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Abstract

I study a preferred-habitat model of the term structure in which government and corporate bonds are
priced by the same marginal investor. The model endogenously generates variation in credit spreads
over and above changes in credit quality. In equilibrium, credit spreads are affine functions of the ag-
gregate risk factors, providing an equilibrium justification to credit risk valuation models. Risk premia
on interest rate and credit risk are time-varying and jointly determined. Arbitrageurs strengthen the
risk-neutral dependence between the aggregate risk factors beyond the observed correlation between
default rates and the policy rate. Movements in credit spreads are driven by (i) variation in credit
quality (ii) risk-neutral correlation of the risk factors, and (iii) portfolio rebalancing due to diversifi-
cation motives. A calibrated model matches the level and the slope of the term structure of credit
spreads for both investment-grade and high-yield issuers. As government bonds hedge against default
risk, the strength of monetary policy transmission to corporate (Treasury) yields is weaker (stronger)
when default uncertainty increases. Shocks to the short term rate move credit spreads by altering
risk premia on both credit and interest rate risk. The impact of quantitative easing interventions is
asymmetric and depends on the specific assets being purchased.
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1 Introduction

The Treasury yield curve reflects the financing costs of the U.S. government and it is a central target of
policy interventions. The term structure of interest rates is a crucial indicator of financing conditions
and, in many cases, it provides a metric against which the effectiveness of monetary policy interven-
tions is evaluated. The conventional view is that monetary policy mitigates output fluctuations by
boosting investment and lowering financing costs. Yet, investment and credit supply decisions are
decentralized decisions made by firms and financial intermediaries, which cannot usually borrow at the
same interest rate as the government. The difference in financing costs is referred to as the corporate
credit spread. It turns out that credit risk factors only explain a modest fraction of the variation in
credit spreads (Collin-Dufresne, Goldstein, & Martin, 2001; Friewald & Nagler, 2019; He, Khorrami,
& Song, 2022). This empirical puzzle is reflected in the challenges faced by standard structural models
of default to match the level of credit spreads with calibrations consistent with historical default rates
(Chen, Collin-Dufresne, & Goldstein, 2008; Du, Elkamhi, & Ericsson, 2019).

Motivated by the insights that (i) the variation in credit risk spread is driven by time-varying risk pre-
mia rather than default probabilities (Du et al., 2019) and that (ii) intermediary-based factors explain a
substantial fraction of the common variation in credit spreads (He, Khorrami, & Song, 2022), I propose
a preferred-habitat model of the term structure of Treasury and corporate yields in which corporate
and Treasury bonds are jointly priced by the same intermediaries. The model extends Vayanos and
Vila (2021) and Gourinchas, Ray, and Vayanos (2022) to a two asset framework with defaultable bonds,
and it belongs to the class of affine term structure models (Dai & Singleton, 2000; Duffie & Kan, 1996).
In the equilibrium that I fully characterize, Treasury and corporate yields are affine functions of the
state variables, thereby providing a general equilibrium justification to credit risk valuation approaches
(Duffie & Singleton, 2003, 1999) in the context of a preferred-habitat model of the term structure with
investor clienteles (Modigliani & Sutch, 1966; Vayanos & Vila, 2021).

The framework integrates elements from the literature on credit risk valuation in a preferred-habitat
context where asset prices are jointly determined by the pricing kernel of arbitrageurs that are marginal
in both the Treasury and the corporate bond markets. Time is continuous, and market participants
trade in corporate and Treasury bonds. The corporate sector is a continuum of identical issuers of
defaultable zero-coupon bonds. I model default in reduced-form as an unpredictable jump in a Poisson
process with time-varying default intensity (Lando, 1998). Besides for tractability reasons, the choice
is motivated by the fact that structural models of credit risk cannot usually generate credit spreads
that are strictly positive even for short horizons (see for example Collin-Dufresne and Goldstein (2001).
Duffie and Lando (2001) is the exception). In the cross-section, default events are assumed to be iden-
tically distributed and mutually independent. Although defaults are idiosyncratic, time-variation in
the default intensity is an aggregate risk factor, which commands a risk premium.

First, I analyze a simplified environment in which arbitrageurs only trade in a risk free asset and in
defaultable bonds. The decision problem of the arbitrageurs is analogous to Vayanos and Vila (2021),
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with the key difference that a stochastic fraction of corporate bonds defaults at any point in time. The
aggregate risk factors are the short term rate, the default intensity, and shocks to habitat demand. In
equilibrium, the arbitrageurs’ first-order conditions determine the market price of short rate risk and
default intensity jointly. Corporate bond yields are affine function of the state variables.

In the same spirit as intermediary asset pricing models (Brunnermeier & Sannikov, 2014; He & Kr-
ishnamurthy, 2013), the price of corporate bonds is set such that it is optimal for the arbitrageurs
to absorb habitat demand. Therefore, bond risk premia are positively related to the net positions
held by these arbitrageurs. However, because habitat demand is price-elastic, the risk premia on each
individual risk factor are interrelated. An increase in the short rate affects both interest rate and
credit risk premia. Since the market price of default and short risk are state-dependent, the model
endogenously generates time-varying risk premia in a setting where shocks are homoscedastic. Accord-
ingly, my model implies economic restrictions on the joint dynamics of default intensity and the short
rate under the equivalent martingale measure. Arbitrageurs strengthen the risk-neutral dependence
between the risk factors over and above the observed correlation between default rates and the policy
rate throughout the business cycle. Even when risk factors are assumed to be independent, the en-
dogenous correlation arising under the risk-neutral measure implies that the variation in credit spreads
is not determined purely by changes in the credit quality of corporate issuers (Duffie & Singleton, 1999).

Subsequently, I extend the segmented equilibrium so that arbitrageurs trade in both corporate and gov-
ernment bonds. Adding a second asset class enriches the asset pricing implications through a portfolio
diversification channel. While shocks to the short term rate affect corporate bonds and government
bonds in the same way, shocks to default intensity have an asymmetric effect. Government bonds
hedge against default risk, given that their price increases when credit risk goes up. In contrast, a
deterioration in credit quality lowers the price of corporate bonds. Furthermore, since corporate bonds
are less attractive to arbitrageurs when default intensity increases, a portfolio rebalancing effect im-
plies that higher default intensity widens credit spreads by both lowering Treasury yields and raising
corporate yields. A key result is that, in equilibrium, credit spreads are driven by a combination of
three effects, namely (i) changes in the credit quality of corporate issuers, (ii) risk-neutral dependence
between credit risk and the other aggregate risk factors, and (iii) a portfolio diversification channel
effect. Hence, the model endogenously generates variation in credit spreads over and above changes in
credit quality without heteroscedastic shocks or jump processes (Driessen, 2005; Du et al., 2019).

Another prediction of the model is that variation in default intensity is only one of the many deter-
minants of movements in credit spreads. Indeed, equilibrium credit spreads are affine functions of the
aggregate risk factors, including the short term rate and the demand factors. The short term rate
acts on credit spreads by altering risk premia on default risk. I reconcile this prediction with Collin-
Dufresne and Goldstein (2001) and He, Khorrami, and Song (2022) by showing that the error term in
a regression of credit spreads on default intensity and the short rate includes a combination of local
and global demand shocks. While these demand factors might in principle originate at any maturity
or within each asset class, they propagate throughout the term structure and across markets because
of the intermediation activities done by the arbitrageurs. To the extent that demand shocks are highly
persistent and that they share a common factor structure, the model-implied regression provides an
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intermediary-based justification to the results in Collin-Dufresne and Goldstein (2001),Friewald and
Nagler (2019), and He, Khorrami, and Song (2022).

To further explore the key predictions of my model, I discipline the model parameters by targeting the
level and the volatility of the Treasury yield curve. Any other moment of the corporate yield curve and
credit spreads is untargeted. In a calibrated effort, the model provides a good fit for both the corpo-
rate and the Treasury yield curve, especially at short to intermediate maturities. Although the implied
volatility of credit spreads is higher than in the data, the implied credit spreads neatly match the aver-
age credit spreads for BBB-rated issuers with a default intensity set to approximate historical default
rates. Furthermore, the model captures the fact that the term structure of credit spreads is upward
sloping for investment-grade issuers, but downward sloping for high-yield bonds (Sarig & Warga, 1989).

Next, I analyze the impact of monetary policy interventions on credit spreads and corporate bond
yields. The first observation is that default intensity uncertainty weakens the transmission of mone-
tary policy shocks throughout the term structure of corporate bonds. Yet, the opposite holds for the
Treasury yield curve. Forward rate underreaction to a monetary policy shock decrease with the volatil-
ity of default intensity shocks. A potential explanation is that higher default uncertainty increases the
value of government bonds as hedges against default risk, driving down the risk premia on government
bonds. When analyzing QE interventions, the model captures spillover effects across markets. The
impact of QE on bond yields is asymmetric and depend on the asset being purchased. Furthermore,
the response of credit spreads to corporate-only QE is much stronger than to Treasury-only QE inter-
vention (D’Amico & King, 2013; Krishnamurthy & Vissing-Jorgensen, 2011).

In contrast to Gertler and Karadi (2015), however, the calibration implies that a monetary tighten-
ing reduces credit spreads. The mechanism that generates this result is the same as the one that
generates counterfactual responses of term premia to monetary policy shocks in Vayanos and Vila
(2021), as shown in Kekre, Lenel, and Mainardi (2022). The reason is that the arbitrageurs’ balance
sheet shrinks when interest rates go up, so that risk premia are inversely related to the short rate
and to default intensity, highlighting the challenges in introducing risky assets in a preferred-habitat
framework (Costain, Nuño, & Thomas, 2022; Droste, Gorodnichenko, & Ray, 2021). In the habitat
demand specification of Vayanos and Vila (2021), habitat investors do respond to prices, but not to the
aggregate risk factors directly. As a result, they ignore any fundamental news about the credit quality
of corporate bonds, and act as pure liquidity providers. I discuss two alternative ways to address this
shortcoming. A first option is to directly assume that habitat demand respond to both prices and
fundamentals as in Kyle and Xiong (2001). A second option is to specify the covariance matrix of
the aggregate risk factors such that demand shocks are negatively correlated to both default rates and
the short term rate. Absent a clear microfoundation of habitat demand, I postpone this to future work.

In the last section, I revisit existing empirical evidence on the term structure of credit spreads, as well
as the relation between term premia and credit spreads. Rather than presenting evidence validating
the model, the goal is to (i) provide an overview of the empirical evidence that I plan to collect in the
next steps and (ii) think about how data can inform future improvements on the modelling side.
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Related Literature First, this paper contributes to the literature on term structure models by in-
tegrating elements from credit risk valuation into a preferred-habitat framework. My model belongs
to the general class of affine term structure models (Dai & Singleton, 2000; Duffie & Kan, 1996), and
extends the preferred-habitat model of Vayanos and Vila (2021) by (i) introducing defaultable bonds
and (ii) deriving asset pricing implications for corporate bond yields and credit spreads. Building on
Duffie and Singleton (2003) and Lando (1998), I model default in reduced-form as an unpredictable
jump in a Poisson process with stochastic intensity.

The preferred-habitat view of the term structure dates back to early work by Culbertson (1957) and
Modigliani and Sutch (1966), but it was only recently formalized by the seminal work of Vayanos and
Vila (2021). My paper is closest to Costain et al. (2022), who present a term structure model of the
yield curve in a heterogeneous monetary union. In their model, the defaultable bonds are issued by
periphery countries in the European union and not by the corporate sector. However, as opposed to
Costain et al. (2022) (i) I model default as a flow process rather than a discrete jump (ii) the aggre-
gate risk factor is default intensity and not the event of default (iii) in my model the market price of
default risk depends on the quantity of Treasury bond outstanding and (iv) the government bonds and
Treasury bonds are both affine functions of all the risk factors, including default intensity.

Greenwood and Vayanos (2014) propose a simplified version of the model to study Treasury supply
effects on the term structure, whereas Gourinchas et al. (2022) discuss a two country version Vayanos
and Vila (2021) to explain uncovered interest parity violations. Similarly, Greenwood, Hanson, Stein,
and Sunderam (2020) develop a quantity theory of term premia and exchange rate in a two country
model, whereas Droste et al. (2021) embeds habitat demand in a New Keynesian framework to explain
the financial effects of QE. Beyond corporate bonds, preferred-habitat models have been applied to
repos (He, Nagel, & Song, 2022; Jappelli, Pelizzon, & Subrahmanyam, 2023) and to the interest rate
swaps market (Hanson, Malkhozov, & Venter, 2022).

On the other hand, the paper also relates to the literature on the determinants of credit spreads by
decomposing changes in credit spreads into (i) changes in the credit quality of corporate issuers (ii)
risk-neutral dependence between credit risk and the other aggregate risk factors and (iii) a portfolio
rebalancing effect. Collin-Dufresne et al. (2001) show that the determinant of credit spread implied by
structural models of credit risk have rather limited explanatory power. Yet, the unexplained part has
a strong principal component. Friewald and Nagler (2019) and He, Khorrami, and Song (2022) link
the strong principal component to OTC frictions and intermediary capital, respectively. In particular,
He, Khorrami, and Song (2022) show that a large fraction of the principal component can be explained
by an dealer inventory factor and a measure of intermediary distress (He, Kelly, & Manela, 2017; Hu,
Pan, & Wang, 2013). Chen et al. (2008) and Du et al. (2019) document that structural credit risk
models underestimate credit spreads, arguing that changes in credit spreads are driven by time-varying
risk premia rather than changes in credit quality. In my paper, I generate state-dependent risk pre-
mia that depend on both the level of interest rate and default intensity in a homoscedastic environment.

Furthermore, the paper also contributes to the literature on the transmission of monetary policy to
credit spreads and long term yields. I argue that the strength of the propagation of monetary di-
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versification throughout the term structure of either government or corporate bond depends on the
interaction between term premia and diversification motives of arbitrageurs. Vayanos and Vila (2021)
only partially capture the evidence by Hanson and Stein (2015) in the long term forwards during FOMC
announcements are due to changes in term-premia. Building on this, Kekre et al. (2022) integrates
element from the intermediary asset pricing tradition into Vayanos and Vila (2021) to show that a
monetary easing also revalues the wealth of the arbitrageurs, thereby flipping the sign of the relation
between term premia and the short rate. Closely related to this, Gertler and Karadi (2015) show that
a monetary tightening is associated to increase in various measures of credit spreads.

Finally, the model contributes to the literature on bond risk premia (e.g. Cochrane and Piazzesi
(2005); Haddad and Sraer (2020)) by showing that when corporate and Treasury bonds are priced by
the same marginal investors, the market price of interest rate and credit risk are interconnected. This
logic borrows from the intermediary asset pricing literature (Brunnermeier & Sannikov, 2014; He &
Krishnamurthy, 2013), and it implies that credit and interest rate risk are priced together. Yet, the
traditional factor models of corporate bonds generally treat interest rate and credit risk separately
(Acharya, Amihud, & Bharath, 2013; Kelly, Palhares, & Pruitt, 2023). An exception to this is Li
(2023), who similarly claims that the pricing of credit and interest rate risk are interconnected.

Organization The rest of the paper is organized as follows. Section 2 presents a preferred-habitat
model with defaultable bonds. The simplified environment is intended to analytically characterize
equilibrium properties and asset pricing implications. Section 3 extends Section 2 and presents a two
sector habitat model in which agents trade both corporate and government bonds. Section 4 describes
the data, illustrates the model calibration, and presents the quantitative analysis. Section 5 concludes.

2 Segmented Arbitrage

Section 2 describes a simplified environment in which arbitrageurs and habitat investors only trade in
a riskless asset and in corporate bonds. The goal is to analytically characterize equilibrium properties
and the dependence between the market prices of risk without any complication arising from portfolio
diversification motives. Because arbitrageurs are restricted to trade a strict subset of all available
assets, I refer to this environment as the segmented equilibrium in the spirit of Gourinchas et al.
(2022). Section 3 generalizes these insights in a two asset framework in which aggregate risk factors
potentially affect asset classes asymmetrically.

2.1 Idiosyncratic Defaults

I model the corporate sector as a continuum of identical firms uniformly distributed between zero and
one and indexed by i ∈ [0, 1]. Each firm issues defaultable bonds with maturity τ ∈ (0,∞). For each
bond i, default is modelled as an unpredictable jump in a Poisson process N i

t with intensity λt. The
dynamics of each individual corporate bond are given by

dP
i,(τ)
t

P
i,(τ)
t

= µ
(τ)
i,t dt+ σ

(τ)
i,t dBt + dN i

t (ω − 1)
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where ω is the recovery rate and µ
(τ)
i,t and σ

(τ)
i,t are the drift and local volatility of the bonds, which

will be determined in equilibrium. The increment of the Poisson process, dN i
t , takes the value of one

if bond i defaults and zero otherwise. Given the default intensity λt, the probability of default within
the interval [t, t + dt] is λtdt (Duffee, 1999). I assume that defaults are idiosyncratic and that each
individual bond has the same default intensity λt.

Assumption 1 (Idiosyncratic Defaults). The increments dN i
t are independent across i and all have

the same intensity λt.

Although the default intensity does not depend on maturity, λt varies over time. Since defaults are
idiosyncratic, each of these bonds are ex-ante identical. Hence, it must be true that in equilibrium
µ
(τ)
i,t = µ

(τ)
t and σ

(τ)
i,t = σ

(τ)
t . Therefore, the instantaneous return on a well-diversified portfolio of

defaultable bonds is

dP
(τ)
t

P
(τ)
t

.
=

! 1

0

dP
i,(τ)
t

P
i,(τ)
t

di = µ
(τ)
t dt+ σ

(τ)
t dBt + (ω − 1)λtdt (2.1)

where the second equality follows from the Law of Large Numbers, as detailed in Appendix A.3. For
simplicity, I henceforth assume a recovery rate of zero, i.e. ω = 0. Contrary to Costain et al. (2022),
equation (2.1) interprets default as a flow process rather than a jump process.

As a result, conditional on the information at time t, the default intensity λt will be the same under
both the physical P and the risk-neutral measure Q. Because the market price of risk associated with
the Poisson process is zero, λt is equal to the physical probability of default (Duffee, 1999). In this
setting, the aggregate risk factor is the default intensity and not the event of default. As default
intensity varies over time and provided that arbitrageurs are risk averse, its dynamics will be different
under the equivalent martingale measure Q.

2.2 Habitat Demand and Defaultable Bonds

Timing and assets Time t is continuous and runs from zero to infinity. A zero-coupon corporate
bond is a security that promises one unit of the numeraire at time t+ τ , where τ ∈ (0,∞) denotes the
maturity. Within each maturity τ , there is a continuum of firms issuing zero-coupon corporate bonds,
each of which might default with intensity λt. With idiosyncratic defaults, a deterministic fraction λtdt

of bonds defaults on aggregate at any point in time. While there is no uncertainty around the fraction
of defaults in the interval [t, t+ dt], agents are uncertain about how many corporate bonds will default
in the future. Building on Costain et al. (2022), I assume that the corporate sector instantaneously
issues new bonds to replace those that defaulted.

