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Abstract 

We study the pricing implications of firm-level stock–bond comovement in 

the joint cross-section of stock and corporate bond returns. We find that a 

trading strategy that longs (shorts) securities with low (high) changes in 

comovement delivers economically and statistically significant average 

monthly returns in both the stock and corporate bond markets. Such an effect 

is more pronounced for firms with low profitability and growth potential. The 

results are robust to different market conditions and risk characteristics and 

cannot be explained by established pricing factors from antecedent research. 

Comovement captures investors’ views about the firm’s overall risk and 

uncertainty prospects.  
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1. Introduction 

Equities and bonds issued by the same company are closely related through the firm’s capital structure. 

Even so, due to the difference in clienteles for both asset classes, the same piece of news or information 

can trigger different investors’ reactions. More specifically, stockholders who benefit from good 

prospects of profitability and have exposure to unlimited upside potential may act differently from 

bondholders with capped benefits (Campbell and Taksler, 2003). Differences in the order of claims on 

the firm’s net assets also contribute to the divergence in investors’ actions and share demands. One 

exception is when the firm is perceived to be in serious trouble, as then both stock- and bondholders 

may face losing part or all of their investment. In these situations, investors who are cautious about risk 

might reduce or halt their involvement in any securities from the company, leading to a heightened 

correlation between the company's stocks and bonds (i.e., comovement hereafter).  

Comovement de-facto measures the degree of covariance and correlation between the stocks and 

bonds issued by the same company. This level of correlation is reflective of the common reaction of 

equity and bond investors to changes in firm-specific outlook. When the outlook of the company is 

positive, investors tend to favor equity over bonds due to the potentially uncapped benefit enjoyed by 

equity holders. This creates a divergence in returns and reduces the correlation between the two 

assets. Conversely, in negative scenarios when the company's prospects impact profitability and its 

general ability to meet interest payments, both bond and equity holders are inclined to divest, leading 

to an increase in comovement between bond and equity returns. We posit that such increases in 

comovement proxy for investors' concerns about the firm’s quality as well as their (firm-specific) 

distress risk expectations. This arises from an increased probability of coordinated trades across both 

asset classes when the overall perception is that the company is encountering financial difficulties. 

At the market level, the time-varying correlation between stocks and bonds has been studied by 

Campbell and Ammer (1993), who find that investors tend to respond to news that jointly affects both 

markets by selling both assets. The fluctuating correlation was further linked to shifts in market risk, as 

evidenced by business cycle data (Koijen et al., 2017, Rossi and Timmermann, 2015), economic state 

variables (Bekaert et al., 2010), and market uncertainty (Baele et al., 2010, Connolly et al., 2007). This 

suggests that this cross-market connection encompasses significant informational value. Despite these 

efforts, little work has been devoted to investigating how stock–bond comovement affects asset returns 

at the firm level.  

In this paper, we study the pricing implications of firm-specific stock-bond comovement, a measure 

that captures stock and bond investors’ common reactions to changes in a firm’s risk level, in the joint 

cross-sections of equities and bonds. We find that changes in firm-level stock–bond comovement 

(COMOVE) negatively explain the future returns of both stocks and bonds issued by the same firm in 

the cross-section. Equities in the top quintile (high COMOVE) underperform those in the bottom 

quintile (low COMOVE) by 88 basis points (bps) per month (t-stat = −4.05). The predictive power of 
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the comovement measure also arises in the cross-section of bond returns, with those in the lowest 

COMOVE quintile generating a significant average monthly return of 25 bps (t-stat = −3.41) higher 

than those in the highest quintile. The results of bivariate sorts and Fama and MacBeth (1973) 

regressions further confirm that COMOVE affords significant predictive power after controlling for 

established factors known to explain cross-sectional variations in returns from both markets (see e.g., 

Jegadeesh and Titman, 1993; Amuihud, 2002). The comovement effect is stronger among firms with 

higher levels of financial risk and information asymmetry. In a regime-based analysis, we show that the 

predictive power of COMOVE is stronger during periods of high market volatility, high default risk, 

and low market liquidity. In further robustness checks, we confirm that the results remain consistent 

with COMOVE constructed using alternative samples and different formation periods. Our findings 

suggest that the COMOVE premium is not attributable to construction issues or bias from short sample 

periods. Collectively, these results point to a significant explanatory power originating from investors’ 

common perceptions of the firm’s overall risk and uncertainty prospects.  

Our empirical findings contribute to the literature in several ways. First, we add to the growing 

literature on cross-asset linkages. Studies that are most closely related to our paper examine the pricing 

discrepancies between credit default swaps (CDS) and bond spreads issued by the same company, 

known as the CDS-bond basis. Since CDSs serve as insurance against defaults, they have been 

documented to be closely linked to bond value uncertainty (Fontana, 2011) and trading frictions (Bai 

and Collin‐Dufresne, 2019, Oehmke and Zawadowski, 2017). Kim et al. (2016) study the pricing 

impact of the CDS-bond basis and document its significantly negative association with future bond 

returns. However, these findings tell us very little about how cross-asset linkages affect the cross-section 

of asset returns as they only cover small data samples and large firms (e.g., CDS-listed ones). Our paper 

unveils the significant explanatory power of stock-bond comovement in a cross-asset setting with a 

more representative sample of firms. The findings of our paper not only confirm the interconnectedness 

between equities and bonds at the firm level but also offer a promising agenda for future research 

explaining abnormal risk premia with cross-asset measures. 

Our findings also contribute to the empirical asset pricing literature focused on the information 

content of cross-asset dynamics. While equity and corporate bond returns have, so far, largely been 

studied separately, the need for studies on their joint pricing is critical. Existing literature has shown 

that an increasing number of risk anomalies that have long been known to predict equities are also 

identified in the cross-section of corporate bond returns (Bai et al., 2019, Bali et al., 2021a, Fama and 

French, 1993). We complement these studies by constructing a firm-level variable that captures 

common information from both stock and bond markets. More importantly, we are the first research to 

perform such an analysis for the joint cross-section of stocks and bonds, highlighting the crucial role of 

cross-asset information in explaining future security returns. Prior work by Dickerson et al. (2022) 

focuses on predicting future variations in the covariance and realizing diversification benefits 
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accordingly from investing in both types of securities. We examine the pricing implications of cross-

asset comovement and show that it generates significant premia in both asset classes. The main findings 

of our paper provide practical guidance for mutual funds and investors, especially those who seek to 

manage a balanced portfolio involving stocks and bonds. 

Another key contribution of our paper is to advance the literature on stock–bond comovement, as 

existing studies tend to remain at the aggregate market level without looking at firm-level comovement. 

Peng (2005) finds that investors’ transactions tend to occur primarily in one market, preceding price 

changes that happen subsequently in the other market. Despite this evidence, researchers have not 

reached an agreement on the lead-lag roles of different asset classes (Garcia and Tsafack, 2011, 

Hartmann et al., 2004). Moreover, Hilscher et al. (2015) find that the linkage between equity and bond 

indexes at the aggregate level is too inconsistent to explain firm-level pricing dynamics. Hou (2007) 

also documents how certain firms react more sluggishly to new information at the market level, which 

highlights the value of studying the information quality of pricing factors at the firm level. Norden and 

Weber (2009) examine this lead-lag relation at the firm level over a small number of firms that issue 

equities, bonds, and CDSs. They find that stock returns lead CDS and bond spread changes and that 

comovement at the aggregate level is influenced by credit quality and the size of bond issues. No prior 

study, however, has investigated the firm-level relation between equities and corporate bonds for all the 

available publicly listed companies. To the best of our knowledge, our paper provides the first empirical 

evidence of the pricing implications of the stock–bond relation at the firm level and the negative effect 

of stock-bond comovement on the cross-sections of bond and stock returns.  

The remainder of this paper is organized as follows. Section 2 describes the data and variables. 

Section 3 provides empirical results that demonstrate the cross-sectional predictive power of 

COMOVE for both the stock and bond markets, including a battery of robustness checks and validation 

tests. Section 4 concludes the paper. The online appendix contains technical details/definitions and 

presents additional results.  

2. Data and Variables 

This section describes the construction of our main variables, including the comovement measure which 

as discussed captures the common variability between returns on stocks and bonds issued by the same 

firm, firm-level security returns, and market-specific control variables.  

Our comovement measure is constructed using equity and bond returns data. For equities, we obtain 

equity and accounting data from CRSP and COMPUSTAT, respectively, and calculate firm-level equity 

returns as: 

 𝑅𝐸𝑖,𝑡
=

𝑆𝑖,𝑡+𝐷𝑖,𝑡

𝑆𝑖,𝑡−1
− 1, (1) 

where 𝑆𝑖,𝑡 is the stock price of firm i, and 𝐷𝑖,𝑡 is the dividend recorded during month t (if applicable). 

For bonds, we use intraday bond transaction data from the TRACE Enhanced dataset and obtain 
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information on bond issues and issuer characteristics from the Mergent FISD. The process of data 

cleaning, merging, and filtering we follow adheres to the methods outlined in Dick-Nielsen (2014), 

Dick-Nielsen (2009), and Asquith et al. (2013), with additional details provided in Appendix A. 

Following Bessembinder et al. (2008), we compute monthly bond returns as: 

  𝑅𝐵𝑖,𝑗,𝑡
=

𝐵𝑖,𝑗,𝑡+𝐴𝐼𝑖,𝑗,𝑡+𝐶𝑜𝑢𝑝𝑜𝑛𝑖,𝑗,𝑡

𝐵𝑖,𝑗,𝑡−1+𝐴𝐼𝑖,𝑗,𝑡−1
− 1, (2) 

where 𝐵𝑖,𝑗,𝑡  is the price of bond j issued by firm i in month t, 𝐴𝐼𝑖,𝑗,𝑡  is the accrued interest, and 

𝐶𝑜𝑢𝑝𝑜𝑛𝑖,𝑗,𝑡 is the coupon payment (if available). In addition, Bessembinder et al. (2008) argue that 

treating individual-level bond returns as separate observations introduces bias in empirical findings, 

especially concerning firms with multiple bond issues. To overcome this, we follow their approach by 

aggregating firms’ outstanding bond returns into a value-weighted return. We then exclude firms 

operating in financial and insurance-related sectors, as they are subject to specific regulations that 

influence their leverage policies and thus their default risk. 1  Our final sample includes 143,387 

observations of security returns for 1,614 companies spanning the period from August 2002 to 

December 2020.  

To measure firm-specific bond–stock comovement, we compute the covariance based on the 

exponential weighted moving average (EWMA), which has demonstrated superior performance 

compared to other moving average estimators (Andersson et al., 2008, Bali and Karagozoglu, 2000). 

We compute monthly COMOVEt over a 60-month fixed window of past monthly returns with a 

minimum requirement of 48 available observations as: 

 
𝐶𝑂𝑀𝑂𝑉𝐸 𝑡 = √(1 − 𝜆) ∑ 𝜆𝑖−160

𝑖=1 𝑅𝐸,𝑡−𝑖𝑅𝐵,𝑡−𝑖, (3) 

where 𝑅𝐸,𝑡−𝑖𝑅𝐵,𝑡−𝑖 is the product of paired monthly returns on bonds and equities issued by the same 

firm.  is a decay factor that assigns more weight to recent observations because of their greater 

relevance in forecasting future returns. The selection of  is guided by fitting a dynamic conditional 

correlation generalized autoregressive conditional heteroskedasticity (DCC-GARCH) model (Engle, 

2002) to paired stock and bond returns. This approach is chosen due to its empirical robustness, as 

demonstrated by Engle and Sheppard (2001), over conventional industry benchmarks in 

accommodating particular features of sampled firms when modeling their smoothing coefficients. To 

avoid incorporating heterogeneous information for  in our analysis, we use the mean value of  across 

all firms as our input in the estimation of COMOVEt for all firms.2 Due to the high degree of serial 

correlation of COMOVEt, we follow Bali et al. (2021b) and use the first difference of COMOVEt, 

 
1 Our results and main findings hold when financial firms are included.  
2 The value of  used is 0.80. Compared to the typical  of 0.94 used by practitioners in EWMA when estimating volatility, 

the correlation exhibits lower average persistence. Our results are robust to the use of alternative  values based on exponential 

weights estimated from different time periods. 
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denoted by COMOVE, as our main measure in further analyses. When a firm is perceived to be in 

financial distress, we expect to observe an elevated COMOVE. 

[Table 1] 

[Table 2] 

[Table 3] 

Definitions of firm characteristics and the control variables used are summarized in Table 1. Tables 

2 and 3 present the descriptive statistics for COMOVE, security returns, and market-specific control 

variables for equity and bond markets respectively. Panels A in each table report the cross-sectional 

mean, median, standard deviation, and monthly return percentiles of our sample. Panels B in each table 

report pairwise correlations. Our final combined COMOVE dataset includes bonds and stocks issued 

by 906 unique firms, for a total of 69,540 observations from September 2007 to December 2020. On 

average, there are approximately 432 observations per month in our sample. COMOVE is, in general, 

close to being normally distributed with a mean of 0 and is slightly positively skewed. The average 

monthly equity and bond returns are 1.08% and 0.61%, respectively, and the average sizes of the equity 

and bond amounts outstanding are US$27.19 billion and US$0.59 billion, respectively. In general, our 

sample is not biased toward any characteristic group. It contains bonds with an average rating of 10 

(BBB) and an average time-to-maturity of 9 years. Among the full sample of bonds, around 75% are 

investment grade, and the remaining 25% are high-yield bonds. COMOVE does not correlate 

significantly with other equity characteristics except with IVOLE and MAX. In addition, it is important 

to note that the correlation between COMOVE and contemporaneous bond and equity returns is 

negative, supporting the intuition that heightened comovement is mainly associated with declines in the 

prices of both assets.  

3. Comovement and Asset Prices 

In this section, we study the pricing implications of COMOVE. Our main hypothesis is that 

COMOVE, computed as the innovation in covariance between equities and bonds issued by the same 

firm, can explain subsequent security returns in the cross-section. Intuitively, when a firm is perceived 

to be in trouble, both equity and bond investors will reduce (or withdraw) their investments in (from) 

the company, resulting in increased comovement between stock and bond returns at the firm level. 

Conversely, when firm prospects are less uncertain, investors might act differently towards equities and 

bonds given their different payoff features, leading to a lower comovement. Therefore, we expect that 

ex-post returns will be significantly lower for firms with high COMOVE in the cross-sections of both 

equities and bonds. 3 

 
3 We also examine the pricing implications of COMOVE for the difference between equity and bond returns of the same 

firm, defined as the firm-specific equity risk premium (ERPf), and report the results in Appendix B. 
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3.1 Univariate portfolio analysis 

To study whether firm-specific COMOVE is priced in the cross-section of security returns, we form 

five quintile portfolios each month by sorting equities and bonds based on the firm-specific COMOVE 

over the past month.4 The results of this analysis for equities and bonds are reported in Tables 4 and 5, 

respectively. The average COMOVE of each quintile portfolio is summarized in the second column of 

each table, where the quintile 1 (5) portfolio contains securities with the lowest (highest) COMOVE. 

The remaining columns report average excess returns and time-series alphas (𝛼𝑖 ), controlling for 

established risk factors for both equal-weighted and value-weighted quintile portfolios based on the 

following regression: 

  𝑅𝑡+1
𝑖 = 𝛼𝑖 + ∑ 𝛽𝑘,𝑡

𝑖 𝑋𝑘,𝑡
𝐾
𝑘=1 + 𝜀𝑡

𝑖, (4) 

where 𝑅𝑡+1
𝑖  is the excess return of quintile portfolio 𝑖 sorted on COMOVE. 𝑋k,𝑡  is a collection of risk 

factors observed at time t that have been documented to display significant explanatory power for the 

cross-section of security returns in different markets. For portfolio sorting on equity returns, we control 

for different combinations of equity risk factors, including the excess market return (MKTE), size factor 

(SMBE), book-to-market factor (HMLE), momentum factor (MOME), liquidity factor (LIQ), investment 

(I/A), and profitability (ROE) factors proposed by Fama and French (1993), Carhart (1997), Pástor and 

Stambaugh (2003), and Hou et al. (2015). For corporate bond portfolios, in addition to the 

aforementioned stock factors, we control for known bond factors including excess bond market returns 

(MKTB), downside risk factor (DRF), credit risk factor (CRF), and liquidity risk factor (LRF) (Bai et 

al., 2019). We adopt the up-to-date version of BBW factors (MKTB, DRF, CRF, LRF) from Dickerson 

et al. (2023). Additionally, we also show the alpha (B
1) relative to MKTB only given its outperformance 

among other return-based bond anomalies recently reported by Dickerson et al. (2023). The last row of 

each table reports the differences in average returns and alphas between the quintiles 1 and 5 portfolios 

in the unit of monthly percentages. In other words, they are the returns (alphas) on a “high-minus-low 

(HML)” zero investment portfolio that longs the securities in the highest COMOVE quintile and shorts 

those in the lowest COMOVE quintile. Newey and West (1987) adjusted t-statistics are reported in 

parentheses.  

[Table 4] 

Table 4 shows that the explanatory power of COMOVE holds for both equal- and value-weighted 

HML portfolios in the equity cross-section. For equal-weighted portfolios in column (1), the average 

excess return decreases monotonically from 1.41% to 0.54% with increasing COMOVE, resulting in 

a significant HML return difference of −0.88% per month (t-stat = −4.05). COMOVE remains a 

significant predictor that consistently adds to established equity factor models over the different 

 
4 Sorting into five portfolios ensures a good sample size for each quintile, with an average of 432 observations available per 

month. Our results are consistent when both securities returns are sorted into tercile portfolios. Results based on tercile portfolio 

sorting are reported in the Appendix in Table C4. 
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combinations considered in columns (2)-(5). Stocks in the highest COMOVE quintile generate an 

average monthly return of 0.72% higher than those in the lowest quintile when all equity risk factors 

are controlled for in column (5). This pattern is more pronounced for value-weighted portfolios, where 

the potential noise from small-cap stocks is not overrepresented or is partly mitigated. The results in 

columns (7) to (10) confirm a consistently higher alpha difference compared to the equal-weighted 

HML returns. More importantly, the significant negative alpha spread between extreme quintiles can 

be attributed to both the outperformance of the low-COMOVE stocks and the underperformance of 

the high-COMOVE stocks. This implies that equity investors are sensitive to changes exhibited in the 

recent trading history of stock–bond comovement in both directions.  

