpe ratio; H, the
half-life of shocks to expected returns in years; σr, the volatility of returns in annualized percentage terms;
σsr, the volatility of the annualized conditional Sharpe ratio; and ρ, the correlation between shocks to
unexpected and expected returns. The term N(mean, standard deviation) indicates a normal distribution,
U(lower bound, upper bound) indicates a uniform distribution, and a number stated without a distribution
indicates a dogmatic prior that the parameter value equals that number. Panel B presents the means and
95% confidence intervals implied by each (H,µsr) prior parameterization for prior distributions of µ, the
unconditional expected return in annualized percentage terms; γ, the first-order autocorrelation of quarterly
returns; and σ̂sr, the volatility of the annualized Sharpe ratio conditional on past realized returns.

Panel A: Priors on Transformed Parameters

µsr H (years) σr (%) σsr ρ

N(−0.4, 0.4) 0 U(10, 20) U (0, 1) U(−0.5, 0)
N(0, 0.4) 2.5
N(0.4, 0.4) 5
U(−2, 2) U (0, 10)

Panel B: Moments of Priors

µ (%) γ (%) σ̂sr

H µsr mean 95% CI mean 95% CI mean 95% CI

0 N(−0.4, 0.4) -5.30 [-15.90,5.16] - - - -
0 N(0, 0.4) -0.01 [-10.47,10.42] - - - -
0 N(0.4, 0.4) 5.32 [-5.10,16.05] - - - -
0 U(−2, 2) -0.02 [-25.84,25.70] - - - -

2.5 N(−0.4, 0.4) -5.34 [-16.07,5.07] 4.81 [-0.58,15.44] 0.19 [0.00,0.52]
2.5 N(0, 0.4) -0.04 [-10.42,10.37] 4.76 [-0.59,15.41] 0.19 [0.00,0.52]
2.5 N(0.4, 0.4) 5.29 [-5.10,15.98] 4.78 [-0.58,15.43] 0.19 [0.00,0.52]
2.5 U(−2, 2) -0.05 [-25.88,25.72] 4.76 [-0.58,15.45] 0.19 [0.00,0.52]

5 N(−0.4, 0.4) -5.30 [-15.94,5.11] 5.58 [-0.25,16.49] 0.25 [0.00,0.61]
5 N(0, 0.4) 0.01 [-10.47,10.47] 5.60 [-0.26,16.47] 0.25 [0.00,0.61]
5 N(0.4, 0.4) 5.23 [-5.18,15.94] 5.61 [-0.26,16.54] 0.25 [0.00,0.61]
5 U(−2, 2) 0.00 [-25.75,25.93] 5.56 [-0.25,16.41] 0.25 [0.00,0.61]

U(0, 10) N(−0.4, 0.4) -5.32 [-16.03,4.99] 4.91 [-1.91,16.37] 0.23 [0.00,0.63]
U(0, 10) N(0, 0.4) -0.02 [-10.48,10.38] 4.90 [-1.79,16.37] 0.23 [0.00,0.63]
U(0, 10) N(0.4, 0.4) 5.29 [-5.14,15.98] 4.92 [-1.76,16.40] 0.23 [0.00,0.63]
U(0, 10) U(−2, 2) -0.01 [-25.81,25.82] 4.90 [-1.83,16.38] 0.23 [0.00,0.63]
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Table 6: Posterior Beliefs

This table presents summary statistics for posterior distributions that obtain given the historical return data
for the value, investment, profitability, and size portfolios, as described in the header of Table 1. The first
two columns describe the prior belief specification (H,µsr), where H is the half-life of shocks to expected
returns and µsr is the unconditional Sharpe ratio. The remaining columns report the means and 95%
confidence intervals for the posterior distributions of µ, the unconditional expected return; H; γ, the first-
order autocorrelation of quarterly returns; and σ̂sr, the volatility of the Sharpe ratio conditional on past
realized returns. The variables µ, H, and σ̂sr are annualized. We compute the posterior beliefs using an
M.C.M.C. procedure described in Appendix C. Our sample consists of 234 quarterly observations from Q3
1963 through Q4 2021.

Panel A: Value

Prior µ (%) H (years) γ (%) σ̂sr

H µsr mean 95% CI mean 95% CI mean 95% CI mean 95% CI

0 N(−0.4, 0.4) 2.86 [-0.94,6.40] - - - - - -
0 N(0, 0.4) 3.46 [-0.23,7.13] - - - - - -
0 N(0.4, 0.4) 3.99 [0.41,7.64] - - - - - -
0 U(−2, 2) 3.76 [0.05,7.53] - - - - - -

2.5 N(−0.4, 0.4) 2.02 [-3.53,6.67] - - 3.04 [-0.60,12.07] 0.13 [0.00,0.44]
2.5 N(0, 0.4) 3.11 [-1.85,7.65] - - 2.77 [-0.59,11.73] 0.12 [0.00,0.43]
2.5 N(0.4, 0.4) 4.05 [-0.59,8.74] - - 2.67 [-0.60,11.51] 0.12 [0.00,0.42]
2.5 U(−2, 2) 3.72 [-1.72,9.10] - - 2.99 [-0.61,12.26] 0.13 [0.00,0.44]

5 N(−0.4, 0.4) 1.62 [-4.94,6.56] - - 3.12 [-0.28,12.62] 0.16 [0.00,0.51]
5 N(0, 0.4) 2.91 [-2.82,7.85] - - 2.70 [-0.29,11.85] 0.14 [0.00,0.49]
5 N(0.4, 0.4) 4.02 [-1.17,9.15] - - 2.70 [-0.28,11.78] 0.14 [0.00,0.49]
5 U(−2, 2) 3.57 [-3.21,9.78] - - 3.00 [-0.29,12.52] 0.15 [0.00,0.51]