Let P
(τ)
t and y

(τ)
t be the price and the yield of the bond with maturity τ at time t, respectively. The

yield is related to the price through

y
(τ)
t = − logP

(τ)
t

τ
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and the instantaneous holding period return is dP
(τ)
t

P
(τ)
t

. The short rate rt is the limit of the yield y
(τ)
t as

τ goes to zero, and I assume it is exogenously set by an unmodeled monetary authority.

Decision problems There are two types of agents: Arbitrageurs and preferred-habitat investors.
Habitat investors, indexed by τ ∈ (0,∞), are uniformly distributed across maturities and only hold
corporate bonds with a specific maturity τ . Investors with habitat τ at time t hold a position

Z
(τ)
t = −α(τ) logP

(τ)
t − β

(τ)
t (2.2)

in the bond with maturity τ and hold no other bonds. The slope coefficient α(τ) ≥ 0 only depends on
maturity and regulates the sensitivity of demand to prices. The intercept coefficient β(τ)

t is time-varying
and can depend on τ . The demand intercept takes the form

β
(τ)
t = θ0(τ) +

K"

k=1

θk(τ)βk,t (2.3)

where {θk(τ)}Kk=0 are constant over time but can depend on maturity τ . Specification (2.2) assumes
that habitat investors are price-elastic, which is analogous to Vayanos and Vila (2021) and Kekre et
al. (2022). As a result, these investors hold larger (more positive) positions when the securities are
cheaper. While such modeling approaches seem appropriate for default-free government bonds, it also
implies that habitat investors are not responsive to changes in the fundamentals of the corporate sector,
as captured by λt. Hence, lower prices driven by deteriorating fundamentals make habitat investors
hold larger positions. This happens because habitat demand does not respond to the shocks that
caused the initial price decline.

In Appendix B, I present a stylized micro-foundation of habitat demand. The stylized framework
reveals that habitat demand should be specified as a function of both prices P

(τ)
t and a notion of

fundamental cash flows that depend on either rt and λt. A higher level of λt is associated to worse
fundamentals, whereas rt might be interpreted as the opportunity cost of locking in capital in long
term bonds. I model this dependence in reduced-form by assuming that demand shocks β

(τ)
t depend

on the level of λt and rt. A modification of habitat demand along these lines maps into the long term
investors of Kyle and Xiong (2001) and Sangvinatsos and Wachter (2005). I explicitly describe the
dynamics later in equation (2.6) and discuss other variants in Section 3.3.

Arbitrageurs trade corporate bonds at all maturities and can also invest in the short rate rt. Wt

and τ denote arbitrageurs’ wealth and dollar holdings in the bonds with maturity τ , respectively.
Arbitrageurs have mean-variance preferences over instantaneous changes in wealth

max
{X(τ)

t }τ∈{0,∞}

#
Et(dWt)−

a

2
Vart(dWt)

$
(2.4)

where a ≥ 0 control arbitrageurs’ risk aversion. As in Vayanos and Vila (2021), arbitrageurs can
be interpreted as overlapping generations living over infinitesimal periods. The instantaneous budget
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constraint is given by

dWt =

%
Wt −

! ∞

0
X

(τ)
t dτ

&
rtdt+

! ∞

0
X

(τ)
t

'
dP

(τ)
t

P
(τ)
t

− λtdt

(
dτ (2.5)

The first term corresponds to a position in the short rate, and the second term describes the capital

gains from investing in corporate bonds. The instantaneous return on the bond index is dP
(τ)
t

P
(τ)
t

, which

is adjusted to account for the fraction λtdt of the holdings X
(τ)
t that is lost in the interval [t, t+ dt].

Risk factor dynamics In this economy, there are K + 2 risk factors. The aggregate risk factors
include the short rate rt, the default intensity λt ,and the K demand factors βk,t for k = 1, . . .K. The
(K + 2)× 1 vector st

.
= (rt,λt,β1,t, . . . ,βK,t)

T follows the process

dst = −Γ(st − s)dt+ ΣdBt (2.6)

where s is a (K + 2) × 1 vector of long-term averages and dBt = (dBr,t, dBλ,t, dBβ,1,t, . . . , dBβ,K,t)
T

is a (K + 2) × 1 vector of independent Brownian motions. The matrix Γ controls the instantaneous
drifts of the process. Σ describes the instantaneous covariance of the shocks, whereas the instantaneous
covariance matrix of dst is ΣΣT . Equation (2.6) nests the special case in which Γ and Σ are diagonal
and the risk factors are independent.

In order to simplify the quantitative analysis, Section 4 imposes the restriction that Γ and Σ are
diagonal. Nevertheless, a more sensible approach would be to model the relation between habitat
demand and fundamentals in reduced-form by assuming that (i) the drift of the demand factors depends
on λt and that (ii) shocks to default intensity and the short rate are correlated to shocks to the demand
factors. On the one hand, demand shocks that are correlated to default intensity allow for a more
realistic dependence of habitat demand on credit quality. On the other hand, allowing demand factors
and the short rate to be correlated seems enough to flip the sign of the relation between term premia
and the level of rt, as discussed in Kekre et al. (2022). While the equilibrium solution and the key
results hold under general dynamics, the specification of Γ and Σ is central in determining the direction
in which a shock to each of state variables affects risk premia. Since this has a significant impact on
the the calibration and the quantitative exercise in Section 4, I leave this to the future.

Market clearing Bond markets clear at each maturity τ

Z
(τ)
t +X

(τ)
t = 0 (2.7)

at each point in time. The equilibrium is a collection of prices and quantities {P (τ)
t , X

(τ)
t }τ∈(0,∞) such

that arbitrageurs’ are optimizing and markets clear for all maturities τ .

2.3 Analytical Insights

For tractability, I present analytical results for the case without demand risk. The only aggregate risk
factors are the short rate rt and the default intensity λt. Hence, st collapses to st = (rt,λt)

T . Because
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the equilibrium solution is very close to Vayanos and Vila (2021), I emphasize the novel asset pricing
implications for defaultable bonds and relegate details and derivations to Appendix A.

2.3.1 Equilibrium Characterization

To analytically characterize the segmentation equilibrium, I make the simplifying assumption that the
matrices Γ and Σ are diagonal, which implies that rt and λt are independent. This assumption is solely
for tractability purposes, and the results generalize to correlated shocks, as discussed in Section 2.4.
Following Vayanos and Vila (2021), I conjecture that equilibrium yields are affine functions of the two
risk factors. Under this conjecture, there exist three functions (Ar(τ), Aλ(τ), C(τ)) that only depend
on the maturity τ such that bond prices are exponentially-affine in the risk factors such that

P
(τ)
t = e−[Ar(τ)rt+Aλ(τ)λt+C(τ)] (2.8)

In equilibrium, yields are linear functions of the aggregate risk factors rt and λt, and the equilibrium
solution pins down the unknown functions (Ar(τ), Aλ(τ), C(τ)). The representation in Equation (2.8)
is analogous to the affine term structure models discussed in Lando (1998) and Duffie and Singleton
(2003). The standard arbitrage-free setting of term structure of defaultable bonds assumes the existence
of an equivalent martingale measure Q, thereby taking a stance on the Q-dynamics of the risk factors
(Duffie & Singleton, 1999). However, I do not impose any structure on the state dynamics under the
risk-neutral measure, but I rather derive them as an equilibrium outcome. Lemma (2.1) characterises
the arbitrageurs’ first-order condition implied by (2.8) .

Lemma 2.1 (Arbitageurs’ First-order Condition). Under conjecture (2.8), the arbitrageurs’ first-order
condition is

µ
(τ)
t − rt = λt +Ar(τ)πr,t +Aλ(τ)πλ,t (2.9)

where the risk prices are given by

πr,t
.
= aσ2

r

%! ∞

0
X

(τ)
t Ar(τ)dτ

&
(2.10)

πλ,t
.
= aσ2

λ

%! ∞

0
X

(τ)
t Aλ(τ)dτ

&
(2.11)

The left-hand side of Equation (2.9) is the expected excess return on bonds with maturity τ , and it
reflects the compensation that arbitrageurs require to hold risky assets in equilibrium. The first term
on the right-hand side of (2.9) is the compensation for holding defaultable bonds. Since defaults are
idiosyncratic, there is no risk correction for the event of default. As a result, λt enters the first-order
condition with a constant coefficient of one, which clearly does not depend on risk aversion. This is
due to the idiosyncratic nature of the default events, which implies that the λt is the same under the
physical and equivalent martingale measures.

The other two terms on the right-hand side of (2.9) are the product of risk prices and the asset sensi-
tivity to the corresponding aggregate risk factor. Expressions (2.10) and (2.11) reveal that both risk
prices increase with the aggregate net positions in the defaultable bonds held by arbitrageurs. Lemma
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2 | Segmented Arbitrage

(2.9) shows that, despite rt and λt being independent, the risk prices of short rate risk and default in-
tensity risk are connected. An increase in the net positions held by the arbitrageurs causes an increase
in the market prices of risk associated to both the short rate and default intensity.

The market clearing condition (2.7) implies that the arbitrageurs’ holdings are

X
(τ)
t = −Z

(τ)
t = θ0(τ)− α(τ) [Ar(τ)rt +Aλ(τ)λt + C(τ)] (2.12)

Substituting equation (2.12) into the arbitrageurs’ first-order condition (2.9) and matching coefficients
on rt and λt produces a system of two first-order linear ordinary differential equations in the two
unknown functions Ar(τ) and Aλ(τ). The initial conditions are Ar(0) = Aλ(0) = 0.

A′
r(τ) +Ar(τ)κr − 1 = −aσ2

rAr(τ)

%! ∞

0
α(τ)Ar(τ)

2dτ

&
− aσ2

λAλ(τ)

%! ∞

0
α(τ)Ar(τ)Aλ(τ)dτ

&

A′
λ(τ) +Aλ(τ)κλ − 1 = −aσ2

rAr(τ)

%! ∞

0
α(τ)Ar(τ)Aλ(τ)dτ

&
− aσ2

λAλ(τ)

%! ∞

0
α(τ)Aλ(τ)

2dτ

&

Proposition (2.1) applies the solution approach in Vayanos and Vila (2021) to characterize Ar(τ) and
Aλ(τ), thereby determining the equilibrium in the one sector model.

Proposition 2.1 (Equilibrium in the One Sector Model). Given the initial conditions Ar(0) = Aλ(0) =

0, the function A(τ) = (Ar(τ), Aλ(τ))
T is given by

A(τ) = ψ1

%
1− e−v1τ

v1

&
+ ψ2

%
1− e−v2τ

v2

&
(2.13)

where vk is the k-th eigenvectors of the matrix M defined by

M
.
=

)
ΓT + a

! ∞

0
α(τ)A(τ)A(τ)TdτΣΣT

*

and ψk are constant vectors such that ψk = ukξi, where uk is the eigenvector corresponding to vk and
ξi is the ith component of ξ .

= P−11, where P
.
= [u1, u2].

Matching the terms independent of rt and λt produces another ODE for the function C(τ)

C ′(τ) = A(τ)T
)
Γs+ aΣΣT

! ∞

0
[θ0(τ)− α(τ)C(τ)]A(τ)dτ

*
− 1

2
A(τ)TΣΣTA(τ)

Taking the solution (2.13) for A(τ) as given, the function C(τ) is

C(τ) =

%! τ

0
A(u)Tdu

&
χ− 1

2

! τ

0
A(u)TΣΣTA(u)du (2.14)

where χ is a vector of constants such that

χ =

+
χr

χλ

,
.
= Γs+ aΣΣT

! ∞

0
[θ0(τ)− α(τ)C(τ)]A(τ)dτ (2.15)

Given Equations (2.13) and (2.14), I turn to the analytical properties of the simplified environment.

10



2 | Segmented Arbitrage

2.3.2 Pricing of Defaultable Securities

Proposition (2.1) implies that, in equilibrium, the price of a well-diversified portfolio of defaultable
bonds is an affine function of the aggregate risk factors. Proposition (2.2) shows that the exponentially-
affine function (2.8) also describes the price of an individual defaultable bond.

Proposition 2.2 (Equivalence with Risk-neutral Valuation). Let Q denote the risk-neutral measure
and τD the (stopping) time of default of an individual corporate bond. Then

P
(τ)
t = EQ

t

#
e−

! t+τ
t (ru+λu)du

$
!
= e−[Ar(τ)rt+Aλ(τ)λt+C(τ)] (2.16)

Proposition (2.1) delivers an equilibrium justification to the term structure models of defaultable bonds
(see e.g. Duffie and Singleton (2003, 1999)). The conventional approach is to price defaultable bonds by
directly modeling the Q-dynamics of the risk factors, taking the existence of an equivalent martingale
measure Q as given. In contrast, Proposition (2.2) takes the state dynamics under the physical measure
as given, and describes the Q-dynamics as an endogenous outcome.

2.3.3 Risk-neutral Dynamics and Risk Prices

The equilibrium in Proposition (2.1) and the discussion around Proposition (2.2) provide a complete
characterization of the dynamics of the risk factors under the risk-neutral measure Q. It turns out
that the Q-dynamics of the state variables maintain a stationary mean-reverting structure as Equation
(2.6). However, the drift matrix Γ and the vector of long term averages s are different under Q. In
fact, the risk-neutral dynamics are given by

dst = −MT
-
st − sQ

.
dt+ ΣdBQ

t (2.17)

where sQ is a vector of long-term averages under Q and is implicitly defined by MT sQ = χ. The drift
matrix M is given by

M
.
=

)
ΓT + a

! ∞

0
α(τ)A(τ)A(τ)TdτΣΣT

*

If arbitrageurs are risk-neutral (a = 0) or habitat-investors are price-inelastic (α(τ) = 0), then MT = Γ

and sQ = s̄. One the one hand, if a = 0, arbitrageurs will require no compensation to hold risky assets.
Hence, A(τ) and C(τ) must be set such that µ

(τ)
t − rt = 0. On the other hand, α(τ) ∕= 0 generates

dependence between the arbitrageurs’ pricing kernel and the state variables. Equation (2.17) confirms
that the state dynamics follow a multivariate Ornstein-Uhlenbeck under both measures, although with
a different drift and long-term average.

The dynamics described in (2.17) imply economic restrictions on the risk-neutral dynamics of the
short term rate rt and default intensity λt. Provided that arbitrageurs are risk-averse (a > 0) and that
habitat investors are price elastic (α(τ) ∕= 0), the processes for rt and λt under Q will not generally be
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2 | Segmented Arbitrage

independent. The off-diagonal elements of M are

M12
.
= aσ2

λ

! ∞

0
α(τ)Ar(τ)Aλ(τ)dτ

M21
.
= aσ2

r

! ∞

0
α(τ)Ar(τ)Aλ(τ)dτ

The entries M12 and M21 are, in general, different than zero. An immediate consequence is that, under
the equivalent martingale measure, the instantaneous drift of the short rate process rt depends on λt,
and the same holds for the instantaneous drift of λt, even when Γ is assumed to be diagonal. When
Γ is not diagonal, and Ar(τ) > 0 and Aλ(τ) > 0 for all τ , the loading of drt on λt is higher, that is
κQrλ > κrλ, and the same applies to dλt. Therefore, default intensity risk and interest rate risk will
become more positively correlated (unconditionally) under the equivalent martingale measure.

Standard valuation methods for defaultable bonds are flexible enough to accommodate risk-neutral
dependence between rt and λt. However, specifications of the Q-dynamics usually build on P-measure
logic, such as defaults increase in bad times when interest rates tend to be lower. Hence, the de-
pendence between rt and λt is almost always exogenously specified, e.g. through common loadings on
a latent business cycle factors (Duffie & Singleton, 2003). Equation (2.17) describes the implication
of an additional channel that endogenously generates (or strengthens) dependence between risk fac-
tors under the equivalent martingale measure. In this framework, the dependence between rt and λt

endogenously arises because the arbitrageurs are holding non-zero net positions on the corporate bonds.

The dependence of instantaneous drifts on both state variables, even when Γ is assumed to be diagonal,
suggests that the model generates time-varying risk premia. Proposition (2.3) formalizes this intuition
by describing the drift correction that maps the Brownian motion under the physical measure to the
Brownian motion under Q.

Proposition 2.3 (Time-varying Risk Premia). The mapping between dBt and dBQ
t is state-dependent

and given by

dBQ
t = dBt + Σ−1

)
a

! ∞

0
α(τ)A(τ)A(τ)T

*T
st − aΣT

)! ∞

0
[θ0(τ)− a(τ)C(τ)]A(τ)dτ

*
s

The economic content of Proposition (2.3) is that the risk price of default intensity λt depends on
the level of the short term rate rt. The same holds for the price of short term rate risk. As a result,
Proposition (2.3) implies that the market price of credit risk changes over time even when both the
credit quality of the corporate issuers and the arbitrageurs’ risk aversion are constant over time. The
right-hand side of the arbitrageurs’ first-order condition captures the market price of risk through
πr,t and πλ,t. The fact that Z

j,(τ)
t responds to both λt and rt through the price P

(τ)
t endogenously

induces Q-measure dependence between the aggregate risk factors, even in the special case that they
are independent under P.
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2 | Segmented Arbitrage

2.4 General Case with Demand Shocks

I next present the general solution with K demand factors. The demand intercept is given in equation
(2.3) and the dynamics follow (2.6). Accordingly, I conjecture that there exists K + 2 functions
(Ar(τ), Aλ(τ), {Aβ,k(τ)}Kk=1 , C(τ)) that only depend on maturity τ such that

P
(τ)
t = e−[A(τ)T st+C(τ)]

Applying Itô’s Lemma, the instantaneous drift is given by

µ
(τ)
t

.
= A′(τ)T st + C ′(τ) +A(τ)TΓ (st − s)− 1

2
A(τ)TΣΣTA(τ)

As a result, the arbitrageurs’ first-order condition becomes

µ
(τ)
t − rt = λt + aA(τ)TΣΣT

! ∞

0
X

(τ)
t A(τ)dτ (2.18)

Equation (2.18) generalizes equation (2.9) by introducing K additional demand factors. The interpre-
tation is analogous. Equation (2.18) balances the risk and the return required to hold risky corporate
bonds. Let Θ(τ) = (0, 0, θ1(τ), . . . , θK(τ)) be a 1 × (K + 2) vector collecting the loadings of habitat
demand on the demand factors. Imposing market clearing yields

x
(τ)
t = −Z

(τ)
t = θ0(τ) +Θ(τ)st − α(τ)A(τ)T st − α(τ)C(τ)

Substituting the market clearing condition into the arbitrageurs’ first-order condition gives

A′(τ)T st + C ′(τ) +A(τ)TΓ (st − s) +
1

2
A(τ)TΣΣTA(τ)− eT1 st

= eT2 st + aA(τ)TΣΣT

! ∞

0

/
θ0(τ) +Θ(τ)st − α(τ)A(τ)T st − α(τ)C(τ)

0
A(τ)dτ

where en is the (K + 2) × 1 standard basis vector. Setting the linear terms in st on both sides to be
equal gives the system of K + 2 first-order linear ODEs

A′(τ) +MA(τ)− b = 0 (2.19)

where b
.
= (1, 1, 0, . . . , 0)T and M is the (K + 2)× (K + 2) square matrix

M
.
= ΓT − a

! ∞

0

/
Θ(τ)TA(τ)T − α(τ)A(τ)A(τ)T

0
dτΣΣT (2.20)

Repeating the same with the terms that are independent of st gives

C ′(τ)−A(τ)TΓs+
1

2
A(τ)TΣΣTA(τ) = aA(τ)TΣΣT

! ∞

0
[θ0(τ)− α(τ)C(τ)]A(τ)dτ (2.21)

Equations (2.19) through (2.21) represent the defaultable bond counterparts to the general model in
Vayanos and Vila (2021). Applying the same logic as in Proposition (2.1) and imposing the initial
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3 | Cross-market Arbitrage

conditions A(τ) = 0 and C(τ) = 0 gives

A(τ) =

K+2"

k=1

ψk

%
1− e−νkτ

νk

&

where νk denote the K + 2 eigenvectors of M and ψk = ukξk relates to the corresponding eigenvectors
through ξ = P−1b. Similarly, the function C(τ) is

C(τ) =

)! τ

0
A(u)Tdu

*
χ− 1

2

! τ

0
A(u)TΣΣTA(u)du

where

χ
.
= Γs+ aΣΣT

! ∞

0
[θ0(τ)− α(τ)C(τ)]A(τ)dτ

3 Cross-market Arbitrage

I extend the segmented equilibrium by allowing arbitrageurs to trade both corporate and Treasury
bonds. Allowing arbitrageurs to trade two assets enriches the asset pricing implications by introducing
diversification benefits from holding corporate and government bonds, as the latter might potentially
hedge against default intensity risk. While habitat investors and arbitrageurs have the same preferences
as in Section 2, a set of agents is now marginal in both the government and the corporate market.