[Table 5] 

We turn to examine whether COMOVE can predict returns beyond the stock market. The results 

in Table 5 confirm that the negative association also holds between COMOVE and future bond excess 

returns. Consistent with our equities-based findings, the alphas on the five quintile bond portfolios 

decline monotonically from the lowest to the highest COMOVE portfolios, resulting in an HML return 

of −0.25% (t-stat = −3.41) per month. From columns (2)–(5), COMOVE continues to offer 

incremental information beyond the common risk factors of both the equity and bond markets. 

Dickerson et al. (2023) argue that the factors proposed in prior work rarely outperform MKTB from an 

investment perspective. The results from column (3) highlight an interesting new finding. Using similar 

methods to Dickerson et al. (2023) for cleaning and filtering bond data, COMOVE avoids one of the 

construction issues aforementioned in their paper and yields a significantly negative return for the HML 

portfolio at −0.28% per month (t-stat = −2.76) when MKTB is accounted for.5 In addition, we find that 

the value-weighted results in column (6) are of a similar magnitude as that of an equal-weighted 

portfolio (column (1)) with sizable statistical significance. We also find that the significant explanatory 

power of COMOVE on bond returns is driven mainly by the outperformance of low-COMOVE bonds 

when known factors are controlled for.  

In summary, we confirm that the explanatory power of COMOVE in the cross-section of stocks 

and bonds works in the same direction. We show that the consistent predictive power of COMOVE 

likely validates the idea that investors monitor and adjust their investments in both markets, resulting 

in a strong interconnection between markets at the firm level. This is also consistent with our hypothesis 

that COMOVE captures changes in firm quality as perceived by cross-asset investors. In addition, we 

notice the distinct patterns of characteristics across bond quintile portfolios. The extreme quintile 

portfolios have relatively higher average ratings and illiquidity, whereas their average sizes exhibit an 

opposite convex pattern. This mitigates the concerns that our results are driven by certain bond 

characteristics. Nonetheless, we further verify this later in various robustness checks.  

 
5 The bond factors employed in this study are obtained from the Open Source Bond Asset Pricing webpage 

(https://openbondassetpricing.com) by Alex Dickerson, Philippe Mueller, Cesare Robotti and Christian Julliard. 
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3.2 Bivariate portfolio analysis 

To study the predictive power of COMOVE when established and known pricing factors in the equity 

and bond markets are controlled for, we perform a double-sort analysis over both asset classes following 

Ang et al. (2006). Specifically, for each month from September 2007 to December 2020, we form five 

quintile portfolios by sorting equities and bonds based on the market-specific characteristics described 

in Panel A of Table 1. Within each quintile, we further sort securities into five sub-quintile portfolios 

based on COMOVE. The five sub-quintile portfolios are then averaged across quintiles of the control 

variable. We report the risk-adjusted alphas of the five COMOVE-quintile portfolios on a value-

weighted basis, along with the alpha difference between high- and low-COMOVE quintile portfolios 

reported in the last column. Table 6 reports the bivariate equity portfolio analysis results with seven-

factor equity alphas (E
7) controlled for: MKTE, SMBE, HMLE, MOME, LIQ, I/A, and ROE, following 

Fama and French (1993), Carhart (1997), Pástor and Stambaugh (2003), and Hou et al. (2015).  

[Table 6] 

The explanatory power of COMOVE remains robust in Table 6 after accounting for various equity 

anomalies.6  Unsurprisingly, the economic and statistical significance of COMOVE varies across 

different specifications. The HML alpha that accounts for SIZEE remains significant at −0.59% per 

month in row (1). We also find significant alpha differences of the HML portfolio at −0.65% and −0.64% 

when controlling for B/M and ROE respectively. This indicates that the lowest quintile may be 

overrepresented by firms with low earning or low profitability prospects. This hypothesis is further 

validated when controlling for DEFAULT as a direct proxy for firm-level credit risk, which is 

constructed from accounting information and bond market prices. Row (7) shows that the HML alpha 

reduces slightly to −0.56% (t-stat = −2.43). Such information overlap is consistent with the positive 

association documented by Dickerson et al. (2022) between their firm-level stock–bond covariance 

(DFJM) and DEFAULT.7  Nevertheless, other perceived distresses related to firm profitability and 

worthiness are also captured by COMOVE. Herein, we focus on the improved information quality of 

COMOVE through real-time market pricing dynamics that are available more promptly compared to 

accounting-based information characterizing DEFAULT and ROE. The HML alpha controlling for 

ILLIQE, while remaining highly significant, exhibits a reduction in economic significance in row (8), 

validating our conjecture that investors perceive changes in the firm risk level and adjust exposures in 

their portfolios accordingly. Result in row (9) with DISPER that captures differences in opinion among 

investors (Diether et al., 2002) also suggests that the HML alpha remains sizable and significant. The 

significance of COMOVE alpha confirms that estimating from historical trading data offers 

 
6 We also control for information asymmetry proxies including analysts’ forecast error, forecast dispersion, accruals, analyst 

coverage, and the variance risk premium. Results of bivariate sorting with those controls are consistent and significant. We 

also look at the explanatory power of COMOVE only for firms that issue options and for firms with CDSs available. In both 

samples, results remain consistent.  
7 We will examine such association in more detail in Section 3.5.  
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incremental information toward market dynamics compared to analysts’ forecast data. Similarly, the 

return spread of the HML portfolio decreases slightly to -0.61% and −0.63% per month (t-stat = -2.97 

and −2.48) when controlling for MKTE and VIXE respectively, while the inclusion of other volatility-

related controls improves its economic significance.8 Such information overlap could be attributed to 

the fact that risk-averse investors may attempt to halt investment in companies with higher exposure to 

market-level uncertainty. However, the inflated risk level also unlocks equity investors’ access to upside 

potential. COMOVE, therefore, provides additional insights beyond MKTE and VIXE that help identify 

firms with true financial problems flagged across both markets. In summary, despite the mild 

information overlaps with certain variables, COMOVE contains incremental information that goes 

beyond major known predictors of equity returns and remains significant in all cases. The incremental 

information content comes from investors’ evaluations of changes in firm risk that have been 

incorporated in the joint dynamics between stocks and bonds and captured by changes in the 

comovement characteristic.  

[Table 7] 

Table 7 presents bivariate sorting analysis results of bond portfolios with nine-factor bond alphas 

(B
9), controlling for both equity factors and bond factors including MKTB, LRF, CRF, and DRF, as 

proposed by Bai et al. (2019). We also consider the data construction issue documented in Dickerson 

et al. (2023) about these factors and repeat the analysis adjusted for the bond market factor only as a 

robustness check. The main findings remain consistent. The results in Table 7 confirm that COMOVE 

continues to predict future bond returns in the same direction after controlling for traded and non-traded 

factors documented in the bond pricing literature. Of all the characteristics examined in rows (1)– (8), 

none can explain the cross-sectional variation induced by COMOVE. We observe little impact of 

ILLIQB on the predictive power of COMOVE. This provides additional evidence in favor of the 

findings of Goldberg and Nozawa (2021) that illiquidity is primarily a prevalent characteristic of 

corporate bonds rather than a factor that holds substantial pricing influence in the cross-section. 

Similarly, the results in rows (9) and (10) show that the long–short alpha remains significant at −0.27% 

and −0.31%, respectively, when we control for IVOLB and IMPVOL. This again validates the poorly 

diversified feature of the corporate bond market, where institutional investors dominate most 

transactions, resulting in a significant and consistently strong impact of COMOVE  beyond 

idiosyncratic risk at the firm level (Chung et al., 2019). This feature also presents an important source 

of limits to arbitrage, which makes the bond market potentially slower in incorporating information 

from the options market. Our IMPVOL results suggest that the information transmission channel 

between equity and bond markets is nontrivial and contains incremental information beyond the 

 
   8 For further robustness, we use idiosyncratic measures of COMOVE based on residuals obtained from regressions on 

MKTE and MKTB. Portfolio sorting results based on these idiosyncratic measures (i.e., “cleaned” from market risk factor 

information), confirm that the explanatory power of COMOVE is not affected by systematic information overlaps (see 

Appendix Table C5).  
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forward-looking information implied by the option market. The long-short alphas marginally decline in 

rows (11) to (13) controlling for exposures to market-level risk changes. These outcomes are in line 

with previous findings from the equity market and indicate that heightened risk levels stemming from 

macroeconomic shifts cannot sufficiently account for the firm-specific risk recognized by cross-asset 

investors. In particular, despite the dominant role of MKTB in corporate bond pricing documented by 

Dickerson et al. (2023), our COMOVE  factor shows consistent economic and statistical significance. 

Our findings provide valuable insights into understanding the dynamics of corporate bond returns 

through firm-level characteristics. Overall, the monotonically decreasing pattern is generally preserved 

for bond return results when moving from the lowest to the highest quintile. This suggests that 

COMOVE is a widespread effect priced in bond returns across different categories of characteristics. 

The above findings provide further support for our hypothesis that investors actively adjust their 

investments in both equity and bond markets. Such dynamic responses contribute to the convergence 

of information across markets, thereby offering additional insights that cannot be adequately captured 

by established bond factors, or even by factors implied from the options market. 

3.3 Fama and MacBeth (1973) cross-sectional regressions 

The results from the previous subsections suggest a consistent and significant negative effect of 

COMOVE on cross-sectional equity and bond returns at the portfolio level. We now test our main 

hypothesis using the Fama and MacBeth (1973) methodology, which allows us to understand linear 

interactions between COMOVE and other known risk factors at the firm level. Specifically, monthly 

cross-sectional regressions are run from September 2007 to December 2020 based on equity and bond 

returns for the following econometric specification: 

 𝑅𝑖,𝑡+1 = 𝜆0,𝑡 + 𝜆1,𝑡 ∙ ∆𝐶𝑂𝑀𝑂𝑉𝐸𝑖,𝑡 + 𝜆2,𝑡 ∙ 𝑋𝑖,𝑡 + 𝜖𝑖,𝑡+1, (5) 

where 𝑅𝑖,𝑡+1 is the excess security return of firm i in month t+1, and COMOVEi,t is the innovation of 

the covariance between stocks and bonds issued by firm i in month t as defined in Eq. (3). 𝑋𝑖,𝑡 is the 

same collection of market-specific control variables adopted in Section 3.2, observed at time t for 

securities issued by firm i. Tables 8 and 9 report the time-series average of the coefficients on the 

independent variables based on equity and bond returns, respectively. 

[Table 8] 

The results in Table 8 lend further support for our hypothesis on the negative relations between 

COMOVE and future equity returns. The average slope coefficient on COMOVE is economically 

and statistically significant at −0.464 (t-stat = −2.86) without controls. This implies that a value-

weighted portfolio of selling high-COMOVE stocks and buying low-COMOVE stocks could 

generate a return of 0.4% in the following month. The COMOVE variable retains significant predictive 

power, even after we include established predictors of equity returns. Column (2) documents the results 

with controls from the four-factor model of Fama and French (1993) and Carhart (1997), where the 



12 

 

economic magnitude of the COMOVE coefficient remains significant at −0.296 (t-stat = −2.31). 

Consistent with the findings of Fama and French (1993) and Carhart (1997), the average slope on BM 

is negative and statistically significant, also indicating that growth firms are more sensitive to the 

adverse impact of higher comovement between equities and bonds. The value-versus-growth effect is 

no longer significant after the inclusion of IA and ROE in column (3), whereas the predictive power of 

COMOVE remains significant. In line with the portfolio-level findings from Table 6, this evidence 

rules out the issue raised by Hou et al. (2015) that the significant comovement risk premia may be a 

manifestation of investment and profitability effects. The results in column (4) further validate our 

hypothesis that the uncertainty captured by higher COMOVE is significantly associated with decreased 

participation in trading activity in the equity market, proxied by the illiquidity measure of Amihud 

(2002). However, COMOVE still dominates, with a significant average coefficient estimate of −0.296 

(t-stat = −2.3). Column (5) additionally controls for DISPER, where COMOVE remains economically 

and statistically significant. The fact that DISPER changes in the same direction as COMOVE 

corroborates our hypothesis that stocks and bonds indeed comove more as the firm’s uncertainty level 

goes up (i.e., situations when earnings are more difficult to forecast). We examine this hypothesis in 

detail on several proxies for firm-level information asymmetry in Section 3.4. Consistent with Table 6, 

Column (6) shows that COMOVE provides incremental information beyond volatility-based strategies 

when its coefficient increases to −0.306. We find that only the average coefficient on VIXE remains 

consistently negative and significant in predicting future equity returns. This evidence further validates 

the findings of Baele et al. (2010) at the firm level, where investors who evaluate and adjust their 

investments in both markets are highly sensitive to market-level volatility changes. The insignificant 

IVOLE effect lends further support to Bali et al. (2017) on the absence of the idiosyncratic volatility 

puzzle unveiled by Ang et al. (2006). Consistent with Bali et al. (2017), we observe a reverse 

relationship between expected equity returns and IVOLE when MAX is accounted for in column (7). 

This evidence further complements our results, since high-COMOVE stocks are likely to attract 

investors who are more likely to suffer from under-diversification and exhibit a preference for lottery-

like assets within one market. We observe an improved explanatory power of COMOVE at −0.373 (t-

stat = −3.28) when additionally controlling for DEFAULT, COSKEW, and UNCE in column (9). While 

Dickerson et al. (2022) document that these measures constitute the central economic force driving 

stock–bond covariance, only COSKEW remains positive and statistically significant at 0.437 (t-

stat = 2.48). Different from the relation found in Harvey and Siddique (2000), this result indicates that 

systematic skewness affects firms that are closer to their default boundary, which are also the ones that 

are most affected by the negative price impact of COMOVE. The outperformance of COMOVE 

among these distress-related anomalies suggests that it captures information about firm quality during 

periods of financial turbulence, as investors may not necessarily be alarmed by having greater exposure 

to either market-level or firm-level risk. Moreover, the significance of ROE becomes apparent when 
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distress effects are controlled for, indicating that the combination of COMOVE and ROE captures the 

company’s overall risk profile, yielding significant explanatory power. 

[Table 9] 

To substantiate this hypothesis in the corporate bond market, we run Fama and MacBeth (1973) 

cross-sectional regressions of bond returns on the previously described bond factors at the firm level. 

The results from Table 9 show that COMOVE unequivocally dominates across all regressions. In the 

univariate setup, it generates an average coefficient of −0.1489 with a t-statistic of −3.468. When 

controlling for bond characteristics, column (2) shows that only bond maturity relates to the profitability 

of our strategy. While remaining significant, the predictability of COMOVE goes down slightly to 

−0.077 and −0.066 (t-stat = −2.43 and −2.05), respectively, when controlling for MKTB and ILLIQB in 

columns (3) and (4). In line with the portfolio-level findings, the coefficient on ILLIQB is not 

statistically significant. More importantly, the nontrivial pricing power of MKTB in this case is 

consistent with that documented by Dickerson et al. (2023) who suggest that the market beta seems to 

be the only priced factor in the cross-section of corporate bond returns. Combined with the insignificant 

coefficient on MATURITY in column (4), we again confirm that bond prices are largely affected by 

firm-level exposure to changes in market conditions rather than their own pricing structure. COMOVE, 

however, exhibits incremental information in predicting the cross-section of future bond returns beyond 

MKTB, as it summarizes investors’ reactions toward intrinsic firm quality in a manner that differs from 

individual exposure toward the general market sentiment. In column (5), we document a significantly 

positive relation between IVOLB and future bond returns at the firm level, which contrasts with the 

negative pattern documented in the equity literature. However, this is in line with the findings of Bai et 

al. (2021) that bond investors demand higher compensation for holding securities with more volatile 

asset values, consequently elevating the possibility of hitting the default boundary. Nevertheless, we do 

not find evidence for the significant DEFAULT effect documented by Dickerson et al. (2022) in the 

cross-section of bonds. This is not surprising because investors may become aware of a firm-level crisis 

in advance and respond by selling both assets simultaneously during the estimation period. The 

increased level of COMOVE therefore serves as a reliable indicator of impending default, manifesting 

well before it is reflected in balance sheet information or market bond prices. More importantly, 

consistent with the equity-level findings, we document a consistently strong predictive power of 

COMOVE when DEFAULT is controlled for, suggesting that investors’ default risk expectations are 

not only based on information from the bond market. A firm with higher COMOVE is more likely to 

hit the default boundary, thus yielding lower subsequent bond returns. Similarly, the results in column 

(7) do not provide evidence supporting the statistically significant UNCB effect documented in Bali et 

al. (2021b), which further corroborates the argument of Dickerson et al. (2023) that the uncertainty beta 

may be inadequate in explaining the cross-sectional variation in bond returns. Despite this, we report 

robust evidence of COMOVE commanding statistically significant risk premia over and beyond the 
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effects of conventional or known bond risk factors. In addition, consistent findings across the two asset 

classes support COMOVE as a pricing factor in the joint cross-sections of stocks and bonds. 

Nevertheless, the above findings also raise the question of whether COMOVE improves the risk–return 

trade-off for corporate bonds through the channel of financial risk and information asymmetry, which 

we further discuss in the next section.  

3.4 Source of the COMOVE premium in equities and bonds 

In the previous sections, we uncovered a significant relation between firm-level COMOVE and 

subsequent returns both in the equity and bond cross-sections. The findings suggest financial risk and 

information asymmetry should play a key role in explaining the predictability of the effect of 

COMOVE on future equity returns. We test this explanation using subsample analysis in this section.  

Prior studies suggest that returns for firms with higher financial risk should be more sensitive to 

changes in COMOVE. For example, from the perspective of risk-shifting, Jensen and Meckling (2019) 

suggest that managers have incentives to increase equity value by investing in high-risk but negative 

NPV projects when there is a significant probability of default. Shareholders will harvest the benefits if 

projects perform well, whereas bondholders will bear the costs if the opposite occurs. However, the 

incentive to extract such benefits diminishes when the company is unlikely to survive and generate 

future profits for its shareholders. Both equity and bond holders tend to sell securities issued by a firm 

that is about to face financial distress, resulting in higher COMOVE and decreased future returns. 