U(0, 10) N(−0.4, 0.4) 1.63 [-5.25,6.73] 4.83 [0.33,9.73] 3.29 [-0.68,12.68] 0.16 [0.00,0.51]
U(0, 10) N(0, 0.4) 2.93 [-2.59,7.80] 4.65 [0.30,9.73] 2.81 [-0.87,11.70] 0.14 [0.00,0.47]
U(0, 10) N(0.4, 0.4) 4.05 [-0.93,9.11] 4.64 [0.28,9.72] 2.72 [-0.87,11.71] 0.13 [0.00,0.47]
U(0, 10) U(−2, 2) 3.56 [-2.84,9.35] 4.79 [0.34,9.76] 3.00 [-0.63,12.24] 0.15 [0.00,0.49]
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Table 6: Posterior Beliefs (continued)

Panel B: Investment

Prior µ (%) H (years) γ (%) σ̂sr

H µsr mean 95% CI mean 95% CI mean 95% CI mean 95% CI

0 N(−0.4, 0.4) 3.86 [1.42,6.29] - - - - - -
0 N(0, 0.4) 4.31 [1.74,6.84] - - - - - -
0 N(0.4, 0.4) 4.69 [2.12,7.22] - - - - - -
0 U(−2, 2) 4.75 [2.06,7.38] - - - - - -

2.5 N(−0.4, 0.4) 2.91 [-1.38,6.42] - - 4.65 [-0.52,13.96] 0.19 [0.00,0.49]
2.5 N(0, 0.4) 3.79 [-0.13,7.19] - - 4.08 [-0.52,13.47] 0.17 [0.00,0.47]
2.5 N(0.4, 0.4) 4.56 [0.94,8.03] - - 3.98 [-0.53,13.50] 0.17 [0.00,0.47]
2.5 U(−2, 2) 4.70 [0.53,8.79] - - 4.09 [-0.54,13.51] 0.17 [0.00,0.47]

5 N(−0.4, 0.4) 2.34 [-2.91,6.31] - - 4.50 [-0.22,14.64] 0.21 [0.00,0.56]
5 N(0, 0.4) 3.52 [-1.06,7.19] - - 3.62 [-0.27,13.79] 0.18 [0.00,0.54]
5 N(0.4, 0.4) 4.44 [0.48,8.16] - - 3.29 [-0.30,13.41] 0.16 [0.00,0.53]
5 U(−2, 2) 4.51 [-0.38,9.24] - - 3.61 [-0.26,13.79] 0.18 [0.00,0.54]

U(0, 10) N(−0.4, 0.4) 2.57 [-2.95,6.25] 4.75 [0.38,9.72] 4.46 [-0.44,14.14] 0.20 [0.00,0.55]
U(0, 10) N(0, 0.4) 3.65 [-0.83,7.11] 4.33 [0.36,9.71] 3.86 [-0.62,13.41] 0.17 [0.00,0.52]
U(0, 10) N(0.4, 0.4) 4.51 [0.71,8.00] 4.20 [0.33,9.64] 3.60 [-0.65,12.81] 0.16 [0.00,0.50]
U(0, 10) U(−2, 2) 4.58 [0.02,8.65] 4.19 [0.30,9.65] 3.77 [-0.66,13.63] 0.17 [0.00,0.52]

Panel C: Profitability

Prior µ (%) H (years) γ (%) σ̂sr

H µsr mean 95% CI mean 95% CI mean 95% CI mean 95% CI

0 N(−0.4, 0.4) 4.01 [1.31,6.49] - - - - - -
0 N(0, 0.4) 4.44 [1.82,6.97] - - - - - -
0 N(0.4, 0.4) 4.83 [2.25,7.45] - - - - - -
0 U(−2, 2) 4.93 [2.21,7.71] - - - - - -

2.5 N(−0.4, 0.4) 3.70 [-0.24,6.90] - - 2.38 [-0.62,11.69] 0.11 [0.00,0.43]
2.5 N(0, 0.4) 4.25 [0.92,7.35] - - 2.28 [-0.62,11.02] 0.10 [0.00,0.41]
2.5 N(0.4, 0.4) 4.90 [1.72,8.12] - - 2.19 [-0.64,11.00] 0.10 [0.00,0.41]
2.5 U(−2, 2) 5.01 [1.31,8.78] - - 2.35 [-0.63,11.46] 0.11 [0.00,0.42]

5 N(−0.4, 0.4) 3.26 [-1.42,6.80] - - 2.73 [-0.31,11.67] 0.14 [0.00,0.48]
5 N(0, 0.4) 4.11 [0.19,7.49] - - 2.37 [-0.30,11.11] 0.13 [0.00,0.47]
5 N(0.4, 0.4) 4.88 [1.30,8.61] - - 2.34 [-0.30,10.99] 0.13 [0.00,0.46]
5 U(−2, 2) 5.05 [0.91,9.58] - - 2.45 [-0.30,11.45] 0.13 [0.00,0.48]

U(0, 10) N(−0.4, 0.4) 3.15 [-1.73,6.58] 5.01 [0.29,9.78] 2.81 [-0.79,12.25] 0.14 [0.00,0.51]
U(0, 10) N(0, 0.4) 4.12 [0.19,7.52] 4.74 [0.27,9.77] 2.41 [-1.12,11.45] 0.12 [0.00,0.47]
U(0, 10) N(0.4, 0.4) 4.85 [1.34,8.44] 4.74 [0.27,9.72] 2.32 [-1.20,11.01] 0.12 [0.00,0.46]
U(0, 10) U(−2, 2) 5.03 [1.06,9.45] 4.71 [0.29,9.72] 2.50 [-0.99,11.48] 0.13 [0.00,0.48]