3.1 Model

Let j ∈ {G,C} index government and corporate bonds, respectively. Arbitrageurs have mean-variance
preferences over instantaneous changes in wealth

max
{Xj,(τ)

t }τ∈{0,∞}

#
Et(dWt)−

a

2
Vart(dWt)

$
(3.1)

With the inclusion of Treasuries, the arbitrageurs’ budget constraint is

dWt =

1

2Wt −
! T

0

"

j

X
j,(τ)
t dτ

3

4 rtdt+

! T

0
X

G,(τ)
t

dP
G,(τ)
t

P
G,(τ)
t

dτ

+

! T

0
X

C,(τ)
t

'
dP

C,(τ)
t

P
C,(τ)
t

− λtdt

(
dτ

(3.2)

The first term of the budget constraint (3.2) corresponds to a position in the short rate, the second
term to a position in Treasury bonds, and the third term to a position in corporate bonds. The case
of segmented arbitrage along the lines of Gourinchas et al. (2022) can be obtained by assuming that
arbitrageurs can only trade in one market (e.g. Treasury), nesting Section 2 as a special case.

Building on Vayanos and Vila (2021), I assume that habitat investors have preferences not only for
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3 | Cross-market Arbitrage

specific maturities but also for specific asset classes. For tractability, I assume that preferences take
an extreme form, where investors demand only the bond closest to their preferred characteristics.

Z
(τ),j
t = −αj(τ) logP

j,(τ)
t − β

j,(τ)
t (3.3)

β
j,(τ)
t = θj0(τ) +

K"

k=1

θjk(τ)βk,t (3.4)

This way of specifying habitat demand is flexible as it can accommodate shocks to specific asset classes.
Suppose that the first and the second factors are pure Treasury and corporate bond demand shocks,
respectively. Then, θC1 (τ) = 0 and θG2 (τ) = 0, so that β1,t (β2,t) only affects habitat demand for
Treasury (corporate) bonds. These demand factors can also be interpreted as shocks to the residual
supply as in Greenwood and Vayanos (2014) and He, Nagel, and Song (2022), which is helpful to
understand how Quantitative Easing affect credit spreads and the term structure of defaultable bonds.

3.1.1 Equilibrium without Arbitrageurs

In a segmentation equilibrium in which only habitat investors are trading in either government or
corporate bonds, yields are solely determined by local demand shocks. Yields are given by

y
j,(τ)
t =

β
j,(τ)
t

αj(τ)τ
=

θj0(τ) +
5K

k=1 θ
j
k(τ)βk,t

αj(τ)τ

Absent arbitrageurs, yields for each maturity and asset class are determined solely by local demand
shocks of habitat investors. This represents an extreme version of the preferred-habitat hypothesis of
Modigliani and Sutch (1966), extended to multiple asset classes.

3.1.2 Equilibrium with Arbitrageurs

I conjecture that, in equilibrium, yields of both government and corporate bonds are affine functions
of the state variables. In particular, there exists functions (Aj(τ)

T , Cj(τ)) for j ∈ {G,C} such that

P
j,(τ)
t = e−[Aj(τ)

T st+Cj(τ)] (3.5)

The key component of conjecture (3.5) is that the Treasury yields also load on default intensity λt.
Under conjecture (3.5), instantaneous returns are

dP
j,(τ)
t

P
j,(τ)
t

= µ
j,(τ)
t dt−Aj(τ)

TΣdBt

µ
j,(τ)
t = A′

j(τ)
T st + C ′

j(τ) +Aj(τ)
TΓ(st − s) +

1

2
Aj(τ)

TΣΣTAj(τ)
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Substituting this into the budget constraints gives the objective

max
{Xj,(τ)

t }τ∈(0,∞)

1

2Wt −
! ∞

0

"

j

X
j,(τ)
t

3

4 rtdt+

! ∞

0
µ
(τ),G
t X

(τ),G
t dτdt+

! ∞

0

-
µ
(τ),C
t − λt

.
X

(τ),C
t dτdt

− a

2

6

7
! ∞

0

"

j

X
j,(τ)
t Aj(τ)

Tdτ

8

9ΣΣT

6

7
! ∞

0

"

j

X
j,(τ)
t Aj(τ)dτ

8

9 dt

Pointwise maximization with respect to X
j,(τ)
t produces the set of first-order conditions

µ
G,(τ)
t − rt = aAG(τ)

TΣΣT

6

7
"

j

! ∞

0
X

j,(τ)
t Aj(τ)dτ

8

9 (3.6)

µ
C,(τ)
t − rt = λt + aAC(τ)

TΣΣT

6

7
"

j

! ∞

0
X

j,(τ)
t Aj(τ)dτ

8

9 (3.7)

The first-order conditions pins down the arbitrageurs’ pricing kernel in a no-arbitrage setting. Quot-
ing Vayanos and Vila (2021), no-arbitrage in continuous time requires that there exist prices specific
to each risk factor and common across assets, such that the expected return of any zero cost port-
folio is equal to the sum across factors of the portfolio’s sensitivity to each factor times the factor’s price.

The first-order conditions (3.6) and (3.7) reveal that bond risk premia depends on the arbitrageurs’ net
positions in both the Treasury and the corporate market. As a result, a demand or a supply shock in
the corporate bond propagate to Treasury yields, thereby affecting their excess return, and vice versa.
The only difference between (3.6) and (3.7) is that the λt only shows up in the first-order condition for
corporate bonds. The quantity

#5
j

:∞
0 X

j,(τ)
t Aj(τ)dτ

$
can be interpreted as a measure of interme-

diaries’ inventories in the spirit of He, Khorrami, and Song (2022). Although, expected returns load
differently on this common factor through asset-specific sensitivities Aj(τ), the first-order conditions
suggest that a strong principal component is likely to capture most of the variation in credit spreads
over and above λt and bond risk premia. This observation is consistent with Friewald and Nagler
(2019) and He, Khorrami, and Song (2022).

Define the 1 × (K + 2) vector Θj(τ) = (0, 0, θj1(τ), . . . , θ
j
K(τ)) so that β

j,(τ)
t = θj0(τ) + Θj(τ)st. The

market clearing conditions for j ∈ {G,C} are

x
j,(τ)
t = −Z

(τ),j
t = θj0(τ) +Θj(τ)st − αj(τ)

/
AT

j (τ)st + Cj(τ)
0

Plugging the market clearing conditions back into the arbitrageurs’ first-order conditions and setting
the terms linear in st to be equal delivers two systems of K + 2 linear first-order ODEs

A′
G(τ) +MAG(τ)− e1 = 0 (3.8)

A′
C(τ) +MAC(τ)− e1 − e2 = 0 (3.9)
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where the (K + 2)× (K + 2) matrix M is the same in both systems and it is given by

M
.
= ΓT − a

"

j

! ∞

0
ΘT

j (τ)Aj(τ)
T − αj(τ)Aj(τ)Aj(τ)

TdτΣΣT (3.10)

The matrix M is the same for both AG(τ) and AC(τ), and it is because M characterizes the Q-dynamics
of the risk factors. The difference between this Section and Section 2.4 is that here the risk corrections
depend on the combined holdings of Treasury and corporate bonds. I solve (3.8) and (3.9) under the
boundary conditions that AG(0) = AC(0) = 0. The next result characterizes the equilibrium in the
two asset model, which gives the two asset counterpart of Proposition (2.1).

Proposition 3.1 (Equilibrium in the Two Sector Model). Given the initial conditions AG(0) =

AC(0) = 0, the (K + 2) dimensional functions AG(τ) = (AG,r(τ), AG,λ(τ), {AG,βk
(τ)}Kk=1)

T and
AC(τ) = (AC,r(τ), AC,λ(τ), AC,β1(τ), . . . , {AG,βk

(τ)}Kk=1)
T are given by

AG(τ) =

K+2"

k=1

ψG
k

%
1− e−vkτ

vk

&
(3.11)

AC(τ) =

K+2"

k=1

ψC
k

%
1− e−vkτ

vk

&
(3.12)

where vk are the eigenvectors of the matrix M defined in (3.10). Furthermore, ψj
k are constant vectors

such that ψj
k = ukξ

j
i , where uk is the eigenvector corresponding to vk and ξji is the asset-specific ith

component of ξj .
= P−1bj, where P

.
= [u1, u2], bG = e1 and bC = e1 + e2.

What makes the system hard to solve is that the entries of M are functions of Aj(τ), which, as in
Lemma (A.1), depends on the eigenvectors and eigenvalues of M itself. Furthermore, the matrix M

has to make sure that both (3.11) and (3.12) hold simultaneously. I numerically solve (3.8) and (3.9)
as in Vayanos and Vila (2021). Then, taking AG(τ) and AC(τ), I collect the terms independent of st
such that

CG(τ) =

)! τ

0
AG(u)

Tdu

*
χ− 1

2

! τ

0
AT

G(u)ΣΣ
TAG(u)du (3.13)

CC(τ) =

)! τ

0
AC(u)

Tdu

*
χ− 1

2

! τ

0
AT

C(u)ΣΣ
TAC(u)du (3.14)

where χ is a K + 2 vector of constants such that

χ
.
= Γs+ aΣΣT

6

7
"

j

! ∞

0
Aj(τ)

-
θj0(τ)− αj(τ)Cj(τ)

.
dτ

8

9 (3.15)

To solve for the vector of constants χ, I substitute (3.13) and (3.14) into (3.15) and derive a system
of K + 2 linear equations in the K + 2 unknown entries of χ. The functions (3.11) through (3.15)
characterize the term structures of government and defaultable bonds. This system produces an
equilibrium analogous to the two country framework in Gourinchas et al. (2022). Propositions (2.2)
and (2.3) also apply to the two sector case, although the dynamics are harder to characterize. The
matrix M and the vector χ have the same interpretation as in the segmented arbitrage case, and they
fully determine the dynamics of the risk factors under the equivalent martingale measure Q.

17



3 | Cross-market Arbitrage

3.2 Credit Spreads

Proposition (3.1) delivers an expression that informs how monetary policy and demand shocks affect
credit spreads. In equilibrium, yields for j ∈ {G,C} are given by

y
j,(τ)
t =

1

τ

/
Aj(τ)

T st + Cj(τ)
0

The credit spread S(τ)
t at maturity τ is defined as the yield on corporate bonds minus the yield on

Treasury bonds of the same maturity, that is

S(τ)
t

.
= y

C,(τ)
t − y

G,(τ)
t =

1

τ

/
AS(τ)

T st + CS(τ)
0

(3.16)

where AS
.
= AC(τ) − AG(τ) and CS

.
= CC(τ) − CG(τ). Let δt

.
= (β1,t, . . . ,βk,t) be vector of demand

factors only. Credit spreads can then be written as

S(τ)
t =

1

τ
[AS,r(τ)rt +AS,λ(τ)λt +AS,δ(τ)δt + CS(τ)] (3.17)

where AS,δ(τ)
.
= (AC,β1 , . . . , AC,βk

)T −(AG,β1 , . . . , AG,βk
)T . Equation (3.17) reveals that credit spreads

are affine functions of the aggregate risk factor st. An immediate consequence is that credit spreads
not only depend on the level of credit risk, but also on the level of the short rate rt. To the extent
that AS,r(τ) ∕= 0, AS,λ(τ) ∕= 0, and AS,δ(τ) ∕= 0, changes in credit spreads are driven by either (i)
fluctuations in the credit quality of the corporate sector dλt, (ii) movements of the short term rate rt,
and (iii) local or global demand effects dδt.

Changes in either the level of the short rate rt or default intensity λt move credit spreads. It is natural
to expect that changes in default intensity are positively related to yield spreads, such that

∂S(τ)
t

∂λt
=

AS,λ(τ)

τ
> 0

where AG,λ(τ) < 0 and AC,λ(τ) > 0. The novel implication is that a deterioration in credit quality
widens credit spreads by both (i) raising the yield on corporate bonds AC,λ(τ) > 0 and (ii) lowering
the yield on Treasuries AC,λ(τ) < 0. This mechanism emerges as a combination of two effects. First,
an increase in λt implies a deterioration in the economic fundamentals, which makes corporate bonds
less attractive to arbitrageurs1. Second, an increase in λt alters habitat demand for corporate bonds,
impacting the market prices of risk on the aggregate risk factors.

3.2.1 Credit Spreads and Short Term Rates

The sign of the relation between short rates and credit spreads is ambiguous. The theoretical insight
that the level of the short rate causes credit spreads to move is not novel. Among others, Longstaff

1The specification of habitat demand as a function of prices obfuscates the effect of arbitrageurs’ portfolio rebalancing
on credit spreads. Provided that AC,λ(τ) < 0, an increase in λt lowers the equilibrium price of corporate bonds. As a
result, habitat investors demand more, so that the net positions held by the arbitrageurs decline in equilibrium. Because
of this, the market prices of risk on the aggregate risk factors also declines. I plan to address this in future iteration of
the paper by specifying habitat demand as a function of fundamentals in the spirit of (Kyle & Xiong, 2001). Appendix
B provides a tentative microfoundation of habitat demand curves.
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and Schwartz (1995) present a structural model of default in which credit risk and interest rates turn
out to be negatively correlated. The reason is that a higher rt increase the risk-neutral drift of the
firm value process. Since a higher drift reduces the probability of default, a higher short rate rt lowers
credit spreads. Furthermore, Duffee (1999), Collin-Dufresne et al. (2001), and Gertler and Karadi
(2015) document a robust empirical relation between credit spreads and interest rates.

In equation (3.17), a unit change in rt moves credit spreads by AS,r(τ). The direction depends on the
relative sensitivity of corporate bonds to Treasuries with respect to the policy rate, that is

∂S(τ)
t

∂rt
=

AS,r(τ)

τ
=

AC,r(τ)

τ
− AG,r(τ)

τ

In this model, however, the mechanism driving the negative correlation between credit spreads and the
short term rate is different, and it does not rely on any structural model of credit valuation. Assuming
that AG,r(τ) > AC,r(τ) > 0, in equilibrium, an increase in rt raises yields throughout the term
structure. Higher yields induce habitat investors to demand more bonds at all maturities. Therefore,
the residual supply that arbitrageurs have to absorb shrinks, reducing their net exposure to aggregate
risk factors. Since risk premia are proportional to the arbitrageurs’ net positions, as in (3.6) and (3.7),
the risk prices on interest rate and credit risk decline. A decline in the market price of credit risk will
disproportionately affect defaultable bonds, therefore lowering credit spreads. Consistent with this
reasoning, the calibrated model in Section 4 implies that AS,r(τ) > 0, although the general conditions
under which AG,r(τ) > AC,r(τ) > 0 remains to be determined.

3.2.2 Determinants of Credit Spread Changes

The credit spread puzzle refers to the observation that only a relatively small fraction of the changes in
credit spreads can be explained by standard credit risk factors (Collin-Dufresne et al., 2001; Friewald
& Nagler, 2019; He, Khorrami, & Song, 2022). Including explanatory variables motivated by structural
models of credit risk, Collin-Dufresne et al. (2001) run regressions of the form

∆CSi
t = α+ βi

1∆xit + βi
2∆zt + εit (CGM)

where xit is a vector of firm-specific controls (e.g. leverage), whereas zt includes aggregate variables
such as the short term rate and the slope of the yield curve. The next proposition presents the model
counterpart to regression (CGM).

Proposition 3.2 (Determinants of Changes in Credit Spreads). Fixing the maturity τ , instantaneous
changes in credit spreads dS(τ)

t are given by

dS(τ)
t =

1

τ
AS(τ)dst =

1

τ
[AS,r(τ)drt +AS,λ(τ)dλt +AS,δ(τ)dδt]

As a result, the (CGM)-regression implied by the model is

dS(τ)
t = β

(τ)
1 drt + β

(τ)
2 dλt + ε

(τ)
t
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where the slope coefficients and the residuals are given by

β
(τ)
1

.
=

1

τ
AS,r(τ) : β

(τ)
2

.
=

1

τ
AS,λ(τ) : ε

(τ)
t

.
=

1

τ
AS,δ(τ)dδt

Furthermore, in the special case that Σ and Γ are diagonal

∆S(τ)
t = β

(τ)
0 + β

(τ)
1 rt + β

(τ)
2 λt + ε

(τ)
t

where the coefficients and the residual are given by

β
(τ)
0

.
= AS,r(τ)κrr +AS,λ(τ)κλλ : β

(τ)
1

.
= −AS,r(τ)κr : β

(τ)
2

.
= −AS,λ(τ)κλ

ε
(τ)
t

.
= AS,r(τ)σr∆Br,t +AS,λ(τ)σλ∆Bλ,t −

K"

k=1

AS,βk
(τ) [κβk

βk,t + σβk
∆Bβ,k,t]

Building on Proposition (3.2), I interpret the CGM R-squared R2
CGM through the lens of the model as

the proportion of the variation in credit spreads not explained by the short term rate and the default
intensity. Formally,

1−R2
CGM

.
=

Var
-
ε
(τ)
t

.