Based on the above, we expect that COMOVE to induce larger reductions in future returns of firms 

with higher financial risk due to their higher probability of and the greater costs associated with financial 

distress. To measure and account for the severity of financial risk, we adopt an array of appropriate 

proxies following Chen and King (2014), including financial leverage, earning volatility, credit rating, 

and Altman Z-score. 

Having found evidence that both equity and bond prices at the time of portfolio formation do not 

fully incorporate the information contained in COMOVE, we verify that information asymmetry may 

be an additional source of the COMOVE premium. Duffie and Lando (2001) find that the release of 

information is costly, and managers may have the incentive to not fully disclose information for private 

benefits. Outside investors do not have full information about the distribution of future cash flows, thus 

affecting future returns. Building on the work of DaDalt et al. (2002), our findings lend further support 

to the notion that COMOVE reflects how much both asset markets are integrated at the firm level, 

capturing the level of information asymmetry. This may lead to enhanced predictability of future cash 

flows, even before accounting disclosures are made. We, therefore, propose that a higher COMOVE 

is associated with a larger drop in future returns for firms with higher levels of information asymmetry. 

This conjecture is consistent with the hypothesis of DeMarzo and Duffie (1991) that opaque firms enjoy 

greater hedging benefits on future returns. To measure the extent of information asymmetry, we follow 
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DaDalt et al. (2002) and employ commonly used proxies, including forecast dispersion, accounting 

accruals, idiosyncratic volatility, illiquidity, and interest coverage.  

[Table 10] 

[Table 11] 

Following Cosemans and Frehen (2021), Tables 10 and 11 report subgroup analysis results based 

on equity and bond returns, respectively. Panel A (B) performs univariate portfolio analysis on 

subgroups of firms with high and low financial risk (information asymmetry). As expected, Panel A in 

both tables shows that across all proxies for financial risk, firms with high financial risk generate a 

significantly higher long–short portfolio return over the next month. Even after controlling for the 

market-specific factor models, risk-adjusted alphas remain statistically significant and higher for long–

short portfolios among firms with higher leverage, higher earnings volatility, lower credit rating, and 

lower Z-scores. While Panel B across Tables 10 and 11 demonstrates that the effect of information 

asymmetry is evident in both subgroups, we find a wider spread between extreme quintile portfolios 

among firms with higher information asymmetry. The consistent pattern indicates that investors who 

possess information advantages from both equity and bond markets are more likely to achieve higher 

returns trading on information asymmetry. In line with results based on the whole sample, the above 

findings further confirm that COMOVE affects bonds in the same direction as in equities. More 

importantly, it provides a stylized fact that COMOVE is unlikely to merely reflect model 

misspecification, but rather contains important pricing information through the channel of financial risk 

and information asymmetry.  

3.5 Robustness checks 

Herein, we examine the robustness of our main findings. First, we investigate whether our results are 

driven by small, illiquid, and low-priced stocks. Fama and French (2008) highlight the potential pitfalls 

of analyzing quintile-sort results with microcap stocks. They define stocks with a market capitalization 

below the 20th NYSE percentile as microcap stocks, which yield a high cross-sectional dispersion of 

stock return distribution. Therefore, to ensure that the predictive power of COMOVE is not driven by 

the microstructure effects associated with microcap stocks, we rerun the univariate portfolio sorts across 

equity and bond returns of firms with a market capitalization above the 50th (Panel A) and 20th 

percentiles (Panel B) in Table 12. The results show that the value-weighted risk-adjusted alphas retain 

their negative predictive power after excluding microcap stocks. Even if we only include stocks larger 

than the 50th percentile of NYSE market capitalization, COMOVE remains significant with a reduced 

magnitude after controlling for established and known factor models across different asset classes. This 

confirms that the predictive power of COMOVE is not exaggerated by excessive weighting on 

microcaps.  

[Table 12] 
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[Table 13] 

Second, we run a bivariate sorting analysis to examine whether our findings are driven by any of the 

default risk measures proposed by Dickerson et al. (2022) and summarize the results in Table 13. Panel 

A reports the results of COMOVE-sorted portfolios controlling for default risk measures, including 

market leverage, credit spread, and distance-to-default. The findings show that the predictive power of 

COMOVE remains intact when different default risk effects are controlled for. Panel B performs a 

reversed bivariate sorting analysis following Bali et al. (2011), and shows that the relation between 

default risk and future bond returns is no longer significant due to the moderating effect of COMOVE. 

This confirms that our measure offers incremental information to future bond returns relative to other 

default risk measures. 

[Table 14] 

For additional robustness, we further examine the extent to which these default risk measures explain 

COMOVE using Fama and MacBeth (1973) regressions in Table 14. We re-estimate the one-year-

ahead stock-bond covariance (DFJM) proposed by Dickerson et al. (2022) and test their hypothesis in 

columns (1) to (4). In line with their findings, our results confirm the positive association between DFJM 

and default risk measures with significantly lower magnitude. We also find a negative relation between 

default risk measures and COMOVE constructed from the previous 60 months’ observations in 

columns (5)– (8). The intuition behind this is that investors already responded to the elevated default 

risk levels by reducing their investments in either security during the estimation period, as proxied by 

a lower COMOVE. This again confirms that COMOVE summarizes incremental information that has 

distinct pricing power beyond, and well ahead of the default risk measures.  

Third, we compare the predictive power of COMOVE estimated with a different window 

specification, following Bali et al. (2021b), and report the results in Appendix Table C1. Table C1 

shows that if we instead use COMOVE24 constructed over the past two years, similar results are 

obtained.  

Fourth, we further validate our results over an expanded sample of all available bonds with fixed 

coupon payments, following the construction criteria adopted by Bai et al. (2019). We conduct 

univariate portfolio analysis based on the re-estimated COMOVEnew. The results reported in Appendix 

Table C2 show that the relation, associated significance, and related signs (all documented in Table 5) 

are maintained despite the lower explanatory power, which is primarily due to the relatively less 

balanced sample. We can, therefore, confirm that the explanatory power of stock–bond comovement 

characteristic identified in our paper is not limited to corporate bonds alone. 

Finally, we check whether our results hold not only in the full sample but also across high versus 

low uncertainty (systemic risk) subperiods. Appendix Table C3 contrasts the performance of 

COMOVE in stable periods versus turbulent periods sorted using different criteria on equities and 

bonds, respectively, with results reported in Panel A(B). The findings confirm our main prediction that 
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the long–short portfolio continues to generate a significantly negative alpha in turbulent times. Although 

the pricing impact of COMOVE is relatively weaker during stable periods, one must note that the 

benefit of being able to time it cannot be practically realized as we do not know whether we are in a 

high or low period ex-ante. More importantly, we show that the COMOVE premia are higher in both 

markets during periods of high market volatility, high systematic risk, and high uncertainty. This can 

be also attributed to higher volatility and the impaired balance sheets of firms during economic 

downturns, leading to a higher possibility of deterioration of firm quality. Our results are also robust 

when uncertainty years are excluded.  

4. Conclusion 

In this paper, we investigate the pricing implications of firm-level comovement between bonds and 

equities issued by the same company over the period 2007–2020. We show that COMOVE can 

negatively predict the future returns of equities and corporate bonds at both the portfolio and individual 

levels. The explanatory power of COMOVE remains consistent when a wide range of established risk 

factors are controlled for. Further analyses suggest that the significant explanatory power comes from 

investors’ common views about firm quality exhibited in their recent trading history, which are evident 

well before they become apparent on firms’ balance sheets. Such information is priced more strongly 

among firms with higher financial risk levels and higher information asymmetry. Our results are robust 

to alternative estimation methods and construction samples as well as subperiods with different 

systematic risk levels. When compared to previous asset pricing studies that examine the equity and 

bond markets separately, our study shows that by considering the joint cross-section of the two asset 

classes, one can capture important pricing information in and across both markets.  

Besides validating this factor over longer timeframes, there is a need for further theoretical 

investigations to uncover the primary drivers behind COMOVE and our empirical findings. Given the 

robust pricing power of COMOVE, investors and fund managers can delve deeper into exploiting the 

diversification benefits that emanate from time-varying COMOVE in a multi-asset investment setting. 

Subsequent research should also consider the influence of COMOVE on the pricing of other risk-

sensitive securities issued by the same firm. Furthermore, a promising avenue for future research lies 

in examining the pricing dynamics inherent in these interconnected relationships spanning different 

markets. The bias toward large companies, however, due to the limited sample size may be an issue in 

attempting to generalize findings to several other asset classes.
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Table 1: Variable Definitions 

This table contains the definitions and descriptions of the variables used in the paper. 

Applied 

literature 
Variable Definition Source 

A. Equity and bond risk characteristics 

Bond Credit spread (CS) Difference between the yield of a corporate bond and the associated yield of the Treasury curve at the same maturity. Collin-Dufresn et al. (2001)  

Bond 
Changes in implied volatility 

(IMPVOL) 
Changes in the average of the call and put at-the-money implied volatility with 365 days of expiration. Cao et al. (2023) 

Bond Distance-to-Default (DD) 
The log of the distance between firm assets (item AT) and one-half of long-term debt value plus short-term debt 

divided by asset volatility. 
Campbell and Thompson (2008) 

Bond Duration (DURATION) Corporate bond duration in years. TRACE 

Bond Market leverage (MLEV) The ratio between total book debt (item LT) and the market value of equity plus total book debt. Dickerson et al. (2022) 

Bond Maturity (MATURITY) Corporate bond time-to-maturity in years. TRACE 

Bond Rating (RATING) 

Historical ratings provided by both Standard & Poor and Moody’s rating agencies are assigned numbers, where 1 

refers to a AAA rating, 2 refers to AA+, …, and 21 refers to CCC. The bond’s final rating is determined as the 

average of ratings when both are available or as the rating provided by one of the two rating agencies when only one 

rating is available.  

Bai et al. (2019) 

Equity 
Analysts' forecast dispersion 

(DISP) 

The standard deviation of annual earnings-per-share forecasts is scaled by the absolute value of the average 

outstanding forecast. 
Diether et al. (2002) 

Equity Asset growth (I/A) Book assets (Compustat item AT) divided by lagged AT. Hou et al. (2015) 

Equity Book-to-Market ratio (B/M) 
Book value of stockholder equity plus deferred taxes and investment tax credit minus the book value of preferred 

stock at the end of the last fiscal year t−1, scaled by the market value of equity at the end of December of year t−1. 
Davis et al. (2000) 

Equity Co-skewness (COSKEW) 
Residual from the regression of excess stock returns against the contemporaneous excess return on the CRSP value-

weighted index over 1-month Treasury bills based on the past 60 months of observations. 
Harvey and Siddique (2000) 

Equity Lottery demand (MAX) The average of the five highest daily returns of the stock during the previous month.  Bali et al. (2017) 

Equity Profitability (ROE) Income before extraordinary items (item IBQ) divided by one-quarter-lagged book equity.  Hou et al. (2015) 

Equity and 

bond 
Default risk (DEFAULT) The average of market leverage, distance-to-default (sign-corrected), and credit spread. Dickerson et al. (2022) 

Equity and 

bond 

Idiosyncratic volatility 

(IVOLE/IVOLB) 

The standard deviation of residuals from the regression of excess daily returns on the Fama and French three-factor 

model over the past month for stocks, and excess monthly returns on the Fama and French five-factor model over the 

past six months for bonds.  

Ang et al. (2006), Chung et al. (2019) 

Equity and 

bond 
Illiquidity (ILLIQE/ILLIQB) 

Stock illiquidity is defined as the ratio of the daily absolute stock return to the daily dollar trading volume averaged 

within the previous month. Bond illiquidity is measured as the autocovariance of the daily bond price changes within 

the previous month, multiplied by –1. 

Amihud (2002), Bao et al. (2011) 

Equity and 

bond 
Market Beta (MKTE/MKTB) 

Time-series regressions of stock (bond) excess returns on the excess stock (bond) market return over the prior 60 

months.  

Fama and French (1992), Dickerson et 

al. (2023) 
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Equity and 

bond 
Momentum (MOME/MOMB) 

The cumulative return of the stock over 11 months (6 months) ending one month prior to the portfolio formation 

month. 

Jegadeesh and Titman (1993), Jostova et 

al. (2013) 

Equity and 

bond 
Reversal (REVE/REVB) The stock (bond) returns of the prior month.  Jegadeesh (1990), Bai et al. (2019) 

Equity and 

bond 
Size (SIZEE/SIZEB) 

The natural logarithm of the product of the price per share (bond) and the number of shares outstanding (bond amount 

outstanding). 
CRSP and Mergent FISD 

Equity and 

bond 

Uncertainty Beta 

(UNCE/UNCB) 

Exposure of individual stocks (bonds) to the economic uncertainty index proposed by Jurado, Ludvigson and Ng 

(2015). 
 

Equity and 

bond 
VIX Beta (VIXE/VIXB) 

Beta from time-series regressions on daily (monthly) observations of excess stock (bond) returns on corresponding 

excess market portfolio returns and changes in the S&P 500 index option-implied variance. 
Ang et al. (2006), Chung et al. (2019) 

B. Proxies for financial risk and information asymmetry 

Financial 

risk 
Altman’s Z-score (Z) 

Z = 1.2 × (Working Capital/Total Assets) + 1.4 × (Retained Earnings/Total Assets) + 3.3 × (EBIT/Total Assets) + 0.6 

× (Market Value of Equity/Total Liabilities) + 0.999 × (Sales/Total Assets). 
Altman (1968) 

 Leverage (LEV) 
Total debt divided by the total market value of assets, where the market value of assets is the sum of total debt and 

market value of equity. 
 

 Earning volatility (EVOL) 
The standard deviation of the first difference in EBITDA scaled by the book value of assets over the 3 years preceding 

and including the year investigated. 
Smith and Stulz (1985) 

Information 

asymmetry 
Forecasts dispersion (STD) The standard deviation of all earnings forecasts made by analysts in the 3 months before fiscal year-end. DaDalt et al. (2002) 

  Analyst coverage (NOA) The log of one plus the number of analysts covering a firm.   

 
Idiosyncratic volatility 

(IVOLE/IVOLB) 

The standard deviation of residuals from the regression of excess daily returns on the Fama and French three-factor 

model over the past month for stocks. 
Ang et al. (2006), Chung et al. (2019) 

 Illiquidity (ILLIQE/ILLIQB) 

Stock illiquidity is defined as the ratio of the daily absolute stock return to the daily dollar trading volume averaged 

within the previous month. The bond illiquidity is measured as the autocovariance of the daily bond price changes 

within the previous month, multiplied by –1. 

Amihud (2002), Bao, Pan and Wang 

(2011) 

 Interest coverage The ratio of EBITDA (earnings before interest, taxes, depreciation, and amortization) to interest charges - 
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Table 2: Summary Statistics for Equities 

This table reports the summary statistics for the variables used in our equity analysis in Panel A and the correlation matrix in Panel B. ΔCOMOVE is the innovation of the exponentially weighted 

moving average (EWMA) covariance calculated using a minimum of 48 available observations over the past 60 months. RE is the monthly equity returns reported in percentages. SIZEE is the 

dollar amount of outstanding equities reported in billions. B/M is the book-to-market ratio. MOME is the cumulative return from the start of month t-12 to the end of month t-2. REVE is the equity 

return over the prior month. I/A and ROE are the asset growth ratio and returns on equity ratio as in Hou et al. (2015). DEFAULT is the average of leverage, distance-to-default, and credit spread 

measures proposed by Dickerson et al. (2022). ILLIQE is the Amihud (2002) illiquidity measure estimated using one month of daily data. COSKEW is the coskewness measure in Harvey and 

Siddique (2000) estimated using the past 60 months’ observations. IVOLE is the equity idiosyncratic volatility as in Ang et al. (2006) estimated using daily data of the previous month. DISPER 

is the standard deviation of annual earnings-per-share forecasts. MAX is the maximum return within the previous month as in Bali et al. (2011). MKTE is the equity market beta estimated using 

the past 60 months’ observations. VIXE is the exposure of equity to the S&P 500 option implied volatility index. UNCE is the exposure of equity to the economic uncertainty index proposed by 

Jurado et al. (2015). This sample period covers August 2007–December 2020.  