47



Table 6: Posterior Beliefs (continued)

Panel D: Size

Prior µ (%) H (years) γ (%) σ̂sr

H µsr mean 95% CI mean 95% CI mean 95% CI mean 95% CI

0 N(−0.4, 0.4) -0.42 [-4.16,3.28] - - - - - -
0 N(0, 0.4) 0.10 [-3.55,3.84] - - - - - -
0 N(0.4, 0.4) 0.73 [-3.04,4.50] - - - - - -
0 U(−2, 2) 0.11 [-3.70,4.02] - - - - - -

2.5 N(−0.4, 0.4) -1.86 [-8.62,4.57] - - 10.85 [3.20,17.08] 0.40 [0.15,0.56]
2.5 N(0, 0.4) -0.09 [-6.56,6.25] - - 10.66 [3.04,16.96] 0.39 [0.14,0.56]
2.5 N(0.4, 0.4) 1.81 [-4.57,8.45] - - 10.70 [3.03,16.85] 0.39 [0.14,0.56]
2.5 U(−2, 2) -0.12 [-7.83,7.88] - - 10.93 [3.23,16.95] 0.40 [0.15,0.56]

5 N(−0.4, 0.4) -2.46 [-10.12,4.84] - - 10.90 [1.88,17.67] 0.45 [0.12,0.64]
5 N(0, 0.4) -0.03 [-7.41,7.28] - - 10.63 [1.40,17.59] 0.44 [0.09,0.64]
5 N(0.4, 0.4) 2.44 [-4.87,9.92] - - 10.86 [1.82,17.59] 0.45 [0.12,0.64]
5 U(−2, 2) -0.07 [-10.66,10.28] - - 11.00 [1.67,17.70] 0.45 [0.11,0.64]

U(0, 10) N(−0.4, 0.4) -2.00 [-9.14,4.55] 3.39 [0.78,8.98] 10.49 [2.27,17.05] 0.39 [0.11,0.62]
U(0, 10) N(0, 0.4) 0.04 [-6.71,6.65] 3.32 [0.74,8.99] 10.31 [2.00,17.08] 0.38 [0.10,0.62]
U(0, 10) N(0.4, 0.4) 1.96 [-4.53,9.16] 3.47 [0.83,9.13] 10.47 [2.08,17.05] 0.39 [0.10,0.63]
U(0, 10) U(−2, 2) -0.04 [-9.04,9.00] 3.51 [0.78,9.12] 10.64 [2.35,17.30] 0.40 [0.11,0.63]
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Appendix A. Autocorrelations in Monthly Returns

As described in Section 2.1, we analyze quarterly returns of characteristic-sorted portfolios
rather than the monthly returns that are typically studied in the literature. We do so because
monthly returns exhibit strong first-order autocorrelations, which may be caused by lead-
lag effects, under-reaction, or some other transitory source of persistence. While interesting
on its own, this form of autocorrelation differs from the main focus of this paper, namely,
slow-moving but persistent variations in expected returns. To avoid biasing our estimates
towards large but quickly-reverting variations, we use quarterly rather than monthly data.

Appendix Figure 1 illustrates the magnitude of the autocorrelations at monthly lags l = 1
through l = 60 for the four portfolios we study, as well as the autocorrelations estimated in
a pooled regression including all four portfolios. The first-order autocorrelation is the single
largest coefficient for any of the 60 months for value, investment, and profitability, as well
as in pooled regressions. Quarterly data do not exhibit a strong first-order autocorrelation
(see Table 2) because the two- and three-month autocorrelations in Appendix Figure 1 are
much smaller and statistically insignificant.

Appendix B. Generalized Least Squares (GLS) Estimations

In addition to the OLS standard error correction described in Section 3.1, we estimate un-
conditional expected returns µ in GLS regressions that use the covariance matrix Σ implied
by γ and H. These GLS estimations adjust both the point estimates µ̂ and the standard
errors. While the OLS estimates are based on an equally-weighted average of the returns
in the sample, the GLS estimates utilize an average weighted by the amount of orthogonal
information each observation contains about the unconditional expected return. When con-
ditional expected returns exhibit persistent variations, the observations in the middle of the
sample are relatively more redundant because they ‘over-sample’ the same epoch of condi-
tional expected returns. As illustrated by Appendix Figure 2, GLS therefore over-weights
observations at the beginning and end of the sample. This effect is larger for larger values
of H, and reverses when γ is negative.

Appendix Table 2 shows the GLS point estimates and t-statistics, along with the cor-
responding OLS statistics, for a variety of assumptions about γ and H. We find that the
GLS corrections to point estimates are generally small, but somewhat more negative in some
specifications for the value and the investment portfolios. The reason for this negative effect
is that these portfolios had unusually low returns at the beginning and/or the end of the
sample, which GLS infers as providing more independent information relative to the obser-
vations in the middle. Overall, the main conclusion from the OLS analysis, that t-statistics
can be half as large for reasonable values of H and γ relative to uncorrected t-statistics,
remains unchanged when using GLS.
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Appendix C. Sampling Bayesian Posteriors

We draw samples of N = 50, 000 observations from the posterior distribution of model
parameters Ωpost using the following procedure:

1. Draw N observations Ωprior
i , i ∈ [1, N ] from the prior distribution.

2. Accept Ωprior
1 as the first observation of the posterior distribution Ωposterior

1 .