Var
-
dS(τ)

t

. =
AS,δ(τ)ΣδΣ

T
δ AS,δ(τ)

T

AS(τ)ΣΣTAS(τ)T
(3.18)

Equation (3.18) indicates that the proportion of variation in changes of credit spreads not explained
by rt and λt, i.e. CGM-Residual, is larger when demand shocks are more volatile and persistent. To
the extent that demand factors have a strong principal component, equation (3.18) can also rationalize
the strong factor structure in residuals documented by Collin-Dufresne et al. (2001) and revisited by
He, Khorrami, and Song (2022). In the special case that (Γ,Σ) are diagonal

1−R2
CGM =

5K
k=1AS,βk

(τ)2
σ2
βk

2κβk

AS,r(τ)2
σ2
r

2κr
+AS,λ(τ)2

σ2
λ

2κλ
+

5K
k=1AS,βk

(τ)2
σ2
βk

2κβk

Hence, if demand shocks are either (i) very persistent (low κβk
) or (ii) highly volatile (high κβk

), most
of the variation in credit spreads will not be explained by changes in rt and λt. That local and global
demand shocks potentially explain a large percentage of the variation in credit spreads is consistent
with Collin-Dufresne et al. (2001) and He, Khorrami, and Song (2022). To generate a low R2

CGM,
the model must eventually introduce asset-specific demand shocks that have asymmetric effects on
corporate and government bonds. Otherwise, changes in credit spreads are mostly driven by λt since
it is the only aggregate factor that impact Treasuries and corporate bonds differently. However, for
parsimony, the calibration in Section 4 only includes a single demand factor.
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3.2.3 Risk Premia and Demand Effects, and Correlations

The set of arbitrageurs’ first-order conditions (3.6) and (3.7) imply that the (K+1)×1 vector of factor
prices πt is given by

πt = aΣΣT

6

7
"

j

! ∞

0
X

j,(τ)
t Aj(τ)dτ

8

9 (3.19)

A key implication of equation (3.19) is that the market risk prices of the aggregate risk factors depend
on the habitat demand of both corporate and Treasury bonds. As a result, even asset specific demand
shocks, such as Treasury-only QE, have global effects in the sense that they affect yields across all
markets. The model also predicts that an increase in either (i) government debt or (ii) corporate debt
supply affects the term structure of both asset classes as well as credit spreads. This expression is
analogous to the global arbitrage equilibrium of Gourinchas et al. (2022) in a two country setting.

The market prices of risk are zero if arbitrageurs are risk neutral (a = 0) or if habitat demand is price-
inelastic (α(τ) = 0). The expectation hypothesis obtains in the special case that a = 0. On the one
hand, when arbitrageurs’ are risk neutral, the instantaneous expected returns on all assets, in equilib-
rium, must be rt. In the one asset benchmark of Section 2, this implies that µ(τ)

t − λt = rt. In the two
asset case, this means that µ

C,(τ)
t − λt = rt and µ

G,(τ)
t = rt. On the other hand, α(τ) ∕= 0 introduces

dependence between the pricing kernel and the risk factors. When habitat demand is price inelastic, all
the time-variation in risk premia is driven by the demand factors as in Greenwood and Vayanos (2014).

Tn equilibrium, instantaneous returns are given by

dP
j,(τ)
t

P
j,(τ)
t

= µ
j,(τ)
t dt−Aj(τ)

TΣdBt

Finally, instantaneous covariance between Treasury and corporate bond returns is

Cov

'
dP

G,(τ)
t

P
G,(τ)
t

,
dP

C,(τ)
t

P
C,(τ)
t

(
= AT

G(τ)ΣΣ
TAC(τ)

3.3 Discussion of Modelling Assumptions

I discuss some limitations and drawbacks of the model in order to assess the degree to which key results
presented in Section 2 and Section 3 are driven by specific assumptions.

3.3.1 Microfoundation of Habitat Demand

In both the segmentation framework of Section 2 and in the two asset framework of Section 3, I specify
habitat demand Z

j,(τ)
t as a function of P j,(τ)

t only. Yet, specification (3.3) has two main drawbacks.

Substitution Patterns On the one hand, I assume an extreme form of preferences for specific
maturities and asset classes. In particular, it seems reasonable that habitat investors should either
(i) be responsive to the prices of bonds with very close maturities τ ± dτ or (ii) not be responsive
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at all. Vayanos and Vila (2021) provide an optimizing microfoundation based on infinitely large
risk aversion and max-min preferences. Nevertheless, it seems difficult to connect this nonstandard
behavior to institutional investors such as insurance companies and pension funds. A more realistic
microfoundation should take into account specific mandates or constraints faced by these investors,
incorporating duration matching, benchmarking, or regulations, for example. To the extent that
a better microfounded demand function makes habitat investors respond to price of other bonds,
habitat investors would partially behave as arbitrageurs themselves, increasing arbitrage capacity in
the economy. The key propositions are likely to still hold in a more general framework, but the analysis
must then consider a continuum of portfolios (Vayanos & Vila, 2021), compromising on tractability.

Prices and Fundamentals On the other hand, specification (3.3) is not particularly suitable for
assets whose return are uncertain even if held until maturity. Although this assumption is shared with
Droste et al. (2021) and Costain et al. (2022), the fact that habitat demand only responds to prices
and not to economic fundamentals might be problematic. A deterioration in the credit quality of the
corporate issuer should, in fact, initially induce habitat investors to sell. The subsequent decline in
price might then make them willing to buy a bit more (or to sell less). However, habitat investors do
not respond to fundamental news, and they only react to prices movements. It follows that, to the
extent that Aj,λ(τ) > 0, a higher default intensity makes habitat investors demand more of the risky
asset. Ideally, to properly accommodate risky assets, habitat demand should incorporate a notion of
risk or economic fundamentals in the spirit of Kyle and Xiong (2001). Appendix B presents a tentative
microfoundation of habitat demand that responds to both st and P

j,(τ)
t . Allowing demand shocks to

be correlated to shocks to rt and λt is a first step in this direction, but more work should be done in
the future.

More important than the functional form, however, is that habitat demand respond to the state
variables, which creates dependence between the arbitrageurs’ pricing kernel and the risk factors. This
holds if habitat investors respond to prices, to expected returns, or to fundamentals directly (e.g. the
supply shock in Greenwood and Vayanos (2014)). Hence, the key results in Propositions (2.2) and
(2.3) would still go through even with a more realistic demand function.

3.3.2 Homoscedastic Demand Shocks

When the matrices Σ and Γ are diagonal, the dynamics of the default intensity process are

dλt = κλ(λ− λt)dt+ σλdBλ,t

These dynamics have the drawback that the default intensity can become negative with non-zero
probability. Although in simulations the probability that λt < 0 is negligible, it seems sensible to
evaluate alternative dynamics. A first approach is to model default intensity as a two-state Markov
process as in He, Nagel, and Song (2022). A second approach is to assume that dλt follows Cox,
Ingersoll, and Ross (1985) dynamics, that is

dλt = κλ(λ− λt)dt+ σλ
;

λtdBλ,t

22



4 | Quantitative Analysis

Unfortunately, even though these dyamics would ensure that λt > 0, it is not consistent with an
exponentially-affine equilibrium. Loosely speaking, homoscedasitc default shocks would introduce a
second source of variation in credit risk premia over and above variation in habitat demand. The
resulting pricing kernel would then be characterized by a product of two affine functions, i.e. habitat
demand and the variance of default shocks. Appendix B.1 formalizes the argument by showing that
heteroscedastic default intensity shocks would lead to a violation of conjecture (3.5). I expect, however,
the key results to hold under more general dynamics.

3.3.3 Idiosyncratic Defaults and OTC Trading

Throughout the paper, I assume that defaults are idiosyncratic. As a result, there is no risk compensa-
tion for default events, and the default probabilities are the same under both physical and risk-neutral
measure. Although the introduction of some degree of correlation across defaults would bring the
model closer to reality, it is unlikely that the key results would disappear. However, correlated default
would imply a non-zero market price of default risk, which makes the analysis more complicated. The
case of aggregate default risk is studied in Costain et al. (2022).

Further, Friewald and Nagler (2019) point out that corporate bonds are mostly traded in over-the-
counter (OTC) markets. As a result, there might be additional frictions that distinguish the market
for corporate and Treasury bonds other than those capture in this paper. If anything, however, the
premise of a few dealers managing bond inventories to provide liquidity to customers seems to provide
additional support to the mechansism of concentrated risks emphasized in Section 2 and Section 3.

4 Quantitative Analysis

4.1 Data and Descriptives

Before turning to the calibration exercise, I present some descriptive evidence on (i) the term structure
of corporate and Treasury bonds, (ii) the term structure of credit spreads, (iii) the relation between
term premia and credit spreads, and (iv) the determinants of credit spread changes. My goal is to
preview the type of evidence that I plan to collect in order to validate and test the predictions of the
general model outlined in Section 3.

Data I obtain data on Treasury bond yields from Gürkaynak, Sack, and Wright (2007). The data
contains daily observations of the Treasury yield curve from June 1961 to the present. Daily data on
corporate bond yields is from Bloomberg. ICE BofA publishes corporate bond indices for different
maturities and credit ratings. The indices are divided between investment grade (IG) and high-yield
(HY) bonds. IG indices include six maturity buckets, i.e. {[1, 3), [3, 5)[5, 7), [7, 10), [10, 15), [15, 30)}
and four rating categories, i.e. AAA, AA, A, and BBB. High-yield bonds only include three maturity
buckets {[1, 5), [3, 5)[5, 8), [8, 30)} and three rating categories, i.e. BB, B, and CCC. I only consider the
period starting in January 1997, which coincides with the beginning of the ICE BofA sample. To be
consistent with the model, I interpret the portfolio of corporate sectors as being issued by companies
rated BBB. Hence, the goal is to match key moments of the BBB yield curve. To measure term premia,
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I obtain data from Adrian, Crump, and Moench (2013). Daily VIX data and the yield on three-month
Treasury bills are from Fred. Finally, I obtain expected default frequencies (EDF) from Moody’s. The
monthly sample is August 1998 to December 2016.

Term Structure of Credit Spreads Table 4.1 and Table 4.2 report the historical average of
corporate bond yields by maturity and credit rating. The right panel in Table 4.1 documents that the
term structure of corporate bond is, on average, upward sloping. Effective yields at long maturities
systematically exceed average short term yields at all maturities and across credit ratings. The term
structure of credit spreads for investment grade issuers, measured by the option adjusted spreads in
the right panel of Table 4.1, is also upward sloping. The difference between the 15+ year OAS and the
1–3 year OAS is virtually the same across all credit rating. The slope of the term structure of credit
spreads is 0.66%, 0.60%, 0.55%, and 0.61%. for AAA, AA, A, and BBB issuers, respectively. A second
observation is that credit spreads are strictly positive even at very short horizons.

Effective Yield (%) Option Adjusted Spread (%)

Rating All 1–3 3–5 5–7 7–10 10–15 15+ All 1–3 3–5 5–7 7–10 10–15 15+

IG 4.72 3.56 4.12 4.63 5.02 5.38 5.79 1.50 1.11 1.32 1.53 1.62 1.73 1.79
AAA 4.03 2.99 3.45 3.84 4.22 4.89 5.07 0.78 0.53 0.63 0.72 0.78 1.19 1.03
AA 4.07 3.14 3.66 4.07 4.48 4.83 5.31 0.96 0.69 0.84 0.96 1.06 1.11 1.29
A 4.47 3.43 3.95 4.38 4.77 5.11 5.53 1.27 0.98 1.14 1.28 1.36 1.44 1.53

BBB 5.21 4.04 4.58 5.04 5.39 5.71 6.17 1.95 1.59 1.78 1.94 1.99 2.08 2.20

Table 4.1: Average effective yields and option adjusted spreads (OAS) for investment grade bonds by maturity
and credit rating. Data is from ICE BofA and the daily sample is from January 1997 to present.

In contrast, Table 4.2 shows that, on average, the term structure of credit spreads for high-yield
issuers slopes down. While the 1–5 year spread and the 8+ year spread are almost identical BB rated
bonds, the difference between the 8+ year and the 1–5 year OAS for CCC bonds is substantial. This
observation is not new, and it has been known since the early work of Jones, Mason, and Rosenfeld
(1984) and Sarig and Warga (1989). Yet, these observations are consistent with the implications of
a credit downgrade in Figure 4.8a. Since I set all risk factors equal to their long-term average, the
mechanism cannot be fully explained by mean reversion in the default intensity process.

Effective Yield (%) Option Adjusted Spread (%)

Rating All 1–5 5–8 8+ All 1–5 5–8 8+

HY 8.47 – – – 5.38 – – –
BB 6.66 6.22 6.64 7.11 3.53 3.57 3.51 3.55
B 8.48 8.66 8.40 8.39 5.39 5.95 5.28 4.94

CCC 14.17 15.83 13.24 12.78 11.20 13.18 10.19 9.44

Table 4.2: Average effective yields and option adjusted spreads (OAS) for high-yield bonds by maturity and
credit rating. Data is from ICE BofA and the daily sample is from January 1997 to present.

Term Premia and Credit Spreads I next turn to the relation between credit spreads and term
premia. Figure 4.1 compares the evolution of term premia, taken from Adrian et al. (2013), to the
evolution of credit spreads from January 1997 to present. In the first part of the sample, the correlation
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between term premia and credit spreads appears to be positive at both intermediate (Figure 4.1a) and
long (Figure 4.1b) maturities.

(a) OAS and term premia, short maturity.

2000 2005 2010 2015 2020
0

1

2

3

4

5

6

7

8

9

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
BBB 3-5yr OAS
5yr TP (ACM)

(b) OAS and term premia, long maturity.
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Figure 4.1: The figure plots term premia against credit spreads. The left panel compares the comovement
of 3–5 year OAS for BBB-rated issuers to five year term premia. The right panel compares the comovement of
10–15 year OAS for BBB-rated issuers to the ten year term premia. OAS are from ICE BofA, whereas term
premia are from Adrian et al. (2013). The daily sample is from January 1997 to present.

In the second part of the sample, term premia and credit spreads appear to move in opposite direction.
The negative correlation is particularly striking in march 2020 at the onset of the Covid-19 pandemic.
The spike in credit spreads is accompanied by a reduction in term premia at both the five year and the
ten year horizon (He, Nagel, & Song, 2022). The descriptive evidence suggests that credit spreads and
term premia are interconnected. The direction of the dependence mostly likely changed after 2009,
and this observation is consistent with Li (2023).

Determinant of Credit Spread Changes I revisit Collin-Dufresne and Goldstein (2001) and
explore the determinant of credit spread changes to provide an empirical counterpart to Proposition
(3.2). To this purpose, I run descriptive regressions of the form

∆OASt = β0 + β1∆rt + β2∆Slopet + β3∆VIXt + β4∆TPt + β5∆TPt + β6∆EDFt + εt (4.1)

where rt is the yield on 3-month Treasury bills, Slopet is the difference between the 10-year and the
1-year Treasury yield, VIXt is the volatility index, TPt is the 5-year term premium, and EDFt is a 6-
month ahead forecast of expected defaults. Besides rt. the inclusion of the other controls is motivated
by structural models of default (Collin-Dufresne & Goldstein, 2001; He, Khorrami, & Song, 2022). As
a caveat, Equation (4.1) is not causal. Rather, the goal is (i) to understand correlations between credit
spreads and the controls variables and (ii) to assess the explanatory power in the light of the evidence
in Collin-Dufresne and Goldstein (2001). Table 4.3 report coefficient estimates for BBB-rated bonds
of 3–5yr and 10–15yr maturities.

An increase in the short term rate is negatively correlated with changes in credit spreads across all
the specifications. However, the magnitude of the coefficient increase substantially once I control for
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expected defaults, as shown by Column (5) in both the left and the right panel of Table 4.3. The
magnitude of the coefficient is twice as large for long term corporate bonds. However, the negative
correlation might just capture policy responses to business cycle fluctuations. Changes in credit spreads
are negatively related to changes in the slope of the yield curve. In contrast, an increase in the aggregate
risk, as measured by the VIX, is positively associated to credit spreads. As expected, an increase in
expected defaults is strongly positively correlated to changes in corporate spreads. The magnitude of
the coefficient, however, is roughly similar in both the left and the right panel.

BBB Option Adjusted Spread – 3–5yr BBB Option Adjusted Spread – 10–15yr

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

∆rt −0.07∗∗∗ −0.07∗∗∗ −0.06∗∗ −0.05∗ −0.29∗∗∗ −0.06∗∗∗ −0.09∗∗∗ −0.06∗∗∗ −0.05∗∗ −0.65∗∗∗
(0.02) (0.03) (0.02) (0.02) (0.10) (0.02) (0.02) (0.02) (0.02) (0.09)

∆Slopet −0.04∗ −0.03 0.05 −0.14 −0.15∗∗∗ −0.15∗∗∗ −0.03 −1.10∗∗∗
(0.02) (0.02) (0.04) (0.23) (0.02) (0.02) (0.04) (0.22)

∆VIXt 0.00∗∗∗ 0.00∗∗∗ 0.03∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.07∗∗∗
(0.00) (0.00) (0.01) (0.00) (0.00) (0.01)

∆TP(τ)
t −0.00∗ −0.00 −0.00∗∗∗ 0.01∗∗∗

(0.00) (0.00) (0.00) (0.00)

∆EDF(h)
t 0.13∗∗ 0.16∗∗∗

(0.05) (0.01)

Constant 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

N 6596 6596 6586 6586 194 6596 6596 6586 6586 194
R2 0.01 0.01 0.02 0.02 0.42 0.01 0.05 0.07 0.08 0.83
Adjusted R2 0.01 0.01 0.02 0.02 0.40 0.01 0.05 0.07 0.08 0.83

Table 4.3: OLS estimates of the linear regression model (4.1). For columns (1) through (4), the daily
sample is January 1997 to present. For column (5), the monthly sample is August 1998 to December
2016. Robust standard errors are in parenthesis.

A second observation is that for Columns (1) through (4), the regressions R2 is very small, and never
exceeds 8% after controlling for short rates, slope, volatility, and term premia. However, once expected
default are controlled for, the adjusted R2 jumps to 40% for intermediate maturities and to 83% for
long maturities. While the sign of the coefficients is consistent with Collin-Dufresne and Goldstein
(2001) and He, Khorrami, and Song (2022), the regression R2 are much higher.

4.2 Calibration

Following Vayanos and Vila (2021) and Kekre et al. (2022), I assume an exponential form for the price
elasticity, intercept, and slope of habitat demand by maturity such that

αj(τ) = αje−δjα (4.2)

θj1(τ) = θj1

-
e−δjατ − e−δjθτ

.
(4.3)

θj0(τ) = θj0

-
e−δjατ − e−δjθτ

.
(4.4)

for τ ≤ 30 and αj(τ) = θj1(τ) = θj0(τ) = 0 otherwise. The functions (4.2), (4.3), and (4.3) all share an
exponential structure. For parsimony, I consider a single demand factor βt and I take the matrices Γ
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and Σ to be diagonal. As a result, the equilibrium term structure of government and corporate bonds
is determined by 19 parameters. The first nine parameters characterize the dynamics of the aggregate
risk factors, (κr,σr, r̄) for the short rate, (κλ,σλ,λ) for the default intensity, and (κβ ,σβ ,β) for the
demand factor. The other ten parameters control the slope (δjα,αj) and the intercept (θj0, θ

j
1, δ

j
θ) of

preferred-habitat demand. The restrictions on (Γ, Σ) are akin to Gourinchas et al. (2022) and consid-
erably simplify the estimation of the model and the interpretation of the results, but that goes at the
expense of a more realistic response of habitat demand to economic fundamentals.

