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Abstract

I show that information frictions in valuation can lead startups to select projects that
align with the expertise of potential venture capital (VC) investors, a strategy I refer to as
catering. First, I build a theoretical model where a startup trades off project quality with the
informational benefits of catering. The startup selects catering when alternative information
sources are limited or VC investors demonstrate proficiency in valuing projects close to their
expertise. Second, using textual data from patent applications, I define catering projects
as patent applications that deviate from the founders’ experience toward VC’s expertise.
Consistent with model predictions, catering applications are more prevalent when patent
examination is slow or VCs utilize past data to screen new deals. Catering applications
are 19.3% less likely to get patent approval, suggesting low project quality. Overall, this
paper shows that specialized financial intermediaries, such as VC, can broadly shape new
technology developed by firms outside their portfolios.
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1 Introduction

A lack of information in valuation is a primary challenge for entrepreneurs of innovative startups.

Startups commonly face a considerable time lag before generating first revenue or obtaining a

patent review decision, during which the value of startups can be highly uncertain.1 Information

frictions lead to inefficient terminations by entrepreneurs and discourage external financiers from

funding otherwise successful startups, both of which reduce entrepreneurial payoffs. Despite the

critical role of information in entrepreneurial success, the existing literature rarely explores how

entrepreneurs can actively manage the information available to them to attain higher payoffs.

In this paper, I show that entrepreneurs can alleviate information frictions in assessing project

value by initiating projects close to the expertise of potential venture capital (VC) investors, a

strategy I refer to as catering. First, I develop a theoretical model to show that entrepreneurs se-

lect catering at the cost of project quality when (i) information sources beyond venture capitalists

(VCs) are limited or (ii) VCs are highly skilled in valuing projects close to their expertise. Second,

I use first-time patent applications by US startups to construct an empirical measure of startup

catering. I identify catering projects as patent applications that are far from the entrepreneurs’

previous experience but align closely with projects funded by VCs. I provide empirical evidence

supporting the model’s predictions and show that catering projects are 19.3% less likely to obtain

patent approval, suggesting lower project quality.

The key model assumption is that an entrepreneur selects and experiments with one of her

two entrepreneurial ideas. The project selection involves a trade-off between project quality and

information. One project (exploration) generates a higher payoff conditional on success but is far

beyond VCs’ expertise. The other project (catering) faces less information friction when valued

by VCs but generates a low payoff. Project selection occurs before the entrepreneur engages with

VCs for investment and project valuation.

In a frictionless world, the entrepreneur optimally selects exploration to achieve the first-best

payoff. However, in the presence of information frictions, the entrepreneur may decide to cater.

Catering yields informational benefits through two channels. First, catering leads to efficient

1Lack of information is prominently mentioned in the literature on entrepreneurial finance as a key defining
feature of this important sector of the economy (Hall, 2002; Hall and Lerner, 2010).
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investment decisions. In particular, VCs can make their investment decisions more efficiently by

identifying and funding successful projects. This, in turn, helps the entrepreneur recognize and

abandon unsuccessful projects. Second, the entrepreneur exerts low effort to engage with VCs to

achieve efficient investments. In equilibrium, the entrepreneur caters when VCs are highly skilled

in screening projects close to their expertise or when facing frictions in accessing alternative

information sources beyond VCs.

I test the model predictions using 62,088 first-time patent applications by US startups from

2007 to 2018. Following Kelly et al. (2021), I measure the proximity of a startup’s project to VC

expertise, hereafter VC Informativeness, by textual similarity between the startup’s first-time

patent application and previous applications from firms in the VCs’ portfolio.2 In line with the

model predictions, I find that startups of high VC informativeness are more likely to secure VC

investments. One standard deviation increase in VC informativeness predicts a 27% increase in

the probability of investment compared to the sample mean. I also show that startups of high

VC informativeness experienced a shorter time on capital seeking. In particular, for the sub-

sample of startups that accessed VC financing in the sample period, high VC informativeness

associated with a shorter time to first VC investments. Furthermore, for those startups who

failed to be funded and eventually terminated their business, an increase in VC informativeness

predicts faster closure. Taken together, these results support the benefits of having projects close

to VCs’ expertise consistent with my theoretical model.

Next, I develop an empirical measure for startup catering. In particular, I define a patent

application as a catering project if it (i) differs from the patenting experience of startup inventors

and (ii) aligns closely with VCs’ expertise. I show that, on average, catering applications are of

lower quality in the sense that they underperform compared to other patent applications filed

within the same industry and year. Notably, catering applications are 19.3% less likely to receive

patent approval, and I find no evidence that they result in higher citations conditional on approval.

These findings validate the model assumption that catering projects may come at the expense of

project quality.

I further provide evidence regarding the determinants of startup catering. The model predicts

2This notion stems from the idea that VCs adopt expertise developed from monitoring portfolio firms to evaluate
new deals (Sorensen, 2008).
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that startup catering is more prevalent when alternative information sources are limited. I employ

patent examination as a proxy for the alternative information source and use the speed of patent

examination to measure its efficiency.3 I find that startup catering is more prevalent in technology

classes with slower patent examination, which supports the model prediction. One standard

deviation increase in examination speed is associated with a 33% decrease in startup catering.

The model also predicts that startups are more likely to cater when VCs are highly skilled

in valuing projects close to their expertise. I use VCs’ data technology adoption to measure

their skills in valuing projects. Upon adopting data technology, VCs are notably more adept at

assessing the value of projects akin to their previous investments, while this advantage might not

extend to exploration projects (Bonelli, 2023). Consequently, the catering project brings more

informational benefits when VCs are data-driven. I define a VC firm as data-driven if the VC

firm hires data scientists for deal screening. My results suggest that startup catering is more

common in technology classes invested by data-driven VCs, which supports the informational

channel proposed by the model.

In sum, this paper illustrates how specialized financial intermediaries, such as VC, can shape

the nature of new technology. Specialized financial intermediaries help to mitigate information

friction in valuation and increase entrepreneurial payoff, but only for entrepreneurs with projects

close to their expertise. Hence, entrepreneurs may strategically cater to VC’s expertise in project

selection to obtain informational benefits at the expense of project quality. While VCs’ adoption

of data technology can reduce information friction in screening, it cannot lead to the first-best

outcome because it causes more ex-ante catering behavior by entrepreneurs.

My paper adds to the literature on the real effects of venture capital. Existing literature finds

that VCs spur innovation of portfolio startups through active monitoring (Kortum and Lerner,

2001; Bernstein et al., 2016), value-added services (Lerner, 1995, Hellmann and Puri, 2002, Hsu,

2004, Chemmanur et al., 2011), tolerance for failure (Manso, 2011; Tian and Wang, 2014), and

security design (Hellmann, 1998; Cornelli and Yosha, 2003; Kaplan and Strömberg, 2003; Kaplan

and Strömberg, 2004). This strand of literature highlights ex-post effects of VCs on their portfolio

3Existing literature shows that patent approval helps reduce information frictions in assessing startup values
(Farre-Mensa et al., 2020), and its delay affects startup financing (Farre-Mensa et al., 2016).
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firms after investments.4 In contrast, my paper illustrates potential ex-ante real effects by VCs.

Startups may strategically opt for projects close to VCs’ expertise to take advantage of VCs’

information for future learning. Through this channel, VCs can potentially shape the startup

landscape by influencing the project selection of startups outside their portfolios.5

This paper also contributes to the real options literature, with a specific emphasis on en-

trepreneurial firms. The option feature of investment is especially relevant for innovative startups

given their inherent uncertainty and skewed return distributions (Scherer and Harhoff, 2000; Hall

and Woodward, 2010). Kerr et al. (2014) and Manso (2016) argue that experimentation is a key

feature of entrepreneurship. In particular, entrepreneurial payoffs crucially depend on abandoning

poorly performing projects and capitalizing on projects revealing good outcomes. Existing litera-

ture finds that entrepreneurial entry and financing are influenced by the cost of experimentation

(Ewens et al., 2018), financing risk (Nanda and Rhodes-Kropf, 2013; Nanda and Rhodes-Kropf,

2016), downside insurance (Hombert et al., 2020; Gottlieb et al., 2022), and information frictions

(Gompers, 1995; Bergemann and Hege, 1998; Bergemann et al., 2009). My paper focuses on

information frictions in project valuation and shows that entrepreneurs can manage information

through project selection.

Finally, my paper relates to the literature showing that financial investors, such as accelerators,

crowdfunding investors, and VCs, serve as a source of information that guides entrepreneurs in

investment decisions.6 For example, Yu (2020) and Howell (2021) show that startups that receive

negative feedback from accelerators or new venture competitions are more likely to close down,

suggesting that entrepreneurs learn about the value of their project from the feedback. Xu (2018)

and Chemla and Tinn (2020) conclude that entrepreneurs can acquire information about market

demand through crowdfunding platforms. Gonzalez-Uribe et al. (2023) find evidence that VC

due diligence yields informational benefits to entrepreneurs, irrespective of investment outcomes.

My paper builds on this literature and shows that the informational role of investors can lead to

4See Lerner and Nanda (2020) for the review of literature on VC’s role in financing innovation.
5Samila and Sorenson (2011) show that the supply of VC encourages entrepreneurial entry, which also aligns

with the idea that VCs may affect startups outside of their portfolio. My paper, instead, focuses on the information
channel through which VCs affect startup project selection.

6This paper focuses on the informational role of investors in the private market. See Bond et al. (2012) and
Goldstein (2023) for the review of feedback effect literature, which shows the real effects of information from public
market investors contained in stock prices.
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catering behaviors by entrepreneurs. Initiating projects close to VCs’ expertise helps to achieve

efficient investments and enhance entrepreneurial payoff, though it may come at the cost of project

quality.78

The remaining of this paper is organized as follows. In Section 2, I develop the theoretical

model and discuss the corresponding empirical predictions. In Section 3, I consider comprehensive

empirical tests to confirm model predictions. Section 4 concludes. All proofs are in the Appendix.

2 Model

This section introduces a theoretical model to illustrate the benefits and determinants of startup

catering. Section 2.1 outlines the model’s setup. I start by assuming that the entrepreneur

possesses a project to experiment with. The entrepreneur optimally determines the effort spent

on engaging with VCs in the financial market for investment and project valuation. Section

2.2 analyzes the equilibrium strategy of the entrepreneur and shows the channel through which

project proximity to VCs’ expertise impacts entrepreneurial payoffs. Section 2.3 endogenizes

the project choice of the entrepreneur and discusses the determinants of startup catering to

VCs’ expertise. Section 2.4 discusses model extensions. Section 2.5 summarizes the empirical

predictions of the model.

2.1 Setup

The economy has four dates t ∈ {0, 1, 2, 3} (See Figure 1). At date t = 0, the entrepreneur

initiates a project to experiment. The project has an unknown type for the entrepreneur upon its

initiation. It is of high type (T = H) with probability p, in which case it generates a payoff of R,

or of low type (T = L) with probability 1− p, in which case it pays out 0. To produce cash flow,

the entrepreneur requires a one-time investment of k at date t = 2 from the VCs in the financial

market to finalize the project. To capture the experimental nature of entrepreneurship, I assume

7Foucault and Frésard (2019) shows that firm product differentiation reduces stock price informativeness by
restricting cross-asset learning. Such informational cost induces firm conformism. My paper also highlights the
information-payoff trade-off by firms, while my focus is on the private market. In particular, I consider endogenous
learning effort and limited cross-asset learning with VCs as intermediaries.

8Yang and Zeng (2019) discusses how entrepreneurs optimally design securities to leverage financial investors’
expertise for efficient investments. Different from their work, my paper emphasizes project choice as a means to
alleviate information frictions.
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that R > k and pR < k. A high-type project has a positive NPV. Unconditionally, however, the

project has a negative NPV.

Figure 1: [INSERT FIGURE HERE]

At date t = 1, the entrepreneur decides on the effort level devoted to engaging with VCs, which

is denoted as n ∈ N. We can interpret the parameter n as the number of VCs the entrepreneur

contacts. Each VC generates a valuation of the entrepreneur’s project, which reflects the VC’s

information regarding the project type. Those valuations, from the entrepreneur’s perspective,

act as signals that help determine project type. The informativeness of those signals depends

on whether the contacted VC possesses the requisite knowledge to evaluate the entrepreneur’s

project.

For simplicity, I assume the financial market consists of two types of VCs. A fraction of q

among the VCs possess knowledge evaluating the project, enabling them to provide accurate sig-

nals regarding project type. The remaining VCs, however, lack experience with the entrepreneur’s

project and therefore cannot provide any information about the project type. In sum, each ran-

dom VC possesses information with a probability of q. To better illustrate the key intuition of

the model, I assume that the information at the hands of the VCs is costless.

All signals from VCs can be observed at t = 2. In addition to the signals from VCs, there is

a probability of λ that the entrepreneur receives another publicly available signal that discloses

the project’s type. This signal can be interpreted as an event such as patent approval or profit

generation. Notice that this signal is a perfect substitute for the information obtained from VCs.

The project requires a one-time investment of k at t = 2 to be completed. This investment

can be interpreted as scaling project size or the cost required to bring technology to the product

market. According to signals received, the startup makes investment decisions I2 ∈ {1, 0}. I2 = 1

represents raising capital of k from the VCs in the financial market to invest in the project, while

I2 = 0 represents abandonment. Abandon has no cost and yields zero payoff. If invested, the

project generates a cash flow at t = 3.

One feature of the model is that the entrepreneur learns about project type through interacting

with VCs. There are two assumptions behind this feature: First, VCs possess the skills necessary
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to produce information about the project type, and their information, at least to some extent,

complements the knowledge of the entrepreneurs. Second, VCs can deliver this information to

entrepreneurs through pre-investment screening. In other words, VCs bring additional insights

and expertise that augment the entrepreneur’s understanding of the project, irrespective of the

investment outcome. Those two assumptions are supported by González-Uribe et al. (2022).9

VC pre-investment screening is a multi-stage selection process involving intensive information

exchange with entrepreneurs. The information provided by VCs can potentially enhance the

entrepreneur’s understanding of the project’s value, facilitating informed investment decisions.

The parameter q describes the extent to which the entrepreneurial project is close to the

expertise of VCs. A higher value of q indicates high proximity between the project and VCs’

expertise and implies that VCs can provide precise project valuation to the entrepreneur. In

other words, a higher q suggests a lower level of information frictions faced by VCs in valuing the

project. This parameter can be interpreted as a characteristic of the entrepreneur’s project. For

example, if a project involves radical technologies, its value can be challenging for VC to assess

due to the lack of comparable firms as references. Such a project is thus characterized by a small

value of q, indicating the entrepreneur with the project may encounter difficulties in learning

about project values from VCs. In the rest of the paper, I refer to q as VC informativeness.

To highlight the informational role of VCs, I make two simplifying assumptions. First, I

assume all agents are risk-neutral. Second, there is no information asymmetry between the

entrepreneur and VCs in the market. In particular, both parties (i) observe all signals and share

the same information on project cash flow at any time point t, and (ii) observe the cash flow

upon project completion. This assumption helps avoid agency problems associated with adverse

selection. Both the entrepreneur and VCs agree with the investment surplus from the project

and bargain over it. I start by analyzing the case where the financial market is competitive, and

the entrepreneur obtains all investment surplus. I generalize these assumptions in Section 2.4.

Project cash flow (t=3). If the project is abandoned (I2 = 0), the cash flow of the project

at date t = 3 is zero. Otherwise, if the project is invested (I2 = 1), the cash flow depends on the

9While González-Uribe et al. (2022) primarily focuses on the type improvement channel, my assumption aligns
more closely with type discovery during the pre-investment screening stage. However, their findings support the
notion of information exchange between VCs and entrepreneurs during this stage.
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type of the project. Specifically, the cash flow is R̃ = R if the project is of high type (T = H)

and R̃ = 0 if the project is of low type (T = L).

The investment decision (t=2). At date 2, the entrepreneur has two sources of informa-

tion. First, the entrepreneur receives a publicly available signal se = {T, ∅}. In particular, the

signal follows a binary distribution. With a probability λ, the signal is of infinite precision and

reflects the true type of the project (se = T ). Otherwise, the signal has a precision of 0 and

provides no information regarding project type (se = ∅). Second, the entrepreneur observes all

signals collected from VCs svci = {T, ∅}, where i ∈ {1, ..., n} and n is the number of VCs con-

tacted by the entrepreneur. Each signal reflects project type svci = T with probability q. svci = ∅

represents no signal from VC i, which occurs with probability 1 − q. Hence, the entrepreneur’s

information set at t = 2 is S = {se, svc1 , ..., svcn}. I assume that the signals within the informa-

tion set are independent of each other in terms of their precision. The net present value of the

entrepreneur’s project for given information set S and investment decision I2 ∈ {0, 1} is

V2(I2;S) = I2E(R̃− k|S) = max{0,E(R̃− k|S)}. (1)

The number of VCs to contact (t=1). At date 1, the entrepreneur chooses the number of

VCs to contact, which is denoted as n. This decision affects entrepreneur payoff through changing

information set S. Increasing n leads to a high probability that at least one signal in S reflects

project type T . I assume each signal comes at a constant cost of c. The cost c captures the

entrepreneur’s time and effort in interacting with VCs. The entrepreneur chooses n to solve

max
n∈N

u(n) = E(V2|n)− cn. (2)

where u(n) represents utility of the entrepreneur.

Project Initiation (t=0). The entrepreneur initiates the project.

Definition of equilibrium. The equilibrium consists of two strategies by the entrepreneur.

(i) At t = 2, the entrepreneur makes investment decision I2 according to information set S. (ii)

At t = 1, the entrepreneur optimizes the number of VCs to contact (n) to maximize the expected

payoff, which is described by equation (2).
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2.2 Analysis

In this section, I analyze the equilibrium of the model. I start the analysis from the last decision

node at t = 2. The entrepreneur makes investment decision I2 to maximize V2 as illustrated in

equation (1). The entrepreneur’s strategy is a function of the information set S, which contains

signals revealed at t = 2. Notice that

E(R̃− k|S) =


R− k if ∃s ∈ S such that s = T and T = H

−k if ∃s ∈ S such that s = T and T = L

pR− k otherwise,

where R− k > 0 and pR− k < 0 by assumption. Hence, the entrepreneur project has a positive

NPV only if (i) at least one signal reviews project type (S is informative), and (ii) the signal

shows that the project is of high type. Consequently, the entrepreneur’s optimal strategy follows

I∗2 (S) =


1 if ∃s ∈ S such that s = T and T = H

0 otherwise.

Notice that in the first-best scenario without information frictions (λ = 1), i.e., there always

exist signals that reveal project type, the entrepreneur is able to efficiently invest in high type

projects and abandon low-type ones, resulting in an expected payoff (at t = 1) of p(R − k). Let

us define V := p(R− k) and discuss how the information frictions prevent the entrepreneur from

achieving the first-best payoff. When the entrepreneur relies on signals in S to make investment

decisions, the efficiency of investment is a function of the informativeness of S. I define the

informativeness of S, from the point of view of t = 1, as the probability of knowing the project

type by observing S. In particular, it is denoted as

P (n;λ, q) := P(∃s ∈ S s.t. s = T ) = 1− (1− λ)(1− q)n.

P represents the probability that the entrepreneur possesses complete information about the

project value and can make efficient investment decisions, investing in the project when it is of
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high type and abandoning it otherwise. With a probability of 1 − P , the entrepreneur has no

information about the project type, abandons the project, and obtains zero payoff. In sum, the

expected project value at t = 1 can be written as

E(V2|n) = PV, (3)

and the entrepreneur’s utility at t = 1 can be written as

u(n) = PV − cn. (4)

Notice that P increases in n because the probability of having at least one informative signal

is larger when more signals are collected. This illustrates the benefit of signal collection: more

signals indicate higher informativeness of the information set S, and, thereby, the expected payoff

from the project. Meanwhile, each signal is associated with a fixed cost of c. Taken together, the

number of VCs to contact affects the entrepreneur’s utility through changing informativeness of

set S, namely P , and the total cost of signal collection cn.