3. For observations i = 2 . . . N :

(a) Evaluate the conditional likelihood of the data D given the ith draw from the
prior parameters as well as the i− 1st draw from the posterior parameters:

Lpropose = L(D|Ω = Ωprior
i ), (17)

Lprevious = L(D|Ω = Ωposterior
i−1 ). (18)

(b) If Lpropose ≥ Lprevious, accept Ωposterior
i = Ωprior

i .

(c) If Lpropose ≤ Lprevious, accept Ωposterior
i = Ωprior

i with probability Lpropose
Lprevious , and oth-

erwise retain Ωposterior
i = Ωprior

i−1 .
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Appendix Figure 1: Monthly Autocorrelograms

This figure presents autocorrelations of monthly returns for value, investment, profitability, and size port-
folios, as defined in the header of Table 1, as well the autocorrelation estimated in a pooled regression
containing all four portfolios. We estimate the autocorrelation for each lag l independently. The horizontal
lines represent the 95% confidence interval for autocorrelation coefficients under the zero-autocorrelation null
hypothesis. Our sample consists of 678 monthly observations from Q3 1963 through Q4 2021.

Panel A: Value

Panel B: Investment
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Appendix Figure 1: Monthly Autocorrelograms (continued)

Panel C: Profitability

Panel D: Size

Panel E: Pooled
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Appendix Figure 2: GLS Influence Functions and Return Autocorrelations

This figure presents the GLS weights that apply in the estimation of the unconditional expected return µ
under different assumptions about the autocorrelation structure of returns. The parameter H is the half-life
of shocks to expected returns in years, and γ is the first-order autocorrelation of quarterly returns.
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Appendix Table 1: Return Autocorrelations for Different Parameterizations

This table shows the first-order autocorrelation of quarterly returns in percentage terms, γ = corr(rt, rt−1),
implied by various combinations of H, the half-life of shocks to expected returns, and σδ/ σε, the ratio of the
volatilities of expected and unexpected return shocks. We assume ρ = −1 throughout to provide an upper
bound on the magnitude negative autocorrelations.

H σδ

σε

0.001 0.01 0.1 0.25 0.5 0.75 1

0.1 -0.0 -0.2 -1.8 -4.4 -8.6 -12.7 -16.6
0.25 -0.0 -0.5 -4.8 -11.2 -19.2 -23.7 -25.0
0.5 -0.1 -0.7 -6.3 -12.5 -14.1 -8.5 0.0
1 -0.1 -0.8 -6.2 -7.2 5.4 21.7 34.8
2.5 -0.1 -0.9 -2.9 11.2 41.1 59.2 69.1
5 -0.1 -0.8 3.3 32.1 64.3 77.5 83.7
10 -0.1 -0.7 14.1 54.0 80.1 88.1 91.6
25 -0.1 -0.3 35.7 76.6 91.4 95.1 96.6
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Appendix Table 2: GLS with Time-Varying Expected Returns

This table presents estimates of unconditional expected returns of value, investment, profitability, and size
portfolios, as defined in the header of Table 1, under a variety of assumptions about the magnitude and
persistence of variations in conditional expected returns. The model-implied autocorrelation structure of
returns are summarized by H, the half-life of shocks to expected returns in years, and γ, the first-order
autocorrelation of quarterly returns. We estimate unconditional expected returns µ using both OLS and
GLS and calculate t-statistics using the model-implied correlation matrix of the regression error terms. Our
sample consists of 234 quarterly observations from Q3 1963 through Q4 2021.

Panel A: Value

H (years) 2.5 5 10

γ (%) 2.5 5 10 2.5 5 2.5 5

OLS µ̂ (%) 3.80 3.80 3.80 3.80 3.80 3.80 3.80
Model t-stat (1.47) (1.24) (0.99) (1.27) (1.02) (1.07) (0.83)

GLS µ̂ (%) 3.68 3.62 3.57 3.50 3.36 3.28 3.03
Model t-stat (1.43) (1.19) (0.93) (1.18) (0.91) (0.94) (0.67)

Panel B: Investment

H (years) 2.5 5 10

γ (%) 2.5 5 10 2.5 5 2.5 5

OLS µ̂ (%) 4.75 4.75 4.75 4.75 4.75 4.75 4.75
Model t-stat (2.62) (2.21) (1.75) (2.26) (1.81) (1.91) (1.47)

GLS µ̂ (%) 4.65 4.62 4.63 4.46 4.35 4.23 4.00
Model t-stat (2.57) (2.15) (1.72) (2.14) (1.68) (1.72) (1.26)

Panel C: Profitability

H (years) 2.5 5 10

γ (%) 2.5 5 10 2.5 5 2.5 5

OLS µ̂ (%) 4.91 4.91 4.91 4.91 4.91 4.91 4.91
Model t-stat (2.67) (2.25) (1.79) (2.30) (1.84) (1.94) (1.50)

GLS µ̂ (%) 5.04 5.16 5.36 5.07 5.23 5.04 5.23
Model t-stat (2.74) (2.37) (1.96) (2.39) (1.98) (2.02) (1.62)

Panel D: Size

H (years) 2.5 5 10

γ (%) 2.5 5 10 2.5 5 2.5 5

OLS µ̂ (%) 0.16 0.16 0.16 0.16 0.16 0.16 0.16
Model t-stat (0.06) (0.05) (0.04) (0.05) (0.04) (0.05) (0.03)