Given that only the product θ1σβ matters for the equilibrium dynamics, I normalize σr = σβ . I also
normalize β = 0 without loss of generality. To further reduce the number of parameters, I assume
that θj1, θ

j
0, and δjθ are the same for both sectors. Given that δjα varies across security, however, the

demand slope and the demand intercept will be different across assets. After this, there remains 14
parameters, that is seven characterizing state dynamics (κr,σr, r̄,κλ,σλ,λ,κβ) and the other seven
describing habitat demand (δGα , δ

C
α ,α

G,αC , θ0, θ1, δθ). The arbitrageurs’ risk aversion a is also a pa-
rameter to calibrate, but it is not identified since it affects equilibrium yields only through the products
(aαj , aθj0, aθ

j
1). For this reason, I set a equal to the calibration in Vayanos and Vila (2021).

I denote by ϑ the vector of model parameters. I estimate ϑ to match key unconditional moments of the
Treasury term structure. Although it would be likewise sensible to estimate ϑ targeting moments of
credit spreads and corporate bond yields, I leave these moments untargeted. As a result, the goodness
of fit for corporate yields is informative of whether the model can replicate features of the data with
only minimal inputs. The average yield at maturity τ is

y
j,(τ)
t =

Aj,r(τ)r +Aj,λ(τ)λ+ Cj(τ)

τ
(4.5)

and, since Γ and Σ are diagonal, the volatility of the yields is

σ
-
y
j,(τ)
t

.
=

1

τ

<

Aj,r(τ)2
σ2
r

2κr
+Aj,λ(τ)2

σ2
λ

2κλ
+Aj,β(τ)2

σ2
β

2κβ
(4.6)

The empirical counterparts of (4.5) and (4.6), which are the average Treasury yield and its standard
deviation, respectively, are the target moments. As in Gourinchas et al. (2022), I choose ϑ to minimize
the sum of the squared differences between model-implied (Mi) and empirical (mi) moments. Hence

=ϑ = argminL(ϑ)
.
=

"

i

(Mi(ϑ)−mi)
2 (4.7)

To estimate ϑ, I use 40 empirical moments associated to the Treasury yield curves. These are the
average yields and the volatility for maturities τ = 1, . . . , 20. To speed up computation, I take the
initial guess ϑ0 to be exact same calibration in Vayanos and Vila (2021), with the exception of r and
λ, which I pick to match the level of short term yields. The value of r is set close to the historical
average of the Federal Funds Rate, whereas λ is approximately equal the historical percentage of BBB
cumulative defaults over five years.

27



4 | Quantitative Analysis

Description Parameter Value Calibration

Risk Factor Dynamics
Short rate mean-reversion κr 0.099 Own
Short rate volatility σr 0.0121 Own
Short rate average r 0.015 Average Federal Funds Rate
Demand factor mean-reversion κβ 0.055 Vayanos and Vila (2021)
Demand factor volatility σβ 0.0121 Normalized to σr

Demand factor average β 0 Vayanos and Vila (2021)
Default intensity mean-reversion κλ 0.049 Own
Default intensity volatility σλ 0.0101 Own
Default intensity average λ 0.014 S&P BBB 5yr cumulative defaults

Habitat-demand Parameters
Government elasticity decay δGα 0.299 Vayanos and Vila (2021)
Corporate elasticity decay δCα 0.297 Vayanos and Vila (2021)
Government elasticity aαG 35.3 Vayanos and Vila (2021)
Corporate elasticity aαC 49.846 Own
Demand intercept aθ0 289 Vayanos and Vila (2021)
Demand factor loading aθ1 3155.2 Vayanos and Vila (2021)
Demand loading decay δθ 0.307 Vayanos and Vila (2021)

Table 4.4: Calibration of model parameters for the main sample of nominal yields. The sample is January
1997 to present. The calibration only targets moments of the Treasury yield curve.

Table 4.4 reports the parameters used in the quantitative analysis. Although the volatility of the
innovations to both rt and λt is comparable, default intensity is significantly more persistent than the
short rate (κr > κλ). As a result, the unconditional variance of default intensity is larger than the
short term rate. At short maturities, since αC > αG, habitat demand for corporate bonds is more
price-elastic than for Government bonds. In contrast, the exponential decay of the slope coefficient
is virtually identical for both asset classes. The estimated parameter vector =ϑ is quite close from the
initial guess. A potential explanation is that the equilibrium term structure is very sensitive to the
initial values of θ1 and δθ, so that it becomes hard to improve on the objective. Therefore, I manually
set the habitat demand parameters, except the product aαC to match the calibration in Vayanos
and Vila (2021). Future work is devoted to improving the estimation procedure and ensure that the
algorithm converges from a broad set of initial values for ϑ0.

4.3 Model Fit

I inspect the model fit by comparing model-implied moments and their empirical counterparts. Since
I only use moments of the Treasury term structure to estimate the parameters, a good fit of cor-
porate bond yields and credit spreads is informative about whether the model can capture, at least
qualitatively, key features of the data.

4.3.1 Equilibrium Characterization and Term Structure

Figure 4.2a plots the equilibrium term structure of government bonds and defaultable bonds for ma-
turities τ ∈ (0, 20). The model matches particularly well yields at short and intermediate maturities.
The model-implied yields for τ > 15 still provide a reasonable fit, although they are not as close to
their empirical counterparts. Although corporate yields do not play any role in the model estimation,
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the implied corporate term structure provides a very good fit for maturities less than 10 years, while
it deviates more at longer maturities. However, the maturity buckets of BofA ICE indices are much
wider at the long end. As a result, the representative maturities of τ = 12.5 and τ = 20 years could be
different from the actual maturity composition within each index. At shorter maturities, the brackets
are narrower, and the distribution of maturities inside each bracket is more likely to be uniform.

For both corporate and government bonds, the average term structure is upward sloping. On average,
the five- and ten-year Treasury yields are 2.94% (2.96% in the data) and 3.80% (3.65% in the data),
respectively. The average term spread y

j,(10)
t − y

j,(1)
t is 1.95% for Treasuries and 2.44% for defaultable

bonds. The average term spread on Treasury yields in the data is 1.48%, which is smaller than in the
model. The term structure of defaultable bonds exceeds the Treasury yield curve at all maturities,
confirming that credit risk premia affect the entire corporate yield curve.
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Figure 4.2: Panel (a) plots the model-implied yield curves for Treasury and corporate bonds against their
empirical counterparts. Panel (b) plots the model-implied yield volatilities for Treasury yields against their
empirical counterpart. The parameters used in the calibration are in Table 4.4. Treasury yields are from
Gürkaynak et al. (2007), whereas bond yields are BBB effective yields from ICE BofA. The daily sample is
January 1997 to present.

Figure 4.2b plots the model-implied Treasury yield volatilities against their empirical counterpart. The
model fits the data very well at intermediate and long maturities. Although the model predicts short
term yields to be slightly more volatile, the fitted yields qualitatively line up with the data. In both
the model and in the data, the volatility of the yields decreases with maturity. The unconditional
volatility of the 10-year yield in the model is 1.55%, against 1.56% in the data.

To analyze the propagation of short rate and default intensity throughout the Treasury yield curve, I
define the instantaneous forward rate f

(τ)
t for maturity τ as the limit ∆τ → 0 of the time t forward

rate between τ −∆τ and τ

f
G,(τ−∆τ,τ)
t = − 1

∆τ
log

'
P

G,(τ)
t

P
G,(τ−∆τ)
t

(
(4.8)
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As ∆τ → 0, this gives the instantaneous forward rate

f
G,(τ)
t

.
= lim

∆τ→0
f
G,(τ−∆τ,τ)
t = −∂ logP

G,(τ)
t

τ
= A′

G(τ)
T st + C ′

G(τ) (4.9)

where A′
G(τ) =

5K+2
k=1 ψG

k e
−vk . I plot the model-implied instantaneous forward rates in figure 4.3a

and the functions A′
G(τ) in figure 4.3b. The model fits forward rates well at short maturities, but does

not quite capture the inversion of the curve at around τ = 12, where the average forward rate in the
data starts declining. Forward rates respond positively to the short rate rt and the demand factor βt,
and negatively to default intensity λt. A shock to the short term rate has its strongest effect at short
maturities, whereas demand shocks affect long term yields more. The magnitude of the response to
default intensity shocks peaks at intermediate maturities, and it weakens as τ increases.

(a) Model instantaneous forward rates f
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t

0 2 4 6 8 10 12 14 16 18 20
Maturity (Years)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

In
st

an
ta

ne
ou

s 
Fo

rw
ar

d 
R

at
e

Model
Data

(b) Forward rate loadings on st
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Figure 4.3: Panel (a) plots the term structure of instantaneous Treasury forward rate corporate bonds against
the data. Panel (b) plots the loadings A′

G(τ) of instantaneous forward rates on the vector of aggregate risk
factors st as a function of maturity. The parameters used in the calibration are in Table 4.4. Treasury yields
are from Gürkaynak et al. (2007). The daily sample is January 1997 to present.

Overall, figure 4.3 validates the good model fit at short to intermediate maturities. The model also
suggests that an increase in default intensity lowers forward rate, where the strongest effect is at
intermediate maturities. Furthermore, it suggests that the short rate and the demand factor are
relatively more important at short and long maturities, respectively. The shape of the loading on rt,
i.e. A′

G,r(τ), is qualitatively consistent with the monotonically decreasing responses of the nominal
forward rates documented in Hanson and Stein (2015) and Kekre et al. (2022). As in Vayanos and
Vila (2021) monetary policy affects long term yields through changes in the short-term rate rt.

4.4 Model Implications and Mechanisms

4.4.1 Credit Spreads

I compute the credit spreads S(τ)
t implied by the model as the difference between yields on corporate

bonds and Treasury bonds, as shown in equation (3.16). Since I interpret the corporate sector as a
continuum of BBB-issuer, I compare S(τ)

t with the option-adjusted spreads (OAS) from ICE BofA for
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BBB rated bonds at various maturities. The initial value of λ is chosen to approximately match the
percentage of cumulative BBB defaults within a five year horizon.

Figure 4.4a plots S(τ)
t against the time-series average OAS for BBB bonds. The model matches the

average level of credit spreads accurately at short and long maturities. On average, even though the
default intensity process is mean-reverting, the term structure of credit spreads is upward sloping in
the data and in the model. In the limit, as maturity tends to zero, i.e. τ → 0, credit spreads converge
to the long-term average level of default intensity S(τ)

t → λ. As a result, average yield spreads are
strictly positive at zero maturity, consistent with the observation by Duffie and Lando (2001) in an
incomplete information setting. As opposed to Duffie and Lando (2001), however, the average credit
spread here is an increasing function of maturity.

(a) Credit spreads average, level
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(b) Credit spread volatility, level
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Figure 4.4: Panel (a) plots the term structure of credit spreads against their empirical counterpart. Panel
(b) plots the volatility of credit spreads implied by the model against the data. Credit spreads are proxied by
the option-adjusted spreads on BBB bonds published by ICE BofA. The parameters used in the calibration are
in Table 4.4. Treasury yields are from Gürkaynak et al. (2007). The daily sample is January 1997 to present.

The shape of the term structure of credit spreads varies with the relative persistence of default intensity
and the short rate, as well as with the volatility of default intensity shocks. Hence, the model can ac-
commodate non-monotonic credit spreads. It should not be obvious that the model generates a realistic
level of credit spread (Chen et al., 2008; Du et al., 2019), but I postpone the discussion to Section 4.4.3.
Figure 4.4b shows the model-implied volatility of credit spreads. Overall, the model-implied volatility
is qualitatively consistent with the data. Indeed, the volatility of credit spreads monotonically declines
with maturity. However, credit spreads in the model are significantly more volatile than in the data.

I next study how the level of credit spreads loads on the short rate and the default intensity λt. Figure
4.5 plots the loadings of credit spreads on the state variables AS,r(τ) and AS,λ(τ). As expected, credit
spreads are positively related to default rates. Short term spreads move one-to-one with λt, and the
strength of the reaction dissipates as τ grows large.

A key implication of the model is that monetary policy affects credit spreads. The loading is negative,
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meaning that an increase in the short term rate rt lowers credit spreads. The interpretation is that
changes in rt affect the market price of interest rate risk borne by corporate and Treasury bonds. A
higher rt leads to higher yields across all markets at all maturities. Because of this, habitat demand
increases and arbitrageurs end up holding smaller net positions on their balance sheet. In turn, this
lowers the equilibrium price of credit risk. As this disproportionately affects corporate yields, credit
spreads decline at all maturities. The negative correlation between the short rate rt and credit spreads
is consistent with the evidence in Longstaff and Schwartz (1995) and Duffee (1999). Yet, the negative
correlation between rt and credit spreads in the data is confounded by policy responses to business
cycle fluctuation, whereas (4.4) describes how credit spreads react to an exogenous change rt.
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Figure 4.5: The figure plots the loadings AS(τ) of credit spreads on the aggregate risk factors st as a function
of maturity τ . The calibration is reported in Table 4.4.

In this regard, Gertler and Karadi (2015) document that a contractionary monetary surprise causes an
increase, rather than a decline, in various measures of credit spreads. This result is in contrast with
the sign of AS,r(τ), which implies that an exogenous shock to rt lowers credit spreads. To reconcile
this discrepancy, I explore the effects of an hypothetical monetary policy intervention. I model this
intervention as a surprise increase in the level of the short rate from rt = r to rt = 1.5r, which is a
0.75% interest rate hike. I compute risk prices as implied by the right hand side of the arbitrageurs’
first-order conditions (3.6) and (3.7), and I set λt and βt equal to their long-term averages λ and β.

32



4 | Quantitative Analysis

(a) Arbitrageurs’ net positions X
j,(τ)
t .
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(b) Market prices of aggregate risk.
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Figure 4.6: The left panel shows arbitrageurs’ portfolio holding before and after the interest rate hike. The
blue and the orange lines describe Treasury and corporate bond holdings, respectively. The right panel plots
the market risk prices implied by the arbitrageurs’ first-order conditions (3.6) and (3.7). The calibration is
reported in Table 4.5. The market prices or risk are expressed as a function of rt fixing λt = λ and βt = β = 0.

Figure 4.6a plots equilibrium portfolio holdings Xj,(τ)
t as a function of maturity. The solid lines repre-

sent holding at the baseline level rt = r. An increase of the short term rate from rt = r to rt = 1.5r,
holding demand and default intensity constant, raises equilibrium yields throughout the term struc-
ture, inducing habitat investors to demand more bonds. Because of market clearing, arbitrageurs’ hold
now smaller net positions at all maturities, as shown by the dashed lines in figure 4.6a. Because the
arbitrageurs’ exposure to the aggregate risk factors has declined, the market price of default risk is
lower. Given that default intensity risk mostly affects yields of defaultable bonds, the response of the
corporate bonds yields is weaker. In fact, the reduction in the price of default intensity risk acts in the
opposite direction of the increase in rt. Hence, the fact that monetary tightening rt raises equilibrium
habitat demand at all maturities generates a negative Ar,S(τ).

Accordingly, Figure 4.6b plots the market prices of aggregate risk as a function of rt fixing λt = λ and
βt = β. There is a negative relation between rt and the risk prices for all three state variables. An
increase in the short rate induces habitat investors to save more in both bonds, reducing arbitrageurs’
exposure to the aggregate risk factors, which lowers the market prices of risk. The dependence of credit
risk prices on the level of the short term rate is robust to the specification of habitat demand as long
as Zj,τ

t responds to all three aggregate risk factors. However, the sign of the effect on credit spreads
will be different if (i) an increase in the short term rate induces habitat investors to demand less bonds
or (ii) if arbitrageurs are long lived and an increase in rt causes capital losses to arbitrageurs’ wealth
(Kekre et al., 2022). Hence, the discrepancy between Figure 4.5 and the results in Gertler and Karadi
(2015) is explained by the behavior of habitat investors, which implies that arbitrageurs’ net exposure
to aggregate risk is inversely related to rt.

The same logic exposes the limitation of specification (3.3) when risky securities are introduced in a
preferred-habitat framework. In the current specification, an increase in either rt or λt induces habitat
investors to demand more assets. Because habitat investors do not react to fundamentals, an increase
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in λt reduces the arbitrageurs’ net risk exposure, lowering the market price of risk of both short rate and
default intensity. In principle, a more realistic specification of habitat demand (3.3) or state variable
dynamics (2.6), for example by having demand shocks negatively correlated to λt and rt, is sufficient
to flip the sign of this effect. Yet, arbitrageurs do respond to λt, and this effect is strong enough to
generate a positive relation between credit spreads and default intensity.

4.4.2 State Dependent Risk Prices and Risk Neutral Dynamics

Proposition (2.3) states that arbitrageurs endogenously induce risk-neutral dependence between the
aggregate risk factors. The top panel of Table 4.5 compares the drift matrix of the state variables Γ

under the physical measure to the drift matrix under the equivalent martingale measure MT . The
calibration in Table 4.4 takes Γ to be diagonal. However, as predicted, the matrix MT describing
Q-dynamics is neither diagonal nor symmetric. The entries of MT reveals that under the equivalent
martingale measure, changes in the short rate not only depend on the deviation rt − r, but also on λt

and βt. The arbitrageurs induce (or exacerbate, if Γ is not diagonal) drift dependence between rt and
λt. In fact, the coefficients of drt on λt is positive. The same holds for the loading of dλt on rt.

Physical Measure P Risk-neutral Measure Q

Γ rt λt βt MT rt λt βt

rt 0.099 0 0 rt 0.2429 0.0726 -0.1219
λt 0 0.049 0 λt 0.0506 0.1400 -0.0400
βt 0 0 0.055 βt 0.0881 0.0623 -0.0340

Var(st) rt λt βt VarQ(st) rt λt βt

rt 0.0008 0 0 rt 0.0018 0.0002 0.0031
λt 0 0.0011 0 λt 0.0002 0.0005 0.0007
βt 0 0 0.0014 βt 0.0031 0.0007 0.0070

Table 4.5: The top left panel reports the drift matrix Γ implied by the calibration in Table 4.4. The top
right panel reports the drift matrix MT under the risk-neutral measure. The bottom left panel reports the
unconditional covariance matrix of the state variables implied by the calibration in Table 4.4. The bottom right
panel reports the unconditional covariance matrix of the state variables under the risk-neutral measure. x

The bottom panel of Table 4.5 reports the unconditional covariance matrix of the risk factors Var(st).
Under the physical measure, the non-zero entries are given by σ2

s
2κs

, where s ∈ {r,λ,β}. This should
not be surprising given the restriction that Γ and Σ are diagonal. However, under the risk-neutral
measure, VarQ(st) is not diagonal. As a result, the state variables are positively correlated even when
they are independent under P.