The entrepreneur trades off the benefit of informativeness and the cost of signals to choose

n. The entrepreneur’s optimal choice of n∗ is formalized by Proposition 1. Without affecting the

key intuition of the model, I simplify the discussion by analyzing a case where the entrepreneur

maximizes the expected payoff over a continuous set n ∈ R+
0 .

Proposition 1. At t = 1, the optimal number of signals to collect is given by

n∗(V, q, λ, c) =


log(1−λ)αV−log c

α if (1− λ)αV ≥ c

0 otherwise,

(5)

where α = −log(1− q).

Corollary 1. There exists q∗ such that

∂n∗/∂q =


≥ 0 if q ≤ q∗

< 0 if q > q∗.
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The value of q∗ is given by equation (12) in the Appendix.

The optimal number of VCs to contact is a function of project payoff V , VC informativeness

q, the efficiency of alternative information source λ, and the cost c of contacting each VC. We

are particularly interested in how VC informativeness q affects the entrepreneur’s strategy in

contacting VCs. Corollary 1 shows that the equilibrium n∗ exhibits an inverse-U relationship

with VC informativeness q. This pattern emerges because the marginal value of an additional

signal beyond the first one initially rises and then declines in relation to q. When q is relatively

low (q < q∗), an increase in q signifies higher signal quality, which incentivizes signal collection.

Conversely, when q is relatively large (q > q∗), the first signal is sufficiently informative to

determine the project type. As a result, the additional benefit derived from additional signals

diminishes, and the optimal n∗ decreases.

Proposition 2. The probability of achieving efficient investment, which is denoted by P (n∗),

increases in VC informativeness (q).

Proposition 2 concludes the impact of VC informativeness q on the probability of revealing

project value after considering the entrepreneur’s strategic choice of n∗. Even though the en-

trepreneur has the choice to collect signals to reduce information friction, she optimally selects

the number of signals considering the associated cost. Overall, the probability of revealing project

type P (n∗) increases in VC informativeness q.

Recall that the project is invested if and only if two conditions are satisfied: (i) S is infor-

mative, and (ii) the project is of high type. These two events, which occur independently, have

probabilities of P and p, respectively. Consequently, the probability of the project being invested

is given by pP and increases in q. Corollary 2 summarizes this result.

Corollary 2. The probability of project investment increases in VC informativeness q.

From the discussion above, we can conclude that VC informativeness may affect the en-

trepreneur’s utility through the total cost of signals collection (n∗) and the informativeness of

information set S. Figure 2 provides a numerical example and visualizes these two channels.
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Proposition 3. The entrepreneur’s utility is

u(n∗) =


V − c

α︸︷︷︸
Loss of low informativeness

− c

α
log

(1− λ)αV

c︸ ︷︷ ︸
Cost of signal collection

if (1− λ)αV ≥ c

λV otherwise,

(6)

where α = −log(1− q).

Corollary 3. The entrepreneur’s utility u(n∗) (weakly) increases in VC informativeness q.

Proposition 3 shows the effects of the informativeness of S and the cost of signal collection

on the utility of the entrepreneur. Interestingly, the loss of low informativeness is not a function

of the expected payoff V . This is because the entrepreneur strategically chooses the number of

VCs to contact according to the project payoff. Overall, the entrepreneur is (weakly) better off

when q is large, as concluded by Corollary 3.

In sum, this section presents a framework in which an entrepreneur experiments with a project.

The VCs play two roles throughout this process. First, they provide the necessary funding to

complete the project. Second, they generate signals that assist the entrepreneur in assessing the

quality of the project. The analysis demonstrates that the entrepreneur benefits from the VC’s

knowledge of the project through two channels: the probability of conducting efficient investment

and the cumulative cost of contacting VCs.

2.3 Entrepreneur Project Choice

In this section, I endogenize entrepreneur project choice and illustrate that the benefits of VC

informativeness can lead to entrepreneur catering. I assume that the entrepreneur at t = 0

can select between one of her ideas to experiment: exploration or catering. These two project

choices are denoted as I0 = IE and I0 = IC respectively. The two projects have different payoff

distributions and degrees of VC informativeness. In particular, I assume that

RE > RC ; qE < qC ,
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where Ri represents the payoff conditional on being high type and qi stands for VC informativeness

for project i ∈ {E,C}.10

Exploration involves unique technologies or projects without substitutes, which, if successful,

generates high value.11 However, due to their distinct nature compared to existing projects,

including those in the VCs’ portfolios, VCs are unable to provide precise estimations regarding

the project type. Conversely, the catering project yields low value when of high type, but VCs

possess adequate knowledge to identify the project type accurately. Lemma 1 demonstrates the

optimal strategy for the entrepreneur under the first-best scenario without information frictions.

Lemma 1. When information source beyond VCs is fully informative (λ = 1), the entrepreneur

optimally chooses the exploration project (I∗0 = IE).

In a frictionless world, the entrepreneur exerts zero effort in the signal collection and obtains

a utility of V based on the selected project, as suggested by Proposition 1. The entrepreneur

optimally selects exploration as it provides a higher payoff conditional on being high type. When

λ < 1, the entrepreneur encounters information frictions and is motivated to collect signals from

VCs. As Proposition 4 shows, the entrepreneur selects exploration only under a certain set of

parameter values.

Proposition 4. There exists q̄C(qE , RE , RC , p) such that the entrepreneur selects exploration at

date t = 0 when qC < q̄C(qE , RE , RC , p). If qC > q̄C(qE , RE , RC , p), the entrepreneur selects

exploration when λ > λ̄(qC , qE , RC , RE , p) and catering when λ ≤ λ̄(qC , qE , RC , RE , p).

Exploration provides a higher expected payoff, but it comes at the cost of low VC infor-

mativeness. Conversely, the catering project is featured by a lower expected payoff and high

VC informativeness. A smaller value of λ indicates a higher importance placed on acquiring

information from VCs, resulting in a larger informational benefit derived from catering to VCs.

As a result, the entrepreneur chooses catering over exploration when λ < λ̄. As Figure 3 (a)

10I assume an equal probability of being a high-type for both projects. This is equivalent to either assuming that
the exploration project is more likely to be high-type (pE > pC) or that the two projects have the same expected
value (pERE = pCRC) with the exploration project having higher risk (pE < pC , RE > RC). Both alternative
assumptions also result in a higher value for the exploration project (VE > VC).

11This assumption reflects the idea that differentiated project faces lower competition and generates more profit
(Tirole, 1988).
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shows a numerical example that catering can provide a higher utility than exploration when λ is

sufficiently small.

The value of λ̄ increases in qC , which denotes the VC informativeness with the catering

project. When qC is large, catering provides a greater informational benefit, which incentivizes the

entrepreneur to opt for the catering project. Hence, a large λ is required to motivate exploration.

The discussion of qC becomes particularly relevant as more VCs adopt data technology for pre-

investment screening. Data technology enables VCs to leverage past investments to predict the

potential payoff of new investment opportunities. This increased reliance on past information

enhances the VC’s informativeness when evaluating projects similar to those in their existing

portfolio,12 which corresponds to the catering project in my model. This may result in a larger

informational benefit for entrepreneurs to choose the catering projects and thereby encourage

catering, as shown by Figure 3 (b).

Note that increasing either λ or qC can enhance the entrepreneur’s utility, but their roles in

welfare differ. Specifically, while an efficient alternative information source (λ = 1) can result in

the first-best welfare,13 enhancing VCs’ expertise (a large qC) can only contribute to achieving

the sub-optimal outcome. This is because VCs’ expertise in screening encourages startup catering

at the expense of project quality.

2.4 Extensions

In the baseline model, I made several simplifying assumptions to highlight the role of VC informa-

tiveness. Specifically, I assumed that (i) the entrepreneur randomly contacts VCs for investment

and valuation, (ii) all VCs are contacted simultaneously, (iii) all signals from VCs are common

knowledge, and (iv) the financial market is competitive. In this section, I discuss model exten-

sions that relax these assumptions. I show that the entrepreneur’s payoff-information trade-off is

robust to those extensions.

12For more details, refer to Bonelli (2023).
13This is suggested by Lemma 1.
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2.4.1 Private Signals and VCs’ Bargaining with the Entrepreneur

In the baseline model, I assume that signals generated by VCs are publicly available and that the

financial market is competitive. Section G.1 considers the extension that the entrepreneur might

be unable to deliver information from one VC to another in the financial market. Conditional on

having a positive NPV, only informed VCs offer investment to the entrepreneur, and they bargain

with the entrepreneur to share investment surplus. I show that the positive effect of VC infor-

mativeness on entrepreneur payoff is robust to the assumption of private signals. Consequently,

the entrepreneur has an incentive to cater to VCs to enjoy informational benefits, the same as

the implication of the baseline model.

2.4.2 Heterogeneous VCs

The baseline model describes the case where the entrepreneur randomly meets n VCs from the

same probability distribution. I consider an extension that the entrepreneur strategically ap-

proaches VCs that are more likely to be informed about the project value. As shown in Section

G.2 of the Appendix, the informational benefit of VC informativeness still holds under this setting.

Similar to the baseline setting, the entrepreneur optimally caters to VCs when the alternative

information source is less effective or the catering project is close to the expertise of average VCs.

2.4.3 An Optimal Stopping Framework

In the baseline model, I assume the entrepreneur contacts multiple VCs simultaneously, and all

signals from VCs are observable at the same time. In Section H, I consider a dynamic framework

where signals are realized sequentially. The entrepreneur pays a constant cost and receives a signal

on project value at each date. The entrepreneur updates her belief on project value according to

signals and strategically make continuation decision. The entrepreneur who stops signal collection

either receives VC investment or abandons the project, depending on the distribution of posterior

belief upon stopping. In this framework, VC informativeness is reflected by signal precision. I

show that VC informativeness affects entrepreneur payoff through the probability of achieving

efficient investments and the cumulative cost of signal collection, exactly as in the baseline model.
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2.5 Empirical Predictions

The model generates empirical predictions regarding the benefit of s initiating projects of high VC

informativeness and the determinants of startup catering. First, The model predicts the benefits

of VC informativeness as below.

Prediction 1. Startups with projects close to VCs’ expertise (i.e., high VC informativeness) are

associated with a higher probability of VC investments.

Prediction 2. Startups’ effort in signal collection is an inverse U function of its proximity to

the expertise of VCs.

Prediction 1 arises from Corollary 2. Entrepreneurs with projects of high VC informativeness

are more likely to identify project value utilizing information from VCs. Consequently, such

projects are more likely to be invested conditional on being high-type.

Prediction 2 shows the optimal signal collection strategy illustrated by Corollary 1. The

entrepreneur trades off the benefit and cost of signal collection to determine the optimal level

of effort. A high VC informativeness indicates a higher value of each signal, which encourages

signal collection. However, if the first signal provides sufficient information, the marginal value

of subsequent signals diminishes, which discourages signal collection. This leads to an inverted

U-shaped relationship between startup effort in signal collection and VC informativeness. If

projects on the market are, on average, of high VC informativeness,14 we expect to observe that

entrepreneurs’ effort in signal collection decreases in VC informativeness.

Second, The model generates predictions on the cross-sectional variation of startup project

choice between exploration and catering, as illustrated below.

Prediction 3. Startup catering is more prevalent when information source beyond VCs is limited.

Prediction 4. Startups are more likely to initiate catering projects when VCs exhibit proficiency

in valuing projects close to their expertise.

Prediction 3 shows that information frictions entrepreneurs encounter outside the financial

market are associated with startups catering to VC’s expertise. Startups can determine project

14This corresponds to the scenario q > q∗.
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type utilizing information from several resources, including VCs and other exogenous events such

as patent approval. These informational sources substitute each other in revealing project type.

As shown by Proposition 4, when information outside the financial market is sufficiently infor-

mative, entrepreneurs rely less on VC’s informational role and hence reduce catering behavior.

Prediction 4 shows that startups select catering when VCs demonstrate expertise in valuing

projects close to their domain, i.e., catering projects exhibit high VC informativeness. Startups

opt to initiate catering projects to take advantage of VCs’ expertise to reduce information friction

in valuation and enjoy informational benefits. In the empirical tests, I use VCs’ data technology

adoption to proxy for their proficiency in value projects close to their expertise. More details are

discussed in Section 3.3.3.

3 Empirical Tests

In this section, I present empirical tests corresponding to the predictions outlined in Section

2.5. I employ patent applications as a proxy to identify projects undertaken by startups. This

approach considers two key factors. First, VCs predominantly invest in highly innovative indus-

tries characterized by startups engaged in extensive R&D activities. For example, in 2021, the

software sector and life science sector accounted for 37% and 14% of the overall VC deal count,

respectively.15 Second, startups often have limited tangible assets, making innovation projects

an important source of firm value. Using patent applications as a proxy allows me to capture the

importance of these innovation-driven projects in the startup ecosystem.

Patent applications provide a standardized format of innovation output through a credible

system. Existing literature shows that patent applications play an informational role that boosts

knowledge diffusion (Baruffaldi and Simeth, 2020; Kim and Valentine, 2021), licensing transac-

tions (Hegde and Luo, 2018), and inventor reallocation (Melero et al., 2020; Zhao, 2022). I focus

on the scenario where patent applications reveal information to external investors, as suggested by

Saidi and Žaldokas (2021). In particular, patent applications can serve as a source of information

for VCs when estimating the values of technologies developed by startups.

One assumption of this proxy is that startups pursuing VC financing file patent applications

15Source: NVCA Yearbook.
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for their innovation projects. One might raise concerns about startups being reluctant to file

patent applications due to potential risks, such as the leakage of valuable information that could

benefit competitors.16 I argue that this concern is less relevant for startups relying on external

financing. The reason is that once a patent application is granted, it significantly enhances the

fundraising prospects for the startup. Farre-Mensa et al. (2020) find that the approval of the first

patent increases a startup’s likelihood of receiving VC investment over the next three years by

47%. Such benefits provide startups with a strong incentive to file patent applications for their

innovation projects.

This section is organized as follows. Section 3.1 introduces the primary data source and sample

selection. Section 3.2 examines Predictions 1 and 2, which show that startups with projects close

to VCs’ expertise demonstrate a higher likelihood of securing VC investments and pay lower

cost in signal collection. In Section 3.3, I show that startup catering is associated with VC data

technology adoption and efficiency of the patent system, as summarized by Prediction 3 and 4.

3.1 Data and Sample Selection

The primary data of patent applications comes from PatentsView. PatentsView is a patent data

visualization and analysis platform supported by the United States Patent and Trademark Office

(USPTO). It provides comprehensive data on published patent applications filed after 2001.17

Due to the low coverage of the earliest years, I only include applications filed after 2004 in my

analysis.18 For each patent application, PatentsView gives the filing date, technology classes, and

textual information such as the title and the abstract. In addition, PatentsView provides patent

assignees, from which I identify startups potentially seeking VC financing.

Since PatentsView does not indicate whether an assignee is a startup, I select the sample

following the procedure below. First, I restrict the sample to assignees that are identified as US

firms.19 Second, I focus on firms that file at least one patent application between 2007-2018 but

16A startup’s disclosures can facilitate rivals’ innovation as Kim and Valentine (2021) suggest.
17Prior to the enactment of the American Inventors Protection Act (AIPA) in 2000, patent applications are

published only when the patents are granted. The rejected applications before 2000 are not available in Patentsview.
AIPA requires applications to be published after 18 months after the filing date, whether approved or not.

18The sample period starts in 2004 since PatentsView provides a total number of patent applications that is
arguably complete compared to the number from USPTO statistics since 2004.

19PatentsView provide types of assigness, where type= 2 indicates US firms. In addition, I restrict the sample
to firms that file the first patent applications with an address in the US.
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no applications before this period.20 Third, I remove firms that are publicly traded within three

years since the first patent filing.21 Fourth, I restrict the sample to firms that submit fewer than

five patent applications in their first filing year. In addition, I also remove firms that received VC

investments before the first filing year. This selection criteria helps to zero in 62,088 US firms in

the main sample. For those sample firms, I use the first-time applications to proxy for the firms’

projects and regard the first filing years as the year of project initiation.22

To test model predictions, we need to (i) measure the VC informativeness of each startup

project and (ii) identify startups that are invested by VCs, both requiring us to match data

on VC investments to patent assignees in PatentsView. I obtain data on VC investments and

VC-backed startups from Pitchbook. Pitchbook is one of the primary VC data sources available.

It provides detailed information on VC deals, such as the investors, invested startups, and deal

dates. The database also contains startup information such as locations, industries, current

status, etc. I match Pitchbook startups to PatentsView assignees on names and locations. Then,

I verify the matching using other information, such as the first application dates and startup

founding dates. I further conduct a manual verification of the results when multiple VC-backed

firms were matched to a single assignee, as well as the reverse scenario.23 More details of the

matching procedure are provided in the Appendix C. The matching procedure gives 2,679 sample

firms invested by VCs between 2007 and 2018. In the following section, I demonstrate how I use

the matched sample to construct the measure of VC informativeness.

3.2 VC Informativeness: Measure Construction and Empirical Tests

3.2.1 Measure of VC Informativeness

In this section, I introduce the empirical definition of VC informativeness, a measure at the patent

application level that quantifies the degree to which a patent application aligns with VC expertise.

Conceptually, a patent application is of high VC informativeness if it is similar to applications

20In particular, I remove firms that (i) have any pre-grant application between 2001 and 2006 or (ii) have any
granted patents between 1976 and 2006.

21I identify public firms with the help of patent-firm linkage provided by Kogan et al. (2017).
2286% of sample firms have only one patent filing in the first filing year.
23For example, I check the matching when (i)standardized firm names in two databases are highly similar but

not identical, or (ii) an assignee is matched with more than one VC-backed firms in Pitchbook. I validate my
matching by checking startup patents provided by the Pitchbook web portal.
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developed by VC portfolio firms in the past. The idea is that VCs learn about technology from

existing portfolio firm and apply that knowledge in evaluating potential investment opportunities.

This assumption is supported by existing literature. For example, Sorensen (2008) shows that

VCs learn from past investments and anticipate evaluating future ones. Bonelli (2023) finds that

VCs adopt data technology to utilize data from past investments for screening. Consequently,

VCs are likely to possess more expertise in valuing projects that resemble their past portfolio

firms.

I identify VC portfolio projects following the procedure below. First, I match patent assignees

to VC-backed startups in Pitchbook, as described in the previous section and Appendix C. This

gives a list of VC-backed startups with patent applications. Second, I identify the VC holding

period of each VC-backed startup. For each VC-backed firm, the VC holding period starts from

its first VC investment and ends in the year of startup closure or successful exit, defined as

IPO or M&A. Third, all patent applications filed by VC-backed startups during the VC holding

period are considered applications in the VCs’ knowledge set. This reflects the idea that VCs are

informed about the value of patent applications filed under their monitoring. In sum, I identify

55,671 patent applications filed by 10,455 startups satisfying the criteria above.24 This set of

applications is referred to as VC’s knowledge set in the rest of the paper.

An application filed by a startup is considered high VC informativeness when it is close

to at least one of the patent applications in VCs’ knowledge set. In particular, to identify VC

informativeness of application i filed in year t, I compare it with applications pvc1 , ..., p
vc
N filed by VC

portfolio firms from t−3 to t−1, whereN is the total number of such applications. First, I compute

the cosine similarity between application i and each of applications pvcj where j ∈ {1, ..., N}. I

construct the similarity measure using textual information from patent applications, following

Kelly et al. (2021). Particularly, two patent applications are considered similar when they contain

similar terms and corresponding frequencies.25

I obtain textual information from abstracts of patent applications. A patent application

24Patent applications after successful exits, such as M&A and IPOs, are excluded from the sample. The sample
only contains patent applications filed by VC-backed startups before and during VC holding periods.