 

COMOVE RE SIZEE B/M MOME REVE I/A ROE DEFAULT ILLIQE DISPER IVOLE COSKEW MAX MKTE VIXE UNCE

Obs. 69540 69540 69540 65238 69228 68634 67612 65552 67047 69238 66605 69539 69456 69540 69532 68959 69343

Mean 0.00 1.08 27.19 -0.78 0.10 1.05 0.07 0.05 -0.13 -0.004 0.14 0.01 0.01 0.03 1.16 0.04 0.01

1% -0.25 -24.90 0.21 -3.56 -0.59 -24.90 -0.33 -0.22 -2.32 0.000 0.00 0.00 -0.60 0.01 0.10 -1.73 -0.49

5% -0.08 -13.76 0.63 -2.23 -0.39 -13.78 -0.13 -0.03 -1.71 0.000 0.01 0.01 -0.38 0.01 0.29 -0.88 -0.26

25% -0.02 -3.74 3.10 -1.21 -0.09 -3.77 -0.02 0.01 -0.79 0.000 0.01 0.01 -0.14 0.01 0.72 -0.25 -0.07

50% 0.00 1.18 9.06 -0.67 0.09 1.17 0.04 0.03 -0.10 0.000 0.02 0.01 0.01 0.02 1.10 0.02 0.00

75% 0.01 5.80 24.74 -0.22 0.26 5.79 0.10 0.05 0.56 0.000 0.06 0.02 0.16 0.03 1.49 0.31 0.08

95% 0.06 15.45 118.21 0.32 0.62 15.42 0.33 0.13 1.41 0.005 0.37 0.03 0.39 0.06 2.27 1.04 0.27

99% 0.28 28.17 253.96 0.71 1.12 28.12 1.02 0.52 1.84 0.042 1.71 0.05 0.62 0.10 2.97 2.00 0.50

Std. 0.14 9.68 65.74 0.84 0.33 9.68 0.26 0.59 0.95 0.736 1.13 0.01 0.24 0.02 0.61 0.65 0.17

COMOVE RE SIZEE B/M MOME REVE I/A ROE DEFAULT ILLIQE DISPER IVOLE COSKEW MAX MKTE VIXE UNCE

COMOVE 1

RE -0.05 1

SIZEE 0.00 0.02 1

B/M -0.01 0.01 -0.19 1

MOME -0.05 -0.04 0.06 0.00 1

REVE -0.13 -0.02 0.02 0.01 0.23 1

I/A 0.01 -0.01 0.03 -0.02 -0.04 -0.01 1

ROE 0.00 -0.01 0.02 -0.17 0.01 -0.01 0.00 1

DEFAULT 0.00 -0.06 -0.27 0.50 -0.26 -0.06 -0.01 -0.06 1

ILLIQE 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 1

DISPER 0.01 0.00 -0.02 0.06 -0.04 -0.01 -0.01 -0.01 0.09 0.01 1

IVOLE 0.21 -0.05 -0.16 0.11 -0.22 -0.14 0.02 -0.03 0.37 -0.02 0.10 1

COSKEW -0.02 0.07 0.00 -0.02 0.11 0.06 -0.03 -0.01 -0.04 0.00 0.01 0.05 1

MAX 0.24 0.17 -0.12 0.11 -0.26 -0.20 0.02 -0.03 0.37 -0.01 0.10 0.82 0.04 1

MKTE -0.01 0.03 -0.15 0.11 0.03 0.02 -0.02 -0.02 0.36 -0.01 0.09 0.31 0.27 0.34 1

VIXE 0.00 0.00 -0.03 0.05 -0.06 -0.01 0.00 -0.01 0.09 -0.01 0.02 0.08 0.01 0.09 0.08 1

UNCE -0.03 0.09 0.01 -0.03 0.06 0.06 0.01 0.02 -0.06 0.02 -0.03 -0.06 0.15 -0.05 -0.04 -0.01 1

Panel A: Summary Statistics

Panel B: Correlation Matrix
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Table 3: Summary Statistics for Corporate Bonds  

This table reports the summary statistics for the variables used in our bond analysis in Panel A and the correlation matrix in Panel B. ΔCOMOVE is the innovation of the exponentially weighted 

moving average (EWMA) covariance calculated using a minimum of 48 available observations over the past 60 months. RB is the monthly bond returns reported as percentages. SIZEB is the 

dollar amount of outstanding bonds reported in billions. RATING is in conventional numerical scores, where 1 refers to an AAA rating and 21 refers to a C rating. MATURITY is the time-to-

maturity of the bond in years. DURATION is the weighted average time in years until cash payments of the bond are received. ILLIQB is the Bao et al. (2011) illiquidity measure computed as 

the autocovariance of the daily price changes within the previous month. REVB is the bond return over the prior month. DEFAULT is the average of leverage, distance-to-default, and credit 

spread measures proposed by Dickerson et al. (2022). IVOLB is the bond idiosyncratic volatility estimated using the past six months of monthly data as in Chung et al. (2019). IMPVOL is the 

changes in the average of the call and put at-the-money implied volatility as in Cao et al. (2023). MKTB is the bond market beta estimated using the past 60 months’ observations. VIXB is the 

exposure of bonds to the S&P 500 option implied volatility index. UNCB is the exposure of bonds to the economic uncertainty index proposed by Jurado et al. (2015). This sample period covers 

August 2007–December 2020.  

 

COMOVE RB SIZEB RATING MATURITY DURATION ILLIQB REVB DEFAULT IVOLB IMPVOL MKTB VIXB UNCB

Obs. 69540 69540 69540 69349 69540 69495 56082 68634 67047 67482 67327 68557 68782 68782

Mean 0.00 0.61 0.59 9.59 9.01 6.09 0.003 0.61 -0.13 0.09 0.00 0.83 -0.04 -0.11

1% -0.25 -6.43 0.01 3.00 1.83 1.56 -0.001 -6.43 -2.32 0.00 -0.10 0.03 -0.48 -1.37

5% -0.08 -2.25 0.02 5.00 3.17 2.73 0.000 -2.26 -1.71 0.00 -0.05 0.25 -0.29 -0.62

25% -0.02 -0.24 0.08 7.36 5.33 4.32 0.000 -0.24 -0.79 0.01 -0.02 0.52 -0.11 -0.18

50% 0.00 0.54 0.21 9.00 7.66 5.65 0.001 0.54 -0.10 0.02 0.00 0.75 -0.01 -0.04

75% 0.01 1.45 0.58 12.00 12.23 7.68 0.002 1.45 0.56 0.04 0.01 1.02 0.04 0.05

95% 0.06 3.72 2.30 15.22 17.86 10.54 0.011 3.72 1.41 0.20 0.06 1.58 0.11 0.17

99% 0.28 7.74 6.82 16.63 23.31 12.47 0.038 7.74 1.84 1.34 0.13 2.73 0.18 0.32

Std. 0.14 2.44 1.16 3.17 4.86 2.43 0.019 2.43 0.95 0.59 0.04 0.52 0.14 0.33

COMOVE RB SIZEB RATING MATURITY DURATION ILLIQB REVB DEFAULT IVOLB IMPVOL MKTB VIXB UNCB

COMOVE 1

RB -0.28 1

SIZEB 0.00 0.00 1

RATING -0.01 0.04 -0.31 1

MATURITY 0.01 0.01 0.24 -0.43 1

DURATION 0.00 0.02 0.27 -0.48 0.95 1

ILLIQB 0.15 -0.05 -0.05 0.06 0.01 -0.03 1

REVB -0.14 0.03 0.00 0.03 0.02 0.02 -0.01 1

DEFAULT 0.00 0.04 0.00 0.48 -0.16 -0.22 0.09 0.04 1

IVOLB 0.25 -0.23 -0.03 0.04 0.01 -0.01 0.10 -0.03 0.07 1

IMPVOL 0.29 -0.39 0.00 -0.01 0.00 0.00 0.06 -0.07 0.02 0.14 1

MKTB -0.01 0.07 0.09 0.18 0.23 0.21 0.06 0.06 0.19 0.05 -0.01 1

VIXB 0.01 -0.04 0.16 -0.61 0.30 0.35 -0.10 -0.04 -0.39 -0.08 0.00 -0.30 1

UNCB 0.02 -0.04 0.15 -0.37 0.17 0.21 -0.07 -0.04 -0.23 -0.02 0.02 -0.41 0.36 1

Panel A: Summary Statistics

Panel B: Correlation Matrix
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Table 4: Equity Quintile Portfolios Sorted on ΔCOMOVE 

For each month, quintile portfolios are formed by sorting equities based on the ΔCOMOVE, where quintile 1(5) portfolio contains equities with the lowest (highest) ΔCOMOVE in the previous 

month. The ΔCOMOVE is the innovation of EWMA covariance between stock and bond returns issued by the same firm, which is calculated using a minimum of 48 observations over the past 

60 months. The second column reports the average ΔCOMOVE for each quintile, and the remaining columns present the average equity excess returns and alphas for the equal-weighted and 

value-weighted portfolios separately. Following Fama and French (1992), Carhart (1997), and Hou et al. (2015), 𝛼5,1
𝐸  is the alpha relative to the excess stock market return (MKTE), size (SMBE), 

book-to-market (HMLE), momentum (MOME), and liquidity (LIQ) factors; 𝛼5,2
𝐸  is the alpha relative to MKTE, SMBE, HMLE, investment (I/A), and profitability factors (ROE); 𝛼4

𝐸 is the alpha 

relative to the MKTE, SMBE, I/A, and ROE factors; and 𝛼7
𝐸 is the alpha relative to the MKTE, SMBE, HMLE, MOME, LIQ, I/A, and ROE factors. The last row presents return and alpha differences 

between quintiles 1 and 5. All returns and alphas are denoted in percent per month. Newey and West (1987) t-statistics are reported in parentheses. The sample period covers September 2007–

December 2020.  

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Quintile ΔCOMOVE RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7 RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7

1 [Low] -0.07 1.41 0.42 0.57 0.55 0.43 1.41 0.46 0.56 0.63 0.49

(2.54) (2.39) (3.18) (3.12) (2.73) (2.98) (2.22) (2.82) (3.45) (2.39)

2 -0.02 1.14 0.37 0.36 0.31 0.37 1.21 0.39 0.43 0.41 0.38

(2.63) (3.28) (3.18) (2.43) (3.30) (3.30) (3.17) (3.64) (3.39) (3.06)

3 0.00 0.98 0.29 0.22 0.17 0.28 0.95 0.28 0.19 0.15 0.27

(2.33) (2.90) (1.89) (1.21) (2.88) (2.63) (2.51) (1.69) (1.11) (2.43)

4 0.01 0.79 0.01 -0.02 -0.06 -0.01 0.70 -0.05 -0.09 -0.09 -0.07

(2.01) (0.13) (-0.19) (-0.47) (-0.10) (2.19) (-0.45) (-0.77) (-0.75) (-0.60)

5 [High] 0.07 0.54 -0.29 -0.28 -0.38 -0.29 0.53 -0.28 -0.29 -0.36 -0.30

(1.07) (-2.04) (-2.00) (-2.23) (-2.00) (1.24) (-1.77) (-2.14) (-2.46) (-1.91)

5-1 -0.88 -0.70 -0.85 -0.94 -0.72 -0.87 -0.75 -0.86 -0.99 -0.79

[High-Low] (-4.05) (-3.05) (-4.20) (-4.11) (-3.22) (-3.08) (-2.48) (-3.06) (-3.63) (-2.67)

Equal weighted Value weighted
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Table 5: Bond Quintile Portfolios Sorted on ΔCOMOVE 

For each month, quintile portfolios are formed by sorting bonds based on the ΔCOMOVE, where quintile 1(5) portfolio contains bonds with the lowest (highest) ΔCOMOVE during the previous 

month. The ΔCOMOVE is the innovation of EWMA covariance between stock and bond returns issued by the same firm, which is calculated using a minimum of 48 observations over the past 

60 months. The second column reports the average ΔCOMOVE for each quintile, and the remaining columns present the average bond excess returns and alphas for the equal-weighted and value-

weighted portfolios separately. Following Bali et al. (2021b), 𝛼5
𝐵

 is the alpha relative to five stock market factors including the excess stock market return (MKTE), equity size (SMBE), book-to-

market (HMLE), equity momentum (MOME), and equity liquidity factors (LIQ); 𝛼4
𝐵

 is the alpha relative to four bond market factors including excess bond market return (MKTB), downside risk 

(DRF), credit risk (CRF), and liquidity risk factors (LRF); and 𝛼9
𝐵 is the alpha relative to a combination of five stock market factors and four bond market factors. Following Dickerson et al. 

(2023), we also report 𝛼1
𝐵 relative to MKTB only to avoid data handling issue documented in their paper. The last five columns report average bond characteristics for each quintile, including 

rating, maturity, size, duration, and illiquidity. The last row presents return and alpha differences between quintiles 1 and 5. Newey and West (1987) t-statistics are reported in parentheses. The 

sample period covers September 2007–December 2020. 

 

 

 

 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

Quintile ΔCOMOVE RB-Rf α
B

5 α
B

1 α
B

4 α
B

9 RB-Rf α
B

5 α
B

1 α
B

4 α
B

9 Rating Maturity Size Duration Illiquidity

1 [Low] -0.07 0.72 0.57 0.27 0.23 0.29 0.68 0.52 0.21 0.18 0.23 11.15 8.71 18.89 5.83 0.005

(3.90) (4.45) (3.25) (3.74) (3.21) (3.86) (3.89) (2.66) (2.49) (2.41)

2 -0.02 0.59 0.48 0.24 0.19 0.22 0.58 0.45 0.19 0.14 0.14 9.43 9.14 19.22 6.13 0.004

(4.52) (4.67) (4.08) (3.51) (3.14) (4.29) (3.67) (3.05) (3.39) (2.65)

3 0.00 0.54 0.43 0.19 0.14 0.16 0.53 0.41 0.16 0.11 0.12 8.79 8.92 19.31 6.02 0.003

(4.55) (4.30) (3.36) (2.59) (2.61) (4.44) (3.65) (2.44) (2.30) (2.04)

4 0.01 0.48 0.38 0.13 0.08 0.11 0.50 0.35 0.08 0.05 0.04 8.76 9.00 19.30 6.08 0.003

(3.88) (3.35) (2.07) (1.75) (2.27) (3.89) (2.57) (1.21) (1.02) (0.80)

5 [High] 0.07 0.47 0.33 -0.01 -0.03 0.02 0.43 0.26 -0.10 -0.10 -0.07 9.86 9.45 19.05 6.25 0.004

(2.94) (2.69) (-0.12) (-0.33) (0.25) (2.72) (1.81) (-0.94) (-0.97) (-0.73)

5-1 -0.25 -0.24 -0.28 -0.26 -0.26 -0.26 -0.26 -0.31 -0.28 -0.30

[High-Low] (-3.41) (-2.88) (-2.76) (-2.82) (-3.09) (-2.80) (-2.38) (-2.23) (-2.21) (-2.54)

Equal weighted Value weighted Average Portfolio characteristics



24 

 

Table 6: Seven-factor Alphas of Equity Portfolios Sorted on ΔCOMOVE 

This table reports seven-factor alphas (𝛼7
𝐸) relative to the excess equity market return, equity size, book-to-market, momentum, liquidity, investment, and profitability factors, with 

Newey and West (1987) t-statistics in parentheses. The column “5–1” refers to the difference in 𝛼7
𝐸  between quintile 5 and 1. We perform double sorts to control for various 

characteristics, which include equity size (SIZEE), book-to-market (B/M), equity momentum (MOME), equity short-term reversal (REVE), asset growth (I/A), profitability (ROE), 

default risk (DEFAULT), equity illiquidity (ILLIQE), dispersion in analysts’ forecasts (DISPER), equity idiosyncratic volatility (IVOLE), co-skewness (COSKEW), lottery demand 

(MAX), equity market beta (MKTE), equity VIX beta (VIXE), and equity uncertainty beta (UNCE). For each month, we first sort stocks into five quintile portfolios based on one of the 

characteristics from the past month. Within each characteristic quintile, we further sort stocks into five quintiles based on ΔCOMOVE. The five ΔCOMOVE-sorted portfolios are then 

averaged over each of the five characteristic-sorted portfolios, thus representing comovement quintile portfolios controlling for the characteristics. Details on the construction of these 

variables are summarized in the Panel A of Table 1. The sample period covers September 2007–December 2020. All portfolios are value-weighted. 

 

 

 

1 [Low] 2 3 4 5 [High] 5-1 [High-Low]

(1) SIZEE 0.26(1.89) 0.33(3.34) 0.06(0.68) 0.05(0.53) -0.33(-2.83) -0.59(-3.27)

(2) B/M 0.32(1.97) 0.15(1.09) 0.30(3.12) -0.10(-0.79) -0.33(-2.19) -0.65(-2.59)

(3) MOME 0.38(2.49) 0.33(2.59) 0.13(1.36) -0.01(-0.13) -0.45(-2.81) -0.83(-3.87)

(4) REVE 0.42(2.07) 0.25(2.25) 0.23(2.34) -0.09(-1.08) -0.45(-3.08) -0.87(-3.17)

(5) I/A 0.37(1.88) 0.20(1.87) 0.23(2.75) -0.06(-0.68) -0.31(-2.12) -0.68(-2.58)

(6) ROE 0.27(1.63) 0.29(2.37) 0.20(2.12) -0.16(-1.30) -0.37(-2.39) -0.64(-2.55)

(7) DEFAULT 0.26(1.73) 0.16(1.43) 0.14(1.21) -0.21(-2.01) -0.30(-2.32) -0.56(-2.43)

(8) ILLIQE 0.30(2.03) 0.21(1.93) 0.17(2.00) 0.07(0.61) -0.29(-2.44) -0.59(-2.85)

(9) DISPER 0.29(1.91) 0.22(1.65) 0.19(1.78) -0.12(-0.90) -0.28(-1.97) -0.58(-2.37)

(10) IVOLE 0.47(3.35) 0.08(0.72) 0.09(0.73) -0.16(-1.46) -0.45(-3.31) -0.92(-4.32)

(11) COSKEW 0.39(2.34) 0.46(3.57) 0.22(2.27) -0.10(-0.95) -0.40(-2.52) -0.79(-3.21)

(12) MAX 0.40(2.26) 0.11(0.89) 0.09(0.80) -0.21(-1.79) -0.38(-2.76) -0.77(-3.01)

(13) MKTE 0.29(2.16) 0.12(0.90) 0.13(1.44) -0.14(-1.25) -0.32(-2.34) -0.61(-2.97)

(14) VIXE 0.27(1.59) 0.36(3.04) 0.16(1.66) -0.11(-1.11) -0.36(-2.48) -0.63(-2.48)

(15) UNCE 0.49(2.78) 0.18(1.66) 0.24(2.80) -0.13(-1.37) -0.39(-2.71) -0.87(-3.56)

Ranking on the ΔCOMOVE
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Table 7: Nine-factor Alphas of Bond Portfolios Sorted on ΔCOMOVE 

This table reports nine-factor alphas (𝛼9
𝐵) relative to the five stock market factors including the excess stock market return (MKTE), equity size (SMBE), book-to-market (HMLE), 

equity momentum (MOME), and equity liquidity factors (LIQ), together with excess bond market return, downside risk factor, credit risk factor, and bond liquidity risk factor. Newey 

and West (1987) t-statistics are reported in parentheses. The column “5–1” refers to the difference in 𝛼9
𝐵 between quintiles 5 and 1. For each month, we perform double sorts to control 

for various characteristics, which include bond size (SIZEB), credit rating (RATING), time-to-maturity (MATURITY), duration (DURATION), bond illiquidity (ILLIQB), bond 

momentum (MOMB), bond short-term reversal (REVB), default risk (DEFAULT), bond idiosyncratic volatility (IVOLB), changes in implied volatility (IMPVOL), bond market beta 

(MKTB), bond VIX beta (VIXB), and bond uncertainty beta (UNCB). We first sort bonds into five quintile portfolios based on one of the characteristics from the past month. Within 

each characteristic quintile, we further sort bonds into five quintiles based on ΔCOMOVE. The five ΔCOMOVE-sorted portfolios are then averaged over each of the five characteristic 

portfolios, thus representing comovement quintile portfolios controlling for the characteristics. Details on the construction of these variables are summarized in the Panel A of Table 

1. The sample period covers September 2007–December 2020 for all controls. All portfolios are value-weighted. 

 
 

 