GLS µ̂ (%) 0.16 0.13 0.08 -0.04 0.16 0.12 0.23
Model t-stat (0.05) (0.03) -(0.01) (0.05) (0.03) (0.06) (0.04)
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Appendix Table 3: Inference and Posteriors for 174 Portfolios

This table presents summary statistics and estimation results for the four portfolios that we focus on in our
main analysis (the first four rows) and 170 long-short equity portfolios analyzed by Chen and Zimmermann
(2021) (the remaining rows). The first two columns report E(rt), the in-sample average of annualized
quarterly returns, and SR, the in-sample annualized Sharpe ratio. The next two columns report the p-values
for the hypothesis that the unconditional expected return µ equals zero using OLS regressions that assume
i.i.d. returns and maximum likelihood estimations (MLE) that allow for time-varying expected returns. The
next four columns report the means of Bayesian posterior distributions for P (µ > 0), the probability that
µ > 0; µsr, the unconditional Sharpe ratio; µsr,2022, the conditional Sharpe ratio for Q1 of 2022; and σ̂sr,
the volatility of the Sharpe ratio conditional on past returns. The last column reports ρ(size), which denotes
the correlation of each portfolio’s returns with the size portfolio’s return.

µ = 0 p-values Bayesian Posterior Means

Portfolio E(rt) SR OLS MLE P (µ > 0) µsr µsr,2022 σ̂sr ρ(size)

Value (FF) 3.80 0.25 5.4% 10.4% 87.8% 0.20 0.10 0.14 0.40
Investment (FF) 4.75 0.45 0.1% 1.4% 95.6% 0.36 0.37 0.17 0.04
Profitability (FF) 4.91 0.45 0.0% 2.4% 98.0% 0.39 0.60 0.12 -0.52
Size (FF) 0.16 0.01 93.5% 97.5% 50.9% 0.00 -0.30 0.38 1.00
AM 1.34 0.08 54.6% 61.4% 65.6% 0.06 -0.01 0.12 0.18
AOP 3.88 0.34 2.0% 3.7% 93.3% 0.28 0.39 0.12 -0.26
AbnormalAccruals 4.92 0.53 0.0% 0.1% 99.0% 0.45 0.53 0.08 0.04
Accruals 4.59 0.47 0.0% 0.0% 99.5% 0.42 0.43 0.05 -0.19
Activism1 -0.59 -0.10 68.7% 66.9% 38.3% -0.07 -0.13 0.19 0.20
AdExp 5.79 0.38 0.7% 4.4% 89.0% 0.27 0.13 0.22 0.11
AgeIPO 13.77 0.59 0.0% 0.5% 97.5% 0.46 0.50 0.12 -0.30
AnalystRevision 5.40 0.57 0.0% 1.9% 97.9% 0.47 0.57 0.13 -0.14
AnalystValue 5.39 0.32 3.1% 9.1% 90.9% 0.25 0.28 0.15 -0.11
AnnouncementReturn 8.37 1.05 0.0% 0.4% 99.3% 0.82 0.99 0.18 -0.07
AssetGrowth 4.38 0.40 0.2% 5.5% 91.5% 0.29 0.24 0.21 0.17
BM 2.30 0.11 41.7% 48.6% 71.1% 0.08 0.00 0.12 0.36
BMdec 3.78 0.27 3.9% 10.9% 82.3% 0.18 -0.07 0.25 0.33
BPEBM 1.75 0.25 5.5% 4.0% 92.9% 0.23 0.32 0.10 0.22
Beta -7.13 -0.36 0.6% 3.7% 6.5% -0.29 -0.49 0.19 0.60
BetaFP -7.70 -0.53 0.0% 1.3% 3.5% -0.41 -0.41 0.16 0.31
BetaLiquidityPS 1.56 0.16 24.9% 18.8% 74.5% 0.11 -0.03 0.15 0.02
BetaTailRisk -0.14 -0.01 93.3% 93.0% 47.7% -0.01 -0.22 0.24 0.42
BetaVIX 8.38 0.72 0.0% 2.3% 91.3% 0.41 0.53 0.34 -0.29
BidAskSpread -10.93 -0.46 0.0% 7.9% 4.9% -0.36 -0.51 0.19 0.68
BookLeverage -0.48 -0.03 80.3% 82.6% 42.7% -0.02 -0.03 0.08 0.11
BrandInvest -0.86 -0.06 70.2% 13.0% 38.9% -0.04 -0.07 0.09 0.41
CBOperProf 6.87 0.74 0.0% 0.8% 99.4% 0.62 0.93 0.15 -0.52
CF 6.35 0.44 0.1% 0.7% 97.6% 0.37 0.38 0.10 0.09
Cash 2.84 0.20 16.2% 4.9% 86.3% 0.17 0.15 0.08 0.21
CashProd 1.56 0.12 34.4% 43.4% 75.6% 0.10 0.04 0.10 0.08
Cfp 6.85 0.50 0.0% 0.4% 98.7% 0.42 0.45 0.07 -0.53
ChAssetTurnover 2.06 0.26 4.6% 4.4% 91.4% 0.22 0.16 0.10 0.03
ChEQ 5.32 0.50 0.0% 0.2% 99.0% 0.43 0.46 0.08 0.06
ChInv 5.78 0.70 0.0% 0.3% 98.7% 0.56 0.59 0.17 -0.09
ChInvIA 3.30 0.41 0.2% 0.1% 99.2% 0.38 0.58 0.13 -0.09
ChNNCOA 3.01 0.42 0.1% 0.6% 98.0% 0.36 0.34 0.08 -0.02
ChNWC 2.89 0.39 0.3% 2.3% 95.5% 0.32 0.29 0.14 -0.06
ChTax 3.68 0.38 0.4% 14.2% 95.6% 0.32 0.24 0.14 -0.02
ChangeInRecommendation 2.15 0.28 13.8% 24.9% 80.2% 0.20 0.39 0.22 -0.06
CompEquIss 3.85 0.30 2.3% 0.5% 95.8% 0.26 0.30 0.07 -0.09
CompositeDebtIssuance 1.86 0.25 5.9% 10.4% 84.4% 0.18 0.03 0.18 0.10
CoskewACX 0.67 0.06 65.5% 34.4% 65.7% 0.05 0.04 0.09 0.20
Coskewness 1.71 0.18 18.0% 8.0% 82.8% 0.15 0.13 0.11 -0.02
CustomerMomentum 9.93 0.39 1.3% 6.7% 94.0% 0.31 0.31 0.12 0.09
DNoa 6.26 0.72 0.0% 0.2% 96.6% 0.51 0.45 0.28 -0.01
DelBreadth 1.90 0.19 21.6% 3.7% 83.4% 0.16 0.20 0.08 0.06
DelCOA 2.70 0.27 4.0% 8.5% 91.4% 0.22 0.20 0.11 -0.13
DelCOL -0.91 -0.08 53.2% 23.1% 29.2% -0.08 -0.10 0.06 -0.02
DelDRC 4.51 0.40 7.5% 5.2% 84.6% 0.25 0.30 0.16 -0.15
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Appendix Table 3: Inference and Posteriors for 174 Portfolios (continued)