On the one hand, Table 4.5 shows that the drift correction in the mapping between Bt and BQ
t is state

dependent. This holds provided that a > 0 and that αj > 0. On the other hand, Table 4.5 introduces
additional economic restrictions on the joint Q-dynamics of the short rate and the default intensity.
In a setting in which risk-neutral arbitrageurs trade with habitat investors, the aggregate risk factors
are in general not independent under the risk neutral measure. In fact, because of the arbitrageurs’
activities, the dependence between λt and rt will be higher than implied by any P-measure logic such
as defaults increase in bad times.
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4.4.3 Portfolio Rebalancing Channel

The inclusion of a second asset class to the portfolio choice problem of the arbitrageurs enriches the as-
set pricing implications of habitat-demand models. In Vayanos and Vila (2021) and in the two country
extensions of Gourinchas et al. (2022) and Greenwood et al. (2020), the aggregate risk factors enter the
arbitrageurs’ decision problem in a symmetric fashion. However, in my framework, corporate bonds
default at a stochastic rate λt, whereas government bonds do not. As a result, λt enters directly (i.e.
not through market clearing) only in the first-order condition of corporate bonds X

j,(τ)
t . In contrast,

rt enters directly in both the first-order conditions (3.6) and (3.7). Intuitively, when λt is high, the
arbitrageurs require a relatively higher compensation to hold corporate bonds.

Figure 4.7a and 4.7b plot the yield loadings on the state variables 1
τAj(τ) for government and corporate

bonds, respectively. While the loadings on the short rate Aj,r(τ) and the demand shock Aj,β(τ) shares
the same sign for both assets classes, the impact of default intensity λt on yields is asymmetric.

(a) Government bonds factor loadings
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(b) Corporate bonds factor loadings
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Figure 4.7: The figure compares the loadings of Treasury and corporate bonds on the aggregate risk factors.
The loadings are the functions AG(τ) and AC(τ). The calibration is described in Table 4.4.

On the one hand, an increase in λt is positively related to corporate bond yields, i.e. AC,λ(τ) > 0.
On the other hand, the relation between Treasury yields and λt is negative for all maturities, i.e.
AG,λ(τ) < 0. It turns out that, in equilibrium, government bonds hedge against default intensity risk
since they perform well when λt increases.

The model rationalizes the credit spread puzzle even without introducing stochastic volatility or jump
processes in the dynamics of the aggregate risk factors (2.6). Du et al. (2019) argue that a major
challenge of structural default models is that efforts to calibrate models to observable moments have
been unable to match average credit spreads levels. Chen et al. (2008) make a similar observation, and
argue that Baa–Aaa credit spreads implied by structural models of credit risk are usually significantly
below historical values. Chen et al. (2008) then show that the puzzle can be resolved if the strong
comovements in default rates and Sharpe ratios are properly accounted for.

In this model, the level of credit spreads is due to a combination of three effects. The first and more
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direct effect is fully driven by variation in the issuer credit quality λt. The reason is that corporate
bonds default whereas government bonds do not, so that arbitrageurs require a compensation for the
fraction of bonds λtdt that is lost at any point in time. The second effect, which is analogous to Chen
et al. (2008), is the correlation between the short rate and the default intensity. Furthermore, the
dependence of the risk factors is even stronger under the risk-neutral measure, even when rt and λt

are assumed to be independent. The reason is that exposure to aggregate risk factors is concentrated
in the arbitrageurs’ portfolio, so that the equilibrium prices of credit and interest rate risk are state
dependent. The third channel is a portfolio/substitution effect, and it is captured by the opposite sign
of AG,λ(τ) and AC,λ(τ). Government bonds are hedges against default risk, and their price increase
when λt goes up. This further contributes to widen credit spreads over and above what is implied by
changes in the credit quality of the corporate issuer.

4.4.4 High-Yield Bonds and Rating Downgrades

Figure 4.4a reveals that, on average, the term structure of credit spreads is upward sloping. However, a
long-standing observation in the corporatate bond literature is that the term structure of credit spreads
is upward sloping for investment grade bonds, whereas it slopes downward for high-yield issuers (Jones
et al., 1984; Sarig & Warga, 1989). The analysis so far, however, has interpreted the corporate sector
as a continuum of BBB issuers. Although default risk might be of concern, BBB-rated bonds are still
investment grade securities. Motivated by this, I analyze the effect of a rating downgrade on the term
structure of credit spreads.

I model a rating downgrade as an unanticipated and permanent increase in the long term average
level of default intensity. I consider a moderate downgrade from BBB to BB and a severe downgrade
from BBB to B. I choose the average intensity after the downgrade to match the average level of
the option adjusted spreads at short maturities of the corresponding rating category, The slope of
the term structure of credit spreads is thus untargeted. The moderate downgrade corresponds to a
change from λ = 1.4 to λ = 3.7, whereas the severe downgrade is a change from λ = 1.4 to λ = 6.4.
I maintain default uncertainty constant, that is the volatility of default intensity shocks σλ is the
same before and after each downgrade. I emphasize the case of a severe downgrade because to bet-
ter capture the inversion of the term structure of credit spreads when the long term average λ increases.

Figure 4.8a, which is identical to figure 4.4a, and Figure 4.8b compare the term structure of credit
spreads implied by the model before and after the downgrade. For investment grade issuers the term
structure of credit spreads is upward sloping. However, the average slope of the term structure of
high-yield issuers is negative. The model matches quite well the qualitative features of the data, in
particular for short maturities. In unreported results, the model does a fairly good job in matching
the average term structure of credit spreads after a moderate downgrade too. As opposed to 4.4b, the
implied term structure is quite flat, and the difference between long term and short term credit spreads
is minimal, as shown in the descriptives in Section 4.1.
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(a) Investment grade issuer rated BBB
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(b) High-yield issuer rated B
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Figure 4.8: The figure compares the term structure of credit spreads implied by the model with its empirical
counterpart. A credit downgrade is modeled as an unanticipated permanent increase in the long term average
default intensity from λ = 1.4 to λ = 6.4. Option adjusted spreads (OAS) are obtained from ICE BofA, and
the daily sample is January 1997 to present.

4.5 Monetary Policy Intervention

I now consider two alternative sets of monetary policy interventions to asses how the interactions
between the corporate and the government bond market affect the propagation of monetary policy
shocks throughout the yield curve. The first intervention maps into conventional monetary policy and
is modelled through an unexpected increase in the level of the short rate rt. The second intervention I
analyze is Quantitative Easing (QE). I initially assume that QE purchases concern government bonds
only. I model QE as an unanticipated decline ∆θG0 (τ) in the intercept of habitat demand of Treasury
bonds. Proposition 3.1 predicts that demand shocks to the Treasury market should also affect corporate
yields and credit spreads by reducing the arbitrageurs’ exposure to the aggregate risk factors. Then,
I consider a similar intervention where QE purchases concern corporate bonds only, which is modeled
as an unanticipated decline ∆θC0 (τ) in the intercept of habitat demand of corporate bonds.

4.5.1 Conventional Monetary Policy

To analyze the propagation of short rate shocks throughout the Treasury yield curve, I compare the
responses of instantaneous forward rates to the reaction of expected future short rates Et[rt+τ ]. The
expectations hypothesis implies that future expected short rates move one-to-one with forward rates.
A unit shock to rt raises instantaneous forward rates by

∂f
G,(τ)
t

∂rt
= A′

G,r(τ) =

K+2"

k=1

ψG
k e

−νkτ

Conversely, the response of the expected future short rate at maturity τ is

∂Et[rt+τ ]

∂rt
=

∂

∂rt
eT1 Et[st+τ ] =

∂

∂rt
eT1 e

−Γτst = e−κrτ
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where the last equality holds under the restriction that Γ is diagonal. To assess the strength of the
propagation of monetary policy shocks throughout the term structure of Treasury bonds, I compare
e−κrτ to

5K+2
k=1 ψG

k e
−νkτ for various levels of credit risk, which I model through changes in the volatility

of default intensity shocks σλ. For the sake of comparison, I analogously define f
C,(τ)
t , which is

the corporate bond counterpart to f
G,(τ)
t , and I repeat the same exercise for the term structure of

instantaneous forward rates of the corporate bonds.

(a) Treasury forward rates response to rt.
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(b) Corporate forward rates response to rt.
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Figure 4.9: Underreaction of Treasury and corporate forward rates. The blue lines describe the response of
forward rates to an instantaneous change in rt for different levels of default uncertainty. The baseline uses the
parameters given in Table 4.4. The low uncertainty case sets σλ = 0.006, whereas the high uncertainty case
sets σλ = 0.013. The black dashed line plots the response of expected future short rates Et[rt+τ ].

Figure 4.9a compares how instantaneous Treasury forward rates respond to the short term rate ∂f
G,(τ)
t
∂rt

at three different levels of default uncertainty σλ, namely low (σλ = 0.006), medium (σλ = 0.0101), and
high (σλ = 0.0130). Similarly, Figure 4.9b plots the response of corporate forward rates to monetary
policy shocks. In both graphs, the black dashed line represent the response of expected future short
rates. As in Vayanos and Vila (2021), the model generates underreaction of forward rates to monetary
policy for both asset classes. Intuitively, the extent of the overreaction is driven by arbitrageurs’ risk
aversion, who require a compensation to transmit monetary shocks to long term yields.

Figure 4.9a and 4.9b, however, reveal that default risk has an asymmetric impact on the strength of
monetary policy transmission across asset classes. On the one hand, the underreaction in the Treasury
market is inversely related to the level of default uncertainty. When σλ is higher, monetary policy
transmission to long term Treasury yields is stronger. On the other hand, at least until intermediate
maturities, the underreaction in the corporate bond market is directly proportional to the level of
default uncertainty. When σλ is higher, monetary policy transmission to long term Treasury yields is
weaker. This is in contrast to Vayanos and Vila (2021), where demand risk unambiguously weakens
the transmission of short-rate shocks to bond yields by making carry trades riskier.

The effect of higher uncertainty on corporate yields is easier to interpret. Corporate bond yields load
positively on default uncertainty since AC,λ(τ) > 0. As a result, an increase in σλ acts analogously to
an increase in demand risk by making corporate bond carry-trades riskier. An immediate consequence
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is that, as far as the corporate yield curve is concerned, monetary policy is less effective in reducing
the financing costs of firms whenever there is high default uncertainty. However, the effect is the
opposite in the Treasury market. Treasury bonds hedge against default risk given that AG,λ(τ) < 0

and their price increase when λt goes up. A higher default uncertainty makes hedging properties even
more valuable to risk averse arbitrageurs, lowering risk premia on Treasuries. A unique implication of
this result is that the relative strength of monetary policy transmission across asset classes is partially
determined by the interaction of (i) how risky the aggregate risk factors are (σλ) and (ii) how good
hedges are certain assets with respect to the risk factors.

4.5.2 Quantitative Easing

While Vayanos and Vila (2021) analyze the impact of QE on interest rates, their only policy target is
the Treasury yield curve. However, QE works through different channels, and Treasury yields might
not be the appropriate benchmark for evaluating the policy impact on the cost of capital for corporate
issuers. Krishnamurthy and Vissing-Jorgensen (2011) evaluate the effects of QE interventions on the
yields of different asset classes. A key implication is that the effects on particular assets depend crit-
ically on which assets are purchased. In particular, Treasury-only purchases had a disproportionate
effect on Treasuries relative to corporate bonds. Furthermore, D’Amico and King (2013) show that
QE interventions generate local supply effects, and that the effects are strongest for securities that are
closer substitutes to Treasury bonds whose maturities coincide with the policy target.

Motivated by these observations, I study asymmetries in the effects of quantitative easing across mar-
kets by comparing credit spread responses to two alternative policy interventions. The first intervention
captures Treasury-only QE, and the second one corporate-only QE. I model both interventions as an
unanticipated and permanent decline in the demand intercept ∆θj0. In this model, QE acts on yields
and credit spreads by reducing the arbitrageurs’ net exposure to aggregate risk factors.

Figure 4.10a and Figure 4.10b illustrate the effect of QE purchases of government bonds only, modeled
as a uniform decline in the demand intercept ∆θG0 (τ) < 0 across all maturities. While the yields on
Treasuries decline substantially, the impact on corporate yields is virtually zero. As a result, when QE
interventions are concentrated in the Treasury market only, credit spreads increase. In contrast, Figure
4.10c and Figure 4.10d show that QE purchases of comparable magnitude but targeted to corporate
bonds are much more effective in lowering corporate yields and credit spreads. Furthermore, a drop in
∆θj0(τ) < 0 also reduces the yields on government bonds, and the magnitude of the effect is comparable
to the QE-only intervention.

In this model, the impact of QE on credit spreads is a combination of many effects. The direct
effect is that a decline in habitat demand reduces the net positions held by the arbitrageurs. Yields
fall because the market price of aggregate risk declines. However, while also government bonds fall in
Figure 4.10c and Figure 4.10d, corporate bond yields are virtually unaffected by Treasury-interventions
only. On the one hand, QE reduces the quantity of duration and credit risk that arbitrageurs have
to absorb in equilibrium (Greenwood & Vayanos, 2014). While Treasury-only QE is mostly about
extracting duration risk, corporate-only QE also reduces the quantity of credit risk the economy. On
the other hand, purchases of government bonds also reduce the supply of safe assets and the supply of
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hedges against aggregate risk factors. Arbitrageurs value the hedging properties of Treasuries because
they perform well in bad states of the world when default intensity increases. However, a reduction
in Treasury supply increases the relative scarcity of hedges and safe assets, potentially raising the
equilibrium price of safety (Krishnamurthy & Vissing-Jorgensen, 2011, 2012). In summary, Figure
(4.10) is a consistent with both a portfolio rebalancing and a safety channel of QE interventions.

(a) Yield curves responses to ∆θG0 (τ) < 0.
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(b) Credit spread responses to ∆θG0 (τ) < 0.
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(c) Yield curves responses to ∆θC0 (τ) < 0.
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(d) Credit spread responses to ∆θC0 (τ) < 0.

0 5 10 15 20 25 30
Maturity (Years)

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

C
re

di
t S

pr
ea

d 
(%

)

Baseline
QE

Figure 4.10: Impact of quantitative easing interventions (QE) across asset classes. I model Treasury-only QE
as an unanticipated decline in the Treasury demand intercept from to θG0 = 289 to θG0 = 260. I model corporate-
only QE as an unanticipated decline in the corporate demand intercept from to θC0 = 289 to θC0 = 260. The
model parameters are described in Table 4.4.

5 Conclusion

Motivated by the insights that the variation in credit spreads is driven by time-varying risk premia
rather than default probabilities and that intermediary-based factors explain a substantial fraction of
the common variation in credit spreads, I study a model of the term structure of Treasury and corpo-
rate yields in which corporate and Treasury bonds are jointly priced by the same marginal investor. I
integrate elements from the literature on credit risk valuation in a preferred-habitat context where asset
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prices are jointly determined by the pricing kernel of arbitrageurs that trade in both the Treasury and
the corporate bond markets. I use my model to study (i) the interaction between credit and interest
rate risk, (ii) the determinants of credit spreads, and (iii) how monetary policy interventions propagate
throughout the term structure of credit spreads. I discipline the model to provide qualitative answers
through a calibration exercise targeting empirical moments of the Treasury yield curve.

The propositions in the two sector model, as well as the calibration exercise, hint at a very strong de-
pendence between credit risk and interest rate risk. In a context in which arbitrageurs are pricing both
corporate bonds and Treasury bonds, this dependence is strengthened under the risk-neutral measure.
Portfolio rebalancing effects have the potential to enrich asset pricing implications of habitat models
and to shed more light on monetary policy transmission in a setting where assets are asymmetrically
exposed to risk factors. The fact that risk prices of interest rate and credit risk are interconnected
might explain some of the credit spread puzzles documented in the literature.

Nevertheless, the quantitative analysis reveals some limitations, which provide clear guidance onto
where future efforts should directed. First, the implication that exogenous shocks to the short rate
reduce credit spread is at odds with the literature. Future work is devoted to present empirical evidence
of this mechanism and to understand how the model can match the data. Second, the specification of
habitat demand lacks a solid microfoundation along two dimensions. On the one hand, it is unclear why
habitat investors only respond to the price of a single maturity. On the other hand, fundamental news
only affects habitat demand through prices, preventing these investors to react to fundamental shocks
in the first place. In this regard, a better microfoundation of habitat demand is central to link habitat
investors to key players in the corporate bond market as well as to generate realistic responses of risk
premia to the aggregate risk factors. Third, the model suggests that intermediary inventories play a
role in determining bond excess return. This results should be connected more tightly to the literature
on intermediary asset pricing. Fourth, most of the asset pricing implications of the two sector model
have not been tested yet. Improvements to the calibration procedure and a more thorough empirical
analysis are necessary to better assess whether the model captures key features of the data.
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A Mathematical Results

A.1 Auxiliary Lemmata and Corollaries

Lemma A.1. (Solution of System of Linear ODEs) Consider the system of linear first-order differential
equations

x′ = Ax+ b

where A and b are constants. Suppose that A has distinct real eigenvalues and that x(0) = 0. Let vi
denote an eigenvalue and ui denote the corresponding eigenvector. Then

x = u1ξ1

%
ev1x − 1

v1

&
+ · · ·+ unξn

%
evnx − 1

vn

&

where ξ = P−1b.

Proof. Diagonalize A such that

A = PDP−1 : P
.
=

#
u1 u2 . . . un

$

and consider y = P−1x (with the inverse Py = x). Then,

y′ = P−1x′

= P−1 (Ax+ b)

= P−1APy + P−1b

= Dy + P−1b

Let ξ = P−1b, and denote ξi the ith element of the vector ξ. It follows that

y′i = viy + ξi

Then

dyi
dx

= viy + ξi =⇒ dyi = (viy + ξi)dx

or
!

1

viy + ξi
dyi =

!
dx =⇒ 1

vi
ln(viy + ξi) = x+ ci

=⇒ ln(viy + ξi) = vix+ vici

=⇒ yi =
evix+vici

vi
− ξi

vi
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Therefore

x = Py = u1

%
ev1x+v1c1

v1
− ξ1

v1

&
+ · · ·+ un

%
evix+vncn

vn
− ξn

vn

&

Solving the system with the initial condition x1(0) = · · · = xn(0) = 0 implies

yi(0) =
evi·0+vici

vi
− ξi

vi
=

evici

vi
− ξi

vi
= 0

or

evici = ξi =⇒ ci =
1

vi
ln ξi

Then

evix+vic1

vi
− ξi

vi
=

e
vix+vi

1
vi

ln ξi

vi
− ξi

vi
=

evixeln ξi

vi
− ξi

vi
=

ξie
vix

vi
− ξi

vi
= ξi

%
evix − 1

vi

&

Hence

x = u1ξ1

%
ev1x − 1

v1

&
+ · · ·+ unξn

%
evnx − 1

vn

&

which is the desired result. !