 

1 [Low] 2 3 4 5 [High] 5-1 [High-Low]

(1) SIZEB 0.26(2.92) 0.15(3.02) 0.14(2.73) 0.11(2.13) -0.02(-0.19) -0.28(-3.17)

(2) RATING 0.17(2.70) 0.14(1.99) 0.15(2.90) 0.08(1.30) -0.04(-0.39) -0.20(-2.48)

(3) MATURITY 0.25(2.90) 0.13(2.53) 0.15(2.79) 0.05(1.04) -0.00(-0.05) -0.26(-2.59)

(4) DURATION 0.24(2.87) 0.14(2.69) 0.13(2.67) 0.07(1.25) -0.03(-0.34) -0.28(-2.72)

(5) ILLIQB 0.21(2.52) 0.12(2.15) 0.14(2.49) 0.07(1.08) -0.10(-1.13) -0.32(-2.73)

(6) MOMB 0.19(2.32) 0.16(2.37) 0.09(1.95) 0.07(1.44) -0.08(-0.83) -0.27(-2.44)

(7) REVB 0.19(2.24) 0.16(3.03) 0.14(2.58) 0.04(0.73) -0.04(-0.45) -0.23(-2.11)

(8) DEFAULT 0.18(2.31) 0.14(2.00) 0.09(2.28) 0.06(0.96) -0.09(-0.93) -0.27(-2.83)

(9) IVOLB 0.21(2.38) 0.14(2.35) 0.11(1.95) 0.04(0.73) -0.07(-0.73) -0.27(-2.74)

(10) IMPVOL 0.21(2.36) 0.15(2.60) 0.10(1.77) 0.06(0.96) -0.10(-1.07) -0.31(-2.72)

(11) MKTB 0.17(2.19) 0.13(2.60) 0.13(2.27) 0.07(1.19) -0.09(-0.96) -0.26(-2.43)

(12) VIXB 0.17(2.23) 0.12(2.13) 0.14(2.51) 0.08(1.52) -0.07(-0.77) -0.24(-2.91)

(13) UNCB 0.19(2.39) 0.14(2.04) 0.13(2.98) 0.11(1.70) -0.04(-0.46) -0.24(-2.78)

Ranking on the ΔCOMOVE
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Table 8: Equity-level Fama–Macbeth Regressions 

This table reports the time-series average of slope coefficients obtained from regressing monthly excess equity returns on ΔCOMOVE while controlling for a set of lagged predictive variables 

using the Fama and MacBeth (1973) method. The control variables include equity market beta (MKTE), equity size (SIZEE), book-to-market (B/M), momentum (MOME), short-term reversal 

(REVE), asset growth (I/A), profitability (ROE), equity illiquidity (ILLIQE), dispersion in analysts’ forecasts (DISPER), equity VIX beta (VIXE), equity idiosyncratic volatility (IVOLE), lottery 

demand (MAX), default risk (DEFAULT), co-skewness (COSKEW), and equity uncertainty beta (UNCE). Details on the construction of these variables are summarized in the Panel A of Table 

1. Newey and West (1987) t-statistics are reported in parentheses. The sample period covers September 2007–December 2020. Significance at the 10%, 5%, and 1% levels is indicated by *, **, 

and *** respectively. 

 
  

(1) (2) (3) (4) (5) (6) (7) (8) (9)

RE RE RE RE RE RE RE RE RE

Intercept 0.835* 0.640 0.648 0.538 0.465 0.467 0.440 0.308 0.364

(1.97) (1.43) (1.46) (1.18) (1.00) (1.03) (0.97) (0.65) (0.77)

ΔCOMOVE -0.464*** -0.296** -0.299** -0.296** -0.297** -0.306** -0.339*** -0.367*** -0.373***

(-2.86) (-2.31) (-2.34) (-2.30) (-2.49) (-2.60) (-2.90) (-3.24) (-3.28)

MKTE 0.015 0.026 0.033 0.016 0.056 0.072 -0.141 -0.110

(0.08) (0.14) (0.17) (0.08) (0.32) (0.43) (-0.71) (-0.55)

SIZEE -0.117 -0.113 -0.070 -0.066 -0.086 -0.082 -0.094 -0.090

(-1.64) (-1.58) (-0.93) (-0.90) (-1.17) (-1.10) (-1.42) (-1.37)

BM -0.123** -0.093 -0.095 -0.082 -0.079 -0.069 -0.052 -0.031

(-2.24) (-1.27) (-1.30) (-1.10) (-1.08) (-0.94) (-0.83) (-0.50)

MOME -0.128 -0.129 -0.127 -0.146 -0.119 -0.087 -0.122 -0.068

(-0.73) (-0.74) (-0.73) (-0.83) (-0.71) (-0.54) (-0.66) (-0.38)

REVE 0.032 0.023 0.022 0.005 -0.021 -0.025 -0.108 -0.085

(0.32) (0.23) (0.22) (0.05) (-0.22) (-0.27) (-1.19) (-0.97)

IA 0.003 0.006 0.001 0.005 0.010 0.017 0.016

(0.05) (0.11) (0.01) (0.10) (0.21) (0.34) (0.32)

ROE 0.362 0.363 0.333 0.348 0.344 0.332 0.397*

(1.37) (1.36) (1.30) (1.49) (1.49) (1.54) (1.75)

ILLIQE 20.125** 30.692* 33.240* 35.566** 26.712 24.516

(2.06) (1.77) (1.90) (1.99) (1.51) (1.40)

DISPER -0.158 -0.060 -0.020 -0.069 -0.060

(-0.62) (-0.26) (-0.08) (-0.30) (-0.26)

VIXE -0.233** -0.200** -0.169* -0.166*

(-2.25) (-2.00) (-1.86) (-1.83)

IVOLE -0.091 0.013 0.052 0.044

(-1.07) (0.11) (0.44) (0.37)

MAX -0.238 -0.303 -0.288

(-1.21) (-1.57) (-1.44)

DEFAULT 0.019 0.011

(0.26) (0.14)

COSKEW 0.443** 0.437**

(2.56) (2.48)

UNCE -0.093

(-1.02)

N 68365 63284 63052 63052 61494 61461 61461 61055 61055

R-sq 0.019 0.142 0.151 0.156 0.165 0.184 0.192 0.227 0.233
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Table 9: Bond-level Fama–Macbeth Regressions 

This table reports the time-series average of slope coefficients obtained from regressing monthly excess bond returns on ΔCOMOVE while controlling for a set of lagged predictive variables 

using the Fama and MacBeth (1973) method. The control variables include bond size (SIZEB), credit rating (RATING), time-to-maturity (MATURITY), bond short-term reversal (REVB), bond 

illiquidity (ILLIQB), bond market beta (MKTB), bond idiosyncratic volatility (IVOLB), bond VIX beta (VIXB), default risk (DEFAULT), and bond uncertainty beta (UNCB). Details on the 

construction of these variables are summarized in the Panel A of Table 1. Newey and West (1987) adjusted t-statistics are reported in parentheses. The sample period covers September 2007–

December 2020. Significance at the 10%, 5%, and 1% levels is indicated by *, **, and *** respectively. 

 
 

  

(1) (2) (3) (4) (5) (6) (7)

RB RB RB RB RB RB RB

Intercept 0.532*** 0.521*** 0.526*** 0.574*** 0.701*** 0.695*** 0.667***

(4.00) (3.75) (3.83) (3.89) (4.08) (4.20) (3.31)

ΔCOMOVE -0.148*** -0.090*** -0.077** -0.066** -0.061** -0.061** -0.060**

(-3.46) (-2.92) (-2.43) (-2.05) (-2.31) (-2.31) (-2.30)

SIZEB -0.006 0.038 0.022 0.039 0.044 0.045

(-0.28) (1.19) (0.74) (1.20) (1.24) (1.31)

RATING 0.077 0.085 0.052 0.068 0.078** 0.058

(1.19) (1.44) (0.90) (1.44) (2.07) (1.53)

MATURITY 0.085** 0.080** 0.050 0.033 0.027 0.042

(2.48) (2.40) (1.51) (1.03) (0.81) (1.21)

REVB -0.001 0.036 0.057 0.037 0.030 0.017

(-0.03) (0.86) (1.42) (0.89) (0.71) (0.43)

ILLIQB 0.163 0.148 0.149 0.144 0.137

(1.26) (1.13) (1.37) (1.35) (1.38)

MKTB 0.108** 0.091** 0.095** 0.099**

(2.54) (2.06) (2.16) (2.25)

IVOLB 1.288** 1.396** 0.932

(2.02) (2.16) (1.23)

VIXB 0.074 0.068 0.026

(1.28) (1.17) (0.56)

DEFAULT -0.031 -0.028

(-0.95) (-0.95)

UNCB -0.026

(-0.23)

N 68365 67376 54711 54352 53996 52982 52982

R-sq 0.036 0.224 0.271 0.286 0.315 0.322 0.334
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Table 10: Equity Subsample Analysis of Financial Risk and Information Asymmetry 

This table reports excess equity returns and alphas of ΔCOMOVE-sorted quintile portfolios for high and low subgroups based on different measures of financial risk and information asymmetry 

in Panels A and B, respectively. Firms with high (low) financial risk are defined as ones with higher (lower) leverage ratio, higher (lower) earning volatility, lower (higher) credit rating and 

lower (higher) Altman Z-score than the median value for the sample period. Firms with high (low) information asymmetry are defined as ones with higher (lower) forecast dispersion, higher 

(lower) accounting accruals, higher (lower) equity idiosyncratic volatility, higher (lower) equity illiquidity and lower (higher) interest coverage than the median value for the sample period. For 

each of the quintile portfolios, we report the value-weighted average monthly excess equity returns. The last two rows show the differences in returns and seven-factor alphas between quintiles 

5 and 1 computed relative to MKTE, SMBE, HMLE, MOME, LIQ, I/A, and ROE factors, following Hou et al. (2015). Details on the construction of these variables are summarized in the Panel 

B of Table 1. Corresponding t-statistics in parentheses are based on Newey and West (1987) standard errors. The sample period covers August 2007 –December 2020. 

 

  

Panel A: Returns on ΔCOMOVE -sorted portfolios for high and low financial risk subgroups

Quintile High Low High-low High Low High-low High Low High-low High Low High-low

1 [Low] 1.19 1.14 0.05 1.40 1.02 0.38 1.24 1.44 -0.20 1.36 1.20 0.16

2 1.19 1.11 0.09 1.11 1.35 -0.24 0.79 0.97 -0.18 1.12 1.10 0.02

3 0.69 1.01 -0.33 0.69 1.07 -0.38 0.91 0.90 0.01 0.93 0.62 0.31

4 0.59 0.53 0.06 0.67 0.55 0.12 0.75 0.54 0.22 0.57 0.80 -0.23

5 [High] 0.11 0.89 -0.78 0.30 0.73 -0.43 0.27 0.57 -0.30 0.88 0.35 0.54

H-L return -1.08 -0.25 -0.83 -1.10 -0.29 -0.81 -0.96 -0.87 -0.10 -0.48 -0.85 0.37

(-2.96) (-0.96) (-2.32) (-2.81) (-0.92) (-1.93) (-2.15) (-3.79) (-0.24) (-1.68) (-2.48) (1.07)

H-L aE
7 -0.77 -0.06 -0.71 -1.04 -0.33 -0.70 -0.89 -0.71 -0.18 -0.37 -0.71 0.34

(-1.99) (-0.22) (-2.02) (-2.52) (-1.03) (-1.71) (-1.91) (-3.30) (-0.38) (-1.43) (-1.87) (0.91)

Panel B: Returns on ΔCOMOVE -sorted portfolios for high and low information asymmetry subgroups

Quintile High Low High-low High Low High-low High Low High-low High Low High-low High Low High-low

1 [Low] 1.15 1.40 -0.24 1.35 1.35 0.00 1.12 1.31 -0.19 1.25 1.27 -0.02 1.22 1.07 0.15

2 0.96 1.17 -0.21 1.15 1.10 0.05 1.20 1.11 0.08 1.16 1.05 0.11 1.19 1.19 0.01

3 0.63 0.99 -0.36 1.01 0.85 0.15 0.73 0.87 -0.13 0.95 0.94 0.01 0.89 0.66 0.23

4 0.57 0.78 -0.20 0.59 0.59 0.00 0.62 0.64 -0.02 0.95 0.53 0.42 0.53 0.68 -0.15

5 [High] -0.01 0.88 -0.88 0.52 0.78 -0.26 0.09 0.68 -0.59 0.42 0.52 -0.10 0.76 0.27 0.49

H-L return -1.16 -0.52 -0.64 -0.83 -0.57 -0.26 -1.03 -0.63 -0.40 -0.83 -0.75 -0.08 -0.46 -0.80 0.34

(-3.02) (-1.82) (-1.48) (-2.50) (-1.62) (-0.77) (-2.82) (-3.17) (-1.21) (-2.90) (-2.94) (-0.27) (-1.79) (-2.08) (0.89)

H-L aE
7 -1.17 -0.47 -0.70 -0.88 -0.28 -0.61 -1.11 -0.42 -0.69 -0.65 -0.67 0.01 -0.26 -0.63 0.36

(-2.82) (-1.58) (-1.60) (-3.19) (-0.74) (-2.03) (-2.76) (-2.10) (-1.82) (-2.19) (-2.67) (0.05) (-0.95) (-1.43) (0.85)

Equity idiosyncratic volatility Equity illiquidity Interest coverageForecasts dispersion Accounting accruals

Earning volatility Credit Rating Altman's Z-scoreLeverage
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Table 11: Bond Subsample Analysis of Financial Risk and Information Asymmetry 

This table reports excess bond returns and alphas of ΔCOMOVE-sorted quintile portfolios for high and low subgroups based on different measures of financial risk and information asymmetry 

in Panels A and B, respectively. Firms with high (low) financial risk are defined as ones with higher (lower) leverage ratio, higher (lower) earning volatility, lower (higher) credit rating and 

lower (higher) Altman Z-score than the median value for the sample period. Firms with high (low) information asymmetry are defined as ones with higher (lower) forecast dispersion, higher 

(lower) accounting accruals, higher (lower) bond idiosyncratic volatility, higher (lower) bond illiquidity and lower (higher) interest coverage than the median value for the sample period. For 

each of the quintile portfolios, we report the value-weighted average monthly excess bond returns. The last two rows show the differences in returns and nine-factor alphas between quintiles 5 

and 1 computed relative to both equity factors and bond factors including MKTB, DRF, CRF, and LRF factors. Details on the construction of these variables are summarized in the Panel B of 

Table 1. Corresponding t-statistics in parentheses are based on Newey and West (1987) standard errors. The sample period covers August 2007 –December 2020. 

 

  

Panel A: Returns on ΔCOMOVE -sorted portfolios for high and low financial risk subgroups

Quintile High Low High-low High Low High-low High Low High-low High Low High-low

1 [Low] 0.68 0.63 0.05 0.54 0.64 -0.10 0.65 0.67 -0.02 0.75 0.61 0.13

2 0.61 0.55 0.06 0.50 0.62 -0.12 0.54 0.62 -0.08 0.66 0.50 0.16

3 0.51 0.52 -0.01 0.56 0.54 0.02 0.48 0.57 -0.09 0.68 0.52 0.16

4 0.51 0.48 0.03 0.44 0.50 -0.06 0.46 0.53 -0.07 0.66 0.50 0.17

5 [High] 0.37 0.46 -0.09 0.33 0.45 -0.12 0.45 0.43 0.02 0.57 0.44 0.12

H-L return -0.31 -0.17 -0.14 -0.22 -0.20 -0.02 -0.20 -0.25 0.04 -0.18 -0.17 -0.01

(-2.55) (-2.74) (-1.46) (-2.08) (-1.89) (-0.18) (-2.90) (-2.42) (0.59) (-2.09) (-3.07) (-0.09)

H-L aB
9 -0.30 -0.23 -0.07 -0.26 -0.23 -0.03 -0.20 -0.28 0.08 -0.23 -0.20 -0.03

(-2.18) (-2.90) (-0.76) (-1.81) (-1.87) (-0.35) (-2.57) (-2.44) (1.03) (-2.03) (-3.11) (-0.31)

Panel B: Returns on ΔCOMOVE -sorted portfolios for high and low information asymmetry subgroups

Quintile High Low High-low High Low High-low High Low High-low High Low High-low High Low High-low

1 [Low] 0.86 0.68 0.18 0.70 0.67 0.02 0.80 0.57 0.23 0.87 0.60 0.27 0.61 0.69 -0.10

2 0.46 0.58 -0.13 0.58 0.59 -0.01 0.67 0.55 0.11 0.79 0.54 0.25 0.55 0.63 -0.10

3 0.61 0.52 0.08 0.52 0.54 -0.02 0.57 0.52 0.05 0.71 0.51 0.20 0.48 0.54 -0.08

4 0.70 0.51 0.18 0.48 0.49 -0.01 0.54 0.52 0.02 0.68 0.48 0.21 0.47 0.55 -0.08

5 [High] 0.28 0.45 -0.17 0.46 0.42 0.05 0.38 0.44 -0.06 0.62 0.39 0.23 0.40 0.46 -0.07

H-L return -0.58 -0.23 -0.35 -0.23 -0.26 0.02 -0.42 -0.13 -0.29 -0.25 -0.20 -0.04 -0.20 -0.22 0.03

(-3.00) (-2.46) (-1.80) (-3.13) (-2.31) (0.31) (-2.79) (-2.13) (-2.24) (-2.00) (-2.20) (-0.30) (-2.03) (-2.31) (0.24)

H-L aB
9 -0.60 -0.27 -0.33 -0.29 -0.30 0.01 -0.35 -0.20 -0.15 -0.36 -0.27 -0.09 -0.23 -0.26 0.04

(-3.55) (-2.40) (-2.15) (-2.75) (-2.29) (0.22) (-2.30) (-2.46) (-1.26) (-2.89) (-2.28) (-0.97) (-2.08) (-2.14) (0.42)

Leverage Earning volatility Credit Rating Altman's Z-score

Bond idiosyncratic volatility Bond illiquidity Interest coverageForecasts dispersion Accounting accruals
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Table 12: Univariate Portfolios of Big and All-but-micro Securities Sorted by ΔCOMOVE 

For each month, we first sort our sample into two subgroups of big and all-but-micro securities, which are defined as securities with sizes above the 50th and 20th percentiles, respectively, of end-

of-June market capitalization for NYSE stocks. Within each subgroup, we then sort the securities into five quintile portfolios based on the ΔCOMOVE, where the quintile 1(5) portfolio contains 

securities with the lowest (highest) ΔCOMOVE during the previous month. The ΔCOMOVE is the innovation of the EWMA covariance between stock and bond returns issued by the same firm, 

which is calculated using a minimum of 48 observations over the past 60 months. The portfolios are value-weighted using the prior month’s equity market capitalization. The average ΔCOMOVE, 

excess security returns, and portfolio alphas are reported for each quintile. Equity alphas are adjusted for MKTE, SMBE, HMLE, MOME, LIQ, I/A, and ROE factors. Bond alphas control for both 

equity factors and bond factors including MKTB, DRF, CRF, and LRF factors. The last row presents the return and alpha differences between quintiles 1 and 5. Newey and West (1987) t-statistics 

are reported in parentheses. The sample period covers September 2007–December 2020.  