µ = 0 p-values Bayesian Posterior Means

Portfolio E(rt) SR OLS MLE P (µ > 0) µsr µsr,2022 σ̂sr ρ(size)

DelEqu 3.47 0.30 2.3% 0.8% 94.8% 0.26 0.29 0.09 0.15
DelFINL 3.91 0.63 0.0% 2.2% 97.8% 0.50 0.55 0.18 0.08
DelLTI 1.75 0.33 1.2% 2.8% 95.2% 0.28 0.44 0.12 0.04
DelNetFin 1.56 0.22 9.3% 13.8% 86.7% 0.18 0.06 0.12 -0.08
DolVol 1.25 0.09 47.9% 49.8% 66.0% 0.06 -0.10 0.18 0.56
EBM 2.61 0.22 8.7% 13.5% 87.2% 0.18 0.15 0.13 0.24
EP 3.47 0.25 5.3% 1.9% 92.0% 0.22 0.25 0.09 0.22
EarnSupBig 3.43 0.25 5.5% 2.2% 94.5% 0.22 0.22 0.06 -0.14
EarningsConsistency 3.42 0.27 4.0% 4.4% 94.5% 0.24 0.21 0.10 0.10
EarningsForecastDisparity 3.68 0.25 12.0% 2.0% 89.7% 0.20 0.20 0.08 -0.03
EarningsStreak 8.37 0.93 0.0% 0.1% 98.9% 0.71 0.82 0.14 -0.17
EarningsSurprise 2.43 0.33 1.3% 3.2% 96.5% 0.29 0.29 0.09 -0.05
EntMult 5.81 0.39 0.3% 1.5% 95.3% 0.32 0.26 0.13 0.08
EquityDuration 7.81 0.48 0.0% 1.5% 95.7% 0.37 0.36 0.18 0.01
ExclExp 2.68 0.54 0.1% 0.6% 97.2% 0.42 0.46 0.10 -0.33
FEPS 11.88 0.77 0.0% 0.1% 98.8% 0.61 0.87 0.15 -0.63
FR 1.19 0.15 35.3% 50.1% 71.2% 0.14 0.54 0.37 -0.17
Fgr5yrLag 7.67 0.43 0.7% 2.6% 96.1% 0.35 0.42 0.12 -0.31
FirmAge -1.19 -0.14 28.4% 31.3% 22.4% -0.12 -0.30 0.15 0.50
FirmAgeMom 18.00 0.78 0.0% 1.0% 98.6% 0.60 0.95 0.24 0.00
ForecastDispersion 6.11 0.38 1.0% 0.9% 95.5% 0.32 0.42 0.10 -0.56
Frontier 1.80 0.09 51.2% 14.0% 67.4% 0.07 -0.04 0.12 0.52
GP 4.47 0.39 0.3% 1.6% 96.1% 0.34 0.58 0.15 -0.16
GrAdExp 3.47 0.29 4.6% 3.2% 92.0% 0.24 0.28 0.11 -0.08
GrLTNOA 1.71 0.21 10.6% 0.7% 90.0% 0.18 0.19 0.07 -0.16
GrSaleToGrInv 3.02 0.37 0.5% 12.2% 89.3% 0.28 0.29 0.29 0.07
GrSaleToGrOverhead 0.63 0.07 61.8% 51.3% 66.1% 0.06 0.04 0.06 0.07
Grcapx 4.08 0.41 0.2% 1.7% 95.2% 0.33 0.28 0.16 0.16
Grcapx3y 2.93 0.29 2.8% 6.4% 91.7% 0.24 0.14 0.13 0.18
Herf 0.77 0.07 59.2% 67.5% 65.3% 0.06 0.03 0.10 0.25
HerfAsset 0.85 0.08 54.1% 64.4% 68.3% 0.07 0.07 0.11 0.31
HerfBE 0.79 0.08 56.4% 68.1% 67.7% 0.07 0.04 0.13 0.35