25Existing literature measures similarity between firms or captures catering behaviors using product similarity
(Hoberg and Phillips, 2016), firm descriptions (Bonelli, 2023) or overlap in technology classes of innovation (Wang,
2018). In this paper, I focus on the textual similarity in patent applications, given my focus on the universe of
high-tech startups that potentially seek VC financing.
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typically contains a title, an abstract, descriptions, and claims. Abstracts are required to provide

a summary that “indicate the technical field to which the invention pertains and shall be drafted

in a way which allows the clear understanding of the technical problem, the gist of the solution

of that problem through the invention, and the principal use or uses of the invention.” Also,

abstracts shall be concise, “preferably 50 to 150 words”.26 Overall, abstracts provide a complete

description of the technology developed by a patent application in a standard length.

To capture technology associated with a patent application, I convert the abstract of the

patent application into a vector consisting of (i) a list of terms used in the abstract, and (ii)

weighted frequencies of those terms. Here, the weight considers the uniqueness of the term in

the patent universe, and unique terms are assigned higher weights.27 I repeat this exercise for all

applications i and j ∈ {pvc1 , ..., p
vc
N } to obtains a set of vectors {Vi, Vpvc1

, ..., VpvcN }. The similarity

between patent applications i and each of j ∈ {pvc1 , ..., p
vc
N } is described by cosine similarities

between the vectors

ρi,j = Vi · Vj .

Overall, a pair of applications using the same set of terms has a high similarity score, especially

when the distribution of frequencies across the terms is closer. This similarity measure maps

textual information of a pair of applications to a number between 0 and 1. A similarity of 0

indicates that the two applications have no terms in common, while a similarity of 1 signifies that

the applications are identical. VC’s informativeness to application i is measured by

VC Informativenessi = max
j=pvc1 ,...,pvcN

ρi,j . (7)

The idea is that application i is familiar to VC if it is close to at least one patent application in

VC’s knowledge set.

The measure VC Informativeness is an empirical measure of parameter q in the model. When

the first-time patent application of a startup is more similar to at least some applications in VC’s

portfolio, VCs are more knowledgeable in determining the value of the startup. Hence, the startup

is more likely to learn about project value from interacting with VCs. Figure 4 shows the variation

26Source: USPTO 1826: The abstract.
27More details about measure construction are shown in Appendix D.
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of VC Informativeness across patent applications (Figure (a)) and industries (Figure (b)).

3.2.2 Empirical Tests: Benefits from VC Informativeness

This section discusses empirical tests on the benefits of VC informativeness, as shown by Pre-

diction 1 and 2. I first test the relationship between VC informativeness and VC investment by

examining the linear model

VC Investmentijt = β1VC Informativenessijt +Xit + δjt + εijt (8)

where i, j, t index startup, industry, and first filing year, respectively. VC Investmentijt is a

dummy variable that equals 1 if startup i filed first-time patent application in year t in industry

j obtained VC investment in the sample period. VC Informativenessijt measures to what extent

the first-time application of startup i is close to the expertise of VCs, as defined by equation (7).

Xit controls for the quality of firm inventors, measured by the total number of patents granted to

inventors of firm i before year t. δjt includes industry (1-digit Cooperative Patent Classification

(CPC) patent classification) and year fixed effects. Standard errors are clustered at the industry

level.

Table 3: [INSERT TABLE HERE]

Table 3 presents the results. The coefficient estimate of VC Informativenessijt is positive and

statistically significant, suggesting that startups with projects close to VCs’ expertise are associ-

ated with VC investments. One standard deviation increase in VC informativeness is associated

with 1.16% higher probability of getting invested, which represents a 27% increase compared to

the sample mean. This result is consistent with Prediction 1 that startups closer to VCs’ expertise

are more likely to get project value revealed and obtain VC investments.

Next, I provide empirical evidence regarding the correlation between VC informativeness and

the total cost in signal collection for startups, suggested by Prediction 2. The proposition shows

that the total cost of signal collection is an inverse U function of VC informativeness. If VCs are,

on average, informed (q > q∗), we would observe a decrease in the signal collection effort in VC

informativeness.
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I use the time spent on signal collection as a proxy for the total effort in signal collection.

Specifically, I focus on a sub-sample of startups that fall into one of two categories: (i) For

startups that secure VC financing during the sample period, I calculate the time spent on signal

collection from the first filing year to the year of their first VC investment. (ii) For closed startups

that were never invested by any VCs, I regard the time between the first patent filing and firm

closure as the signal collection time.28

I examine the linear model (8) with a dependent variable of signal collection time described

above. Results are reported in Table 4. Column (1) and (2) reports regression results using a

sub-sample of startups that satisfy either condition (i) or (ii) above. Overall, VC Informativeness

is associated with a shorter time for signal collection. Column (3) and (4) shows that for startups

that are invested by VCs in the sample period, VC informativeness predicts faster VC investments.

When VC informativeness increases from 0 to 1, the first VC investment comes about 0.58 years

faster. One standard deviation increase in VC informativeness is associated with about 0.09

years decrease in time till the first VC investment, which represents about 5% decrease compared

to the sample mean. Results in Columns (5) and (6) show that uninvested startups with high

informativeness close faster. This is consistent with the explanation that entrepreneurs with

low-type projects can effectively learn from VCs and abandon the projects when their projects

are close to the expertise of VCs. Overall, results support a negative correlation between VC

informativeness and signal collection cost, which is consistent with the parameter value q > q∗ in

the theoretical model.

Table 4: [INSERT TABLE HERE]

Taken together, evidence suggests two benefits of VC informativeness: a higher probability

of being invested and a small total cost in signal collection. As the theoretical model shows,

such informational benefits may incentivize startups to cater to VCs’ expertise. In section 3.3,

I introduce the measure of startup catering and present empirical tests on the determinants of

startup catering (Prediction 3 and 4).

28Pitchbook provides firm closure time. For this analysis, I focus on a subset of PatentsView startups that are
matched with closed Pitchbook startups.

23



3.3 Startup Catering: Measure Construction and Empirical Tests

3.3.1 Measure of Startup Catering

This section introduces the empirical definition of startup catering. Conceptually, catering

projects are those that (i) deviate from entrepreneurs’ experience and (ii) highly align with VCs’

expertise.

I identify whether an application i filed in year t is new to startup entrepreneurs following the

procedure below. First, I define startup entrepreneurs as the inventors associated with first-time

patent applications by the startup. Second, I define entrepreneurs’ knowledge set at time t as all

patent applications p1, ..., pM filed by entrepreneurs from t−3 to t−1, where M denotes the total

number of such applications.29 Third, I compute pairwise similarities between application i and

each application in the entrepreneurs’ knowledge set as described in Section 3.2. The similarities

are denoted as ρj where j ∈ {p1, ..., pM}. Application i is considered within entrepreneurs’

knowledge if it is similar to at least one patent application in the inventors’ knowledge set. In

particular, the extent to which entrepreneurs are experienced with application i is defined as

Startup Experiencei = max
j=p1,...,pM

ρi,j .

The application i is considered familiar to entrepreneurs if Startup Experiencei is sufficiently large.

Considering both Startup Experience and VC Informativeness, applications with (i) Startup

Experience below the median and (ii) VC Informativeness above the median are classified as

catering applications.30 In sum, 7,669 sample applications satisfy both criteria and are identified

as catering applications.31

In the following analysis, our focus narrows to a sub-sample of startups deviating from their

entrepreneurs’ previous experience in their first-time patent applications (Startup Experience

below median). Within this subset, startups that pivot their innovation toward VCs’ expertise

are classified as exhibiting catering behavior. Conversely, other startups that deviate both from

29Startups whose inventors do not have prior patent applications are excluded from the analysis.
30Figure 5 shows that there is no clear correlation between Startup Experience and VC Informativeness.
31Empirical findings are robust to different thresholds. In Appendix Section F.1, I present results where catering

applications are defined as those with Startup Experience in the lowest quartile and VC Informativeness in the
highest quartile.
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their own experience and VC experience are seen as engaging in exploratory projects.32 We then

investigate whether factors such as alternative information sources (e.g., patent examination

speed) and VCs’ adoption of data technology are associated with the choice of startup catering

over exploration.

3.3.2 Empirical Tests: Patent Examination Speed and Startup Catering

Prediction 3 shows that the effectiveness of alternative information sources can influence startup

project choices. In the empirical analysis, I use patent examination as a proxy for an alternative

information source and the speed of patent examination to represent the effectiveness of the

patent system in providing information. As Farre-Mensa et al. (2016) shows, patent examination

results act as an information source for assessing startup quality, and their delay substantially

impacts startups’ ability to secure external capital.

Patent examination speed captures the time between patent filing and issuance of the exam-

ination result, either approval or rejection. Since patent rejection decisions are not observable

in PatentsView, I utilize a sub-sample of approved applications to capture patent examination

speed. In particular, for each technology class (4-digit CPC classification) c at year t, the speed

of patent examination is defined as the fraction of patents granted within three years among all

patents in class c and granted in year t. Notice that this empirical measure captures parameter

λ in the theoretical model.

Figure 7 illustrates the substantial cross-sectional variance in patent approval speed among

various technology classes, both within an industry (Panel A) and across industries (Panel B).33

The model predicts that inventors who work on technology classes with slower patent approval

can be forced to learn about project value from VCs and thereby initiate catering applications.

I test the association between patent examination speed and startup catering by estimating the

linear model below.

Startup Cateringicjt = β1Approval Speedc,t−1 +Xit + δjt + αc,t−1 + εicjt, (9)

32In Appendix F.3, I show that informational benefits are robust to this sub-sample of patent applications.
33In Appendix A, I provide more figures showing that the variation is robust to alternative definitions of approval

speed.
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where i represents patent application, c technology class, j industry, and t filing year.

Startup Cateringicjt is a dummy variable that equals one if the application i is defined as a

catering application. Approval Speedc,t−1 is the fraction of patents that are granted within three

years in class c at year t − 1. Xit contains firm controls, including the quality of firm inventors

measured by the total amount of patents granted to firm inventors. δjt represents industry and

year fixed effects. Considering potential endogeneity issues caused by other technology class-year

level omitted variables such as competitions and complexity, I control for two technology-year

level characteristics contained by αc,t−1: number of patents and the fraction of breakthrough

patents.34

Panel A of Table 5 illustrates the results. A technology class with faster patent approval

speed is associated with fewer catering applications, as predicted by the theoretical model. One

standard deviation increase in examination speed is associated with 11.7% decrease in the fraction

of catering applications, which represents a 33% decrease compared to the sample mean. This

result supports Prediction 3.

Table 5: [INSERT TABLE HERE]

3.3.3 Empirical Tests: VCs’ Data Technology Adoption and Startup Catering

In this subsection, I examine whether startup catering is associated with VCs’ proficiency in

valuing projects close to expertise, in accordance with Prediction 4. Empirically, I capture VCs’

proficiency in valuation using VCs’ data technology adoption in screening activity. Data technol-

ogy enables VCs to leverage data from past investments to predict the value of potential deals.

Bonelli (2023) shows that data technology enhances VCs’ ability to assess projects resembling

their prior investments. However, this proficiency in valuation may not extend to startups de-

veloping exploratory technologies that differ significantly from those in the VC portfolio. As a

result, startups operating in technology classes supported by data-driven VCs may benefit from

greater informational advantages when pursuing catering projects.

I construct a technology class-year level variable to capture whether a technology class c is

supported by data-driven VCs at year t. As the first step, I identify data-driven VCs following

34The list of breakthrough patents is provided by Kelly et al. (2021).
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Bonelli (2023). In particular, a VC firm is identified as data-driven starting from the year it hires

the first employee to apply data technologies in screening activities. More details are available

in Appendix E. Next, I identify patent applications supported by data-driven VCs. A patent

application is defined to be supported by data-driven VCs if it is (i) filed by a VC portfolio

firm during the VC holding period and (ii) the VC investor is data-driven when the application is

filed. Then, I construct a technology class-year level variable Invested by data-driven VCsct. This

variable takes the value of 1 if at least one patent application filed in technology class c in year t

is supported by data-driven VCs. In the final sample, we observe that 11.2% of technology-year

observations are labeled as supported by data-driven VCs.

I test the correlation between data technology adoption by VCs and startup catering by

examining model

Startup Cateringict = β1Invested by data-driven VCsc,t−1 +Xit + δc + αt + εict. (10)

Invested by data-driven VCsc,t−1 is a dummy variable indicating technology classes invested by

data-driven VCs, as defined above. Xit contains firm controls, including the quality of firm

inventors measured by the total number of patents granted to firm inventors before year t. I

control for technology class (δc) and year (αt) fixed effects, respectively. Standard errors are

clustered at technology class level.

Results are reported in Panel B of Table 5. The estimates coefficient of

Invested by data-driven VCsct is positive and significant, which supports the hypothesis that star-

tups initiate more catering applications in technologies classes invested by data-driven VCs. One

standard deviation increase in Invested by data-driven VCsct is associated with 1.2% increase in

startup catering, which represents 3% increase compared to the sample mean.

3.4 Discussion and Additional Tests

3.4.1 Validation of Model Assumptions

One key assumption of the model is that the entrepreneur chooses between a high payoff, low VC

informativeness project (exploration) versus a low payoff, high VC informativeness project (cater-
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ing). The assumption establishes a payoff-informativeness trade-off faced by the entrepreneur

upon project selection. To validate the assumption that catering applications have a low quality

on average, I estimate a linear model as below:

Qualityijt = β1Startup Cateringijt +Xit + δjt + εijt

where i represents patent applications, j industry, and t filing year. Startup Cateringijt is a

dummy variable that equals one if application i is identified as a catering application, which was

described in the previous section. Qualityijt is the quality of application i. I consider two quality

measures below. Patent Grantijt is a dummy variable that indicates whether a patent application

is granted within three years of application. Patent Citationsijt means log citations received in

three years since the approval of a patent application. It only applies to applications that are

granted.35 Xit represents the quality of inventors. δjt includes industry fixed effects (1-digit

CPC classification) and year fixed effects. Standard errors are clustered at the industry level.

Again, I apply this model to a sub-sample of startups that deviate from their past innovation

experience (Startup Experience below median) to rule out the impact of inventor experience on

project quality.

Table 6: [INSERT TABLE HERE]

As shown in column (1)-(3) of Table 6, catering applications are 9.3% less likely to be granted

within three years. Given that the unconditional likelihood of approval is 48.2%, this estimate

represents a 19.3% decrease in the likelihood of getting the application granted compared to the

sample mean. Meanwhile, there is no evidence that catering applications, conditional on approval,

are associated with more citations.36 In summary, the results suggest that catering applications

are of relatively low quality.

35The model assumes exploration generates a higher economic value in expectation. Since the dollar values
of patent applications (or patents) are not observable in my datasets, I use citations to proxy for their value.
This exercise is supported by existing literature showing that economic values and patent citations are positively
correlated (Hall et al., 2005; Harhoff et al., 1999; Fischer and Leidinger, 2014; Kogan et al., 2017).

36In an unreported table, I show that this conclusion is robust to Poisson regression, which produces consistent
and reasonably efficient estimate as Cohn et al. (2022) show.
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3.4.2 VC Informativeness and Startup Success

In general, VC informativeness reflects the ability of VCs to assess project value accurately and

make well-informed investment decisions. When considering startups that received VC invest-

ments, it is expected that VC informativeness is positively associated with high project quality.

I test this hypothesis by estimating the model

Successful Exitijt = β1VC Informativenessijt +Xit + δjt + εijt

where i represents patent applications, j industry, and t filing year. The dependent variable

Successful Exitijt is a dummy variable that equals one if the startup assignee of patent application

i experienced a successful exit (IPO or M&A) in the sample period. Again, I control for the

quality of firm inventors (Xit) and industry and year fixed effects (δjt) to account for potential

confounding factors at firm level and industry level. The results in Table A7 in Appendix F.3

show that a change in VC informativeness from 0 to 1 is associated with a 13.9% increase in the

probability of successful exits, which is consistent with the hypothesis.

3.4.3 Empirical Measure of VC Informativeness

One concern regarding the VC informativeness measure is that it may capture ‘success’ rather

than ‘information.’ In other words, some of the current results can be explained by (i) VCs

learning from their past successful investments when making investment decisions and (ii) startups

selecting projects similar to those of successful VC portfolio firms.

To address this concern, I adopt an alternative measure of VC informativeness that considers

only pre-grant patent applications. Specifically, to construct VCs’ knowledge set in year t, I

identify patent applications filed by VC portfolio firms between years t−3 and t−1, and exclude

those that were granted before or in year t. This alternative measure captures VCs’ knowledge

from past investments beyond projects that have been confirmed as successful.

I replicate all empirical analyses using this alternative measure and present the results in

Appendix F.2. All results are robust to new measures, confirming information’s role in VC

investment and startup catering.
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4 Conclusion

Existing literature shows that entrepreneurship is essentially about experimentation. Following

project initiation, startups learn about project value over time and make informed decisions re-

garding subsequent investments. This paper demonstrates that startups can strategically cater

to VCs’ expertise in project selection to reduce information frictions in project valuation. The

theoretical model shows that catering brings benefits through increasing investment efficiency

and reducing the cumulative cost in engaging with VCs for investment and valuation. In equi-

librium, startups select catering when alternative information sources are limited or when VCs

demonstrate high skills in valuing projects close to their expertise.

I employ textual data from patent applications to capture startup catering and test the model

predictions. Evidence suggests that startups with projects close to VCs’ expertise are associated

with VC financing and a shorter signal collection procedure, which supports the information

benefits of catering. Furthermore, I find that startups initiate more catering projects in technology

classes characterized by (i) slow patent examination and (ii) financing from data-driven VCs.

These findings are consistent with the explanations that catering brings higher informational

benefits when alternative information sources are less effective or when VCs adopt data technology

to enhance ability screening projects close to their expertise.
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Figures and Tables

Figure 1: Timeline of the Model

0

Project initiation I0 Decide number of VCs to contact (n)

1

Signals S = {se, svc1
, ..., svcn} realized

make investment decision I2 ∈ {0, 1}

2 3

Cash flow R̃ is realized
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Figure 2: Effects of VC Informativeness (q) on Entrepreneur’s Utility

(a) Total signal collection cost

(b) Probability of revealing project value at t = 2

Note: This figure provides a numerical example showing the influences of VC informativeness (q) on the cost of

contacting VCs for signals and the probability of revealing project value. Figure (a) shows that the cost of signal

collection exhibits an inverse U shape in q. Figure (b) shows that the probability of revealing project value increases

in q. I assumed c = 0.1, λ = 0.1, V = p(R− k) = 1.
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Figure 3: The Entrepreneur’s Utility from Exploration and Catering

(a) Impact of other information source on the entrepreneur’s utility

(b) Impact of VC Informativeness of catering on the entrepreneur’s utility

Note: This figure shows a numerical example of the entrepreneur’s utilities from exploration (black solid line) and

catering (red dashed line). Figure (a) shows that both exploration and catering provide a higher utility when the

alternative information source is more informative (λ is large). The utility of exploration increases faster in λ and

provides a higher utility when λ is sufficiently large. I assumed c = 0.1, qE = 0.2, qC = 0.8, VE = p(RE − k) =

1.5, VC = p(RC − k) = 1. Figure (b) shows that the catering project provides a higher utility when it is closer to

VCs’ area of expertise (qc is large). I assumed c = 0.1, qE = 0.2, λ = 0.1, VE = p(RE−k) = 1.5, VC = p(RC−k) = 1.
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Figure 4: Variation in VC Informativeness

(a) Distribution of VC Informativeness

(b) Average VC Informativeness by Industry

Note: This figure illustrates variations in VC informativeness. VC Informativeness of each first-time patent

application by a startup firm is a number between 0 and 1, as defined by equation (7) in Section 3.2. The measure

equals 0 when the patent application is distinct from all patent applications filed by VC portfolio firms, while it

equals 1 if the patent application is identical to at least one patent application by VC portfolio firms. Figure (a)

shows the distribution of VC informativeness across patent applications in the sample. Figure (b) shows average

VC informativeness by industry.
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Figure 5: Correlation between Startup Experience and VC Informativeness

Note: This figure illustrates the correlation between Startup Experience and VC Informativeness. I divide patent

applications into four quartiles according to the value of Startup Experience. The black dots plot the average of VC

informativeness for patent applications that fall into the quartile. The gray bars plot the minimum and maximum

value of VC informativeness for patent applications in the given quartile.