 

Panel A: Univariate portfolio analysis based on big stocks only

ΔCOMOVE RE-Rf αE
5,1 αE

5,2 αE
4 αE

7 RE-Rf αE
5,1 αE

5,2 αE
4 αE

7

1 [Low] -0.05 1.34 0.43 0.48 0.54 0.44 0.66 0.51 0.20 0.17 0.21

(3.03) (2.46) (2.84) (3.26) (2.59) (3.95) (3.90) (2.67) (2.41) (2.34)

2 -0.01 1.09 0.27 0.32 0.29 0.25 0.54 0.42 0.16 0.12 0.12

(2.97) (2.14) (2.79) (2.48) (1.97) (4.23) (3.41) (2.76) (3.09) (2.46)

3 0.00 0.83 0.16 0.07 0.07 0.14 0.52 0.40 0.14 0.10 0.10

(2.42) (1.54) (0.62) (0.56) (1.43) (4.35) (3.61) (2.26) (2.21) (1.83)

4 0.01 0.61 -0.09 -0.16 -0.18 -0.10 0.50 0.37 0.09 0.06 0.07

(1.77) (-0.83) (-1.39) (-1.38) (-0.88) (3.94) (2.83) (1.44) (1.23) (1.28)

5 [High] 0.06 0.54 -0.21 -0.26 -0.32 -0.23 0.45 0.28 -0.06 -0.07 -0.06

(1.32) (-1.55) (-2.06) (-2.38) (-1.74) (3.05) (1.88) (-0.67) (-0.74) (-0.67)

5-1 -0.80 -0.64 -0.74 -0.86 -0.68 -0.20 -0.23 -0.27 -0.24 -0.27

[High-Low] (-3.08) (-2.51) (-2.97) (-3.40) (-2.67) (-2.72) (-2.26) (-2.33) (-2.30) (-2.57)

Panel B: Univariate portfolio analysis based on all but microcap stocks 

ΔCOMOVE RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7 RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7

1 [Low] -0.06 1.38 0.40 0.51 0.58 0.43 0.68 0.52 0.21 0.18 0.22

(2.92) (1.97) (2.70) (3.30) (2.18) (3.90) (3.92) (2.71) (2.51) (2.41)

2 -0.02 1.16 0.36 0.38 0.35 0.34 0.58 0.45 0.20 0.15 0.15

(3.14) (2.92) (3.29) (2.93) (2.78) (4.31) (3.70) (3.03) (3.39) (2.63)

3 0.00 0.84 0.19 0.09 0.06 0.17 0.52 0.41 0.15 0.11 0.12

(2.32) (1.85) (0.82) (0.43) (1.72) (4.40) (3.58) (2.37) (2.30) (2.05)

4 0.01 0.66 -0.09 -0.13 -0.14 -0.10 0.50 0.35 0.08 0.05 0.04

(2.01) (-0.81) (-1.17) (-1.12) (-0.92) (3.90) (2.59) (1.24) (1.07) (0.83)

5 [High] 0.07 0.49 -0.32 -0.35 -0.41 -0.34 0.43 0.27 -0.09 -0.10 -0.07

(1.14) (-2.21) (-2.73) (-3.07) (-2.37) (2.76) (1.86) (-0.89) (-0.93) (-0.68)

5-1 -0.89 -0.72 -0.85 -0.99 -0.77 -0.25 -0.25 -0.30 -0.28 -0.29

[High-Low] (-3.33) (-2.52) (-3.26) (-3.87) (-2.73) (-2.74) (-2.32) (-2.23) (-2.21) (-2.52)

Quintile
Equity returns Bond returns

Quintile
Equity returns Bond returns
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Table 13: Bivariate Bond Portfolios of Default Risk Measures and ΔCOMOVE  

In Panel A, five quintile portfolios are formed every month from September 2007 to December 2020 by first sorting corporate 

bonds based on the default risk measures including market leverage, distance-to-default, credit spread, and default spread 

documented in the work of Dickerson et al. (2022). Within each quintile portfolio, corporate bonds are further sorted into five 

sub-quintiles based on the ΔCOMOVE. Hence, Panel A presents ΔCOMOVE quintile portfolio results controlling for different 

default risk measures. In Panel B, five quintile portfolios are formed by first sorting corporate bonds based on the ΔCOMOVE. 

Then within each quintile portfolio, corporate bonds are further sorted into five sub-quintiles based on the same set of default 

risk measures. Hence, Panel B presents default risk quintile portfolio results controlling for ΔCOMOVE. The alphas reported in 

both Panels A and B are adjusted for a combination of five stock market factors and four bond market factors. Newey and West 

(1987) t-statistics are reported in parentheses.  

 

 

 

 

 

 

Panel A: First sort on default risk measures

1 [Low] 2 3 4 5 [High] 5-1 [High-Low]

Market leverage 0.19(2.39) 0.17(2.25) 0.11(2.41) 0.04(0.66) -0.09(-0.92) -0.28(-2.67)

Distance-to-default 0.17(2.27) 0.13(1.81) 0.09(2.27) 0.07(1.26) -0.07(-0.69) -0.24(-2.62)

Credit spread 0.16(2.32) 0.12(1.94) 0.13(2.83) 0.11(1.73) -0.03(-0.30) -0.18(-2.37)

Default spread 0.18(2.30) 0.14(2.00) 0.09(2.29) 0.06(0.96) -0.09(-0.93) -0.27(-2.83)

Panel B: First sort on ΔCOMOVE

1 [Low] 2 3 4 5 [High] 5-1 [High-Low]

Market leverage 0.13(2.08) 0.07(0.99) 0.12(1.65) 0.05(0.72) 0.06(1.36) -0.07(-1.36)

Distance-to-default 0.09(1.11) 0.01(0.22) 0.07(1.31) 0.10(1.57) 0.12(1.70) 0.02(0.36)

Credit spread 0.14(2.19) 0.14(2.20) 0.10(1.63) 0.08(1.06) 0.06(0.48) -0.08(-0.55)

Default spread 0.14(2.13) 0.11(1.41) 0.08(1.29) 0.07(1.16) 0.01(0.18) -0.13(-1.95)
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Table 14: Predictability of ΔCOMOVE and DFJM with Individual Default Risk Measures 

This table presents results on the predictive relation between two measures of stock–bond comovement (DFJM and ΔCOMOVE) and four different measures of default risk based 

on panel regressions. The dependent variable is DFJM for columns (1)– (4) and ΔCOMOVE for columns (4)– (8). DFJM is computed as the one-year-ahead EWMA stock-bond 

covariance. ΔCOMOVE is computed as the innovation of EWMA covariance between stock and bond returns issued by the same firm using a minimum of 48 observations over the 

past 60 months. Regressors include market leverage, distance-to-default, and credit spread constructed following Dickerson et al. (2022). The sample period covers August 2007 – 

December 2020. Newey and West (1987) t-statistics are reported in parentheses. Significance at the 10%, 5%, and 1% levels is indicated by *, **, and *** respectively. 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8)

DFJM DFJM DFJM DFJM ΔCOMOVE ΔCOMOVE ΔCOMOVE ΔCOMOVE

Intercept -0.038*** 0.215*** 0.032** 0.082*** 0.001 -0.010* -0.002 -0.002

(-5.51) (7.67) (2.20) (8.38) (0.72) (-1.89) (-0.80) (-0.74)

Leverage 0.266*** -0.007

(8.57) (-1.33)

Distance-to-default -0.007*** 0.001***

(-5.93) (2.80)

Credit spread 0.014** -0.000

(2.07) (-0.38)

Default risk 0.075*** -0.004**

(8.23) (-2.23)

N 68612 68254 70100 67292 67856 67503 69327 67292

R-sq 0.086 0.153 0.165 0.138 0.024 0.051 0.046 0.040
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Appendix A 

This appendix section describes the data cleaning and merging procedure for constructing our 

sample dataset.  

1. TRACE 

The main results of this paper rely on the TRACE Enhanced dataset, which provides intraday 

bond transaction information. However, this dataset appears to include a certain amount of 

problematic trades, as the records are self-reported by bond dealers and overstate the trading 

activity and depth of the market (Dick-Nielsen, 2009). Therefore, before further employing the 

transaction information, we first follow Dick-Nielsen (2014) to eliminate erroneous transaction 

records that are filed for signaling correction, cancellation, or reversal of original records. 

Another important factor that may affect the quality of the transaction information is extraneous 

trade reports. Since every dealer involved in bond trades is required to file a separate trade 

report, more than one redundant trade report would have been generated if more than one dealer 

was involved in the process. Therefore, we identify the exact matching reports and keep only 

one principal sell trade report to reflect trading activity properly. However, Dick-Nielsen (2009) 

found that there are still some trade reports that cannot be matched because of issues such as 

trade splitting and mismatches in reporting capacity codes. To address that, we follow Asquith 

et al. (2013) to modify related fields to identify and consolidate possible matches into one 

single record. Once the long-span dataset is constructed, we then address the price and volume 

issue, where both measures are winsorized at the top and bottom 1% to filter out extreme 

returns. Following Bai et al. (2019), we further eliminate bond transactions that (i) are labeled 

as when-issued or locked-in or have special sales conditions, (ii) have more than a two-day 

settlement, (iii) have a trading volume smaller than $10,000, or (iv) are priced under $5 or 

above $1,000.  

2. Mergent FISD 

The FISD database contains information on bond issues and issuer characteristics. To obtain 

qualified bonds, we first follow the construction manual of WRDS to rule out convertible, 

exchangeable, and other equity-linked bonds using bond type information. Following Bai et al. 

(2019), we then remove bonds that: 

(ⅰ) are not listed or traded in the US public market, which includes bonds issued through 

private placement, bonds issued under the 144A rule, and bonds that do not trade in US 

dollars. 
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(ⅱ) are structured notes, mortgage-backed, asset-backed, agency-backed, or equity-linked. 

Convertible bonds are also deleted from our dataset because their option feature will distort 

the return calculation and make it impossible to compare them with nonconvertible bonds. 

(ⅲ) are not included in the following types of bonds: US Corporate Debentures (CDEB), 

US Corporate Medium-Term Note (CMTN), US Corporate Medium Term Note Zero 

(CMTZ), and US Corporate Paper (CP).  

(iv) have floating coupon rates.  

(v) have less than one year to maturity from our sample, as bonds that mature in one year 

will be delisted from major bond indices.  

3. Final bond dataset 

The cleaned TRACE data is then merged with the FISD data based on the 9-digit CUSIP IDs. 

Approximately 5% of the transaction records are then dropped, as all the information is needed 

for the later calculation of bond return. Once we obtain the merged bond price dataset, the 

cleaned intraday price records are aggregated to obtain the lists of cleaned daily bond prices. 

Given the institutional and illiquid nature of the bond market (Edwards et al., 2007), the cost 

of trading is documented to be larger for small trades. In order to remove the noise of execution 

costs in the prices of small trades, we follow Bessembinder et al. (2008) to weigh each trade 

by its trading volume to construct daily bond prices. Given the evidence that the corporate bond 

market displays a relatively lower level of trading activity, we next convert the bond prices 

from daily to monthly frequency by taking the last available daily price of the bond at each 

month.  

Before computing monthly bond returns, we need to calculate accrued interest for each 

observation, as this is not reported in our dataset. This is because only the bond owner can 

receive coupon payments at the payment date. The listed price will not reflect the real purchase 

price of a bond until the next payment, even though the interest has been accumulating every 

day between coupon payments. Therefore, the accumulated interest should be additionally 

calculated and added back to the listed bond prices to reflect the “dirty” price paid at settlement. 

As for zero-coupon bonds issued at a deep discount, no adjustment is needed, as it is already 

reflected in the listed price. The accrued interest is thus computed by multiplying the coupon 

rate and the day-count factor, which represents the percentage of the holding period until the 

end of the month to the time differences between coupon payments on a year basis. Similarly, 

for bonds that pay coupons at maturity, their day-count factor is calculated by dividing the 

number of days since the first date that interest accrues by the period between the first date and 
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the maturity date. Once we obtain accrued interest for all the bonds included in our sample, we 

compute the monthly corporate bond return for firm i at time t as 

𝑟𝑖,𝑡 =
𝑃𝑖,𝑡 + 𝐴𝐼𝑖,𝑡 + 𝐶𝑜𝑢𝑝𝑜𝑛𝑖,𝑡

𝑃𝑖,𝑡−1 + 𝐴𝐼𝑖,𝑡−1
− 1 

where 𝑃𝑖,𝑡 is the transaction price, 𝐴𝐼𝑖,𝑡  is accrued interest, and 𝐶𝑜𝑢𝑝𝑜𝑛𝑖,𝑡  is the coupon 

payment of bond i in month t (if any).  

4. New method linking back to CRSP 

The bond CRSP link table from the WRDS database is commonly applied in previous studies 

to link fixed-income data with equity data issued by the same company at the individual bond 

level. However, several issues arise when applying the effective time range recorded for each 

linkage. First, the effective time range of equity data stopped updating in 2016, which forced 

some linkages to end in 2016 even though those equities are still active now. In this case, at 

least 200 observations have been missing for the last four years. Second, we identify prominent 

double-counting issues for companies that went through mergers and acquisitions. The 

overlapping periods correspond to the gap between deal announcement and deal completion, 

where different effective dates are applied in the WRDS link table for acquiring and target 

companies involved in the deals. Another issue regarding bonds issued by target companies is 

that the bond CRSP link table fails to account for the ones that continue to trade under the name 

of the acquirer company. 

To address those issues, we propose a new matching method. Specifically, we first identify 

the issuers of each equity and bond by taking the first six characters of their CUSIP number, 

documented as CUSIP6. For each equity, we can identify each issuer with only one CUSIP, so 

that bonds sharing the same CUSIP6 with the equity can be mapped back to CRSP directly. 

However, more than one bond issuer is normally identified for the company that issues debt. 

We thus employ the tickers documented in the TRACE dataset to help identify other bond 

issuers of the same equity. We first obtain the ticker history for each equity available in the 

CRSP database. To address the issue that the effective records of some equities have not been 

updated since 2015, we manually adjust the wrongly recorded end date to the latest available 

trading date of each equity. Under each ticker documented in TRACE, we identify all the 

matching CUSIP6 as well as the available time range. We then match on the ticker and 

eliminate bond return records that fell beyond the effective periods to avoid double-counting 

issues. As for bonds that last longer than the ticker’s effective period, we keep the ones for 

which a unique PERMNO can be found to match the corresponding ticker. Next, we eliminate 
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bond return records that are double counted by the target or the acquirer companies involved 

in the merger and acquisition deals. We first obtain the effective date for all merger and 

acquisition deals documented in the SDC Platinum databases published by Thomson Reuters / 

Refinitiv. Then we map the effective date back to our dataset based on the CUSIP6 of the 

acquirer and target companies and restrict the bonds of target companies to be valid from 

effective dates. In order to obtain as many matches as we can, we repeat this process again on 

the ultimate parent of unmatched target companies. Finally, we obtain a bond return list that 

matches perfectly with the returns of equities issued by the same company. With this new 

method, we successfully identify another 33.91% of bond issues for an additional 128 

companies from the TRACE dataset. However, the total amount of bond issues that 

successfully match with equity records does not change much.  
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Appendix B 

In addition, we examine the pricing implications of ∆COMOVE for the difference between 

equity and aggregated bond returns of the same firm, defined as the firm-specific equity risk 

premium (ERPf).  

[Table B1] 

Table B1 presents the results of univariate portfolio sorts controlling for the same collection 

of equity factor models as in Table 4. The alphas on the zero-cost strategy confirm that 

∆COMOVE retains its negative predicting power in the cross-section of ERPf in both equal-

weight and value-weight setups. The average returns on the quintile portfolio decrease 

monotonically, where low-∆COMOVE firms continue to yield a significant premium of 62 bps 

(59 bps) per month compared to those in the highest quintile. Moreover, risk-adjusted HML 

remains sizable after controlling for other established factors at −0.49% and −0.52% for equal- 

and value-weighted portfolios, respectively. Importantly, the negative ERPf of the HML 

portfolio is still driven by the significant underperformance of the highest quintile portfolio. 

This again underscores the reliability of ∆COMOVE as an indicator of escalating risk levels, 

with potential losses borne by equity investors exhibiting exceptionally low risk aversion.  

[Table B2] 

Table B2 reports the results of bivariate sorting analysis on ex post ERPf and confirms that 

the predictability of ∆COMOVE remains consistently significant across the same set of equity 

control variables adopted in Table 6. Most of the patterns from equity findings are generally 

preserved and become more pronounced. We show that both the economic and statistical 

significance of the HML portfolio reduces to a marginal level, or even becomes statistically 

insignificant after controlling for BM, ROE, or DEFAULT. Given the consistently significant 

underperformance of the highest quintile portfolio, our hypothesis that ∆COMOVE helps 

identify firms with escalating risk levels that have difficulty generating future profits is further 

strengthened. This evaluation plays a critical role in determining the level of compensation that 

investors demand to offset the extra risks associated with investing in equities instead of bonds. 