High52 15.21 0.76 0.0% 0.6% 99.5% 0.64 0.70 0.12 -0.44
Hire 2.22 0.22 10.0% 17.3% 84.8% 0.17 0.10 0.13 -0.06
IdioRisk 15.92 0.78 0.0% 1.6% 95.8% 0.51 0.91 0.39 -0.65
IdioVol3F 15.71 0.74 0.0% 0.6% 96.8% 0.52 0.86 0.34 -0.68
IdioVolAHT 13.94 0.56 0.0% 1.6% 95.4% 0.41 0.60 0.25 -0.71
Illiquidity 3.01 0.25 5.1% 46.9% 69.8% 0.12 -0.85 0.45 0.77
IndMom 2.88 0.19 13.8% 18.1% 82.9% 0.16 0.19 0.18 0.16
IndRetBig 20.46 1.26 0.0% 6.3% 98.0% 0.66 0.48 0.46 0.06
IntMom 11.92 0.62 0.0% 4.7% 95.5% 0.44 0.16 0.24 -0.09
IntanBM 0.31 0.02 89.5% 89.3% 52.7% 0.01 -0.17 0.15 0.41
IntanCFP 2.43 0.14 28.7% 10.4% 79.0% 0.11 0.05 0.08 0.22
IntanEP 1.92 0.12 36.2% 10.3% 77.0% 0.10 0.07 0.07 0.31
IntanSP -1.14 -0.06 66.8% 71.0% 37.8% -0.05 -0.13 0.15 0.56
InvGrowth 5.14 0.49 0.0% 6.1% 96.1% 0.39 0.49 0.19 -0.03
InvestPPEInv 4.91 0.49 0.0% 0.7% 94.4% 0.37 0.21 0.22 0.10
Investment 1.16 0.12 34.0% 40.8% 79.0% 0.11 0.08 0.07 0.37
LRreversal 1.68 0.09 51.3% 61.2% 67.1% 0.07 0.04 0.15 0.48
Leverage 1.83 0.10 43.5% 51.2% 72.2% 0.08 0.05 0.11 0.10
MRreversal 3.59 0.24 6.5% 18.4% 85.2% 0.19 0.10 0.20 0.20
MaxRet 11.38 0.65 0.0% 0.3% 97.3% 0.49 0.75 0.30 -0.59
MeanRankRevGrowth 3.62 0.35 0.7% 2.7% 95.2% 0.29 0.25 0.10 0.05
Mom12m 15.26 0.68 0.0% 1.0% 99.4% 0.58 0.56 0.09 -0.15
Mom12mOffSeason 8.86 0.44 0.1% 0.2% 99.3% 0.39 0.40 0.05 -0.06
Mom6m 10.45 0.55 0.0% 0.7% 98.8% 0.47 0.58 0.12 -0.08
Mom6mJunk 5.33 0.30 6.5% 7.4% 86.4% 0.22 0.23 0.15 0.14
MomOffSeason 5.28 0.30 2.0% 13.5% 91.8% 0.24 0.17 0.13 0.20
MomOffSeason06YrPlus 8.79 0.73 0.0% 1.8% 98.5% 0.58 0.69 0.17 0.07
MomOffSeason11YrPlus 3.70 0.35 0.7% 1.1% 96.0% 0.30 0.27 0.09 0.04
MomOffSeason16YrPlus 2.81 0.31 1.9% 0.6% 96.5% 0.27 0.27 0.07 -0.01
MomSeason 4.91 0.42 0.1% 16.4% 83.9% 0.26 0.32 0.48 -0.06
MomSeason06YrPlus 6.15 0.58 0.0% 3.5% 94.7% 0.41 0.38 0.33 0.00
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Appendix Table 3: Inference and Posteriors for 174 Portfolios (continued)