40



Figure 6: Distribution of Patent Approval Speed

Note: This figure displays the distribution of patent approval speed for USPTO patents granted from 2007 to

2021. The x-axis represents the number of calendar years between patent application and patent grant, while the

y-axis shows the fraction of patents in each group. The sample mean is 3.54 years with a standard deviation of

1.82.

41



Figure 7: Variation in Speed of Approval across Technology Classes

(a) Patent Approval Speed: Examples

(b) Distribution of Approval Speed across Technology Classes

Note: This figure illustrates the variation in patent approval speed across technology classes, where approval speed

is measured by fraction of patents granted within three years since application filings. Figure (a) plots approval

speed of three technology classes (G03G: electrography, electrophotography, magnetography; G08G: traffic control

system; G09B: educational or demonstration appliances) in the sample period. Figure (b) plots approval speed of

each technology class across the sample period.
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Table 1: Variable Definitions

Variable Definition

Patent Grant A patent application level dummy variable indicating whether the ap-
plication is approved within three calendar years (=1) or not (=0).

Patent Citations Three-year forward citations to the granted patent corresponding to a
patent application.

VC Informativeness The extent to which the value of a patent application is informed to VCs.
It reflects the proximity between an a patent application and VCs’ area
of expertise. Detailed definition is introduced in Section 3.2.

Startup Experience The extent to which a patent application is within expertise of startup
inventors. Detailed definition is introduced in Section 3.3.

Startup Catering A dummy variable indicating whether a patent application is defined
as a catering project. In the baseline setting, patent applications with
(i) Startup Experience below median and (ii) VC Informativeness above
median are classified as catering projects. See more details in Section
3.3 and Appendix D.

VC Investment A dummy variable indicating whether the firm is invested by VCs in the
sample period (=1) or not (=0).

Time to Investment The number of years between first patent filing and the first VC invest-
ment.

Successful Exit A dummy variable indicating whether a firm has successfully exited
through IPO or M&A (=1) or not (=0).

Approval Speed A technology class-year level variable that equals to the fraction of
patents granted within three years, considering all patents granted in
the technological class-year.

Invested by Data-driven VC A technology class-year level dummy variable indicating whether any
patent application in the technology class-year is developed by portfolio
firms of data-driven VCs.
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Table 2: Summary Statistics

Obs Mean St. Dev. Min .25 .50 .75 Max

Panel A. First Patent Applications of Startups

Patent Grant 62,088 0.483 0.500 0 0 0 1 1
Patent Citations 29,960 1.481 5.320 0 0 0 1 246

VC Informativeness 62,088 0.162 0.152 0 0.022 0.132 0.257 1
Startup Experience 32,555 0.263 0.335 0 0.016 0.101 0.383 1

VC Investment 62,088 0.043 0.202 0 0 0 0 1

Panel B. Startups with First Patent Applications Invested by VCs

Time to Investment 2,643 1.930 1.881 0 1 1 3 14
Successful Exit 2,643 0.174 0.379 0 0 0 0 1

Panel C. Characteristics of Fields of Technological Innovation

Approval Speed 4,252 0.637 0.189 0 0.500 0.629 0.770 1
Invested by data-driven VC 4,270 0.093 0.290 0 0 0 0 1

Note: This table presents summary statistics of patent applications, startup firms, and fields of technological

innovation for a sample of startup firms with the filing year of the first patent applications between 2007 and 2018.

Panel A. shows statistics of first-time patent applications filed by startups between 2007 and 2018. Note that VC

Informativeness is the empirical measure of parameter q in the theoretical model. Panel B. gives statistics of a

sub-sample of startups that obtained VC investment between 2007 and 2018 after their first patent filings. Time

to Investment is the empirical analog of parameter n∗ in the model. Panel C. illustrates characteristics of fields

of technological innovation (4-digt CPC level) startups are involved in. Approval Speed is the empirical measure

corresponding to parameter λ, capturing the probability startups learn about project value from the patent system.

Invested by data-driven VC describes whether the field of technological innovation is supported by VCs that adopt

data technology in screening new deals. It is the empirical measure of parameter qC in the model. Variable

definitions can be found in Table 1.
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Table 3: The Role of VC Informativeness in Startup Investment Decisions

VC Investment
(1) (2) (3)

VC Informativeness 0.076∗∗∗ 0.076∗∗∗ 0.075∗∗∗

(0.019) (0.008) (0.008)

Industry Yes
Year Yes
Industry-Year Yes Yes
Firm Controls Yes

Observations 61,481 61,481 61,481
R2 0.011 0.012 0.012

Note: This table shows results for regressions at the firm level, investigating whether startups with patent

applications close to VCs’ expertise are associated with VC investments. VC Informativeness measures the extent

to which the first-time application of the startup is close to the expertise of VCs, defined as equation (7). VC

Investment is a dummy variable that equals one if a startup obtains VC investment in the sample period and zero

otherwise. Industry denotes 1-digit CPC classification of the first application by the startup. Y ear represents

the first filing year of the startup. Firm Controls contains the quality of inventors, measured by total number of

patents granted to firm inventors. Standard errors are clustered at the industry level. *** denotes p-value < .01,

** denotes p-value < .05, and * denotes p-value < .1.
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Table 4: The Role of VC Informativeness in Startup Signal Collection

All Startups VC Invested Startups Failed Startups

Time to Investment/Closure Time to Investment Time to Closure
(1) (2) (3) (4) (5) (6)

VC Informativeness -0.646∗∗ -0.641∗∗ -0.583∗∗ -0.582∗∗ -1.89∗∗ -1.91∗∗

(0.226) (0.221) (0.200) (0.202) (0.621) (0.601)

Industry Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Firm Controls Yes Yes Yes

Observations 2,877 2,877 2,615 2,615 262 262
R2 0.078 0.078 0.060 0.060 0.434 0.434

Note: This table shows the relationship between VC informativeness and startups’ efforts in signal collection.

The unit of observation is a firm. VC Informativeness measures the extent to which the first-time application of

the startup is close to the expertise of VCs, defined as equation (7). Effort is proxied by time spent in the signal

collection, which is defined as the number of years between first patent filing and first VC investment (Time to

Investment) or firm closure (Time to Closure), depending on startup outcomes. Industry denotes 1-digit CPC

patent classification. Y ear represents the first filing year of the startup. Firm Controls contains the quality of

inventors, measured by total number of patents granted to firm inventors. Standard errors are clustered at the

industry level. *** denotes p-value < .01, ** denotes p-value < .05, and * denotes p-value < .1.
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Table 5: Determinants of Startup Catering

Panel A. Patent Approval Speed by Fields of Technological Innovation

Startup Catering
(1) (2) (3)

Approval Speed -0.680∗∗ -0.650∗∗∗ -0.648∗∗∗

(0.200) (0.127) (0.127)

Industry Yes
Year Yes
Industry-Year Yes Yes
Firm Controls Yes
Technology Controls Yes Yes Yes

Observations 6,494 6,494 6,494
R2 0.314 0.334 0.335

Panel B. VC’s Data Technology by Fields of Technological Innovation

Startup Catering
(1) (2)

Invested by Data-driven VCs 0.041∗∗ 0.041∗∗

(0.018) (0.018)

Technology Class Yes Yes
Year Yes Yes
Firm Controls Yes

Observations 16,140 16,140
R2 0.430 0.430

Note: This table shows the determinants of startup catering. Each observation is at the firm level. Startup

Catering is a dummy variable equal to one if the firm’s first-time application (i) deviates from entrepreneur’s

experience (Startup Experience below median) and (ii) aligns closely with VCs’ expertise (VC Informativeness

above median). Panel A. shows the relationship between patent approval speed and startup catering. Approval

Speed is a technology class-year level variable. It equals the fraction of patents granted within three years since

application, considering all patents granted in the technology class one year before application filing. Technology

Controls includes the total number of patents and the fraction of breakthrough patents at technology class-year.

Standard errors are clustered at the industry level. Panel B. shows that data technology adoption by VCs predicts

startup catering. Invested by Data-driven VCs is a technology class-year level dummy variable equal to one if at

least one patent application in the technological class is developed by portfolio firms of data-driven VCs in the past

year. Firm Controls contains the quality of inventors, measured by the total number of patents granted to firm

inventors. Standard errors are clustered at the technology level. *** denotes p-value < .01, ** denotes p-value

< .05, and * denotes p-value < .1.
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Table 6: Consequences of Startup Catering

Patent Grant Patent Citations
(1) (2) (3) (4) (5) (6)

Startup Catering -0.093∗∗∗ -0.093∗∗∗ -0.092∗∗∗ -0.009 -0.003 -0.003
(0.013) (0.008) (0.008) (0.025) (0.015) (0.015)

Industry Yes Yes
Year Yes Yes
Industry-Year Yes Yes Yes Yes
Firm Controls Yes Yes

Observations 16,140 16,140 16,140 7,349 7,349 7,349
R2 0.119 0.125 0.126 0.072 0.084 0.085

Note: This table shows the quality (Patent Grant and Patent Citations) of the catering applications. The unit

of observation is a patent application. Patent Grant is a dummy variable that indicates whether the application

is granted within three years after filing. Patent Citations represents the natural logarithm of one plus the count

of patent citations over a three-year period for the patent associated with the application, conditional on patent

approval. Startup Catering is a dummy variable equal to one if the firm’s first-time application (i) deviates

from entrepreneur’s experience (Startup Experience below median) and (ii) aligns closely with VCs’ expertise (VC

Informativeness above median). Firm Controls contains the quality of inventors, measured by total number of

patents granted to firm inventors. Standard errors are clustered at the industry level. *** denotes p-value < .01,

** denotes p-value < .05, and * denotes p-value < .1.
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A Additional Figures

Figure A1: Distribution of Patent Approval Speed

(a)

(b)

Note: This figure displays the variation in approval speed for each technology class over the sample period.

Approval speed is defined as the fraction of patents granted within one year (Figure (a)) and five years (Figure

(b)), respectively.
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Figure A2: Variation in Approval Speed Within Industries

Note: This figure illustrates the variation in patent approval speed across technology classes (4-digit CPC classi-

fication) within industries (1-digit CPC classification). Patent approval speed is defined as the fraction of patents

granted within three years of filing.
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B Proofs

Proof of Proposition 1 and Corollary 1. Notice that

du

dn
= (1− λ)αV (1− q)n − c,

and d2u
dn2 < 0 for any n ∈ R+

0 , where α = −log(1 − q) > 0. If (1− λ)αV < c, we have du
dn < 0 for

any n ∈ R+
0 . The optimal number of signal collection is then given by n∗ = 0. Otherwise, n∗ can

be determined by first-order condition

du

dn
= (1− λ)αV (1− q)n∗ − c = 0. (11)

The result is given by equation (5).

The discussion below proves Corollary 1. First, we show that n∗ is an inverse-U function of

q when (1− λ)αV ≥ c⇔ q ≥ exp{− c
(1−λ)V } is satisfied. Since

∂n∗

∂q
=
∂n∗

∂α

dα

dq
=

1

α2
(1− log (1− λ)αV

c
)

1

1− q
,

we have

∂n∗

∂q
=


≥ 0 if exp{− c

(1−λ)V } ≤ q ≤ q
∗

< 0 if q > q∗

where e represents Euler’s number and q∗ is given by

q∗ = 1− exp{− ec

(1− λ)V
} (12)

Note that when q < exp{− c
(1−λ)V }, we have ∂n∗

∂q = 0 since n∗ = 0. Taken together, we show that

Corollary 1 holds.

Proof of Proposition 2. First, we show that P increases in q when (1 − λ)αV ≥ c ⇔ q ≥

52



exp{− c
(1−λ)V } holds. Notice that

P (n∗) = 1− (1− λ)(1− q)n∗ = 1− c

αV
, (13)

where the second equality follows equation (11). Then we have

∂P (n∗)

∂q
=

c

α2V (1− q)
> 0.

The minimum value of P is given by

P (n∗|q = exp{− c

(1− λ)V
}) = λ.

When (1 − λ)αV < c, we have P = λ. Taken together, we have P (n∗) (weakly) increases in q.

Since E(V2|n∗) = P (n∗)V , we have E(V2|n∗) increase in q as well.

Proof of Proposition 3 and Corollary 3. We can plug equation (13) and equation (5) into equa-

tion (4) to get u(n∗). To prove that u(n∗) increases in q, it is sufficient to show that (i) u(n∗)

increases in q when q satisfies (1−λ)αV ≥ c; (ii) u(n∗) = λV when q gives (1−λ)αV = c. Notice

that when (1− λ)αV ≥ c is satisfied, we have

∂u(n∗)

∂q
=
∂u(n∗)

∂α

dα

dq

= [
c

α2
+

c

α2
log

(1− λ)αV

C
− c

α

1

α
]
dα

dq

=
c

α2
log

(1− λ)αV

C

dα

dq
> 0.

Hence, u(n∗) increases in q when (1 − λ)αV ≥ c is satisfied. The infimum of u(n∗) = λV is

obtained when q gives (1− λ)αV = c. Therefore, both condition (i) and (ii) are satisfied, and we

conclude that u(n∗) weakly increases in q.

Proof of Proposition 4. The entrepreneur selects the exploration project when u∗C < u∗E , where

u∗C and u∗E are defined by equation (6), given the parameter values of two projects respectively.

In the analysis below, we define αi = −log(1− qi) and Vi = p(Ri − k) for i ∈ {C,E}.
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First, I show that given λ = 0, there exists q̄C such that the entrepreneur selects exploration

if and only if qC < q̄C . Notice that if qC is sufficiently small such that αCVC < c, the utility

from catering is zero and the entrepreneur selects exploration. A non-trivial case is αCVC ≥ c

and αEVE ≥ c, where the entrepreneur selects exploration when u∗C < u∗E . There are two cases

in total.

Case I. lim
qC→1

u(n∗; qC , VC) = VC ≤ u(n∗; qE , VE). The entrepreneur selects exploration for

any qC < 1.

Case II. lim
qC→1

u(n∗; qC , VC) = VC > u(n∗; qE , VE). Since u(n∗; qE , VC) < u(n∗; qE , VE) and

u(n∗; qC , VC) is continuous and increasing in qC by Corollary 3, there exists q̄C ∈ [qE , 1]

such that u(n∗; qC , VC) < u(n∗; qE , VE) for any q < q̄C .

Taken together, there exists q̄C such that the entrepreneur always selects exploration when qC <

q̄C .

Second, I restrict the discussion to qC ≥ q̄C , and show that there exists λ̄ where the en-

trepreneur selects exploration if and only if λ > λ̄. It is equivalent to prove that u∗C − u∗E

decreases in λ. Notice that αc > αE and VC < VE by model assumption. The discussion below

contains two parts. First, I show that the conclusion holds when αCVC ≥ αEVE . Second, I show

that it also holds when αCVC < αEVE .

Case I. αCVC ≥ αEVE. Notice that it is sufficient to show u∗C − u∗E decreases in λ. Since

u∗C−u∗E =


VC − c

αC
− c

αC
log (1−λ)αCVC

c − [VE − c
αE
− c

αE
log (1−λ)αEVE

c ] if λ ≤ 1− c
αEVE

VC − c
αC
− c

αC
log (1−λ)αCVC

c − λVE if 1− c
αEVE

< λ ≤ 1− c
αCVC

λVC − λVE if λ > 1− c
αCVC

,

there are three scenarios in total.

- Scenario i. λ ≤ 1− c
αEVE

. We have

d(u∗C − u∗E)

dλ
= (

c

αC
− c

αE
)

1

1− λ
≤ 0.
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- Scenario ii. 1− c
αEVE

< λ ≤ 1− c
αCVC

. We have

d(u∗C − u∗E)

dλ
=

c

αC

1

1− λ
− VE

≤ c

αC

αCVC
c
− VE = VC − VE < 0.

- Scenario iii. λ > 1− c
αCVC

. We have

d(u∗C − u∗E)

dλ
= VC − VE < 0.

This concludes that the u∗C − u∗E decreases in λ when αCVC ≥ αEVE . We next discuss the other

case.

Case II. αCVC < αEVE. Similarly, we show that u∗C − u∗E decreases in λ. Notice that

u∗C−u∗E =


VC − c

αC
− c

αC
log (1−λ)αCVC

c − [VE − c
αE
− c

αE
log (1−λ)αEVE

c ] if λ ≤ 1− c
αCVC

λVC − [VE − c
αE
− c

αE
log (1−λ)αEVE

E ] if 1− c
αCVC

< λ ≤ 1− c
αEVE

λVC − λVE if λ > 1− c
αEVE

,

We again have three scenarios according to the value of λ above. Notice that the scenario (i) and

(iii) satisfy
d(u∗C−u

∗
E)

dλ < 0 as discussed in Case I. In the scenario ii., we have

d(u∗C − u∗E)

dλ
= VC −

c

αE

1

1− λ

< VC −
c

αE

αCVC
c

= VC(1− αC
αE

) < 0.

Hence, the proposition holds for Case II as well. Since u∗C − u∗E ≥ 0 when λ = 0, u∗C − u∗E < 0

when λ = 1 (by Lemma 1), and u∗C − u∗E is continuous and decreasing in λ, there exists λ̄ such

that the u∗C − u∗E = 0. We have u∗C < u∗E such that the entrepreneur selects exploration if and

only if λ > λ̄.
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C Matching Pitchbook with PatentsView

This appendix provides a detailed procedure for matching VC-backed startups in Pitchbook

with patent assignees in PatentsView. The key identifiers are firm names in both databases.

Supplementary information, including startup locations and founding years, is utilized to verify

the accuracy of the matching results. In particular, I employ the following matching procedure:

Step 1. Selection of patent assignees and VC-backed startups for matching. I restrict sample

assignees to be US startups37 that filed their first patent applications after 2004.38 For VC-backed

startups, I narrow down the sample to include startups founded after 2004 and located in the

US.

Step 2. Standardization of firm names and exact matching. I standardize firm names in both

datasets by removing common company prefixes and suffixes. Then, I implement exact matching

on firm names. This step results in a many-to-many matching between patent assignees and

VC-backed startups.

Step 3. Verification. I implement two restrictions to verify the matching results. First, the

filing dates of first-time patent applications by an assignee must fall within the timeframe defined

by the startup’s founding year and its quit year. The quit year can be either the year of closure

or the year of acquisition. Second, the assignee is required to have at least one patent application

filed in the same state where the headquarters of the VC-backed startup is situated. Among

the matching results that survive the two criteria, I keep the one-to-one matchings and remove

corresponding firms from the list that must be matched.

Step 4. Fuzzy matching on firm names. The remaining firms are subjected to a fuzzy matching

procedure. Specifically, I match patent assignees with VC-backed startups using the first word

of their names, as the first words in firm names are often unique and informative. Following

this matching process, I apply the two restrictions outlined in Step 3 to validate these matching

results.

Step 5. Manual check. The final step involves a manual verification process. First, I assess the

similarity of startup names among the matching pairs generated in Step 3 and eliminate pairings

37Assignee type=2 indicates US firms. Startups are identified following the procedure described in Section 3.
38I restrict the sample patent applications from 2004 because of the coverage issue. The number of patent

applications covered by PatentsView is comparable to USPTO statistics starting from 2004.
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with dissimilar names. Second, I validate the matches using patent data on the Pitchbook web

portal. Pitchbook portal provides a comprehensive list of patents granted to each startup. I cross-

reference the patents linked to the startups by matching those listed on Pitchbook to identify

and remove any incorrect pairings.

I end up with 10,455 VC-backed startups matched with assignees from PatentsView. A total

of 55,671 patent applications are identified as VC-backed applications since their filing dates are

between the startups’ first VC investments and exits.39

39Startup exists includes closing or successful exits such as IPO and M&A.
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D Empirical Measures

This section introduces the methodology for constructing empirical measures using textual in-

formation from patent applications. In the first subsection, I introduce a measure named term-

frequency-backward-inverse-document-frequency (hereafter TFBIDF ), which helps to compute

the pairwise similarity between patent applications. This measure is constructed following the

methodology of Kelly et al. (2021). In the second and third subsections, I discuss the proce-

dure for constructing the measures of VC informativeness and Startup Catering using pairwise

similarities.