We also find that ∆COMOVE becomes marginally significant at −0.38% and −0.37% (t-

stat = −2.2 and −1.81) when ILLIQE and VIXE are controlled for. This evidence confirms that 

firm-level exposures toward illiquidity and systematic volatility largely determine how willing 

investors are to take on risk and seek higher returns in holding equities compared to bonds, 

which is mainly captured in ERPf. However, this does not encompass the entire risk profile that 

cross-asset investors evaluate. In addition, the significant information overlap between 
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∆ COMOVE and DISPER again validates our proposition that the negative ∆ COMOVE 

premium is largely driven by investors’ subjective evaluation of the firm’s profitability and 

risk level, as exhibited in their recent trading history. Overall, ∆COMOVE dominates in 

explaining the level of risk compensation for holding equities instead of bonds by capturing 

additional aspects of risk that are not fully accounted for by either profitability- or volatility-

related factors. 

[Table B3] 

Table B3 reports the results of Fama and MacBeth (1973) regressions examining the same 

collection of equity-specific controlling variables on ERPf. We show that ∆ COMOVE 

continues to predict ex post ERPf at a 95% confidence level across different model 

specifications. In the univariate regression setup, it generates an average slope coefficient of 

−0.315 with a significant t-statistic of −2.18. This implies that firms in the first quintile 

portfolio have equities that outperform same-firm bonds by 19 basis points per month when 

compared to those in the fifth quintile portfolio. The predictive power of individual control 

variables from Table 8 is generally preserved or becomes even stronger among results based 

on ERPf. The statistical significance of the coefficient on ∆COMOVE falls below the 5% level, 

controlling for Fama and French (1993) and Carhart (1997), in column (2). This confirms that 

our measure indeed captures firm-specific risk levels against the market portfolio, which is 

better rewarded in the equity market. Similar result is also observed when profitability-related 

variables such as BM and ROE are included as controls. However, none of these explanations 

are likely to tell the whole story. The robust predicting power of ∆COMOVE indicates that it 

may capture what people find unappealing about firm quality in a way that simple accounting 

measures of firm quality are too crude to do. More importantly, we again observe that the 

pricing power of ∆COMOVE goes up further in magnitude if we control for default anomalies 

in columns (8) and (9), with the ROE effect becoming significant. These results confirm our 

equity-level findings that the combination of ∆COMOVE and profitability-related variables 

constitutes the company’s overall risk profile, which demands higher compensation for bearing 

additional risk in the equity market. Nevertheless, we fail to find evidence in the cross-section 

of ERPf for some patterns observed in Table 8. We find that both VIXE and IVOLE become 

economically and statistically significant in predicting subsequent ERPf. We also observe a 

stronger pricing impact of the MAX effect, as well as its reversing impact on IVOLE in column 

(9). These results are consistent with the fact that stockholders benefit more from their access 

to unlimited upside potential, which is captured by firm-specific idiosyncratic risk levels and 
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extreme positive returns within the previous month. In addition, column (8) shows that the 

ILLIQE effect becomes insignificant when simultaneously controlling for distress-related 

variables, since distressed stocks typically exhibit higher illiquidity risk that demands greater 

compensation to hold compared to bonds issued by the same firm. Overall, the outcomes 

derived from the firm-level analysis largely confirm our portfolio-level findings. The 

magnitude of the ∆COMOVE effect, even after controlling for all variables, remains very 

similar to the one reported without controls. This reaffirms the strength and robustness of our 

measure as a potential predictor in both markets, which can hardly be mitigated by any of the 

control variables considered. 
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Table B1: Univariate Portfolios of Firm-specific Equity Risk Premium Sorted by ΔCOMOVE 

For each month, quintile portfolios are formed by sorting firm-specific equity risk premium (ERPf) based on the ΔCOMOVE, where quintile 1(5) portfolio with equities that generate ERPf with 

the lowest (highest) ΔCOMOVE during the previous month. The ΔCOMOVE is the innovation of EWMA covariance between stock and bond returns issued by the same firm calculated using a 

minimum of 48 observations over the past 60 months. The second column reports the average ΔCOMOVE for each quintile, and the remaining columns present the average ERPf and alphas for 

the equal-weighted and value-weighted portfolios separately. Following Fama and French (1993, 2005) and Hou, Xue, and Zhang (2015), 𝛼5,1
𝑃

 is the alpha relative to the excess stock market 

return (MKTE), size (SMBE), book-to-market (HMLE), momentum (MOME), and liquidity factors (LIQ); 𝛼5,2
𝑃  is the alpha relative to MKTE, SMBE, HMLE, investment (I/A), and profitability 

factors (ROE); 𝛼4
𝑃

 is the alpha relative to the MKTE, SMBE, I/A, and ROE factors; and 𝛼7
𝐸 is the alpha relative to the MKTE, SMBE, HMLE, MOME, LIQ, I/A, and ROE factors. The last row 

presents return and alpha differences between quintiles 1 and 5. Newey and West (1987) t-statistics are reported in parentheses. The sample period is from September 2007 to December 2020.  

 

 

 

 

 

 

 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Quintile ΔCOMOVE RP-Rf α
P
5,1 α

P
5,2 α

P
4 α

P
7 RP-Rf α

P
5,1 α

P
5,2 α

P
4 α

P
7

1 [Low] -0.07 0.64 -0.21 -0.05 -0.10 -0.21 0.65 -0.15 -0.10 -0.07 -0.14

(1.40) (-1.19) (-0.29) (-0.61) (-1.24) (1.52) (-0.75) (-0.51) (-0.41) (-0.70)

2 -0.02 0.50 -0.17 -0.17 -0.25 -0.18 0.58 -0.12 -0.12 -0.18 -0.15

(1.28) (-1.55) (-1.55) (-2.01) (-1.64) (1.59) (-0.97) (-0.88) (-1.38) (-1.18)

3 0.00 0.39 -0.20 -0.27 -0.34 -0.22 0.36 -0.19 -0.32 -0.39 -0.22

(0.99) (-1.88) (-2.29) (-2.45) (-1.98) (0.95) (-1.49) (-2.25) (-2.35) (-1.78)

4 0.01 0.25 -0.41 -0.44 -0.49 -0.45 0.18 -0.44 -0.52 -0.54 -0.47

(0.73) (-3.06) (-3.26) (-3.49) (-3.34) (0.56) (-2.60) (-3.00) (-3.15) (-2.77)

5 [High] 0.07 0.02 -0.67 -0.68 -0.76 -0.70 0.06 -0.61 -0.69 -0.74 -0.66

(0.04) (-4.47) (-5.13) (-5.27) (-4.58) (0.14) (-3.13) (-3.45) (-3.72) (-3.36)

5-1 -0.62 -0.46 -0.63 -0.65 -0.49 -0.59 -0.47 -0.59 -0.66 -0.52

[High-Low] (-3.30) (-2.41) (-3.39) (-3.46) (-2.65) (-2.37) (-1.85) (-2.37) (-2.95) (-2.06)

Equal weighted Value weighted
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Table B2: Seven-factor Alphas of Firm-specific Equity Risk Premium Portfolio Sorted on ΔCOMOVE 

This table reports seven-factor alphas (𝛼7
𝑃) relative to the excess equity market return, equity size, book-to-market, momentum, liquidity, investment, and profitability factors, 

with robust Newey and West (1987) t-statistics in parentheses. The column “5–1” refers to the difference in 𝛼7
𝑃 between quintile 5 and 1. For each month, we perform double 

sorts on ERPf  to control for various characteristics, which includes equity size (SIZEE), book-to-market (B/M), equity momentum (MOME), equity short-term reversal 

(REVE), I/A, ROE, default risk (DEFAULT), equity illiquidity (ILLIQE), dispersion in analysts’ forecasts (DISPER), equity idiosyncratic volatility (IVOLE), co-skewness 

(COSKEW), lottery demand (MAX), equity market beta (MKTE), equity VIX beta (VIXE), and equity uncertainty beta (UNCE). For each month, we first sort ERPf into five 

quintile portfolios based on one of the characteristics of the previous month. Within each characteristic quintile, we further sort ERPf into five quintiles based on ΔCOMOVE. 

The five ΔCOMOVE-sorted portfolios are then averaged over each of the five characteristic portfolios, thus representing comovement quintile portfolios controlling for the 

characteristics. Details on the construction of these variables are summarized in the Panel A of Table 1. The sample period covers September 2007 to December 2020 for all 

controls. All portfolios are value weighted. 

 

  

1 [Low] 2 3 4 5 [High] 5-1 [High-Low]

(1) SIZEE -0.34(-2.20) -0.20(-1.81) -0.44(-4.30) -0.44(-3.44) -0.76(-5.18) -0.42(-2.65)

(2) B/M -0.25(-1.39) -0.38(-2.97) -0.19(-1.50) -0.54(-3.46) -0.70(-3.44) -0.45(-2.04)

(3) MOME -0.24(-1.47) -0.19(-1.36) -0.35(-2.58) -0.44(-2.75) -0.79(-4.07) -0.54(-3.07)

(4) REVE -0.19(-0.96) -0.28(-2.14) -0.27(-2.00) -0.51(-3.41) -0.82(-4.59) -0.63(-2.66)

(5) I/A -0.24(-1.21) -0.33(-2.67) -0.26(-2.13) -0.48(-3.35) -0.70(-3.63) -0.46(-1.98)

(6) ROE -0.31(-1.74) -0.24(-1.82) -0.29(-2.58) -0.57(-3.31) -0.74(-3.71) -0.43(-1.97)

(7) DEFAULT -0.31(-1.97) -0.32(-2.55) -0.34(-2.48) -0.62(-3.57) -0.67(-3.95) -0.37(-1.78)

(8) ILLIQE -0.33(-2.12) -0.32(-3.08) -0.33(-2.87) -0.41(-2.85) -0.71(-4.70) -0.38(-2.20)

(9) DISPER -0.31(-1.78) -0.29(-2.05) -0.30(-2.04) -0.52(-2.95) -0.67(-3.42) -0.36(-1.60)

(10) IVOLE -0.15(-0.95) -0.45(-3.50) -0.38(-2.62) -0.59(-3.80) -0.82(-4.55) -0.67(-3.64)

(11) COSKEW -0.24(-1.29) -0.10(-0.80) -0.28(-2.13) -0.52(-4.41) -0.75(-3.76) -0.51(-2.46)

(12) MAX -0.22(-1.19) -0.44(-2.85) -0.42(-2.71) -0.64(-3.86) -0.77(-4.30) -0.55(-2.50)

(13) MKTE -0.30(-1.81) -0.40(-3.24) -0.36(-2.65) -0.54(-3.18) -0.72(-3.71) -0.43(-2.40)

(14) VIXE -0.36(-2.09) -0.17(-1.28) -0.34(-2.86) -0.51(-3.07) -0.73(-4.21) -0.37(-1.81)

(15) UNCE -0.13(-0.71) -0.33(-2.48) -0.26(-2.27) -0.56(-3.85) -0.77(-4.24) -0.64(-3.11)

Ranking on the ΔCOMOVE
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Table B3: Premium-level Fama–Macbeth Cross-sectional Regressions 

This table reports the time-series average of slope coefficients obtained from regressing monthly ERPf on ΔCOMOVE while controlling for a set of lagged predictive variables 

using the Fama and MacBeth (1973) methodology. The control variables include equity market beta (MKTE), equity size (SIZEE), book-to-market (B/M), equity momentum 

(MOME), equity short-term reversal (REVE), I/A, ROE, equity illiquidity (ILLIQE), dispersion in analysts’ forecasts (DISPER), VIX beta (VIXE), equity idiosyncratic volatility 

(IVOLE), lottery demand (MAX), default risk (DEFAULT), co-skewness (COSKEW), and uncertainty beta (UNCE). Newey and West (1987) adjusted t-statistics are reported 

in parentheses. The sample period is September 2007 to December 2020 for all controls. Significance at the 10%, 5%, and 1% levels is indicated by *, **, and *** respectively. 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ERPf ERPf ERPf ERPf ERPf ERPf ERPf ERPf ERPf

Intercept 0.250 0.042 0.047 -0.043 -0.136 -0.115 -0.118 -0.183 -0.125

(0.67) (0.10) (0.11) (-0.10) (-0.32) (-0.28) (-0.29) (-0.44) (-0.30)

ΔCOMOVE -0.315** -0.223* -0.222* -0.221* -0.233** -0.249** -0.262** -0.291*** -0.296***

(-2.18) (-1.86) (-1.86) (-1.84) (-2.08) (-2.23) (-2.42) (-2.73) (-2.79)

MKTE -0.028 -0.019 -0.016 -0.030 0.030 0.094 -0.075 -0.048

(-0.16) (-0.12) (-0.10) (-0.18) (0.19) (0.62) (-0.42) (-0.27)

SIZEE -0.110 -0.109 -0.078 -0.060 -0.096 -0.095 -0.123* -0.118

(-1.53) (-1.49) (-1.03) (-0.85) (-1.29) (-1.29) (-1.67) (-1.63)

BM -0.136** -0.106 -0.108 -0.098 -0.095 -0.084 -0.054 -0.031

(-2.47) (-1.47) (-1.51) (-1.32) (-1.29) (-1.13) (-0.86) (-0.49)

MOME -0.145 -0.146 -0.145 -0.162 -0.152 -0.129 -0.174 -0.115

(-0.87) (-0.88) (-0.87) (-0.96) (-0.93) (-0.81) (-0.97) (-0.68)

REVE -0.024 -0.034 -0.037 -0.048 -0.066 -0.070 -0.128 -0.104

(-0.28) (-0.40) (-0.44) (-0.56) (-0.80) (-0.87) (-1.63) (-1.35)

IA -0.003 -0.000 -0.005 0.002 0.007 0.014 0.014

(-0.05) (-0.00) (-0.11) (0.05) (0.15) (0.31) (0.30)

ROE 0.376 0.373 0.342 0.341 0.335 0.345* 0.424*

(1.60) (1.58) (1.52) (1.59) (1.56) (1.67) (1.92)

ILLIQE 16.085* 29.972* 31.209* 34.171* 25.328 23.550

(1.75) (1.71) (1.75) (1.87) (1.38) (1.29)

DISPER -0.078 0.026 0.089 0.052 0.055

(-0.34) (0.12) (0.39) (0.23) (0.24)

VIXE -0.183* -0.139 -0.115 -0.111

(-1.97) (-1.57) (-1.37) (-1.34)

IVOLE -0.144* 0.060 0.100 0.088

(-1.82) (0.51) (0.89) (0.78)

MAX -0.420** -0.481** -0.458**

(-2.21) (-2.57) (-2.36)

DEFAULT -0.016 -0.025

(-0.24) (-0.37)

COSKEW 0.392** 0.389**

(2.45) (2.38)

UNCE -0.122

(-1.36)

N 68365 63284 63052 63052 61494 61461 61461 61055 61055

R-sq 0.016 0.129 0.137 0.142 0.150 0.167 0.176 0.210 0.215
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Appendix C 

Table C1: Univariate Portfolio Analysis Based on ΔCOMOVE24 

For each month, quintile portfolios are formed by sorting securities based on the ΔCOMOVE24, which is computed as the innovation of the EWMA covariance between stock and bond returns 

issued by the same firm using a minimum of 24 observations over the past 60 months. The second column reports the average value of ΔCOMOVE24 for each quintile, and the remaining columns 

present the average excess returns and alphas for value-weighted portfolios. For equity returns, we report alphas relative to stock market factors including MKTE, SMBE, HMLE, MOME, LIQ, 

I/A, and ROE factors. For bond returns, we report alphas adjusted for both stock market factors and bond factors including MKTB, DRF, CRF, and LRF factors. The last row presents return and 

alpha differences between quintile 1 and quintile 5. Newey and West (1987) t-statistics are given in parentheses. The sample period covers September 2007–December 2020.  

  

Panel A: Univariate portfolio analysis on equity returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Quintile ΔCOMOVE 24 RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7 RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7

1 [Low] -0.07 1.44 0.41 0.58 0.56 0.42 1.43 0.46 0.58 0.64 0.49

(2.53) (2.26) (3.12) (2.99) (2.52) (3.02) (2.15) (2.85) (3.37) (2.33)

2 -0.02 1.16 0.36 0.37 0.32 0.37 1.21 0.37 0.40 0.38 0.36

(2.60) (3.03) (3.02) (2.46) (3.11) (3.24) (3.25) (3.77) (3.52) (3.14)

3 0.00 1.00 0.28 0.23 0.19 0.28 0.93 0.25 0.18 0.14 0.24

(2.38) (2.89) (2.00) (1.42) (2.87) (2.61) (2.37) (1.60) (1.09) (2.30)

4 0.01 0.79 0.03 -0.01 -0.06 0.01 0.68 -0.07 -0.12 -0.12 -0.09

(1.96) (0.34) (-0.07) (-0.45) (0.14) (2.05) (-0.74) (-1.15) (-1.10) (-0.88)

5 [High] 0.07 0.60 -0.22 -0.22 -0.31 -0.22 0.54 -0.28 -0.29 -0.35 -0.30

(1.22) (-1.55) (-1.52) (-1.84) (-1.50) (1.27) (-1.84) (-2.09) (-2.42) (-1.93)

5-1 -0.83 -0.63 -0.79 -0.88 -0.65 -0.89 -0.74 -0.86 -0.99 -0.79

[High-Low] (-3.68) (-2.63) (-3.74) (-3.69) (-2.75) (-3.08) (-2.46) (-3.00) (-3.52) (-2.60)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Quintile ΔCOMOVE 24 RB-Rf α
B

5 α
B

1 α
B

4 α
B

9 RB-Rf α
B

5 α
B

1 α
B

4 α
B

9

1 [Low] -0.08 0.76 0.61 0.31 0.27 0.33 0.70 0.54 0.22 0.20 0.24

(3.92) (4.66) (3.43) (4.12) (3.38) (3.87) (3.98) (2.73) (2.58) (2.51)

2 -0.02 0.59 0.48 0.24 0.19 0.22 0.59 0.45 0.19 0.14 0.14

(4.54) (4.70) (4.36) (3.75) (3.17) (4.28) (3.63) (3.00) (3.42) (2.61)

3 0.00 0.55 0.45 0.21 0.16 0.18 0.53 0.41 0.16 0.12 0.13

(4.75) (4.48) (3.66) (2.84) (2.89) (4.51) (3.71) (2.49) (2.36) (2.08)

4 0.01 0.48 0.37 0.13 0.08 0.10 0.50 0.34 0.07 0.04 0.03

(3.84) (3.26) (2.03) (1.80) (2.27) (3.83) (2.42) (1.09) (0.88) (0.63)

5 [High] 0.08 0.51 0.38 0.03 -0.02 0.03 0.44 0.27 -0.10 -0.10 -0.08

(2.95) (2.77) (0.23) (-0.15) (0.27) (2.77) (1.81) (-0.90) (-0.91) (-0.75)

5-1 -0.25 -0.23 -0.29 -0.29 -0.30 -0.26 -0.27 -0.32 -0.30 -0.32

[High-Low] (-2.94) (-2.53) (-2.48) (-2.60) (-3.02) (-2.71) (-2.34) (-2.23) (-2.21) (-2.60)

Equal weighted Value weighted

Panel B: Univariate portfolio analysis on bond returns

Equal weighted Value weighted
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Table C2: Univariate Portfolios Analysis Based on ΔCOMOVEnew 

For each month, quintile portfolios are formed by sorting securities based on the ΔCOMOVEnew, which is computed as the innovation of the EWMA covariance between stock and bond returns 

issued by the same firm using a minimum of 48 observations over the past 60 months. It is based on a new dataset that contains all types of bonds with the same features as corporate bonds 

constructed following Bali et al. (2021b). The second column reports the average value of ΔCOMOVEnew for each quintile, and the remaining columns present the average excess returns and 

alphas for value-weighted portfolios. For equity returns, we report alphas relative to stock market factors including MKTE, SMBE, HMLE, MOME, LIQ, I/A, and ROE factors. For bond returns, 

we report alphas adjusted for both stock market factors and bond factors including MKTB, DRF, CRF, and LRF factors. The last row presents return and alpha differences between quintile 1 and 

quintile 5. Newey and West (1987) t-statistics are reported in parentheses. The sample period covers September 2007–December 2020.  