µ = 0 p-values Bayesian Posterior Means

Portfolio E(rt) SR OLS MLE P (µ > 0) µsr µsr,2022 σ̂sr ρ(size)

MomSeason11YrPlus 5.76 0.61 0.0% 0.3% 99.5% 0.53 0.52 0.08 -0.04
MomSeason16YrPlus 3.09 0.32 1.5% 0.4% 98.0% 0.29 0.27 0.09 -0.02
MomSeasonShort 5.76 0.46 0.0% 17.2% 91.2% 0.32 0.01 0.26 -0.06
NOA 4.23 0.41 0.2% 5.4% 93.1% 0.32 0.34 0.24 -0.06
NetDebtFinance 3.55 0.54 0.0% 1.1% 97.2% 0.43 0.50 0.14 0.00
NetDebtPrice 2.41 0.15 25.3% 2.9% 82.0% 0.13 0.11 0.07 0.17
NetEquityFinance 5.35 0.55 0.0% 0.3% 98.6% 0.46 0.52 0.10 -0.34
NetPayoutYield 7.01 0.53 0.0% 0.4% 97.4% 0.43 0.74 0.17 -0.35
NumEarnIncrease 2.68 0.47 0.0% 0.6% 98.4% 0.40 0.49 0.10 -0.06
OPLeverage 3.41 0.28 2.9% 4.4% 95.4% 0.25 0.27 0.07 0.20
OperProf 6.19 0.46 0.0% 0.9% 97.8% 0.40 0.58 0.15 -0.47
OperProfRD 7.04 0.58 0.0% 1.3% 94.4% 0.42 1.34 0.37 -0.56
OptionVolume1 3.35 0.28 15.7% 32.5% 68.7% 0.12 -0.09 0.31 0.12
OptionVolume2 2.95 0.38 5.6% 8.5% 84.7% 0.24 0.19 0.18 0.01
OrderBacklog -1.08 -0.07 59.6% 65.3% 36.6% -0.05 0.06 0.12 -0.09
OrderBacklogChg -0.52 -0.04 77.8% 33.7% 42.7% -0.03 -0.06 0.09 -0.05
OrgCap 5.12 0.55 0.0% 0.1% 99.3% 0.48 0.48 0.08 -0.02
PS 8.39 0.42 0.3% 0.6% 96.3% 0.34 0.29 0.09 -0.20
PayoutYield 4.31 0.33 1.1% 2.7% 94.5% 0.28 0.44 0.13 -0.09
PctAcc 2.34 0.26 5.5% 2.9% 94.0% 0.23 0.22 0.08 -0.25
PctTotAcc 0.83 0.10 56.0% 27.8% 67.7% 0.09 0.07 0.10 -0.14
PredictedFE 2.88 0.19 24.9% 33.1% 82.2% 0.16 0.20 0.10 -0.13
Price -5.90 -0.21 10.7% 31.7% 24.2% -0.15 -0.35 0.33 0.72
PriceDelayRsq -1.76 -0.16 22.5% 4.1% 17.8% -0.14 -0.20 0.11 0.23
PriceDelaySlope -0.90 -0.09 49.6% 42.7% 31.7% -0.07 -0.08 0.11 0.32
PriceDelayTstat 0.23 0.03 79.2% 27.6% 58.1% 0.03 0.02 0.09 -0.32
ProbInformedTrading 15.75 1.21 0.0% 1.4% 95.2% 0.62 0.81 0.29 -0.26
RD 1.50 0.09 53.8% 61.0% 64.9% 0.07 0.08 0.20 0.39
RDAbility 5.35 0.26 9.3% 4.8% 87.5% 0.21 0.28 0.13 -0.02
RDS 2.01 0.35 1.9% 5.5% 90.7% 0.26 0.21 0.15 0.13
RDcap 1.63 0.07 64.6% 81.6% 57.6% 0.03 -0.36 0.23 0.47
REV6 4.34 0.20 18.4% 25.2% 75.8% 0.13 -0.06 0.19 -0.19
Realestate 3.22 0.31 2.6% 4.5% 90.1% 0.24 0.19 0.15 -0.19
ResidualMomentum 5.96 0.57 0.0% 1.8% 98.9% 0.48 0.43 0.10 -0.04
RetConglomerate 6.44 0.46 0.3% 3.8% 96.1% 0.37 0.35 0.12 -0.04
ReturnSkew -0.09 -0.01 91.2% 95.3% 50.3% 0.01 0.32 0.25 -0.20
ReturnSkew3F -1.77 -0.33 1.1% 18.8% 9.1% -0.25 -0.19 0.16 -0.23
RevenueSurprise 1.51 0.20 12.4% 7.7% 88.6% 0.18 0.19 0.09 -0.04
RoE 2.88 0.26 4.3% 6.4% 91.1% 0.23 0.34 0.13 -0.53
Roaq 6.65 0.40 0.5% 2.4% 93.2% 0.31 0.51 0.16 -0.50
SP 4.76 0.27 3.8% 8.9% 90.0% 0.22 0.17 0.14 0.39
STreversal -0.18 -0.01 92.8% 100.0% 46.4% -0.01 -0.15 0.14 0.16
Sfe 10.93 0.56 0.0% 0.2% 98.4% 0.47 0.49 0.10 -0.30
ShareIss1Y 6.51 0.83 0.0% 0.2% 99.1% 0.65 0.70 0.20 -0.19
ShareIss5Y 4.95 0.59 0.0% 0.1% 98.3% 0.48 0.47 0.17 -0.02
ShortInterest 4.40 0.41 0.4% 0.7% 97.5% 0.35 0.40 0.09 -0.26
Size -0.05 0.00 98.6% 97.6% 50.5% 0.01 -0.15 0.31 0.82
Skew1 5.89 0.47 1.8% 3.9% 91.4% 0.33 0.41 0.17 -0.10
SmileSlope 13.06 1.34 0.0% 3.2% 95.9% 0.64 0.88 0.40 -0.12
Stdturn 11.35 0.69 0.0% 4.1% 94.3% 0.44 0.49 0.36 -0.50
Tang 0.60 0.05 71.5% 38.8% 62.4% 0.04 0.07 0.07 0.08
Tax 4.34 0.53 0.0% 0.3% 96.7% 0.43 0.78 0.22 -0.27
TotalAccruals 2.48 0.29 2.8% 6.3% 92.8% 0.25 0.34 0.13 0.10
TrendFactor 11.88 0.74 0.0% 11.9% 96.4% 0.50 0.21 0.24 0.15
VarCF 1.48 0.10 44.9% 57.0% 67.9% 0.09 0.30 0.23 -0.71
VolMkt 4.78 0.33 1.1% 1.1% 94.9% 0.28 0.34 0.12 -0.42
VolSD 4.09 0.52 0.0% 0.5% 98.6% 0.44 0.46 0.10 0.17
VolumeTrend 4.68 0.42 0.1% 4.8% 92.4% 0.32 0.49 0.26 0.21
XFIN 9.91 0.70 0.0% 1.6% 97.5% 0.53 0.91 0.23 -0.50
Zerotrade 5.04 0.51 0.0% 0.8% 96.7% 0.40 0.49 0.17 -0.26
ZerotradeAlt1 4.29 0.38 0.3% 6.8% 89.4% 0.28 0.56 0.30 -0.38
ZerotradeAlt12 5.17 0.52 0.0% 1.5% 96.3% 0.41 0.46 0.18 -0.21
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