D.1 TFBIDF Measure and Pairwise Similarity

Conceptually, the similarity between a pair of patent applications measures the degree of term

overlap within the application documents, considering the importance of each term to each appli-

cation. The importance of a term w to patent application p depends on two factors: (i) The total

frequency of term w in the patent application p. A higher frequency of term w implies a higher

level of importance. (ii) The total frequency of term w in other patent applications. This criterion

captures the informativeness of term w regarding the technology developed by patent application

p. The importance of w diminishes if it is commonly adopted in other patent applications. For

instance, terms like ’nuclear’ may carry more distinctive information compared to generic terms

such as ‘device,’ ‘process,’ or ‘machine.’

The TFBIDF measure is a term-patent application level measure that assesses the importance

of a term to a patent application. To be specific, the measured is defined as

TFBIDFpw = TFpw ×BIDFwt.

The first component is defined as

TFpwt =
cpw

Σkcpk
,

where cpw represents the count of term w in patent application p. The component equals the ratio
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of the count of term w in patent application p to the sum of counts of all terms in application

p. It captures the relative importance of term w within application p in terms of frequency. The

second component is defined as

BIDFwt = log(
# patent applications prior to t

1 + # patent applications prior to t that include term w
),

where t denotes the filing year of the patent application. Notice that BIDFwt decreases in the

number of patent applications prior to t that include term w. This component aligns with the

second criteria discussed earlier, capturing the informativeness of term w in distinguishing the

specific features of application p. When term w is unique to patent application p, it highlights

the distinctive characteristics of that application, and BIDFwt has a higher value. Conversely,

when the term w is commonly used in other documents, BIDFwt has a smaller value. At any

given year t, I considered all patent applications filed through USPTO from t− 3 to t− 1 when

computing BIDFwt.

In summary, the TFBIDF describes the importance of a term to a patent application by

considering both its importance within the application and its distinctiveness across prior appli-

cations. Notice that a vector that contains TFBIDFwp for all terms in a patent application p

provides a clear scope of technologies related to p.

Next, I introduce the procedure to compute the similarity between a pair of patent application

(i, j) utilizing TFBIDF measure. I start by computing TFBIDF measure for each term w in

application i as

TFBIDFwit = TFwi ×BIDFwt; t = max{filing year for i,filing yera for j}. (14)

I arrange TFBIDTwit into a W -Vector, where W represents the size of the set union for terms

in pair (i, j). The vector is normalized to a length of 1 following

Vit =
TFBIDFit
||TFBIDFit||

.

Then, the similarity between i and j is defined as cosine similarity between vector Vit and Vjt.
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In particular, the similarity equals to

ρi,j = Vit · Vjt.

Overall, the measure captures the similarity between terms used in two patent applications,

taking their frequencies and uniqueness into consideration. It maps textual information from

patent application i and j into a numerical value between 0 and 1, where 0 means the two

applications have no common terms and 1 means they are identical.

D.2 Measure of VC informativeness

The VC informativeness measure captures whether a patent application i is close to the expertise

of VCs. It is constructed by comparing application i with each of the applications in VCs’

knowledge set, where VCs’ knowledge set consists of applications filed by VC-backed startups

during the VC holding period. I compute VC informativeness measure following the procedures

below.

Step 1. Define the VC holding periods of VC-backed startups. The VC holding period for a

startup is defined based on two dates. The start of the holding period is determined by the deal

date of the first VC investment in the startup. The end date is determined by either (a) the date

of startup closure or (b) the date of successful exits, such as M&A or IPOs.

Step 2. Define VC’s knowledge set. Patent applications filed by VC-backed startups during

the VC holding periods are regarded as part of the VC’s knowledge set. These applications are

submitted while the startup is under the guidance and support of VC investors, encompassing

the knowledge and expertise of the VCs.

Step 3. Compute similarities between application i and each application in VCs’ knowledge

set. Assuming application i is filed in year t, I determine patent applications that (i) filed by

VC-backed startup from t − 3 to t − 1, and (ii) are classified to the same technology class (4-

digit CPC classification) as application i. I denote such applications as pvc1 , ..., p
vc
N , where N

represents the total number of patent applications satisfying criteria (i) and (ii). I compute

the similarity between each of pvc1 , ..., p
vc
N and application i following the procedure described in

the last subsection to obtain a set of pairwise similarity {ρV Ci,1 , ..., ρV Ci,N }, where ρV Ci,j denotes the
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similarity between i and pvcj .

Step 4. Compute VC Informativeness of application i. The last step is to aggregate

{ρV Ci,1 , ..., ρV Ci,N } to obtain an application-level measure of VC informativeness. I define VC In-

formativeness of application i to be

VC Informativenessi = max{ρV Ci,1 , ..., ρV Ci,N }.

The idea is that application i is close to VCs’ expertise if there exists at least one similar patent

application in VCs’ knowledge set.

D.3 Measure of Startup Catering

In this subsection, I introduce the procedure for identifying catering applications filed by startups.

Catering application satisfy two criteria: (i) it has a high VC informativeness, which was defined

by the previous subsection; (ii) it is beyond startup inventors’ innovation experience (hereafter

Startup Experience). In particular, I use inventors’ past patent applications to measure their

experience and compute whether an application i is distinct from their past experience. The

detailed procedure is listed below.

Step 1. Define startup inventors’ knowledge set. I determine all inventors that file at least

one patent application in year t, and trace back to their previous patent filing to capture their

knowledge set. I define startup inventors’ knowledge set as all applications filed by those inventors

from t− 3 to t− 1. 40 These applications are denoted by p1, ..., pM , where M is the total number

of such applications.

Step 2. Compute pairwise similarities between application i and all applications in the

startup’s knowledge set. Similarly, I compute the pairwise similarity between application i

and each of p1, ..., pM as introduced in the first subsection. Those similarities are denoted as

ρi,1, ..., ρi,M .

Step 3. Compute Startup Experience with application i. The inventors are assumed to be

equipped with knowledge to develop application i if at least one of their past applications is

40As a robustness check, I tried definitions that (i) consider inventors of application i only, or (ii) consider past
applications in the same technology class (4-digit CPC) only. My main results are robust to those alternative
definitions.
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similar to i. Following this idea, I define Startup Experience of application i as

Startup Experiencei = max{ρi,1, ..., ρi,M}.
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E Identify Technology Classes Invested by Data-driven VCs

In this section, I firstly provide a brief introduction to Crunchbase, the main database I rely on

to identify data-driven VCs. Then I illustrate the detailed procedures in identifying data-driven

VCs and technology classes invested by data-driven VCs.

E.1 Crunchbase Data

Crunchbase data provides comprehensive information regarding the activities of startups and VC

firms. It includes detailed records of VC firms’ investment histories, encompassing information

about the firms they invest in (such as names, addresses, founding dates, industries, current

statuses, and more), as well as the dates of investment announcements. This information allows

me to identify the holding period of a VC firm for each of its portfolio firms.

In addition, Crunchbase provides information on the hiring activities of VC firms. It includes

details about each firm employee, such as their starting date, job title, and job descriptions. This

information is useful for tracking changes in the composition of employees within each VC firm,

and it serves as a crucial data source for identifying data-driven VCs.

E.2 Identify Data-driven VCs

I identify data-driven VCs following the methodology of Bonelli (2023). Since the adoption of data

technology relies on experts with corresponding skills, a VC firm is identified as a data-driven VC

starting from the first year it hires an employee that utilizes data technology for pre-investment

screening. In particular, I identify data-driven VCs following the procedure below.

Step 1. Determine employee composition of each VC firm. I sort out all organizations that

are identified as VC firms in Crunchbase and link them to a list of employees who worked in those

firms. Using the starting and end date of each employee in each VC firm, I can determine a VC

firm-year level employee composition. I focus on VC firms that (i) are located in the US and (ii)

have at least one investment in US startups from 2006-2017 for the analysis.

Step 2. Identify data scientists among employees. I identify data scientists using the job

description provided in Crunchbase. In particular, an employee is identified as a data scientist if

her job description contains data-related terms, such as ‘data engineer’, ‘machine learning’, ‘data
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analytics’, etc. I then adopt a few more filling requirements to pin down a list of employees who

specifically utilize data skills for pre-stage screening. First, I focus on employees with a job type

of “employee” and “executive” and drop those labeled as “advisor”, “board member”, or “board

observer”. Second, I manually drop employees who advise portfolio startups by job description.

The remaining employees are regarded as data scientists who help with pre-investment screening.

Step 3. Identify data-driven VCs. A VC firm is regarded as data-driven starting from the

year with at least one data scientist among the employees.

E.3 Identify Technology Classes Invested by Data-driven VCs

I identify technology classes invested by data-driven VCs following the procedure below.

Step 1. Identify patent applications in the portfolio of each VC firm-year. First, I match VCs

to their portfolio firms and identify each startup’s corresponding VC holding period. Second, I

merge startups in Crunchbase to patent assignees in PatentsView to identify applications filed

by VC-backed startups during the VC holding period. A VC firm’s portfolio at year t consists

of all patent applications filed by its portfolio firms at that year. This procedure is analogous to

the matching procedure described in Section C and D.

Step 2. Identify technology classes invested by data-driven VCs. After establishing matches

between startup patent applications and VC firms, I further (i) match technology classes to

patent applications, and (ii) match data-driven indicator to VCs. This step helps to establish a

link between technology classes and features of VCs in terms of the adoption of data technology.

If at least one patent application was filed in year t and technology c is within the knowledge

set of a VC firm regarded as data-driven before (and including) year t, the technology class is

identified as invested by data-driven VCs in that year.
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F Additional Tables

F.1 Alternative Definition of Startup Catering

Table A1: Determinants of Startup Catering

Panel A. Patent Approval Speed by Fields of Technological Innovation

Startup Catering
(1) (2) (3)

Approval Speed -0.278∗∗ -0.257∗∗∗ -0.255∗∗∗

(0.098) (0.066) (0.066)

Industry Yes
Year Yes
Industry-Year Yes Yes
Firm Controls Yes
Technology Controls Yes Yes Yes

Observations 3,239 3,239 3,239
R2 0.136 0.154 0.155

Panel B. VC’s Data Technology by Fields of Technological Innovation

Startup Catering
(1) (2)

Invested by data-driven VCs 0.069∗∗∗ 0.069∗∗∗

(0.024) (0.024)

Technology Class Yes Yes
Year Yes Yes
Firm Controls Yes

Observations 8,083 8,083
R2 0.242 0.242
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Note: This table shows the determinants of startup catering. Each observation is at the firm level. Startup

Catering is a dummy variable equal to one if the firm’s first-time application (i) deviates from entrepreneur’s expe-

rience (Startup Experience in the bottom quartile) and (ii) aligns closely with VCs’ expertise (VC Informativeness

in the top quartile). Panel A. shows the relationship between patent approval speed and startup catering. Approval

Speed is a technology class-year level variable. It equals the fraction of patents granted within three years since

application, considering all patents granted in the technology class one year before application filing. Technology

Controls includes the total number of patents and the fraction of breakthrough patents at technology class-year.

Standard errors are clustered at industry level. Panel B. shows that data technology adoption by VCs predicts

startup catering. Invested by Data-driven VCs is a technology class-year level dummy variable equal to one if at

least one patent application in the technological class is developed by portfolio firm of data-driven VCs in the

past year. Firm Controls contains the quality of inventors, measured by total number of patents granted to firm

inventors. Standard errors are clustered at technology level. *** denotes p-value < .01, ** denotes p-value < .05,

and * denotes p-value < .1.

66



Table A2: Consequences of Startup Catering

Patent Grant Patent Citations
(1) (2) (3) (4) (5) (6)

Startup Catering -0.073∗∗∗ -0.073∗∗∗ -0.073∗∗∗ 0.035 0.043 0.044
(0.018) (0.012) (0.012) (0.027) (0.029) (0.029)

Industry Yes Yes
Year Yes Yes
Industry-Year Yes Yes Yes Yes
Firm Controls Yes Yes

Observations 8,083 8,083 8,083 3,724 3,724 3,724
R2 0.120 0.130 0.130 0.068 0.086 0.086

Note: This table shows the quality (Patent Grant and Patent Citations) of the catering applications. The unit

of observation is a patent application. Patent Grant is a dummy variable that indicates whether the application

is granted within three years after filing. Patent Citations represents the natural logarithm of one plus the count

of patent citations over a three-year period for the patent associated with the application, conditional on patent

approval. Startup Catering is a dummy variable equal to one if the firm’s first-time application (i) deviates from

entrepreneur’s experience (Startup Experience in the bottom quartile) and (ii) aligns closely with VCs’ expertise

(VC Informativeness in the top quartile). Firm Controls contains the quality of inventors, measured by total

number of patents granted to firm inventors. Standard errors are clustered at the industry level. *** denotes

p-value < .01, ** denotes p-value < .05, and * denotes p-value < .1.
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F.2 Alternative Definition of VC Informativeness

Table A3: The Role of VC Informativeness in Startup Investment Decisions

VC Investment
(1) (2) (3)

VC Informativeness 0.075∗∗∗ 0.075∗∗∗ 0.074∗∗∗

(0.019) (0.008) (0.007)

Industry Yes
Year Yes
Industry-Year Yes Yes
Firm Controls Yes

Observations 61,480 61,480 61,480
R2 0.011 0.012 0.012

Note: This table shows results for regressions at the firm level, investigating whether startups with patent

applications close to VCs’ expertise are associated with VC investments. VC Informativeness measures the extent

to which the first-time application of the startup is close to the expertise of VCs, defined as equation (7). Note that

only pre-grant patent applications are considered when define VCs’ knowledge set. VC Investment is a dummy

variable that equals one if a startup obtains VC investment in the sample period and zero otherwise. Industry

denotes 1-digit CPC classification of the first application by the startup. Y ear represents the first filing year of

the startup. Firm Controls contains the quality of inventors, measured by total number of patents granted to firm

inventors. Standard errors are clustered at the industry level. *** denotes p-value < .01, ** denotes p-value < .05,

and * denotes p-value < .1.
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Table A4: The Role of VC Informativeness in Startup Signal Collection

All Startups VC Invested Startups Failed Startups

Time to Investment/Closure Time to Investment Time to Closure
(1) (2) (3) (4) (5) (6)

VC Informativeness -0.634∗∗ -0.630∗∗ -0.580∗∗ -0.580∗∗ -1.81∗∗ -1.82∗∗

(0.211) (0.205) (0.178) (0.178) (0.622) (0.601)

Industry Yes Yes Yes Yes Yes Yes
Year Yes Yes Yes Yes Yes Yes
Firm Controls Yes Yes Yes

Observations 2,877 2,877 2,615 2,615 262 262
R2 0.078 0.078 0.060 0.060 0.433 0.433

Note: This table shows the relationship between VC informativeness and startups’ efforts in signal collection.

The unit of observation is a firm. VC Informativeness measures the extent to which the first-time application of

the startup is close to the expertise of VCs, defined as equation (7). Note that only pre-grant patent applications

are considered when define VCs’ knowledge set. Effort is proxied by time spent in the signal collection, which is

defined as the number of years between first patent filing and first VC investment (Time to Investment) or firm

closure (Time to Closure), depending on startup outcomes. Industry denotes 1-digit CPC patent classification.

Y ear represents the first filing year of the startup. Firm Controls contains the quality of inventors, measured by

total number of patents granted to firm inventors. Standard errors are clustered at the industry level. *** denotes

p-value < .01, ** denotes p-value < .05, and * denotes p-value < .1.
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Table A5: Consequences of Startup Catering

Patent Grant Patent Citations
(1) (2) (3) (4) (5) (6)

Startup Catering -0.096∗∗∗ -0.096∗∗∗ -0.095∗∗∗ -0.010 -0.006 -0.005
(0.014) (0.008) (0.008) (0.025) (0.015) (0.015)

Industry Yes Yes
Year Yes Yes
Industry-Year Yes Yes Yes Yes
Firm Controls Yes Yes

Observations 16,139 16,139 16,139 7,348 7,348 7,348
R2 0.120 0.126 0.126 0.072 0.084 0.085

Note: This table shows the quality (Patent Grant and Patent Citations) of the catering applications. The unit

of observation is a patent application. Patent Grant is a dummy variable that indicates whether the application

is granted within three years after filing. Patent Citations represents the natural logarithm of one plus the count

of patent citations over a three-year period for the patent associated with the application, conditional on patent

approval. Startup Catering is a dummy variable equal to one if the firm’s first-time application (i) deviates

from entrepreneur’s experience (Startup Experience below median) and (ii) aligns closely with VCs’ expertise (VC

Informativeness above median). Firm Controls contains the quality of inventors, measured by total number of

patents granted to firm inventors. Standard errors are clustered at the industry level. *** denotes p-value < .01,

** denotes p-value < .05, and * denotes p-value < .1.
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Table A6: Determinants of Startup Catering

Panel A. Patent Approval Speed by Fields of Technological Innovation

Startup Catering
(1) (2) (3)

ApprovalSpeed -0.689∗∗ -0.659∗∗∗ -0.657∗∗∗

(0.201) (0.128) (0.128)

Industry Yes
Year Yes
Industry-Year Yes Yes
Firm Controls Yes
Technology Controls Yes Yes Yes

Observations 6,494 6,494 6,494
R2 0.316 0.336 0.336

Panel B. VC’s Data Technology by Fields of Technological Innovation

Startup Catering
(1) (2)

Invested by data-driven VCs 0.039∗∗ 0.039∗∗

(0.018) (0.018)

Technology Class Yes Yes
Year Yes Yes
Firm Controls Yes

Observations 16,139 16,139
R2 0.430 0.430

Note: This table shows the determinants of startup catering. Each observation is at the firm level. Startup

Catering is a dummy variable equal to one if the firm’s first-time application (i) deviates from entrepreneur’s

experience (Startup Experience below median) and (ii) aligns closely with VCs’ expertise (VC Informativeness

above median). Panel A. shows the relationship between patent approval speed and startup catering. Approval

Speed is a technology class-year level variable. It equals the fraction of patents granted within three years since

application, considering all patents granted in the technology class one year before application filing. Technology

Controls includes the total number of patents and the fraction of breakthrough patents at technology class-year.

Standard errors are clustered at industry level. Panel B. shows that data technology adoption by VCs predicts

startup catering. Invested by Data-driven VCs is a technology class-year level dummy variable equal to one if at

least one patent application in the technological class is developed by portfolio firm of data-driven VCs in the

past year. Firm Controls contains the quality of inventors, measured by total number of patents granted to firm

inventors. Standard errors are clustered at technology level. *** denotes p-value < .01, ** denotes p-value < .05,

and * denotes p-value < .1.
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F.3 Additional Tests

Table A7: VC Informativeness and Firm Outcomes for Invested Startups

Successful Exit
(1) (2) (3)

VC Informativeness 0.159∗∗ 0.139∗∗ 0.139∗∗

(0.063) (0.065) (0.065)

Industry Yes
Year Yes
Industry-Year Yes Yes
Firm Controls Yes

Observations 2,615 2,615 2,615
R2 0.071 0.103 0.103

Note: This table shows the relationship between VC informativeness and outcome of invested startups. Each

observation is at startup level. VC Informativeness measures the extent to which the first-time application of the

startup is close to the expertise of VCs, defined as equation (7). Successful Exit is a dummy variable that equals

one if the startup successfully exits (through IPO or M&A) in the sample period. Firm Controls contains the

quality of inventors, measured by total number of patents granted to firm inventors. Standard errors are clustered

at industry level. *** denotes p-value < .01, ** denotes p-value < .05, and * denotes p-value < .1.
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Table A8: The Role of VC Informativeness in Startup Investment Decisions

VC Investment
(1) (2) (3)

VC Informativeness 0.082∗∗ 0.082∗∗∗ 0.082∗∗∗

(0.027) (0.017) (0.017)

Industry Yes
Year Yes
Industry-Year Yes Yes
Firm Controls Yes

Observations 16,140 16,140 16,140
R2 0.011 0.015 0.015

Note: This table shows results for regressions at the firm level, investigating whether startups with patent appli-

cations close to VCs’ expertise are associated with VC investments. This table focus on a sub-sample of startups

whose first patent application deviates from past experience of firm inventors. VC Informativeness measures the

extent to which the first-time application of the startup is close to the expertise of VCs, defined as equation (7).