  

 

Panel A: Univariate portfolio analysis on equity returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Quintile ΔCOMOVE new RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7 RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7

1 [Low] -0.07 1.37 0.42 0.56 0.55 0.44 1.43 0.47 0.62 0.68 0.51

(2.43) (2.18) (3.01) (2.91) (2.57) (3.16) (2.31) (3.24) (3.73) (2.55)

2 -0.02 1.16 0.38 0.38 0.33 0.38 1.18 0.38 0.39 0.38 0.37

(2.66) (3.03) (2.87) (2.36) (3.12) (3.14) (2.89) (3.17) (2.99) (2.78)

3 0.00 1.03 0.34 0.28 0.23 0.33 0.93 0.27 0.20 0.14 0.26

(2.65) (3.33) (2.66) (1.69) (3.39) (2.81) (2.12) (1.54) (0.92) (2.03)

4 0.01 0.69 -0.07 -0.11 -0.16 -0.09 0.65 -0.09 -0.15 -0.15 -0.11

(1.65) (-0.70) (-0.96) (-1.15) (-0.80) (1.83) (-0.89) (-1.37) (-1.35) (-1.01)

5 [High] 0.07 0.43 -0.37 -0.36 -0.48 -0.36 0.45 -0.33 -0.36 -0.43 -0.34

(0.90) (-2.50) (-2.60) (-2.82) (-2.41) (1.11) (-2.04) (-2.31) (-2.67) (-2.10)

5-1 -0.94 -0.79 -0.93 -1.03 -0.81 -0.97 -0.80 -0.98 -1.11 -0.85

[High-Low] (-3.79) (-2.89) (-3.73) (-3.98) (-3.00) (-3.30) (-2.60) (-3.30) (-3.87) (-2.75)

Panel B: Univariate portfolio analysis on bond returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Quintile ΔCOMOVE new RB-Rf α
B

5 α
B

1 α
B

4 α
B

9 RB-Rf α
B

5 α
B

1 α
B

4 α
B

9

1 [Low] -0.07 0.73 0.55 0.25 0.24 0.29 0.67 0.50 0.19 0.18 0.22

(3.88) (4.34) (3.15) (3.58) (3.20) (3.87) (3.71) (2.66) (2.49) (2.44)

2 -0.02 0.59 0.46 0.21 0.18 0.19 0.58 0.43 0.18 0.14 0.13

(4.59) (4.30) (4.57) (3.75) (3.26) (4.31) (3.51) (2.96) (3.42) (2.59)

3 0.00 0.53 0.42 0.17 0.13 0.14 0.52 0.40 0.15 0.11 0.11

(4.65) (4.11) (3.16) (2.37) (2.42) (4.51) (3.52) (2.34) (2.41) (2.10)

4 0.01 0.50 0.37 0.12 0.08 0.09 0.51 0.34 0.07 0.05 0.03

(4.16) (3.20) (2.14) (1.62) (1.62) (3.95) (2.53) (1.12) (0.97) (0.60)

5 [High] 0.07 0.50 0.31 -0.03 -0.04 -0.02 0.43 0.25 -0.08 -0.09 -0.07

(2.90) (2.27) (-0.27) (-0.43) (-0.18) (2.80) (1.73) (-0.94) (-0.96) (-0.79)

5-1 -0.23 -0.25 -0.28 -0.28 -0.30 -0.24 -0.25 -0.28 -0.27 -0.29

[High-Low] (-2.88) (-2.59) (-2.64) (-2.83) (-3.03) (-2.72) (-2.29) (-2.29) (-2.25) (-2.45)

Equal weighted Value weighted

Equal weighted Value weighted
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Table C3: Subperiod Univariate Portfolios of Bond Returns Sorted by ΔCOMOVE 

For each month, we first sort our sample into two subperiod samples based on the median value of the CRE index (the difference between 

Moody’s BAA and AAA corporate bond yield), VIX index (S&P 500 index option-implied volatility), and UNC index (economic uncertainty 

index proposed by Jurado et al. (2015)). Within each subgroup, we then sort equities (Panel A) and bonds (Panel B) into five quintile portfolios 

based on the ΔCOMOVE, where the quintile 1(5) portfolio contains bonds with the lowest (highest) ΔCOMOVE during the previous month. 

The ΔCOMOVE is the innovation of EWMA covariance between stock and bond returns issued by the same firm calculated using a minimum 

of 48 observations over the past 60 months. Portfolios are value-weighted using the prior month’s equity market capitalization as weights. We 

report equity portfolio alphas in Panel A(B) for each quintile controlling for equity factors including MKTE, SMBE, HMLE, MOME, LIQ, I/A, 

and ROE following Hou et al. (2015), and a combination of five stock market factors and four bond market factors including MKTB, DRF, 

CRF, and LRF factors following Bali et al. (2021b). The last row presents return and alpha differences between quintile 1 and quintile 5. Newey 

and West (1987) t-statistics are given in parentheses. The sample period covers September 2007–December 2020.  

 

 

Panel A: Univariate portfolio analysis on equity returns

Quintile High Low High Low High Low

1 [Low] 0.53 0.32 0.76 0.28 0.56 0.49

(1.47) (2.01) (2.07) (1.64) (1.45) (2.67)

2 0.56 0.11 0.49 0.10 0.58 0.02

(2.87) (0.78) (1.89) (0.72) (2.84) (0.12)

3 0.26 0.10 0.29 0.16 0.25 0.10

(2.18) (0.67) (1.97) (1.26) (1.44) (1.06)

4 -0.10 -0.24 0.17 -0.24 0.17 -0.45

(-0.57) (-1.70) (0.93) (-1.91) (1.00) (-2.68)

5 [High] -0.62 0.01 -0.64 -0.07 -0.40 -0.11

(-2.44) (0.06) (-2.20) (-0.47) (-1.51) (-0.62)

5-1 -1.15 -0.31 -1.40 -0.36 -0.95 -0.60

[High-Low] (-2.21) (-1.25) (-2.72) (-1.38) (-1.72) (-2.11)

Panel B: Univariate portfolio analysis on bond returns

Quintile High Low High Low High Low

1 [Low] 0.46 0.06 0.50 -0.02 0.43 0.04

(3.04) (1.45) (3.41) (-0.45) (2.69) (0.87)

2 0.31 0.07 0.28 0.04 0.25 0.04

(4.11) (2.94) (3.27) (1.77) (2.66) (1.33)

3 0.25 0.08 0.19 0.06 0.21 0.05

(2.44) (3.09) (1.59) (2.69) (1.77) (2.47)

4 0.08 0.07 0.08 0.01 0.08 -0.01

(0.85) (3.06) (0.76) (0.74) (0.73) (-0.47)

5 [High] -0.08 0.01 -0.12 -0.02 -0.04 -0.07

(-0.52) (0.23) (-0.67) (-0.62) (-0.20) (-1.80)

5-1 -0.54 -0.05 -0.62 -0.00 -0.47 -0.10

[High-Low] (-2.82) (-0.55) (-2.94) (-0.01) (-2.05) (-2.00)

CRE index VIX index UNC index

CRE index VIX index UNC index
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Table C4: Tercile Portfolios of Bond and Equity Returns Sorted by ΔCOMOVE 

For each month, quintile portfolios are formed by sorting equities (Panel A) and bonds (Panel B) based on the ΔCOMOVE, where quintile 1(3) 

portfolio contains securities with the lowest (highest) ΔCOMOVE in the previous month. The ΔCOMOVE is the innovation of EWMA 

covariance between stock and bond returns issued by the same firm, which is calculated using a minimum of 48 observations over the past 60 

months. The second column reports the average ΔCOMOVE for each quintile, and the remaining columns present the average equity and bond 

excess returns and alphas for the equal-weighted and value-weighted portfolios separately. For equity, following Fama and French (1992), 

Carhart (1997), and Hou et al. (2015), 𝛼5,1
𝐸  is the alpha relative to the excess stock market return (MKTE), size (SMBE), book-to-market 

(HMLE), momentum (MOME), and liquidity (LIQ) factors; 𝛼5,2
𝐸  is the alpha relative to MKTE, SMBE, HMLE, investment (I/A), and profitability 

factors (ROE); 𝛼4
𝐸 is the alpha relative to the MKTE, SMBE, I/A, and ROE factors; and 𝛼7

𝐸 is the alpha relative to the MKTE, SMBE, HMLE, 

MOME, LIQ, I/A, and ROE factors. For bond, following Bali et al. (2021b), 𝛼5
𝐵

 is the alpha relative to five stock market factors including the 

excess stock market return (MKTE), equity size (SMBE), book-to-market (HMLE), equity momentum (MOME), and equity liquidity factors 

(LIQ); 𝛼4
𝐵

 is the alpha relative to four bond market factors including excess bond market return (MKTB), downside risk (DRF), credit risk 

(CRF), and liquidity risk factors (LRF); and 𝛼9
𝐵 is the alpha relative to a combination of five stock market factors and four bond market factors. 

Following Dickerson et al. (2023), we also report 𝛼1
𝐵 relative to MKTB only to avoid data handling issue documented in their paper. The last 

row presents return and alpha differences between quintiles 1 and 3. All returns and alphas are denoted in percent per month. Newey and West 

(1987) t-statistics are reported in parentheses. The sample period covers September 2007–December 2020.  

 

 

Panel A: Univariate portfolio analysis on equity returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Quintile ΔCOMOVE RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7 RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7

1 [Low] -0.05 1.31 0.39 0.49 0.46 0.40 1.32 0.44 0.48 0.50 0.44

(2.59) (2.84) (3.58) (3.40) (3.17) (3.41) (3.44) (4.00) (4.20) (3.37)

2 0.00 0.96 0.26 0.20 0.15 0.25 0.95 0.25 0.21 0.18 0.24

(2.35) (2.94) (2.00) (1.15) (2.94) (2.80) (2.66) (2.09) (1.72) (2.53)

3 [High] 0.05 0.64 -0.17 -0.18 -0.25 -0.18 0.58 -0.18 -0.22 -0.26 -0.19

(1.42) (-1.46) (-1.54) (-1.74) (-1.51) (1.52) (-1.62) (-2.07) (-2.30) (-1.78)

3-1 -0.67 -0.55 -0.67 -0.71 -0.57 -0.73 -0.62 -0.69 -0.76 -0.63

[High-Low] (-3.73) (-2.95) (-3.89) (-3.89) (-3.12) (-3.87) (-3.17) (-3.84) (-4.07) (-3.24)

Panel B: Univariate portfolio analysis on bond returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Quintile ΔCOMOVE RB-Rf α
B

5 α
B

1 α
B

4 α
B

9 RB-Rf α
B

5 α
B

1 α
B

4 α
B

9

1 [Low] -0.05 0.67 0.54 0.26 0.22 0.26 0.63 0.49 0.21 0.17 0.19

(4.15) (4.65) (3.78) (3.89) (3.24) (4.10) (3.99) (2.94) (2.70) (2.41)

2 0.00 0.54 0.43 0.19 0.14 0.16 0.52 0.40 0.14 0.09 0.10

(4.48) (4.19) (3.44) (2.78) (2.88) (4.27) (3.37) (2.36) (2.62) (2.27)

3 [High] 0.05 0.47 0.35 0.05 0.02 0.06 0.46 0.29 -0.03 -0.04 -0.04

(3.32) (3.02) (0.65) (0.27) (0.84) (3.25) (2.03) (-0.36) (-0.53) (-0.47)

3-1 -0.20 -0.19 -0.21 -0.20 -0.20 -0.17 -0.20 -0.23 -0.21 -0.23

[High-Low] (-3.14) (-2.72) (-2.90) (-3.11) (-3.13) (-2.57) (-2.12) (-2.36) (-2.40) (-2.68)

Equal weighted Value weighted

Equal weighted Value weighted
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Table C5: Portfolios of Bond and Equity Returns Sorted by idiosyncratic ΔCOMOVE 

This table reports average excess returns and alphas based on idiosyncratic component of ΔCOMOVE. In particular, we run the following regressions using a 

60-month rolling window:  

Equity: ΔCOMOVEt= t+ 𝛽tMKTE,t+ E,t 

Bond: ΔCOMOVEt= t + 𝛽tMKTB,t+ B,t 

For each month, quintile portfolios are formed by sorting equities (Panel A) and bonds (Panel B) based on the E,t and B,t respectively, where quintile 1(5) 

portfolio contains securities with the lowest (highest) E,t or B,t  in the previous month. The ΔCOMOVE is the innovation of EWMA covariance between stock 

and bond returns issued by the same firm, which is calculated using a minimum of 48 observations over the past 60 months. The second column reports the 

average ΔCOMOVE for each quintile, and the remaining columns present the average equity and bond excess returns and alphas for the equal-weighted and 

value-weighted portfolios separately. Factors employed are the same as in Table C4. The last row presents return and alpha differences between quintiles 1 

and 5. All returns and alphas are denoted in percent per month. Newey and West (1987) t-statistics are reported in parentheses. The sample period covers 

September 2007–December 2020.  

 

Panel A: Univariate portfolio analysis on equity returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Quintile ΔCOMOVE RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7 RE-Rf α
E

5,1 α
E

5,2 α
E

4 α
E

7

1 [Low] -0.07 1.47 0.35 0.45 0.34 0.40 1.29 0.21 0.31 0.28 0.27

(3.12) (2.76) (3.33) (2.05) (3.27) (3.63) (1.40) (1.93) (1.76) (1.74)

2 -0.01 1.31 0.31 0.32 0.23 0.31 1.33 0.35 0.37 0.33 0.33

(3.66) (2.15) (2.16) (1.37) (2.17) (4.30) (2.07) (1.97) (1.75) (1.90)

3 0.00 1.08 0.11 0.10 0.02 0.10 1.13 0.15 0.11 0.06 0.13

(3.31) (0.79) (0.66) (0.11) (0.70) (4.27) (1.13) (0.85) (0.39) (0.98)

4 0.01 1.03 0.03 0.00 -0.08 0.02 0.87 -0.11 -0.15 -0.21 -0.13

(3.22) (0.25) (-0.04) (-0.47) (0.15) (3.22) (-0.98) (-1.41) (-1.52) (-1.22)

5 [High] 0.07 0.87 -0.26 -0.30 -0.42 -0.25 0.75 -0.34 -0.38 -0.44 -0.34

(1.98) (-1.93) (-2.14) (-2.30) (-1.85) (2.42) (-2.52) (-2.88) (-3.09) (-2.62)

5-1 -0.60 -0.60 -0.75 -0.76 -0.65 -0.54 -0.55 -0.69 -0.72 -0.61

[High-Low] (-3.09) (-3.64) (-3.59) (-3.29) (-3.55) (-2.45) (-2.53) (-2.95) (-3.10) (-2.64)

Panel B: Univariate portfolio analysis on bond returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Quintile ΔCOMOVE RB-Rf α
B

5 α
B

1 α
B

4 α
B

9 RB-Rf α
B

5 α
B

1 α
B

4 α
B

9

1 [Low] -0.07 0.6 0.41 0.17 0.14 0.15 0.55 0.36 0.11 0.09 0.08

(3.70) (3.08) (1.98) (2.57) (2.90) (3.48) (2.64) (1.41) (1.44) (1.60)

2 -0.01 0.46 0.33 0.11 0.06 0.07 0.48 0.33 0.10 0.07 0.06

(3.90) (2.85) (2.44) (1.57) (1.95) (3.61) (2.58) (1.39) (2.24) (1.83)

3 0.00 0.46 0.35 0.12 0.06 0.08 0.45 0.33 0.09 0.06 0.06

(4.23) (3.09) (2.33) (1.44) (2.35) (3.66) (2.56) (1.17) (1.82) (1.63)

4 0.01 0.43 0.32 0.09 0.05 0.08 0.43 0.31 0.06 0.03 0.05

(4.01) (2.79) (1.79) (1.23) (2.31) (3.43) (2.38) (0.79) (1.30) (1.58)

5 [High] 0.07 0.42 0.23 -0.11 -0.14 -0.09 0.36 0.17 -0.20 -0.22 -0.18

(2.98) (1.66) (-1.06) (-1.53) (-1.76) (2.46) (1.15) (-2.46) (-2.35) (-2.82)

5-1 -0.18 -0.18 -0.28 -0.28 -0.24 -0.19 -0.19 -0.31 -0.31 -0.26

[High-Low] (-2.17) (-2.66) (-2.44) (-2.45) (-3.28) (-2.26) (-2.88) (-2.40) (-2.28) (-3.15)

Equal weighted Value weighted

Equal weighted Value weighted
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