Lemma A.2 (Expectation of Multivariate Ornstein-Uhlenbeck). Let sτ be the state vector at time τ .
Suppose that

dst = −MT
-
st − sQ

.
dt+ ΣdBQ

t

Under the risk-neutral measure Q, qτ is given by

sτ = e−MT τs0 +
-
I− e−MT τ

.
sQ +

! τ

0
e−MT (τ−u)ΣdBQ

u

where eA is the matrix exponential operator. Further, since BQ
t is a Brownian motion under Q

EQ
0 [sτ ] = e−MT τs0 +

-
I− e−MT τ

.
sQ

Proof. Define the demeaned process >qt = qt − qQ. Because qQ is constant over time

d>qt = dqt =⇒ d>qt = −MT >qt + ΣdBQ
u

Standard arguments for the Ornstein-Uhlenbeck process (see e.g. Oksendal (1992)) give

>qt = e−MT τ >q0 +
! τ

0
e−MT (τ−u)ΣdBQ

u
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Hence

qτ = qQ + e−MT τ
-
q0 − qQ

.
+

! τ

0
e−MT (τ−u)ΣdBQ

u

= e−MT τq0 +
-
I− e−MT τ

.
qQ +

! τ

0
e−MT (τ−u)ΣdBQ

u

which gives the first result. Taking expectation under Q gives

EQ
0 [qτ ] = e−MT τq0 +

-
I− e−MT τ

.
qQ

which gives the second result and completes the proof. !

Lemma A.3 (Useful Linear Operator). Let A be a (2 × 2) diagonal matrix and let b be a (2 × 1)

column vector. Define the matrix function

f(A, b) = 1T
?
P T

@−1
AP T b

Then

1T
?
P T

@−1
AP T b = b1 [a1ψrr + a2ψrλ] + b2 [a1ψλr + a2ψλλ]

where ψrr, ψrλ, ψλr and ψλλ are defined in Proposition 1.

Proof. Let

P =

+
u11 u12

u21 u22

,
: A =

+
a1 0

0 a2

,
: b =

+
b1

b2

,

Then

?
P T

@−1
AP T =

1

det(P )

+
u22 −u21

−u12 u11

,+
a1 0

0 a2

,+
u11 u21

u12 u22

,

=
1

det(P )

+
u22u11a1 − u21u12a2 u22u21a1 − u21u22a2

−u12u11a1 + u11u12a2 −u12u21a1 + u11u22a2

,

It follows that

?
P T

@−1
AP Tb =

1

det(P )

+
b1 (u22u11a1 − u21u12a2) + b2 (u22u21a1 − u21u22a2)

b1 (−u12u11a1 + u11u12a2) + b2 (−u12u21a1 + u11u22a2)

,
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Pre-multiplication by 1T yields

1T
?
P T

@−1
AP Tb =

b1
det(P )

[u22u11a1 − u21u12a2 − u12u11a1 + u11u12a2]

+
b2

det(P )
[u22u21a1 − u21u22a2 − u12u21a1 + u11u22a2]

= b1

)
a1

u11(u22 − u12)

det(P )
+ a2

u12(u11 − u21)

det(P )

*

+ b2

)
a1

u21(u22 − u12)

det(P )
+ a2

u22(u11 − u21)

det(P )

*

= b1 [a1ψ11 + a2ψ12] + b2 [a1ψ21 + a2ψ22]

as desired. !

A.2 Proofs

A.2.1 Proof of Proposition 1

Lemma A.4 (Arbitageurs’ First-order Condition). Under conjecture (2.8), the arbitrageurs’ first-order
condition is

µ
(τ)
t − rt = λt +Ar(τ)πr,t +Aλ(τ)πλ,t

where the risk prices are given by

πr,t
.
= aσ2

r

%! T

0
X

(τ)
t Ar(τ)dτ

&

πλ,t
.
= aσ2

λ

%! T

0
X

(τ)
t Aλ(τ)dτ

&

Proof. Applying Itô’s Lemma to equation (2.8) and using the fact that dBr,t and dBλ,t are independent
gives

dP
(τ)
t

P
(τ)
t

=
/
A′

r(τ)rt +A′
λ(τ)λt + C ′(τ)

0
dt−Ar(τ)drt −Aλ(τ)dλt +

1

2
σ2
rAr(τ)

2dt+
1

2
σ2
λAλ(τ)

2dt

This can be written as

dP
(τ)
t

P
(τ)
t

= µ
(τ)
t dt− σrAr(τ)dBr,t − σλAλ(τ)dBλ,t

where

µ
(τ)
t

.
= A′

r(τ)rt +A′
λ(τ)λt + C ′(τ) +Ar(τ)κr(rt − r) +Aλ(τ)κλ(λt − λ) +

1

2
σ2
rAr(τ)

2 +
1

2
σ2
λAλ(τ)

2
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Substituting the implied dynamics of dP
(τ)
t

P
(τ)
t

into the arbitrageurs’ budget constraint implies that

Et [dWt] =

%
Wt −

! ∞

0
X

(τ)
t dτ

&
rtdt+

! ∞

0
X

(τ)
t

-
µ
(τ)
t dt− λtdt

.
dτ

and

Vart (dWt) = Vart
%! ∞

0
X

(τ)
t (−σrAr(τ)dBr,t − σλAλ(τ)dBλ,t) dτ

&

= σ2
r

%! ∞

0
X

(τ)
t Ar(τ)dτ

&2

dt+ σ2
λ

%! ∞

0
X

(τ)
t Aλ(τ)dτ

&2

dt

Pointwise maximization with respect to X
(τ)
t gives

µ
(τ)
t − rt = λt + aσ2

rAr(τ)

%! ∞

0
X

(τ)
t Ar(τ)dτ

&
+ aσ2

λAλ(τ)

%! ∞

0
X

(τ)
t Aλ(τ)dτ

&

or

µ
(τ)
t − rt = λt +Ar(τ)πr,t +Aλ(τ)πλ,t

where

πr,t
.
= aσ2

r

%! ∞

0
X

(τ)
t Ar(τ)dτ

&

πλ,t
.
= aσ2

λ

%! ∞

0
X

(τ)
t Aλ(τ)dτ

&

as desired. !

Proposition (2.1) characterizes the solution to the system

A′
r(τ) +Ar(τ)κr − 1 = −aσ2

rAr(τ)

%! ∞

0
α(τ)Ar(τ)

2dτ

&
− aσ2

λAλ(τ)

%! ∞

0
α(τ)Ar(τ)Aλ(τ)dτ

&

A′
λ(τ) +Aλ(τ)κλ − 1 = −aσ2

rAr(τ)

%! ∞

0
α(τ)Ar(τ)Aλ(τ)dτ

&
− aσ2

λAλ(τ)

%! ∞

0
α(τ)Aλ(τ)

2dτ

&

and, as a result, the equilibrium in the one sector model.

Proposition A.1 (Equilibrium in the One Sector Model). Given the initial conditions Ar(0) =

Aλ(0) = 0, the function A(τ) = (Ar(τ), Aλ(τ))
T is given by

A(τ) = ψ1

%
1− e−v1τ

v1

&
+ ψ2

%
1− e−v2τ

v2

&
(A.1)

where vk is the k-th eigenvectors of the matrix M defined by

M
.
=

)
ΓT + a

! ∞

0
α(τ)A(τ)A(τ)TdτΣΣT

*

and ψk are constant vectors such that ψk = ukξi, where uk is the eigenvector corresponding to vk and
ξi is the ith component of ξ .

= P−11, where P
.
= [u1, u2].
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Proof. Using matrix notation with st
.
= (rt,λt)

T , the arbitrageurs’ first-order condition can be written
as

µ
(τ)
t − rt = λt + aA(τ)TΣΣT

! ∞

0
x
(τ)
t A(τ)dτ

Imposing market clearing and using the definition of µ(τ)
t , I obtain

A′(τ)T st + C ′(τ) +A(τ)TΓ (st − q) +
1

2
A(τ)TΣΣTA(τ)− rt

= λt + aA(τ)TΣΣT

! ∞

0

/
β(τ)− α(τ)A(τ)T st − α(τ)C(τ)

0
A BC D

scalar

A(τ)dτ

Collecting the terms multiplying st gives

A′(τ)T +A(τ)TΓ− e1 = e2 − aA(τ)TΣΣT

! ∞

0
α(τ)A(τ)TA(τ)dτ

where e1 and e2 are the 2-dimensional basis vectors
#
1 0

$
and

#
0 1

$
, respectively. Since e1 + e2 =

#
1 1

$
= 1, this can be written as

A′(τ) +

)
ΓT + a

! ∞

0
α(τ)A(τ)TA(τ)dτΣΣT

*
A(τ)− 1 = 0

or

A′(τ) +MA(τ)− 1 = 0

where the matrix M is given by

M
.
=

)
ΓT + a

! ∞

0
α(τ)A(τ)A(τ)TdτΣΣT

*

Even though the entries of the matrix M depends on A(τ), the integral with respect to τ implies that
these are the same for all maturities and can be treated as constants.

Given the initial conditions Ar(0) = Aλ(0) = 0, I specialize Lemma (A.1) such that A = −M and
b = 1. It follows that A(τ) is given by

A(τ) = u1ξ1

%
1− e−v1τ

v1

&
+ · · ·+ unξn

%
1− e−vnτ

vn

&

Further, since b =
#
1 1

$T
. Then

ξ = P−1b =
1

u11u22 − u12u12

+
u22 −u12

−u21 u11

,+
1

1

,
=

1

u11u22 − u21u12

+
u22 − u12

u11 − u21

,
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Hence

ξ1 =
u22 − u12

u11u22 − u21u12
: ξ2 =

u11 − u21
u11u22 − u21u12

Therefore

A(τ) = u1
u22 − u12

u11u22 − u12u12

%
1− e−v1τ

v1

&
+ u2

u11 − u21
u11u22 − u12u12

%
1− e−v2τ

v2

&

or

Ar(τ) = ψrr

%
1− e−v1τ

v1

&
+ ψrλ

%
1− e−v2τ

v2

&

Aλ(τ) = ψλr

%
1− e−v1τ

v1

&
+ ψλλ

%
1− e−v2τ

v2

&

where the constants ψrr, ψrλ, ψλr, and ψλλ are given by

ψrr
.
=

u11 (u22 − u12)

u11u22 − u12u12
: ψrλ

.
=

u12 (u11 − u21)

u11u22 − u12u12
(A.2)

ψλr
.
=

u21 (u22 − u12)

u11u22 − u12u12
: ψλλ

.
=

u22 (u11 − u21)

u11u22 − u12u12
(A.3)

and only depend on the eigenvectors of M . This is the desired result, which concludes the proof. !

Corollary A.1 (Equilibrium in Vayanos and Vila (2021)). If b = e1, then

Ar(τ) =
u11u22

u11u22 − u12u21

%
1− e−v1τ

v1

&
− u12u21

u11u22 − u12u12

%
1− e−v2τ

v2

&

Aβ(τ) =
u21u22

u11u22 − u12u12

%
1− e−v1τ

v1

&
− −u21u22

u11u22 − u12u12

%
1− e−v2τ

v2

&

which corresponds to the equilibrium with K = 1 demand shocks in Vayanos and Vila (2021).

Proof. Specialize Lemma (A.1) with b = e1. Then

ξ = P−1b =
1

u11u22 − u12u12

+
u22 −u12

−u21 u11

,+
1

0

,

=
1

u11u22 − u21u12

+
u22

−u21

,

Hence

ξ1 =
u22

u11u22 − u21u12
: ξ2 =

−u21
u11u22 − u21u12

Therefore

A(τ) = u1
u22

u11u22 − u12u12

%
1− e−v1τ

v1

&
+ u2

−u21
u11u22 − u12u12

%
1− e−v2τ

v2

&
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or, using the notation in Vayanos and Vila (2021),

Ar(τ) =
u11u22

u11u22 − u12u21

%
1− e−v1τ

v1

&
− u12u21

u11u22 − u12u12

%
1− e−v2τ

v2

&

Aβ(τ) =
u21u22

u11u22 − u12u12

%
1− e−v1τ

v1

&
− −u21u22

u11u22 − u12u12

%
1− e−v2τ

v2

&

which gives the desired result. !

A.2.2 Proof of Proposition 2

Let M be the (n×n) matrix given in Proposition (2.1). It if useful to establish some useful properties
of matrix exponentials. Provided that M is diagonalizable. Then

M = PDP−1

where D = Diag(vi) and P =
#
u1 . . . un

$
. This implies that the matrix exponential eM is equal to

eM = PeDP−1 = P · Diag (evi) · P−1

Further, recall the definition of the constants ψrr, ψrλ, ψλr, and ψλλ given by (A.2)–(A.3) from Propo-
sition (2.1).

Armed with Lemmata (A.2) and (A.3), I consider the pricing of a zero-coupon defaultable bond with
unitary payoff at time τ conditional on not defaulting, i.e. τD > τ . Let τD denote the default (stopping-
time) and consider the indicator function 1{τD>τ}. Then

P
(τ)
0 = EQ

0

#
e−

! τ
0 rudu1{τD>τ}

$
= EQ

0

#
e−

! τ
0 (ru+λu)du

$
(A.4)

The proof of Proposition (2.2) consists in showing that the price of the defaultable bond given by
(A.4) is the same as P

(τ)
0 = e−[A(τ)q0+C(τ)]. To this purpose, I conjecture that, under the risk-neutral

measure Q, the state vector qt evolves as

dqt = −MT
-
qt − qQ

.
dt+ ΣdBQ

t

where M solves the ODE system, qQ is the long-term average under Q, and MT qQ = χ. The economic
content of this proposition is that, provided that arbitrageurs are risk-averse, i.e. a ∕= 0, MT will not
be diagonal. This induces correlation between λt and rt through drift dependence under Q.

Proposition A.2 (Equivalence with Risk-neutral Valuation). Let Q denote the risk-neutral measure
and τD the (stopping) time of default of an individual corporate bond. Then

P
(τ)
t = EQ

t

#
e−

! t+τ
t rudu1{τD>τ}

$
!
= EQ

t

#
e−

! t+τ
t (ru+λu)du

$
(A.5)

Proof. Write 1T st = rt + λt. Lemma (A.2) implies that, conditional on information at time 0, sτ is
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multivariate Gaussian. Hence

P
(τ)
0 = EQ

0

#
e−

! τ
0 (ru+λu)du

$
= e−EQ

0 [−
! τ
0 (ru+λu)du]+ 1

2
VarQt (

! τ
0 (ru+λu)du)

= e−EQ
0 [

! τ
0 1T sudu]+ 1

2
VarQ0 (

! τ
0 1T sudu)

Interchanging the expectation with the integral, the first term in the exponent can be rewritten as

EQ
0

)
−
! τ

0
1T sudu

*
= −

! τ

0
EQ
0

/
1T su

0
du

Using Lemma (A.2),

EQ
0 [1

T su] = 1T e−MTus0 + 1T
-
I− e−MTu

.
sQ = 1T e−MTus0 + 1T sQ − 1T e−MTusQ

Using the fact that M = PDP−1 and MT sQ = χ, it follows that

sQ =
?
MT

@−1
χ =

?
(P−1)TDP T

@−1
χ =

?
P T

@−1
D−1P Tχ

and, since e−MT τ =
?
P−1

@T
e−τDP T ,

EQ
0 [1

T su] = 1T e−MTus0 + 1T sQ − 1T e−MTusQ

= 1T
?
P−1

@T
e−τDP T s0 + 1T sQ − 1T

?
P−1

@T
e−τDP T

?
P T

@−1
D−1P Tχ

= 1T
?
P−1

@T
e−τDP T s0 + 1T sQ − 1T

?
P−1

@T
e−τDD−1P Tχ

†
= r0

/
ψrre

−uv1 + ψrλe
−uv2

0
+ λ0

/
ψλre

−uv1 + ψλλe
−uv2

0

+ χr

)
ψrr

v1
+

ψrλ

v2

*
+ χλ

)
ψλr

v1
+

ψλλ

v2

*

− χr

)
ψrr

v1
e−uv1 +

ψrλ

v2
e−uv2

*
− χλ

)
ψλr

v1
e−uv1 +

ψλλ

v2
e−uv2

*

where the equality † follows from repeated application of Lemma (A.3) after noting that e−τD and
e−τDD−1 are diagonal matrices. Integrating with respect to time gives

! τ

0
EQ
0 [1

T su]du = r0

)
ψrr

1− e−v1τ

v1
+ ψrλ

1− e−v2τ

v2

*
+ λ0

)
ψλr

1− e−v1τ

v1
+ ψλλ

1− e−v2τ

v2

*

+ τ

E
χr

)
ψrr

v1
+

ψrλ

v2

*
+ χλ

)
ψλr

v1
+

ψλλ

v2

*F

− χr

)
ψrr

v1

1− e−v1τ

v1
+

ψrλ

v2

1− e−v2τ

v2

*
− χλ

)
ψλr

v1

1− e−v1τ

v1
+

ψλλ

v2

1− e−v2τ

v2

*

= r0Ar(τ) + λ0Aλ(τ) + τ

E
χr

)
ψrr

v1
+

ψrλ

v2

*
+ χλ

)
ψλr

v1
+

ψλλ

v2

*F

− χr

)
ψrr

v1

1− e−v1τ

v1
+

ψrλ

v2

1− e−v2τ

v2

*
− χλ

)
ψλr

v1

1− e−v1τ

v1
+

ψλλ

v2

1− e−v2τ

v2

*

54



A | Mathematical Results

However, from Proposition (2.1)

C(τ) =

%! τ

0
A(u)Tdu

&
χ− 1

2

! τ

0
A(u)TΣΣTA(u)du

Expanding the first term gives

%! τ

0
A(u)du

&
=

+: τ
0 ψrr

1−e−v1τ

v1
+ ψrλ

1−e−v2τ

v2
du: τ

0 ψλr
1−e−v1τ

v1
+ ψλλ

1−e−v2τ

v2
du

,

=

6

7
ψrr

v1

G
τ − 1−e−v1τ

v1

H
+ ψrλ

v1

G
τ − 1−e−v2τ

v2

H

ψλr
v1

G
τ − 1−e−v1τ

v1

H
+ ψλλ

v1

G
τ − 1−e−v2τ

v2

H

8

9

Hence,

%! τ

0
AT (u)du

&+
χr

χλ

,
= χr

E
ψrr

v1

%
τ +

1− e−v1τ

v1

&
+

ψrλ

v1

%
τ +

1− e−v2τ

v2

&F

+ χλ

E
ψλr

v1

%
τ +

1− e−v1τ

v1

&
+

ψλλ

v1

%
τ +

1− e−v2τ

v2

& F

By comparing this term with the expression for
: τ
0 EQ

0 [1
T qu]du,

−
! τ

0
1TEQ

0 [qu] = −r0Ar(τ)− λ0Aλ(τ)− τ

E
χr

)
ψ11

ν1
+

ψ12

ν2

*
+ χλ

)
ψ21

ν1
+

ψ22

ν2

*F

+ χr

)
ψ11

ν1

1− e−ν1τ

ν1
+

ψ12

ν2

1− e−ν2τ

ν2

*
+ χλ

)
ψ21

ν1

1− e−ν1τ

ν1
+

ψ22

ν2

1− e−ν2τ

ν2

*

= −AT (τ)q0 −
%! τ

0
AT (u)du

&
χ

matching the linear terms in the exponent of e−[Ar(τ)rt+Aλ(τ)λt+C(τ)]. This gives the desired result and
completes the first part of the proof. The second part of the proof matches the variance term. To
compute is

VarQ0

%! τ

0
1T qudu

&
= VarQ0

%! τ

0
1T

%! u

0
e−MT (u−v)ΣdBQ

v

&
du

&

Note that

VarQ0

)! τ

0
1T qudu

*
=

! τ

0

! τ

0
Cov(1T qu,1

T qu′)dudu′

=

! τ

0

! τ

0
Cov(ru + λu, ru′ + λu′)dudu′

=

! τ

0

! τ

0
Cov(ru, ru′)dudu′ +

! τ

0

! τ

0
Cov(λu,λu′)dudu′
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The covariance functions of each of the components of qu separately. Recall that

Cov(ru, ru′) = Cov

I
eT1

%! u

0
e−MT (u−v)ΣdBQ

v

&
, eT1

'! u′

0
e−MT (u′−v)ΣdBQ

v

(J

= Cov

I
eT1

'! min{u,u′}

0
e−MT (u−v)ΣdBQ

v

(
, eT1

'! min{u,u′}

0
e−MT (u′−v)ΣdBQ

v

(J

= Cov

'! min{u,u′}

0
eT1 e

−MT (u−v)ΣdBQ
v ,

! min{u,u′}

0
eT1 e

−MT (u′−v)ΣdBQ
v

(

= σ2
rψ

2
rre

−v1(u+u′)
! min{u,u′}

0
e2v1vdv + σ2

rψrrψrλe
−v1u−v2u′

! min{u,u′}

0
e(v1+v2)vdv

+ σ2
rψrλψrre

−v2u−v1u′
! min{u,u′}

0
e(v1+v2)vdv + σ2

rψ
2
rre

−v2(u+u′)
! min{u,u′}

0
e2v2vdv

whereas the second line uses Lemma (A.3) in combination with the Itô Isometry. Each of the integrals
is a Riemann integral of the form

! min{u,u′}

0
evvdv =

1

v
evv

KKKK
min{u,u′}

0

=
1

v

-
evmin{u,u′} − 1

.