Note that only pre-grant patent applications are considered when define VCs’ knowledge set. VC Investment is

a dummy variable that equals one if a startup obtains VC investment in the sample period and zero otherwise.

Industry denotes 1-digit CPC classification of the first application by the startup. Y ear represents the first filing

year of the startup. Firm Controls contains the quality of inventors, measured by total number of patents granted

to firm inventors. Standard errors are clustered at the industry level. *** denotes p-value < .01, ** denotes p-value

< .05, and * denotes p-value < .1.
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G Model Extensions

This section provides more details of model extensions described in Section 2.4.

G.1 Private Signals and VCs’ Bargaining with the Entrepreneur

In this section, I extend the baseline model by assuming that (i) signals from VCs are not pub-

licly available and (ii) informed VCs bargain with the entrepreneur to share investment surplus.

The entrepreneur can obtain a w(x) ∈ [0, 1] fraction of investment surplus when x VCs are in-

formed that the project is of good type. The fraction of surplus w concavely increases in x and

limx→∞w(x) = 1.

To simplify, I assume w is determined by Shapley value. In particular, Shapley value reflects

the notion that each player’s payoff depends on the player’s marginal contribution to the total

payoff. Consider the set of all players denoted as N . Let C be a subset of players from the set of

all players engaged in bargaining. We use Π(C) to denote total payoff that can be obtained by

the players in C if they cooperate. Then the Shapley value of player i is determined by

wi =
∑

C⊆N−i

|C|!(|N | − |C| − 1)!

|N |!
(Π(C ∪ i)−Π(C)).

According to the definition of Shapley value, we conclude that the entrepreneur obtains w(x) =

x
x+1 fraction of investment surplus when there exists x informed VCs.

Now we conclude the entrepreneur’s utility function. There are two cases in total. If the

alternative information source, which provides project value with probability λ, generates a signal

on project value, all VCs on the market are informed about project type and the entrepreneur

obtains all investment surplus if there is any (w = 1). Otherwise, the entrepreneur relies on

signals from VCs and bargain with informed VCs over the investment surplus. The probability

that x out of n VCs are informed is

f(x, n) =
n!

(n− x)!x!
qx(1− q)n−x.
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The entrepreneur’s utility function can be written as

u(n; q) = [λ+ (1− λ)we(n; q)]V − cn,

where V = p(R− k) denotes the first-best expected payoff and

we(n; q) = E[w(x)|n] =
n∑
i=1

f(x;n)w(x)

represents expected fraction of investment surplus the entrepreneur can obtain when n signals

are collected.

In the discussion below, I show that the main results of the model (summarized in Corollary

A1) survives.

Corollary A1. a. All else equal, the entrepreneur’s utility u(n∗) increases in q, where n∗ repre-

sents the optimal effort on signal collection determined by the entrepreneur.

b. The startup initiates the exploratory projects when qC is sufficiently small or λ is sufficiently

large.

Proof. Proof of part a.

First, I show that how the optimal number of signal collection changes with q. The entrepreneur

collects one additional signal only when the marginal benefit of a new signal outweighs the cost of

c. I show that the marginal value of a signal decreases. Notice that the marginal benefit of signal

n + 1 is the product of (i) the probability that the signal is informative and (ii) the marginal

increases of investment surplus brought by the signal. In particular, it can be written as

(1− λ)V q

n∑
x=1

f(x;n)(
x+ 1

x+ 2
− x

x+ 1
).

In order to show that the marginal value of signals decreases, it is sufficient to show

g(n) :=
n∑
x=1

f(x;n)(
x+ 1

x+ 2
− x

x+ 1
)
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decreases. Notice that

g(n+ 1)− g(n) =
n+1∑
x=1

f(x;n+ 1)(
x+ 1

x+ 2
− x

x+ 1
)−

n∑
x=1

f(x;n)(
x+ 1

x+ 2
− x

x+ 1
)

=f(n+ 1;n+ 1)(
n+ 2

n+ 3
− n+ 1

n+ 2
)

+

n∑
x=1

f(x;n+ 1)(
x+ 1

x+ 2
− x

x+ 1
)−

n∑
x=1

f(x;n)(
x+ 1

x+ 2
− x

x+ 1
)

=qn+1(
n+ 2

n+ 3
− n+ 1

n+ 2
)

+ (1− q)
n∑
x=1

f(x;n)(
x+ 1

x+ 2
− x

x+ 1
)−

n∑
x=1

f(x;n)(
x+ 1

x+ 2
− x

x+ 1
)

=qn+1(
n+ 2

n+ 3
− n+ 1

n+ 2
)− q

n∑
x=1

f(x;n)(
x+ 1

x+ 2
− x

x+ 1
)

=qn+1(
n+ 2

n+ 3
− n+ 1

n+ 2
)− qf(n;n)(

n+ 1

n+ 2
− n

n+ 1
)− q

n−1∑
x=1

f(x;n)(
x+ 1

x+ 2
− x

x+ 1
)

=qn+1(
n+ 2

n+ 3
− n+ 1

n+ 2
)− qn+1(

n+ 1

n+ 2
− n

n+ 1
)− q

n−1∑
x=1

f(x;n)(
x+ 1

x+ 2
− x

x+ 1
) ≤ 0,

we have g(n) decreases and thereby the marginal value of signals decreases. Hence, we conclude

that the entrepreneur’s strategy on signal collect follows

(i) if marginal value of the first signals (1 − λ)V q ≤ c, the entrepreneur optimally choose

n∗ to maximize utility;

(ii) otherwise, there exists n0 such that (1 − λ)V qg(n0 − 1) > c ≥ (1 − λ)V qg(n0), the

entrepreneur selects n∗ ∈ {n0 − 1, n0} that gives a higher utility.

Since g(n) increases in q, we have n∗ (weakly) increases in q. Last, we show that the utility of

the entrepreneur increases in q. For any given q1, q2 such that 0 < q1 < q2 < 1, we have

u(n∗(q2); q2)− u(n∗(q1); q1) ≥ u(n∗(q1); q2)− u(n∗(q1); q1)

= (1− λ)V [we(n
∗(q1); q2)− we(n∗(q1); q1)] > 0.

Proof of part b.

Follow the conclusion in part a., it is obvious that the entrepreneur is more likely to initiate the
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catering project when qC is large. Next, we show that the entrepreneur chooses exploration when λ

is sufficiently large. It is sufficient to show that there exists λ∗ such that the entrepreneur chooses

exploration when λ > λ∗. I show that λ∗ = max{0, 1 − c
qCVC

, 1 − c
qEVE

} satisfies the condition.

According to analysis in part a., the entrepreneur selects n∗ no matter which project is initiated.

Then the utilities of exploration and catering are λVE and λVC respectively. Exploration gives a

higher utility by the assumption that VE > VC .

G.2 Heterogeneous VCs

In this section, I extend the baseline model by assuming that the entrepreneur can directly search

towards the VCs that are more likely to be informed about the project value. In particular, I

assume that VC i has a probability of qi = q+ δi to provide a precise signal about project value.

qi of each VC is known by the entrepreneur. The idea is that the entrepreneur can infer each

VC’s expertise by observing their past investment experience. When the entrepreneur collects n

signals, the probability of revealing project value is

P = 1− (1− λ)Πn
i=1(1− qi)

The entrepreneur’s utility function can be written as

u(n) = P (n)V − cn.

The proof below shows that Corollary A1 holds under this set of assumptions.

Proof. Proof of part a.

For any q1, q2 such that 0 < q1 < q2 < 1, we have

u(n∗(q2), q2)− u(n∗(q1), q1) ≥u(n∗(q1), q2)− u(n∗(q1), q1)

=[P (n∗(q1), q2)− P (n∗(q1), q1)] > 0,

where the inequality is given by P increases in q for any given n.
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Proof of part b. We prove part b. following three steps. First, I show that the first signal

provides a highest marginal benefit. The entrepreneur selects n∗ = 0 if the marginal benefit of

the first signal is smaller than c. Second, I show that the entrepreneur selects n∗ = 0 when λ

is sufficiently large. Third, I show that when λ is large enough to give n∗ = 0 for both project

choices, the entrepreneur selects exploration in equilibrium.

Step 1. In the discussion below, I show that the first signal provides a highest marginal benefit

for any given project. Notice that the marginal benefit of signal n+ 1 equals

[P (n+ 1)− P (n)]V = (1− λ)V qn+1Πn
i=1(1− qi)

The marginal value of a signal is larger when qn+1 is larger and Πn
i=1(1− qi) is larger. Comparing

marginal value of signal n and n + 1, we have qn ≥ qn+1 (since the entrepreneur contacts more

informed VCs first) and Πn
i=1− 1(1− qi) ≥ Πn

i=1(1− qi). Hence, the marginal value of signal n is

larger than that of signal n+1. The marginal value of signals decreases. The first signal provides

largest marginal benefit that equals (1− λ)V q1.

Step 2. Next, I show that the entrepreneur selects n∗ = 0 when λ is sufficiently large. The

entrepreneur compares the marginal benefit of a signal with its cost (c) to determine the optimal

number of signals to collect. When (1−λ)V q1 < c, the optimal choice is n∗ for the entrepreneur.

Step 3. I show that the entrepreneur selects exploration when λ is sufficiently large. It is

equivalent to show that there exists λ∗ such that the entrepreneur selects exploration when

λ > λ∗. I argue that λ∗ = max{0, 1− c
qCVC

, 1− c
qEVE

} satisfies the condition. When λ > λ∗, the

entrepreneur does not contact any VCs for signals no matter which project is initiated. Hence, the

entrepreneur’s utility from exploration and catering are λVE and λVC respectively. Exploration

gives a higher utility given the assumption that VE > VC .
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H Optimal Stopping Framework

H.1 Setup

Consider an economy with infinite periods. There is a skillful startup that is financially con-

strained. At date t = 0, the startup initiates a project. The startup requires a one-time invest-

ment of k from the market to complete the project. Once invested, the project can be immediately

completed, generating a verifiable cash flow of θ. My key assumption is that θ is unobservable

before project completion. The startup has the prior belief that log(θ) ∼ N (µ0, σ
2
0). At each

date t ≥ 1, the startup collects a signal xt on cash flow θ and update beliefs correspondingly.

According to the posterior belief, the startup decides whether to stop collecting signals and raise

capital from the market. Figure A3 shows the timeline of the model.

0

Project initiation

1

Receive x1

Quit

Continue 2

Quit

Continue

Receive x2

Quit

ContinueContinue

Receive x3

3

Quit

Continue

Figure A3: Timeline of the Model

The startup pays a fixed cost of c > 0 to collect one signal. The cost represents startup

entrepreneurs’ effort in interacting with VCs to collect signals.41 At any time point t, the startup

has a posterior belief that can be described by an element of state space S, where s = (µ, σ2) ∈ S

represents a Bayesian distribution of log-return log(θ)|(µ, σ2) ∼ N (µ, σ2). According to s, the

startup selects an action from the set A = {C,Q}, where C and Q represent continue to collect

signals and quit with existing signals, respectively. When taking action C, the startup pays a

cost of c, receives another signal, and transit to another state S̃ ∈ S. After the action Q, the

startup raises capital, completes the project if invested, and obtains a payoff of g∗(s). I assume

the startup is risk-neutral and does not discount future cash flow. In sum, the startup faces the

41In this extension, I assume VCs are the only information source and highlight the channels through which
information from VCs benefits the startup. This assumption is equivalent to assuming λ = 0 in the baseline model.
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optimal stopping problem

Vd(s) := Ed
{

τ∑
t=0

g(St, At)

∣∣∣∣∣S0 = s

}
, (15)

where

g(s, a) =


g?(s), s ∈ S, a = Q;

−c, s ∈ S, a = C

(16)

denotes startup payoff, d : S → A characterizes the policy and τ = inf{t ≥ 0 : at = Q}. The

startup targets to find an optimal policy d∗ such that Vd∗(s) ≥ Vd(s) for every initial state s ∈ S

and every policy d. For ease of notation, we denote the optimal value function as V(s) = Vd∗(s).

Notice that V(s) can be characterized by a Bellman equation

V(s) = max{g∗(s),−c+ Es[V(S̃)]}, (17)

where Es(·) = E(·|S = s).42

The key friction of the model, namely VC informativeness, comes from the assumption that

each signal received by the startup can be either precise or not, with a certain probability. In

particular, I assume that the signal on project values satisfies log(xt) = log(θ) + Ztεt, where

εt ∼ N (0, ν2) is a noise term. Zt is a random variable that follows Bernoulli distribution, which

equals 0 with a probability of α ∈ [0, 1] and 1 otherwise. The parameter α describes the probability

that the signal is precise. A high α indicates less information frictions faced by the startup. I

assume that Zt and εt are independent, and both of them are independent across different time

point t.

Parameter α captures the degree of VC informativeness. A high α indicates a high quality of

VC’s feedback, which means a high degree of VC informativeness. One example is to interpret

α as the fraction of VCs that familiar with the startup’s project. Imagine that there are two

types of VCs in the financial market. Only α fraction of VCs are experienced in investing similar

42In Appendix, I show that the solution to this Bellman equation is the solution to the startup’s payoff maxi-
mization problem shown by equation (15).
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projects and thereby are able to provide precise signals on project cash flow. The other VCs can

only observe a noisy signal. If the startup can interact with one random VC at each date to collect

a signal, the signal is precise with a probability α. I assume the startup can distinguish precise

signals from noisy ones, i.e. the realization of Zt is observable to the startup. This assumption

reflects that the startup knows which VCs are the source of a specific signal and whether those

VCs are knowledgeable enough to value the project precisely.

The parameter α plays a role by affecting the transition probability between states. Notice

that the transition distribution from S to S̃ conditional on (S,A,Z) is given by

S̃|(S,A,Z) = (µ̃, σ̃2) :

µ̃ ∼ N
(
µ, σ2(1− Z) +

σ4Z

σ2 + ν2

)
,

σ̃ =

√
Z

σ−2 + ν−2
.

(18)

A high α indicates a high probability of achieving the state of σ = 0, which indicates resolving

uncertainty on project value.

I assume there is no information asymmetry between the startup and the market. In par-

ticular, both parties (i) share the same information on project cash flow θ at any time point t,

and (ii) observe the cash flow θ upon project completion. This assumption makes security design

irrelevant. Both the startup and the market agree with the investment surplus from the project

and bargain over the surplus. Without loss of generality, I analyze the case where (i) the market

is competitive and (ii) the startup raises capital by selling shares. In particular, once taking

action Q, the startup obtains

g∗(s) = (Es(θ)− k)+ = (exp{µ+ σ2/2} − k)+, (19)

which is the expected investment surplus according to the state s. Notice that there are two

possibilities. If Es(θ) < k, the startup quits without investment; the project is abandoned and

generates a payoff of g∗(s) = 0. If Es(θ) ≥ k, the market requires an ownership of λ = k
Es(θ) to

break even. The startup completes the project and obtains a payoff of (1 − λ)θ, which has an

expectation value of g∗(s) = exp{µ+ σ2/2} − k.
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H.2 Startup Strategy

In this section, I analyze the equilibrium strategy of the startup. Before concluding the optimal

policy, I first analyze why the startup benefits from additional signals. Lemma A1 shows that

the value of additional signals comes from reducing σ and obtaining a precise posterior belief.

Lemma A1. Assuming that the startup is in state s = (µ, σ) at date t, where σ > 0, we have

g∗(µ, σ)︸ ︷︷ ︸
Quit

< E[g∗(µ̃, σ̃)|Zt+1 = 1, at+1 = Q]︸ ︷︷ ︸
Noisy Signal

< E[g∗(µ̃, 0)|Zt+1 = 0, at+1 = Q]︸ ︷︷ ︸
Precise Signal

,

where σ̃ =
√

1
σ−2+ν−2 .

The first term in Lemma A1 is the payoff of stopping at date t, while the other two terms show

the expected payoff of stopping at the following date with a noisy and precise signal, respectively.

The first inequality demonstrates that an additional noisy signal benefits the startup by reducing

the standard deviation from σ to σ̃. This reduction in uncertainty results in lower investment

inefficiencies and higher investment surplus. The second inequality shows that the startup benefits

from receiving a precise signal that identifies the exact value of θ. After observing a precise signal,

the project is invested only if the NPV is positive (θ > k) and no inefficiencies occur, resulting

in the first-best investment surplus. Given the assumption of a competitive financial market, all

investment surplus accrues to the startup. Consequently, the startup has an incentive to collect

signals to reduce σ and increases investment surplus.

Though an additional signal increases financial payoff of the startup, it is associated with a

fixed cost of c. The startup trades-off the benefit and the cost of signals to make continuation

decisions. Proposition A1 and Corollary A2 establish that the startup continues to collect sig-

nals until σ is sufficiently small, at which point further signal collection is no longer profitable

considering the cost of signal collection.

Proposition A1. Define Σ0 :=
[
0, 2πc2

k2

]
, the optimal policy satisfies d∗(s) = Q for s ∈ R× Σ0.

In particular, the startup quits upon the arrival of the first precise signal.

Corollary A2. For any given µ, there exists σ∗ such that d∗(s) = Q if σ < σ∗ .
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As σ decreases, the posterior belief converges to θ. When σ is sufficiently small, the posterior

mean µ barely changes with additional signals, resulting in a tiny increase in the expected payoff

of the startup to continue. When the payoff gain from additional signals are dominated by

the cost of signal collection, the startup optimally quits from the financial market and takes

investment surplus if there is any. Figure A4 shows the numerical solution to the optimal policy.

As illustrated in Figure A4, for any given µ, the startup is more likely to continue when σ is

large.

Figure A4: Startup’s Continuation Decision as a Function of Posterior Belief. This
figure shows the startup’s continuation decision as a function of µ and σ. The startup continues
signal collection in the shaded area and stops searching otherwise. The red lines plots a combi-
nation of µ and σ that satisfy Es(θ) = exp{µ + 1

2σ
2} = k. The blue shade and the gray shade

correspond to α = 0 and α = 0.5 respectively. As the figure shows, the startup is more likely to
search when (i) σ is higher; (ii) µ that provides E(θ) around k; and (iii) α is larger. I assumed
µ0 = 0, σ0 = 1, ν = 1, k = 1.8, c = 0.05.

In addition to σ, the optimal decision also depends on µ. Proposition A2 concludes the

optimal policy as a function of µ.

Proposition A2. For any given σ, there exists µ ≤ µ̄ such that the optimal policy is d∗(s) = Q

if µ < µ or µ > µ̄.

Proposition A2 indicates the startup continues when µ is neither too small nor too large. As
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shown in Figure A4, the startup selects to continue when µ is around the red dashed line, which

plots µ that gives Es(θ) = k. This can be explained by the option feature of the project, which

is summarized by Proposition A3.

Proposition A3. For s = (µ, σ) ∈ S where σ > 0, the expected value of the next date Es[V(S̃)]

is convex in µ and increasing in σ.

Payoff of an option is featured by its convexity in the value of the fundamental asset, which

is captured by the parameter µ in this model. Proposition A3 shows that the expected value

from the following date Es[V(S̃)] is convex in the posterior mean, which shows an option feature.

The feature comes from the assumption that the startup obtains any positive investment surplus

without bearing downside costs. The startup’s project can be described as a real option below.

The option has a premium of c. The log value of fundamental asset follows the distribution of

N (µ, σ2). After purchasing the option, the startup has a right to make a trading decision at the

next date. The trading involves in a strike price of k. Whenever the expected project value is

larger than k, the startup can pay k to the market in equity to exercise the option and obtain

the surplus. Otherwise, the startup can long another option to continue the process.

The option feature explains the optimal policy of the startups. Since the value of the option

increases with the volatility of the fundamental asset, the startup is more likely to long the option

when σ is large. This is consistent with the conclusion given by Proposition A1 and Corollary A2.

Moreover, since the value of signal collection comes from the reduction of σ, the startup is more

likely to long the option at a µ that makes option value sensitive to the change in σ. Therefore,

the startup is more likely to continue when the underlying price is near the option’s strike price.

This result is consistent with existing papers that highlights the option feature of en-

trepreneurial projects (Kerr et al., 2014; Manso, 2016). My model highlights that the realization

of option value relies on the information from the financial market. The financial market helps

reveal project value besides providing capital investments. As a result, the financial market’s

ability to provide information regarding project value affects the value of the real option, as

shown by the next section.
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H.3 Benefits from VC Informativeness

Given the informational role of the financial market, it is crucial that the financial market can

precisely predict the cash flow generated from a startup project and then provide the startup with

precise information. This section examines the benefits of having a project within VCs expertise,

i.e. high VC informativeness.

H.3.1 VC Informativeness Enhances Startup Payoff

Recall that VC informativeness is captured by the probability of having a precise signal each

round. In this section, I demonstrate that the startup benefits more from receiving a precise

signal in the next stage, provided they choose to continue. First, notice that the expected value

next date can be written as

Es[V(S̃)] = αEs[g∗(µ̃, 0)|Zt+1 = 0] + (1− α)Es[V(µ̃, σ̃)|Zt+1 = 1],

where σ̃ =
√

1
σ−2+ν−2 . According to Proposition A1, the startup immediately quits once receiving

a precise signal and obtains a payoff g∗(µ̃, 0). While receiving another noisy signal and update

belief to S̃ = (µ̃, σ̃), the startup solves the Bellman equation (17) and obtain an expected payoff

of V(µ̃, σ̃). Lemma A2 shows that the startup has a high expected payoff conditional on having

a precise signal next stage.

Lemma A2. For any given state s = (µ, σ) and σ̃ =
√

1
σ−2+ν−2 , we have

Es[V(µ̃, σ̃)|Zt+1 = 1] ≤ Es[g∗(µ̃, 0)|Zt+1 = 0].

Lemma A2 shows that the startup benefits from a precise signal. Receiving a precise signal

results in σ = 0, maximizing the investment surplus and dominating the case where a noisy signal

is received. The option of continuation cannot undo the disadvantage of receiving a noisy signal

since continuation comes with a cost for the startup. Considering this, the expected value from

signal collection increases in the probability of having a precise signal, as shown by Lemma A3.

Lemma A3. For any given state s = (µ, σ), Es[V(S̃)] increases in α.

85



Notice that a high Es[V(S̃)] caused by a high α encourages continuation. Figure A4 shows

that the startup is more likely to continue when α is large. The figure shows the startup strategy

under α = 0 (blue shade) and α = 0.5 (gray shade), respectively. The blue shade is fully covered

by gray, indicating that the startup tends to wait more when α = 0.5. Driven by the increase of

Es[V(S̃)], the value function V(s) also increases in α, which is summarized below.

Proposition A4. For any given state s = (µ, σ), V (s) increases in α.

Note that Proposition A4 applies to V(µ0, σ0;α) as well. In other words, the expected total

payoff of the startup at t = 0 increases in α, i.e., decreases in opacity. Figure A5 illustrates this

idea.

Figure A5: Startup Expected Payoff. This figure illustrates the the expected payoff of the
startup V (µ0, σ0;α). The startup has a higher expected payoff when opacity is lower (α is larger).
I assumed µ0 = 0, σ0 = 1, ν = 1, k = 1.8, c = 0.05.

H.3.2 Channels through which VC Informativeness Enhances Startup Payoff

The previous section concludes that the startup’s expected payoff increases in VC informativeness.

In this section, I examine more details about the mechanism behind the conclusion. In particular,

I analyze how VC informativeness impacts the probability of investment, the cost of capital, and

the expected signal collection time of the startup. All figures in this section are produced by

simulation, and details are provided in Section H.6.2.
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As shown in the previous analysis, VC informativeness allows the startup to resolve the true

project type, which leads to a high surplus from the investment. Figure A6 plots the probability

that the startup resolves the true project type before quit as a function of VC informativeness α.

The total probability, plotted by the black dots, consists of two parts. First, a high α mechanically

means a higher probability of resolving the true type, as the red dashed line shows. Second, α also

encourages searching as indicated by Lemma A3. This explains the difference between the black

dots and the red dashed line. Overall, the total probability of resolving project type increases in

α.

Figure A6: Probability of Resolving Project Type in the Last Search Round. This
figure (black dots) shows simulation results on the probability of resolving true type, i.e., having
a fully informed VC, in the last search round. The red dashed line is a 45 degree line. It shows
the probability of resolving true type in the last round if the startup’s continuation decision is
independent to signal precision. I assume µ0 = 0, σ0 = 1, ν = 1, k = 1.8, c = 0.05.

As Figure A6 shows, a high α indicates that a startup is less likely to be misvalued and

face inefficient investment decisions. I call this misvaluation channel. Misvaluation impacts the

startup’s expected payoff through the probability of investment and the cost of capital, and the

effects differ according to the true project value. Figure A7 shows the simulation results, taking

two positive NPV projects as examples.43 θ = 2 and θ = 5 represent a marginal project and

43I mainly analyze the case where parameter value satisfies E(θ) = µ0 +σ2
0/2 < k since most startups create zero

value (Hall and Woodward, 2010).
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(a) Probability of investment (b) VC’s required ownership

Figure A7: Probability of Investment and Cost of Capital. This figure shows simulation
results on the probability of investment and cost of capital for given types of projects. θ = 2 is
an example of a marginal project that has a positive NPV, and θ = 5 represents a high value
project. Figure (a) show that the probability of investment increases in α for both projects.
Figure (b) shows that cost of capital increases (decreases) in VC informativeness for the startup
if the project has marginal (high) value. I assumed µ0 = 0, σ0 = 1, ν = 1, k = 1.8, c = 0.05.

a high-value project, respectively. For a positive NPV project, the probability of investment

increases in α, as shown in Figure A7 (a). This effect is extremely pronounced for a marginal

project (θ = 2). Figure A7 (b) shows the expected ownership required by the VC conditional

on investment. A marginal project (θ = 2) is less likely to be pooled with high-value projects

when α is larger, so its cost of capital increases in α. On the contrary, a high-type project has

a decreasing cost of capital when α increases. To conclude, an increase in α has heterogeneous

impacts on the projects depending on the true type.

Notice that α also impacts startup payoff through the signal collection channel. There are two

driving forces through which α affects time spent on signal collection. First, a higher α increases

the probability of receiving the precise signal, which causes quits by Proposition A1. Second,

according to Lemma A3, α encourages waiting conditional on having σ > 0. The two forces drive

the expected waiting time in different directions, and the former dominates when α is sufficiently

large. Figure A8 shows the expected signal collection time as a function of VC informativeness

α. When α is sufficiently large, the startup can quickly resolve project value and quit from the

market.
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Figure A8: Expected Signal Collection Time. This figure shows simulation results on the
startup’s expected signal collection time as a function of α. I assume µ0 = 0, σ0 = 1, ν = 1, k =
1.8, c = 0.05.

In sum, VC informativeness affects startup payoff through the probability of being invested,

the cost of capital, and the signal collection time. The influence differs in true project type.

H.4 Startup Project Choice

In this section, I endogenize startup project choice. Similar to the baseline model, I assume that

the startup at t = 0 selects between a high-payoff, low-VC informativeness project (exploration)

and a low-payoff, high-VC informativeness project (catering). These actions are denoted by

I0 = {IE , IC}. In particular, I assume that

σ0,E > σ0,C ;αE < αC ,

where σ0,i represents the standard deviation of the prior belief on θ for i ∈ {E,C}. The parameter

αi represents VC informativeness of project i.

The startup faces a payoff-information trade-off similar to the baseline model. All else equal,

a high α0 project brings higher expected payoff by Proposition A3, which illustrates potential

benefits of exploration. However, low VC informativeness associated with exploration can reduces

startup payoff through the information channels, as shown by Lemma A3. The startup considers
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the expected project payoffs and VC informativeness when selecting a project. Figure A9 show

that the startup is more likely to choose the catering project when its value is sufficiently informed

to VCs.

Figure A9: Startup Project Choice. This figure shows simulation results on the startup’s
project choice as a function αC . The black line shows startup expected payoff from the catering
project, while the red dashed line plots startup expected payoff from exploration. Ib the shaded
area where αC is relatively small, the startup selects exploration in equilibrium. When αC is
sufficiently large (unshaded region), the startup optimally initiates the catering project. In I
assume µ0 = 0, σ0,C = 1, σ0,E = 1.05, ν = 1, k = 1.8, c = 0.05.
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H.5 Proofs

This section is organized as below. First, I show that the underlying Markov decision process is a

positive bounded model (Puterman, 1994, Section 7.2) so that I can leverage established results

in Puterman (1994) to prove lemmas and properties. Next, I provide proofs of lemmas, properties

and corollaries. The last subsection, I provide additional lemmas used in the second subsection.

H.5.1 Proof of Positive Boundedness

In order to characterize the value function, we define the bellman operator of a general state-value

function Ṽ as:

B(Ṽ)(s) :=


max


g?(s), a = Q

− c+ E
µ̃∼N

(
µ,σ2Z+ σ4

σ2+ν2 (1−Z)
) [Ṽ (µ̃, 1− Z

σ−2 + ν−2

)]
, a = C

 , s = (µ, σ2) ∈ S;

0, s = ∆.

We are interested in the following two properties.

� (Puterman, 1994, Bellman Equation, Theorem 7.2.3) A general state-value function Ṽ :

S0 → R+ satisfies the Bellman equation Ṽ = B(Ṽ) if and only if Ṽ is the optimal value

function. In particular, V = B(V).

� (Puterman, 1994, Value Iteration, Corollary 7.2.13) Suppose an initial value function V(0) :

S0 → R+ satisfies 0 ≤ V(0)(s) ≤ V(s). Consider value iteration as follows: for t = 1, 2, · · · ,

let V(t) := B(V(t−1)). Then for every fixed s ∈ S0, V(t)(s) increases to V(s) as t→∞.

To better understand the dynamic of state transition, especially before the stopping state ∆ is

hit, we study a never-stopping policy and characterize the dynamic in the following proposition.

Proposition A5 (Equivalent Data Generation). Consider PC as the probability measure cor-

responding to the never-stopping policy, that is, PC(At = C|St = s) = 1 for any s ∈ S. Fix

(µ0, σ
2
0) ∈ R× R+. Suppose {ζt}∞t=1

iid∼ N (0, 1). For t = 1, 2, · · · , let

σ−2
t := σ−2

t−1 + ν−2; µt := µt−1 +
√
σ2
t−1 − σ2

t ζt; µ∆
t := µt−1 + σt−1ζt.

91



Also let τγ := inf{t ∈ N0 : γt = 1}. Then for t ∈ N, the followings hold.

� σ−2
t = σ−2

0 +tν−2, µt = µ0 +
∑t

u=1

√
σ2
u−1 − σ2

uζu, µ∆
t = µ0 +

∑t−1
u=1

√
σ2
u−1 − σ2

uζu+σt−1ζt.

� Conditional on S0 = (µ0, σ
2
0) and {γt ≥ t}, we have {Su}tu=0

D
= {(µu, σ2

u)}tu=0, and in

particular, µt ∼ N (µ0, σ
2
0 − σ2

t ),

� Conditional on S0 = (µ0, σ
2
0) and {τγ ≤ t − 1}, we have {Su}tu=0

D
= {(µu, σ2

u)}τγu=0 ∪

{(µ∆
τγ+1, 0)}tu=τγ+1, and in particular, µ∆

τγ+1 = µ∆
τγ+2 = · · · = µ∆

t ∼ N (µ0, σ
2
0).

Next, I show that the underlying MDP is a positive bounded model (Puterman, 1994, Section

7.2).

Lemma A4 (Positivity). For each s ∈ S0, there exists a ∈ As, such that g(s, a) ≥ 0.

Proof of Lemma A4. If s = ∆, then g(∆, Q) = 0. If s = (µ, σ2) ∈ S, then g(s,Q) =[
exp

(
µ+ σ2

2

)
− k
]+
≥ 0.

Lemma A5 (Finiteness). For any policy d and initial state s ∈ S0, we have

Vd+(s) := Ed
{ ∞∑
t=0

[g(St, At)]
+

∣∣∣∣∣S0 = s

}
< +∞

Proof of Lemma A5. The finiteness holds trivially at s = ∆ for all policy d, since d(∆) = Q and

Vd(∆) = 0. Then we can assume s = (µ, σ2) ∈ S without loss of generality. By definition, we

have

Vd+(s) = Ed[g?(Sτ−1)I(τ < +∞)|S0 = s].

Let Sd := {s ∈ S : Vd(s) = g?(s)} be the stopping state space corresponding to the policy d,

and τ(Sd) := inf{t ∈ N0 : St ∈ Sd} be the corresponding stopping time. Then under Pd, we have

τ = τ(Sd) + 1. Let PC be the probability measure corresponding to an never-stopping policy,

that is, PC(At = C|St = s) = 1 for any s ∈ S. Then {g?(Sτ(Sd)∧t)}∞t=0 under Pd has the same

distribution as {g?(Sτ(Sd)∧t)}∞t=0 under PC . By Lemma A6, {g?(St)}∞t=0 is a non-negative PC-sub-

martingale. Then the stopped sequence {g?(Sτ(Sd)∧t)}∞t=0 is a non-negative PC-sub-martingale as
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well. For p > 1, we have

sup
t∈N

EC
{

[g?(Sτ(Sd)∧t)]
p
∣∣∣S0 = s

}
≤ sup

t∈N
EC
{

max
1≤u≤t

[g?(Su)]p
∣∣∣∣S0 = s

}
≤
(

p

p− 1

)p
sup
t∈N

EC {[g?(St)]p|S0 = s} (by Doob’s Lp-maximal inequality)

< +∞ (by Lemma A7).

Then by Doob’s Martingale Convergence Theorem, we further have

g?
(
Sτ(Sd)∧t

) t→∞−→ g?
(
Sτ(Sd)

)
a.s. PC and in Lp(PC); EC

[
g?
(
Sτ(Sd)

)∣∣∣S0 = s
]
< +∞.

Therefore,

Vd+(s) = Ed[g?(Sτ−1)I(τ < +∞)|S0 = s]

= Ed
[
g?
(
Sτ(Sd)

)
I[τ(Sd) < +∞]

∣∣∣S0 = s
]

= EC
[
g?
(
Sτ(Sd)

)
I[τ(Sd) < +∞]

∣∣∣S0 = s
]

< +∞.

Lemma A6 (Sub-Martingale). Consider the filtration F = {Ft}∞t=0 generated by {St, At, γt}∞t=0.

Suppose PC is the probability measure corresponding to the never-stopping policy, that is, PC(At =

C|St = s) = 1 for any s ∈ S. Then the sequence {g?(St)}∞t=0 is a PC-F -sub-martingale.

Proof of Lemma A6. Without loss of generality, consider s 6= ∆ and s = (µ, σ2) ∈ S. Under the

initial condition S0 = s 6= ∆ and the never-stopping policy, we have St 6= ∆ for all t ∈ N0. For

ease of notation, we write PC as P in this proof. Suppose St = (µt, σ
2
t ) and St+1 = (µt+1, σ

2
t+1).

� If σ2
t = 0, then St+1 = St, and we have E[g?(St+1)|Ft] = g?(St).
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� If σ2
t > 0 and γt = 1, then µt+1|Ft ∼ N (µt, σ

2
t ) and σ2

t+1 = 0. We have

E[g?(St+1)|Ft] = E[(eµt+1 − k)+|Ft]

≥ [E(eµt+1 |Ft)− k]+ (by Jensen’s inequality)

=
[
Eξ∼N (µt,σ2

t )(e
ξ)− k

]+

= g?(St).

� If σ2
t > 0 and γt = 0, then σ−2

t+1 = σ−2
t + ν−2 and µt+1|Ft ∼ N (µt, σ

2
t − σ2

t+1). We have

E[g?(St+1)|Ft] = E
{[

Eξ∼N (µt+1,σ2
t+1)(e

ξ)− k
]+
∣∣∣∣Ft}

≥
{
E
[
Eξ∼N (µt+1,σ2

t+1)(e
ξ)|Ft

]
− k
}+

(by Jensen’s inequality)

=
[
Eξ∼N (µt,σ2

t )(e
ξ)− k

]+

= g?(St).

Here, the third equality follows from the fact that, if ξ|µt+1 ∼ N (µt+1, σ
2
t+1), and µt+1|Ft ∼

N (µt, σ
2
t − σ2

t+1), then conditional on Ft, ξ is normally distributed, with

E(ξ|Ft) = E[E(ξ|µt+1)|Ft] = E(µt+1|Ft) = µt;

Var(ξ|Ft) = E[Var(ξ|µt+1)|Ft] + Var[E(ξ|µt+1)|Ft]

= σ2
t+1 + Var(µt|Ft) = σ2

t+1 + σ2
t − σ2

t+1 = σ2
t .

These three cases conclude the proof that E[g?(St+1)|Ft] ≥ g?(St).

Lemma A7 (Lp-Boundedness). Suppose PC is the probability measure corresponding to the never-

stopping policy, that is, PC(At = C|St = s) = 1 for any s ∈ S. For any p ≥ 1 and initial condition

s ∈ S0, we have

sup
t∈N

EC
{

[g?(St)]
p|S0 = s

}
< +∞.

Proof of Lemma A7. Without loss of generality, consider s 6= ∆ and s = (µ, σ2) ∈ S. Under the
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initial condition S0 = s 6= ∆ and the never-stopping policy, we have St 6= ∆. Denote St = (µt, σ
2
t ).

sup
t∈N

EC
{

[g?(µt, σ
2
t )]

p
∣∣S0 = s

}
≤ 2p−1

{
epσ

2
t /2E(epµt |S0 = s) + kp

}
(by AM-GM inequality)

≤ 2p−1
{
epσ

2
t /2 × epµ+p2σ2/2 + kp

}
(by Proposition A5)

< +∞.

H.5.2 Proof of Lemmas, Propositions and Corollaries

Proof of Lemma A1. Notice that g∗(µ, σ) is convex in µ. Lemma A1 holds by Jensen’s inequality.

Proof of Proposition A1. It is equivalent to prove that V(s) = g∗(s) for any s ∈ R × Σ0. In

particular, let V(0)(s) = g∗(s) for s ∈ S and V(t) := B(V(t−1)) for t = 1, 2, ..., I show that for

every s ∈ R× Σ0, V(s) = limt→∞ V(t)(s) = g∗(s).