Hence

Cov(ru, ru′) = σ2
rψ

2
rre

−v1(u+u′) 1

2v1

-
e2v1 min{u,u′} − 1

.
+ σ2

rψrrψrλe
−v1u−v2u′ e(v1+v2)min{u,u′} − 1

v1 + v2

+ σ2
rψrλψrre

−v2u−v1u′ e(v1+v2)min{u,u′} − 1

v1 + v2
+ σ2

rψ
2
rre

−v2(u+u′) 1

2v2

-
e2v2 min{u,u′} − 1

.

Therefore, for the case that u > u′

1

2

! t+τ

t

! t+τ

t
Cov(ru, ru′)dudu′ =

σ2
rψ

2
rr

2v1

E
τ +

1− e−2v1τ

2v1
− 2

1− e−v1τ

v1

F

Then
! τ

0

! u

0
Cov(ru, ru′)du′du =

σ2
rψ

2
rr

2v12

E
τ +

1− e−2v1τ

2v1
− 2

1− e−v1τ

v1

F
+

σ2
rψ

2
rλ

2v22

E
τ +

1− e−2v2τ

2v2
− 2

1− e−v2τ

v2

F

+

)
1

v1
+

1

v2

*
σ2
rψrrψrλ

v1 + v2

I
τ +

1− e−(v1+v2)τ

(v1 + v2)
− 1− e−v1τ

v1
− 1− e−v2τ

v2

J

By symmetry

! τ

0

! u

0
Cov(λu,λu′)du′du =

σ2
λψ

2
λr

2v12

E
τ +

1− e−2v1τ

2v1
− 2

1− e−v1τ

v1

F
+

σ2
λψ

2
λλ

2v22

E
τ +

1− e−2v2τ

2v2
− 2

1− e−v2τ

v2

F

+

)
1

v1
+

1

v2

*
σ2
rψλrψλλ

v1 + v2

I
τ +

1− e−(v1+v2)τ

(v1 + v2)
− 1− e−v1τ

v1
− 1− e−v2τ

v2

J
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As a result, these two expressions give

1

2
VarQ0

%! τ

0
1T sudu

&
=

! τ

0

! u

0
Cov(ru, ru′)du′du+

! τ

0

! u

0
Cov(λu,λu′)du′du

The final step is to show that the second element of C(τ) is equal to these two terms. Note that

1

2

! τ

0
A(u)TΣΣTA(u)du =

1

2

! τ

0
σ2
rA

2
r(u)du+

1

2

! τ

0
σ2
λA

2
λ(u)du

Then, using the expressions for Ar(τ) and Aλ(τ)

1

2
σ2
r

! τ

0
A2

r(u)du =
σ2
rψ

2
rr

2v12

E
τ +

1− e−2v1τ

2v1
− 2

1− e−v1τ

v1

F
+

σ2
rψ

2
rλ

2v22

E
τ +

1− e−2v2τ

2v2
− 2

1− e−v2τ

v2

F

+
ψrrψrλ

v1v2

I
τ − 1− e−v1u

v1
− 1− e−v2u

v2
+

1− e−(v1+v2)

v1 + v2

J

1

2
σ2
λ

! τ

0
A2

λ(u)du =
σ2
λψ

2
λr

2v12

E
τ +

1− e−2v1τ

2v1
− 2

1− e−v1τ

v1

F
+

σ2
rψ

2
λλ

2v22

E
τ +

1− e−2v2τ

2v2
− 2

1− e−v2τ

v2

F

+
ψλλψλr

v1v2

I
τ − 1− e−v1u

v1
− 1− e−v2u

v2
+

1− e−(v1+v2)

v1 + v2

J

which clearly match the expressions given above. As a result
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2
VarQ0

%! τ

0
1T sudu

&
=

1

2

! τ

0
A(u)TΣΣTA(u)du

from which it follows that

P
(τ)
0 = EQ

0

#
e−

! τ
0 (ru+λu)du

$
= e−EQ

0 [
! τ
0 1T sudu]+ 1

2
VarQ0 (

! τ
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= e−AT (τ)s0−(
! τ
0 AT (u)du)χ+ 1

2

! τ
0 A(u)TΣΣTA(u)du

= e−[Ar(τ)r0+Aλ(τ)λ0+C(τ)]

This is the desired result and it concludes the proof. !

A.3 Poisson Processes and Idiosyncratic Defaults

Let the increment of the Poisson process Nt be

dNt =

L
MMMN

MMMO

0 : wp 1− λdt

1 : wp λdt

≥ 2 : wp 0

Again, the intuition is that in an interval dt, the probability of two or more jumps goes to zero because
(dt)k ≈ 0 for k ≥ 2. Consider a continuum of bonds i ∈ [0, 1]. Each of these bonds follows the dynamics

dP i
t

P i
t

= µdt+ σdWt + dN i
t (ω − 1)
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where α is the recovery rate. The dN i
t describes whether bond i defaults or not. I assume that dN i

t are
independent across i, but they have the same intensity λ. The dynamics of the continuum of bonds is

dPt

Pt

.
=

! 1

0

dP i
t

P i
t

di =

! 1

0
(µdt)di+

! 1

0
(σdWt)di+

! 1

0
dN i

t (ω − 1) = µdt+ σdWt + (ω − 1)

! 1

0
dN i

t

The quantity
: 1
0 dN i

t can be thought of as the cross-sectional average defaults across all bonds. Consider
an equally spaced partition of the unit interval Π .

=
P
0, 1

N , 2
N , . . . N−1

N , 1
Q
. The norm of the partition

is supnΠ = 1
N . Hence, Π → 0 can be written as N → ∞. As a result

! 1

0
dN i

t = lim
Π→0

N"

k=1

dN i
t · (ik+1 − ik) = lim

N→∞

1

N

N"

k=1

dNt

Since E[dNt] = λdt < ∞ and dN i
t are i.i.d across bonds, the Law of Large numbers gives

! 1

0
dN i

t = lim
N→∞

1

N

N"

k=1

dNt
LLN
= E[dNt] = λdt

Therefore

dPt

Pt
= µdt+ σdWt + (ω − 1)λdt

and the same argument goes through if λt is time-varying but known at t. In the special case that the
recovery rate is ω = 0, the arbitrageurs’ problem can finally be written as

dWt =

%
Wt −

! T

0
x
G,(τ)
t dτ −

! T

0
x
C,(τ)
t dτ

&
rtdt+

! T

0
x
G,(τ)
t

dP
G,(τ)
t

P
G,(τ)
t

dτ

+

! T

0
x
C,(τ)
t

'
dP

C,(τ)
t

P
C,(τ)
t

− λtdt

(
dτ

where λt is the fraction of bonds that defaults in each interval dt. This can be interpreted as the
depreciation rate of capital in standard macro models.

B Model Extensions

B.1 Square Root Dynamics

When shocks to default intensity are heteroscedastic, yields are no longer affine functions of the risk
factors st. Furthermore, the state variables do not accommodate square root dynamics for the default
intensity process (Cox et al., 1985). As a result, the exponentially-affine conjecture as in Vayanos and
Vila (2021) breaks, hinting at a pricing function with a different functional form. To show why, I
consider the segmented version of the model in which arbitrageurs only invest in the short term rate
and in corporate bonds at all maturities. Accordingly I omit the security index j and I abstract for
demand shocks.
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The decision problem of the arbitrageurs and the specification of habitat demand is the same as in
Section 2. However, I assume that default intensity has square root dynamics of the form

dλt = κλ(λ− λt) + σλ
;

λtdBλ,t (B.1)

Square root dynamics ensure that λt > 0 and introduce heteroscedasticity through
√
λt. As in Section

2, I conjecture that

P
(τ)
t = e−[Ar(τ)rt+Aλ(τ)λt+C(τ)]

Following the same steps implies that the arbitrageurs’ first-order condition is

µ
(τ)
t − rt = λt +Ar(τ)πr,t +Aλ(τ)πλ,t

where

πλ,t
.
= σ2

λλt

%! ∞

0
X

(τ)
t Aλ(τ)dτ

&

Market clearing requires X
(τ)
t + Z

(τ)
t , so that

X
(τ)
t = θ(τ)− α(τ) [Ar(τ)rt +Aλ(τ)λt + C(τ)]

After substituting the market clearing condition into the market prices of risk, I obtain

πλ,t = σ2
λλt

%! ∞

0
{θ(τ)− α(τ) [Ar(τ)rt +Aλ(τ)λt + C(τ)]}Aλ(τ)dτ

&
(B.2)

Equation (B.2) shows that heteroscedastic shocks introduce a second source of variation in market
risk premia on top of stochastic habitat demand. As a result, the right-hand side of the arbitrageurs’
first-order condition includes a product of two affine functions, whereas the Itô term on the left-hand
side is linear in the state variables. In turns out that there are higher powers of rt and λt, and matching
coefficients on λt2 implies

0 = −Aλ(τ)aσ
2
λ

! ∞

0
α(τ)Ar(τ)Aλ(τ)dτ

Clearly, this only holds provided that Aλ(τ), which leads to contradiction.

B.2 Towards a Microfoundation of Habitat Demand

B.2.1 Framework

I describe the problem of a long-term investor with horizon τ that maximizes utility over terminal
wealth Wτ subject to roll-over and default intensity risk. I assume a degree of segmentation among
habitat investors such that each of them is allowed to either invest in the short-term rate (i.e. in a
private option), or in bonds with maturity τ . The assumption that these investors only hold bond with
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maturity corresponding to the horizon at which they consume can be justified along the same lines as
Vayanos and Vila (2021) with max-min preferences. Alternatively, this can be interpreted as an extreme
mandate that allows habitat investors to only hold certain assets. My behaviour assumption is close in
spirit to Merton (1987), who studies the case in which agents know only about a subset of the securities.

The habitat investor funds the positions on long-term securities by borrowing or lending at the risk-free
rate. The roll-over risk can also be interpreted as investing the remaining wealth into an outside option
whose return is stochastic and directly proportional to rt. Let xG,(τ)

t and x
C,(τ)
t denote dollar holdings

of Government and corporate bonds with maturity τ , respectively. The economic assumptions are that
(i) habitat investors only consume at maturity τ and that (ii) they hold the long-term assets they
purchase until maturity. Since bonds pay one unit at maturity τ , the gross holding period return of
holding until maturity is given by

R
j,(τ)
t,t+τ =

1

P
j,(τ)
t

The long-term investor has mean-variance utility over terminal wealth Wτ , that is

max
x
G,(τ)
t ,x

C,(τ)
t

E [Wτ ]−
γ

2
Var [Wτ ] (B.1)

subject to

Wτ =
-
Wt − x

G,(τ)
t − x

C,(τ)
t

.
e
! t+τ
t rudu

+ x
G,(τ)
t

'
1

P
G,(τ)
t

(

A BC D
Government

+x
C,(τ)
t

'
1

P
C,(τ)
t

(
− x

C,(τ)
t e−

! t+τ
t λudu

A BC D
Corporate

(B.2)

where the last term captures the fraction of corporate bonds that defaults between t and t+ τ . Recall
that the state variables rt and λt follow the P-dynamics

drt = −κr (rt − r) dt+ σrdBr,t (B.3)

dλt = −κλ (λt − r) dt+ σλdBλ,t (B.4)

where the Brownian motions Br,t and Bλ,t are assumed to be independent. Using Lemma (B.1) and
the properties of the log-normal distribution gives

Et

#
e
! t+τ
t sudu

$
= eµs(τ,st)− 1

2
σ2
s(τ) .

= µS(τ, st)

Vart
#
e
! t+τ
t sudu

$
=

-
eσ

2
s(τ) − 1

.
e2µs(τ,st)+σ2

s(τ) = ΣS(τ, st)

for st ∈ {rt,λt}. I then describe the first-order condition of the long-term investor

Proposition B.1 (Habitat-investors’ First-order Condition). Given the objective (B.1), the budget
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constraint (B.2), and the dynamics (B.3)–(B.4), the first-order conditions for x
G,(τ)
t and x

C,(τ)
t are

1

P
G,(τ)
t

− µR(τ, rt) = γ
G
x
G,(τ)
t + x

C,(τ)
t −Wt

H
ΣR(τ, rt)

1

P
C,(τ)
t

− µR(τ, rt) = µΛ(τ,λt) + γ
G -

x
G,(τ)
t + x

C,(τ)
t −Wt

.
ΣR(τ, rt) + x

C,(τ)
t ΣΛ(τ,λt)

H

From Proposition (B.1), the following Corollary follows immediately.

Corollary B.1 (Demand of Corporate and Government Bonds). Given the set of first-order conditions
from Proposition (B.1), habitat demand for Government and corporate bonds is given by

x
G,(τ)
t =

−Ω
(τ),C−G
t + µΛ(τ,λt) +

ΣΛ(τ,λt)
ΣR(τ,rt)

%
1

P
G,(τ)
t

− µR(τ, rt)

&

γΣΛ(τ,λt)
+Wt

x
C,(τ)
t =

Ω
(τ),C−G
t − µΛ(τ,λt)

γΣΛ(τ,λt)

where

Ω
(τ),C−G
t

.
=

1

P
C,(τ)
t

− 1

P
G,(τ)
t

is the holding-period return spread between corporate and Treasury bonds.

The key mechanism is to make the long-term Government bond the safe asset and expose the habitat-
investor to interest rate (roll-over) risk through refinancing initial positions at a (stochastic) short-term
rate. This idea is reminiscent of Sangvinatsos and Wachter (2005), Greenwood, Hanson, and Stein
(2010) and Hanson and Stein (2015). The assumption of holding until maturity is also crucial, as it
makes investors respond to (promised) yields. Further, the key property of these demand curves is
that they can be mapped into Kyle and Xiong (2001). Note that Ω

(τ),C−G
t is an equilibrium object,

whereas the other elements only depends on the P-measure dynamics of rt and λt.

What happens in this problem is that the counterpart of the variance-covariance matrix and the ex-
pected returns are functions of maturity τ and rt and λt only. Habitat demand responds to the prices
and to fundamentals through their effect on µR(τ, rt), µΛ(τ, rt) ,ΣR(τ, rt) and ΣΛ(τ, rt). It turns out
that demand for Treasury bonds increases when expected defaults are higher. Further, habitat in-
vestors respond to the difference between the yield to maturity of the two assets.

Log-linearizing1 the two expressions from Corollary (B.1) around P
(τ),G
t = P

(τ),C
t = 1 gives

Ω
(τ),C−G
t

.
=

1

P
C,(τ)
t

− 1

P
G,(τ)
t

≈ p
G,(τ)
t − p

C,(τ)
t

1I log-linearize 1/X around x0 = 0. Let x
.
= ln(X). Then

1

X
= e− ln(X) = e−x ≈ e−x0 − e−x0 (xt − x0) = 1− 1(xt − 1) = −xt
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Substituting this approximation in the demand for the long-term assets gives

x
G,(τ)
t ≈

p
C,(τ)
t − p

G,(τ)
t + µΛ(τ,λt)− ΣΛ(τ,λt)
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Further, since p
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t = logP

j,(τ)
t = −τy

j,(τ)
t , I obtain

x
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− µΛ(τ,λt)
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This implies that cross-price elasticities between Treasury and corporate bonds are non-zero. Further,
these elasticities are functions of λt and rt.

B.2.2 Proofs of Lemmata and Propositions

Lemma B.1 (Moments of the Ornstein-Uhlenbeck Process). Suppose that st follows the dynamics

dst = κs(s− st)dt+ σsdBt

Then

su = ste
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.
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Proof. This follows from standard arguments of Ornstein-Uhlenbeck processes. !

Proposition B.1 (Habitat-investors’ First-order Condition). Given the objective (B.1), the budget
constraint (B.2), and the dynamics (B.3)–(B.4), the first-order conditions for x

G,(τ)
t and x

C,(τ)
t are

1

P
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Proof. Using Lemma (B.1) and the properties of the log-normal distribution gives
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and the same holds for λt. Then, because Br,t and Bλ,t are independent, it follows that
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Thus, the long-term investors’ problem becomes
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Differentiating with respect to x
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t and x
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t gives
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which gives the desired result. !

Corollary B.1 (Demand of Corporate and Government Bonds). Given the set of first-order conditions
from Proposition (B.1), habitat demand for Government and corporate bonds is given by

x
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where
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is the holding-period return spread between corporate and Treasury bonds, i.e.

Proof. The set of first-order conditions defines a linear system of two equations in the two unknowns
x
G,(τ)
t and x

C,(τ)
t . Using matrix notation, the first-order conditions can be written as (using the
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shorthand notation ΣR(τ, rt) = ΣR
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as it was to be shown. !
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