First of all, I use mathematical induction to prove that V(t)(s) = g∗(s) holds for all t ∈ N0

and s ∈ R×Σ0. Notice that V(0)(s) = g∗(s) for any s ∈ R×Σ0 ⊂ S holds by assumption. Next,

I show that V(t+1)(s) = g∗(s) for any s ∈ R× Σ0 if V(t)(s) = g∗(s) holds for any s ∈ R× Σ0. By

definition, for a fixed s ∈ R× Σ0,

V(t+1)(s) :=

max


g?(s), a = Q

− c+ ES [V(S̃)], a = C

 ,

where

ES [V(S̃)] = E
µ̃∼N

(
µ,σ2Z+ σ4

σ2+ν2 (1−Z)
) [V(t)

(
µ̃,

1− Z
σ−2 + ν−2

)]
Since 1−Z

σ−2+ν−2 ≤ σ2 ≤ 2πc2

k2 , we have (µ̃, 1−Z
σ−2+ν−2 ) ∈ R×Σ0 and V(t)(µ̃, 1−Z

σ−2+ν−2 ) = g∗(µ̃, 1−Z
σ−2+ν−2 ).
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Then V(t+1) = g∗(s) is equivalent to

g∗(s) ≥ −c+ E
µ̃∼N

(
µ,σ2Z+ σ4

σ2+ν2 (1−Z)
)g∗(µ̃, 1− Z

σ−2 + ν−2
)

= −c+ αEµ̃∼N (µ,σ2)g
∗(µ̃, 0)︸ ︷︷ ︸

(I)

+(1− α)E
µ̃∼N (µ, σ4

σ2+ν2 )
g∗(µ̃,

1

σ−2 + ν−2
)︸ ︷︷ ︸

(II)

Notice that

(II) = E
µ̃∼N

(
µ, σ4

σ2+ν2

)g∗
(
µ̃,

1

σ−2 + ν−2

)
= E

µ̃∼N
(
µ, σ4

σ2+ν2

){E
ξ∼N

(
µ̃, 1
σ−2+ν−2

)eξ − k
}+

≤ Eξ∼N (µ,σ2)(e
ξ − k)+ (by Jensen’s inequality)

= (I),

where the second equality follows from the fact that ξ is normally distributed with center µ and

variance

Var(ξ) = Var[E(ξ|µ̃)] + E[Var(ξ|µ̃)] =
σ4

σ2 + ν2
+

1

σ−2 + ν−2
= σ2.

Therefore,

−c+ α(I) + (1− α)(II) ≤ −c+ Eµ̃∼N (µ,σ2)(e
µ̃ − k)+

It is sufficient to prove

g∗(s) ≥ −c+ Eµ̃∼N (µ,σ2)g
∗(µ̃,

1− Z
σ−2 + ν−2

)

when σ2 ≤ 2πc2

k2 . This conclusion is given in the lemma A8.

To conclude, V(t+1)(s) = g∗(s) holds for any s ∈ R × Σ0. By mathematical induction,

V(t)(s) = g∗(s) holds for any t ∈ N0 for any s ∈ R×Σ0. By corollary 7.2.13 of Puterman (1994),

V(s) = limt→∞ V(t)(s) = g∗(s) for any s ∈ R× Σ0.

Proof of Lemma A2, Lemma A3 and Proposition A4 . Let V(0)(s) = g∗(s) = (eµ+σ2

2 − k)+ and

V(t) := B(V(t−1)) for t ∈ N+. I use mathematical induction to show that V(t)(s)

(i) increases in α;
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(ii) for any s = (µ, σ) ∈ S, E
µ̃∼N (µ, σ4

σ2+ν2 )
[V(t)(µ̃, σ̃2)] ≤ Eµ̃∼N (µ,σ2)[g

∗(µ̃, 0)].

First, I show that (i) and (ii) hold for V(1). By definition, for a fixed s ∈ S,

V(1)(µ, σ) :=

max


g?(s), a = Q

− c+ Es[V(0)(µ̃, σ̃)], a = C

 ,

where

Es[V(0)(µ̃, σ̃)] = αEµ̃∼N (µ,σ2)g
∗(µ̃, 0)︸ ︷︷ ︸

(I)

+(1− α)E
µ̃∼N (µ, σ4

σ2+ν2 )
g∗(µ̃,

1

σ−2 + ν−2
)︸ ︷︷ ︸

(II)

(I)≥ (II) by Jensen’s inequality. Therefore, Es[V(0)(µ̃, σ̃)] increases in α. Since V(1)(µ, σ) increases

in Es[V(0)(µ̃, σ̃)], it increases in α as well. Notice that

V(1)(µ, σ) = max{g∗(s),−c+ Es[V(0)(µ̃, σ̃)]}

≤max{g∗(s), αEµ̃∼N (µ,σ2)g
∗(µ̃, 0) + (1− α)E

µ̃∼N (µ, σ4

σ2+ν2 )
g∗(µ̃,

1

σ−2 + ν−2
)}

≤max{g∗(s),Eµ̃∼N (µ,σ2)g
∗(µ̃, 0)}

≤Eµ̃∼N (µ,σ2)g
∗(µ̃, 0)

where the last inequality follows Jensen’s inequality. Therefore,

E˜̃s{V
(1)(µ, σ2)} ≤ E˜̃s{Eµ̃∼N (µ,σ2)g

∗(µ̃, 0)|(µ, σ)} = E˜̃s{g
∗(µ, 0)}.

In sum, V(1)(s) satisfies properties (i) and (ii).

Next, I show that V(t) satisfies properties (i) and (ii) if they apply to V(t−1). By definition,

for a fixed s ∈ S,

V(t)(µ, σ) :=

max


g?(s), a = Q

− c+ Es[V(t−1)(µ̃, σ̃)], a = C

 ,
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where

Es[V(t−1)(µ̃, σ̃)] = αEµ̃∼N (µ,σ2)[V(t−1)(µ̃, 0)]︸ ︷︷ ︸
(I)

+(1− α)E
µ̃∼N (µ, σ4

σ2+ν2 )
[V(t−1)(µ̃, σ̃2)]︸ ︷︷ ︸

(II)

and σ̃2 = 1
σ−2+ν−2 . Therefore, we have

d

dα
Es[V(t−1)(µ̃, σ̃)] = (I)− (II) +

d

dα
Es[V(t−1)(µ̃, σ̃)]

= (I)− (II) + Es[
d

dα
V(t−1)(µ̃, σ̃)]

≥ 0

where the equality follows Danskin’s Theorem and the inequality follows the assumption that

property (i) and (ii) apply to V(t−1). Since V(t) is an increasing function of Es[V(t−1)(µ̃, σ̃)], it

increases in α as well. Notice that

V(t)(µ, σ) = max{g∗(s),−c+ Es[V(t−1)(µ̃, σ̃)]}

≤max{g∗(s), α(I) + (1− α)(II)}

≤max{g∗(s), (I)}

≤(I) = Eµ̃∼N (µ,σ2)[V(t−1)(µ̃, 0)]

where the last inequality follows Jensen’s inequality. Therefore,

E˜̃s{V
(t)(µ, σ2)} ≤ E˜̃s{Eµ̃∼N (µ,σ2)[V(t−1)(µ̃, 0)|(µ, σ)]} ≤ E˜̃s[V

(t−1)(µ, 0)] = E˜̃s{g
∗(µ, 0)}.

In sum, V(t) satisfies property (i) and (ii) if they apply to V(t−1).

By mathematical induction, (i) and (ii) if they apply to V(t) where t ∈ N+. Notice that

0 ≤ V(0) ≤ V(s). By Puterman (1994), V(s) = limt→∞ V(t)(s). Therefore, V(s) satisfies property

(i) and (ii).

Proof of Proposition A2. By Lemma A2., E[V(S̃)] ≤ Esg∗(µ̃, 0). Therefore, a sufficient condition
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for the startup to quit is g∗(µ, σ) > −c+ Eµ̃∼N (µ,σ2)g
∗(µ̃, 0), which is equivalent to

f(s) := Eµ̃∼N (µ,σ2)g
∗(µ̃, 0)− g∗(µ, σ) (20)

= E[g(µ+ σζ, 0)]− g∗(µ, σ) < c (21)

where ζ ∼ N(0, 1). First, we have

∂

∂µ
E[g?(µ+ σζ, 0)] = E

{
∂

∂µ

(
eµ+σζ − k

)
I
(
eµ+σζ − k ≥ 0

)}
(by Danskin’s Theorem)

= eµE
{
eσζI

(
−ζ ≤ µ− log(k)

σ

)}
= eµ+σ2/2Φ

(
µ− log(k)

σ
+ σ

)
.

where the last equality follows from the moment generating function of the truncated normal

distribution. Second, we have

∂

∂µ
g?(µ, σ2) =

∂

∂µ

(
eµ+σ2/2 − k

)
I
(
eµ+σ2/2 − k ≥ 0

)
= eµ+σ2/2I

(
µ ≥ log(k)− σ2

2

)
.

Then for µ < log(k)− σ2

2 , we have

∂

∂µ
f(s) = eµ+σ2/2Φ

(
µ− log(k)

σ
+ σ

)
> 0.

For µ > log(k)− σ2

2 , we have

∂

∂µ
f(s) = eµ+σ2/2Φ

(
µ− log(k)

σ
+ σ

)
− eµ+σ2/2 < 0.

So maxµ f(s) = f(log(k) − σ2

2 , σ). Also, notice that limµ→∞f(s) = 0. There are two cases as

below. If max{f(s)} < c, the proposition holds for any µ = µ̄ in R. If max{f(s)} > c, there exists

µ < log(k)− σ2

2 and µ̄ > log(k)− σ2

2 such that f(µ, σ) = f(µ̄, σ) = c. Then we have f(s) < c if

µ < µ or µ > µ̄.

Proof of Proposition A3. Let V(0)(s) = g∗(s) = (eµ+σ2

2 − k)+ and V(t) := B(V(t−1)) for t ∈ N+.

I use mathematical induction to show that V(t)(s) is convex in µ and increasing in σ for t ∈ N+
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and s ∈ S.

First, notice that V(0)(s) is convex in µ and increasing in σ for t ∈ N+ and s ∈ S. Next, I

show that V(t) is convex in µ and increasing in σ assuming they hold for V(t−1). By definition,

for a fixed s ∈ S,

V(t)(µ, σ) :=

max


g?(s), a = Q

− c+ Es[V(t−1)(µ̃, σ̃)], a = C

 ,

where

Es[V(t−1)(µ̃, σ̃)] = αEµ̃∼N (µ,σ2)[V(t−1)(µ̃, 0)] + (1− α)E
µ̃∼N (µ, σ4

σ2+ν2 )
[V(t−1)(µ̃, σ̃2)]

= αEε∼N (0,σ2)[V(t−1)(µ+ ε, 0)]︸ ︷︷ ︸
(I)

+(1− α)E
ε∼N (0, σ4

σ2+ν2 )
[V(t−1)(µ+ ε, σ̃2)]︸ ︷︷ ︸
(II)

and σ̃2 = 1
σ−2+ν−2 . By Lemma A9 and V(t−1)(s) is convex in µ, (I) and (II) are also convex in µ.

By V (t−1)(µ+ ε, 0) is convex in ε and Lemma 6, we have (I) increases in σ. Given any σ1 < σ2,

we have

(II)(σ1) = E
ε∼N (0,

σ4
1

σ2
1+ν2 )

[V(t−1)(µ+ ε, σ̃2(σ1))] ≤ E
ε∼N (0,

σ4
1

σ2
1+ν2 )

[V(t−1)(µ+ ε, σ̃2(σ2))] (22)

≤ E
ε∼N (0,

σ4
2

σ2
2+ν2 )

[V(t−1)(µ+ ε, σ̃2(σ2))] (23)

= (II)(σ2) (24)

where the first inequality follows our assumption that V(t−1) increases in σ and the second in-

equality follows the feature of second order stochastic dominance. Therefore, (II) also increases in

σ. Given that (I) and (II) are convex in µ and increasing in σ, we conclude that Es[V(t−1)(µ̃, σ̃)]

satisfy both properties as well. Notice that g∗(s) is also convex in µ and increasing in σ. Given

V(t)(s) is increasing and convex in Es[V(t−1)(µ̃, σ̃)], which is convex in µ, V(t)(s) is also convex in

µ. By the feature of second order stochastic dominance, V(t)(s) increases in σ. The completes the

proof that V(t) is convex in µ and increasing in σ assuming they hold for V(t−1). By mathematical
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induction, for any t ∈ N+ and s ∈ S, V(t) is convex in µ and increasing in σ.

Notice that 0 ≤ V(0) ≤ V(s). By Puterman (1994), V(s) = limt→∞ V(t)(s). Therefore, V(s) is

convex in µ and increasing in σ.

H.5.3 Additional Lemmas

Lemma A8. Suppose Z ∼ N (µ, σ2). If σ2 ≤ 2πc2

k2 , then

E(eZ − k)+ − (EeZ − k)+ ≤ c.

Proof of Lemma A8. Notice that

[EeZ − k]+ =
(
eµ+σ2/2 − k

)+
;

E(eZ − k)+ = P[Z ≥ log(k)]
{
Et[eZ |Z ≥ log(k)]− k

}
= Φ

(
µ− log(k)

σ
+ σ

)
eµ+σ2/2 − Φ

(
µ− log(k)

σ

)
k

= Φ

(
µ− log(k)

σ
+ σ

)(
eµ+σ2/2 − k

)
+

[
Φ

(
µ− log(k)

σ
+ σ

)
− Φ

(
µ− log(k)

σ

)]
k

≤ Φ

(
µ− log(k)

σ
+ σ

)(
eµ+σ2/2 − k

)
+

σk√
2π
.

In particular,
(
eµ+σ2/2 − k

)+
− Φ

(
µ−log(k)

σ + σ
)(

eµ+σ2/2 − k
)
≥ 0. Then

(EeZ − k)+ − E(eZ − k)+ + c ≥ − σk√
2π

+ c.

The right hand side ≥ 0 if and only if σ2 ≤ 2πc2

k2 .

Lemma A9. Assume f(x) is a convex function of x ∈ R. Then g(x) = E[f(x + ε)] where

ε ∼ N (0, σ2) is also convex in x.
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Proof of Lemma A9. For any x1, x2 ∈ R such that x1 6= x2, we have

g(tx1 + (1− t)x2) = E[f(tx1 + (1− t)x2 + ε)]

≤ E[f(tx1) + f((1− t)x2 + ε)]

= f(tx1) + E[f((1− t)x2 + ε)]

= f(E[tx1 + ε]) + E[f((1− t)x2 + ε)]

≤ E[f(tx1 + ε)] + E[f((1− t)x2 + ε)]

= g(tx1) + g((1− t)x2)

where the two inequalities follow the assumption that f(x) is a convex function. Therefore, by

definition of convex function, g(x) is convex in x.

H.6 Numerical Analysis and Simulation

This appendix illustrates the procedure of solving equation (17) and simulating results on the

benefits of VC informativeness.

H.6.1 Numerical Analysis

First, I show the procedure of numerically solving V(s) and d∗(s) for any s = (µ, σ) ∈ S. For

each time point t, σ can take one of the two values depending on the realization of Z1, ..., Zt. If at

least one of Z1, ..., Zt equals zero (the startup receives at least one precise signal), we have σ = 0.

The startup takes an action of a = Q and obtains g∗(s) = (eµ − k)+ according to Corollary A1.

If, instead, Z1 = ... = Zt = 1 (the startup didn’t receive any precise signal before t), we have σ

expressed by

σ =

√
1

σ−2
0 + tν−2

, (25)

under which case V(s) and d∗(s) are determined by the procedure below.

I set up a two-dimensional matrix where the each element corresponds to a possible combina-

tion of µ and t. Notice that the value of σ for each element can be determined by equation (25).
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Our goal is to compute V(s) and d∗(s) for each s = (µ, σ) in the matrix. Recall that the startup

quits when σ is sufficiently small by Proposition A2 and Corollary A1. Since σ monotonically

decreases in t, there exists t = Tmax such that the startup quits before Tmax. I start by assuming

the value of Tmax and use backward induction to compute V(s) and d∗(s) of all possible states

for t < Tmax. In particular, I solve the model follow the steps as below.

Step 1. Set up values of exogenous parameters. I manually assign values to five exogenous

parameters in the model. I first select the value of µ0 = 0, σ0 = 1 and ν = 1, and then determine

the value of k which satisfies the assumption that E(θ) = exp{µ0 +
σ2

0
2 } < k. I select k = 1.8.

The cost of one signal c is determined by trial-and-error. The assumption is that c is sufficiently

small so that it does not prevent the startup from collecting the first signal. I choose c = 0.05

that satisfies this assumption.

Step 2. Set up ranges of state variables. The range of µ is from -2.8 to 2.8 to cover 99.5% of

unconditional probability, where grid is set to be w = 0.05. I denote all possible values of µ as

µk, where k ∈ {1, ..., kmax} where kmax = 113. The maximum time Tmax is determined by trial-

and-error and I select Tmax = 50.44 The logic behind the trial-and-error is that selecting a larger

Tmax should not cause a change of optimal policy.45 The value of σ at Tmax, namely σmax, is

determined by equation (25). For any µk, I let V(µk, σmax) = g∗(µk, σmax) and d∗(µk, σmax) = Q.

Step 3. Compute the transition matrix. The transition matrix is determined by the discretiza-

tion of equation (18) conditional on Z = 1. The transition probability from µj to µi for a given

σ is determined by

pij =P(µ̃ ∈ (µi −
w

2
, µi +

w

2
)|µ ∈ (µj −

w

2
, µj +

w

2
))

≈P(µ̃ ∈ (µi −
w

2
, µi +

w

2
)|µ = µj)

=Φ(
µi + w

2 − µj√
σ4

σ2+ν2

)− Φ(
µi − w

2 − µj√
σ4

σ2+ν2

).

44Tmax can also be determined given the upper bar of σ given by Corollary A1 and equation (25). Here I select
a smaller value to improve computational efficiency.

45Note that the choices of Tmax and c may affect each other.

103



where Φ is CDF of standard normal distribution and 1 < i, j < kmax. In addition, we have

p1j = P[µ̃ ∈ (−∞, µ1 +
w

2
)|µ = µj ],

pkmaxj = P[µ̃ ∈ (µkmax −
w

2
,∞)|µ = µj ].

Step 4. Solve dynamic programming problem by backward induction. Let t = Tmax − 1, I

determine σ according to equation (25). Then for any µk, we have

V(µk, σ) = max{g∗(µk, σ),−c+ αh(µk, σ) + (1− α)Σkmax
i=1 pikV(µi, σmax)},

where

h(µk, σ) = Elog(x)∼N (µk,σ2)(x− k)+

= exp{µk +
σ2

2
}Φ(

µk + σ2 − log(k)

σ
)− k(1− Φ(

log(k)− µk
σ

)).

is the expected payoff conditional on having a precise signal at Tmax. The optimal policy is

d(µk, σ) =


Q, if g∗(µk, σ) ≥ −c+ αh(µk, σ) + (1− α)Σkmax

i=1 pikV(µi, σmax);

C, Otherwise.

Then I repeat the procedure to compute V(s) and d∗(s) for any µk and and σ that satisfies

t ∈ {1, 2, ..., Tmax − 2}.

H.6.2 Simulation

For a given α ∈ [0, 1], I simulate the model by drawing n1 = 1, 000 value of θ where log(θ) ∼

N (µ0, σ
2
0) and running the process for n2 = 10, 000 iterations. For each iteration i of each value

θj at each time t ≥ 1,

- If Zt = 0, the startup quits and obtains a payoff of gij = g∗(log(θj), 0); the market requires

an ownership of λij = k/θj if gij > 0;
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- If Zt = 1 and the startup receives a signal xt, the startup updates belief according to

µt =
ν2

σ2
t−1 + ν2

µt−1 +
σ2
t−1

σ2
t−1 + ν2

xt

and σt−1 by equation (25) at t−1. Denote µ∗ = arg minµk∈{µ1,...,µmax} |µk−µt|, and σ given

by equation (25), the startup takes action d(µ∗, σ). If d(µ∗, σ) = Q, the startup quits with

a payoff gij = g∗(µt, σ); and the market requires an ownership of λij = k/ exp{µt +
σ2
t
2 } if

gij > 0. Otherwise, the startup moves to t+ 1.

For each iteration i of value θj , I document (i) the final payoff gij ; (ii) stopping time tij ; (iii)

the value of Z at the stopping time (Zij); (iv) a dummy variable Iij = Igij>0, which indicates

whether an investment is made; (v) the ownership fraction required by VCs λij . I utilize those

values to plot the figures below.

- Figure A6 the probability of resolving true value in the last stage

1

n1n2
ΣiΣj(1− Zij).

- Figure A8 plots expected signal collection time

1

n1n2
ΣiΣjtij .

- Figure A7 plots the probability of investment

1

n2
ΣiIij .

and the expected ownership required by VC conditional on investment

ΣiλijIij
ΣjIij

for θ∗j that satisfies θ∗j = arg minθj |θj − 2| and θ∗j = arg minθj |θj − 5|, respectively.
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