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Abstract

To explain the “credit spread puzzle” and study the implications of crisis risk on
corporate credit spreads, I propose a dynamic capital structural model with long-
term bond and disaster risk. The model reproduces the high corporate credit spread
and low default rate as observed in the data. Disaster risk affects corporate credit
spreads through default risk, risk premium, and corporate capital structure. Default
risk dominates other channels in disaster states. With disaster risk in normal times,
lower optimal capital levels and firm value lead to higher leverage and credit spread.
With more real and financial frictions, firms are more conservative and reduce their
leverage, giving rise to lower credit spreads. Following a realized disaster, financially
constrained firms lose more equity value, and their credit spreads sharply increase.
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1 Introduction

How does disaster risk affect corporate credit spreads? Standard structural models fail to reconcile

the low default probability and high credit spread. This failure, also known as the “credit spread

puzzle,” is shown to be largely explained by macroeconomic fluctuations. As a type of macroeco-

nomic risk, disaster risk should have direct impacts on credit spreads. As shown in Figure 1, the

Baa-Aaa credit spread reached as high as approximately 6%, and the annual default rate peaked at

8% during the Great Depression. Disasters directly drive default probability and loss, so disaster

risk has a first-order impact on corporate bond prices. Because disasters are rare events and en-

dogenously change both investment and financing decisions, it is challenging to study empirically.

This highlights the necessity of approaching the problem with a dynamic structure.

In this paper, I introduce disaster risk into a capital structure model with long-term defaultable

bonds. The stochastic discount factor of the Epstein-Zin utility incorporates the disaster risk, with

a small chance of consumption growth crash. Firms are obligated to repay a predetermined amount

of coupon and principal each period and can choose to default when the continuation value is neg-

ative. The defaultable bonds are priced based on future expected default probability and recovery

rate. Firms make endogenous forward-looking investment decisions, which are financed by both

equity and bonds. Firms face investment adjustment costs, and fixed and proportional costs when

they issue new equity and bonds.

There are two main drivers in the model that affect credit spreads. First, as in other bond pricing

models, countercyclical variations in the risk premium, default risk, and default loss drive up credit

spreads. In bad times, when investors’ marginal utility is high and require a higher rate of return,

firms face higher default risk and lower continuation value, leading to increased credit spreads.

Disaster risk exaggerates these effects by adding significantly higher default losses and probabilities

in the disaster state, and introduces a highly nonlinear pricing kernel. The risk premium channel is

critical in normal times, while the default risk channel plays a bigger role in realized disaster states.
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On top of the risk premium and default risk channels, firms change their optimal capital struc-

tures when they face rare but severe disaster risks. During normal times with the threat of disaster

risk, firms choose lower optimal capital levels. Lower capital levels lead to lower equity value and

more volatile investments because firms have to sell capital in bad times. Lower capital levels also

lead to higher market leverage, generating high credit spreads. 1

A model with long-term defaultable bonds is computationally challenging to solve, because it

does not satisfy the contraction mapping theorem, and the algorithm convergence is not guaranteed.

Therefore, I combine the strategies in Chatterjee and Eyigungor (2012) and Kuehn and Schmid

(2014). One problem is that there are multiple local optimums, generating oscillations in the algo-

rithm iterations. Following Chatterjee and Eyigungor (2012), I introduce a small transitory income

shock to solve it. Another issue is the impact of the initial value. I follow Kuehn and Schmid (2014)

to use the model solution for shorter-term bonds as the initial value for longer-term bonds. I start

with one-period bonds and gradually achieve five-year maturity. The third issue is the kink of the

value function and the numerical errors generated in interpolations. I interpolate on the relatively

smoother continuation value function to reduce the numerical errors.

To use the model to study the counterfactual effects in disaster states, careful calibration is

critical. I simulate the economy and match the key moments in samples without realized disasters

to the empirical observations in the US data. On the representative consumer side, parameter

values in the Epstein-Zin utility function reproduce moments that match aggregate consumption

growth data and the equity risk premium. On the firm side, parameter values generate moments

that match firm-level default rates, credit spreads, and investment and financing policies.

Using the calibrated model, I focus on three main questions: How does disaster risk affect corpo-

1Why firms do not lower bond levels to decrease leverage and avoid default in disaster states? On the one hand,
long-term bonds are attractive to firms, primarily due to the rapid recovery period following the disaster state. For
each period, firms only have to repay a portion of the principal outstanding, providing less liquidity pressure when
a disaster hits and more time for the firm to recover in the subsequent recovery state. On the other hand, with less
capital, firms are forced to issue new bonds to obtain enough liquidity and repay the promised amount of principal.
Firms are also more likely to roll over the bonds or issue new equity when the real and financial frictions are not too
high. The incentive to issue bonds outweighs the fear of immediate disaster realization and leads to higher average
credit spreads in equilibrium.
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rate credit spreads? What are the implications at the firm level, in normal times or disaster states?

What are the counterfactual results when firms face higher or lower real and financial frictions?

Disaster risk has a first-order impact on credit spreads. Consistent with empirical observations

in normal times, my model generates an average credit spread of 92.79 basis points (bps), close to

the 70−100 bps in the data. Meanwhile, my model reproduces an annual default rate of 0.66%, an

annual equity premium of 8.46%, and an average market leverage of 31% 2. As a counterfactual, a

model with a less severe consumption crash or lower disaster probability generates an average credit

spread of 33.96 bps and 30.36 bps, respectively. When there is a less severe consumption crash or

a lower disaster probability, there is a lower expected default probability and risk premium. Firms

are able to build up capital and increase equity value, leading to lower leverage. Less default risk,

risk premium, and leverage lead to a decrease in credit spreads. Conversely, a model with a more

severe consumption crash or higher disaster probability generates higher leverage and an average

credit spread of 254.03 bps and 159.68 bps, respectively.

I then analyze the quantitative results when disasters are realized. Intuitively, when a disaster

hits, both the default rate and credit spread increase. My model predicts an annual default rate of

10.45% and an average credit spread of 315.15 bps in samples with realized disasters. Compared

to normal times, the average credit spread is more than tripled. The credit spread can vary signif-

icantly, with a 90% confidence interval between 111.25 bps and 652.73 bps The variation depends

on the severity of the disaster and the economic health before entering the disaster state.

During disaster periods, there is a large drop in investment and new financing, along with an

increase in market leverage. These results are driven by a significant negative shock to firms’ pro-

ductivity and a sharp decline in the continuation value. The expected future default rate and losses

are high, making it very difficult for firms to issue new bonds. As a result, firms are forced to

either default or divest in order to cope with the liquidity shock and repay current liabilities. The

2The empirical benchmark of the annual default rate is 0.7%, from Bai (2021). The annual equity premium is
8.577% from CRSP. The empirical market leverage is 29% from Bai et al. (2019).
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expectation of high default rates and leverage leads to high credit spreads during disaster periods.

After exploring how disaster risk affects average credit spreads, I study more effects at the

cross-section. I first focus on the firm-specific determinants of credit spreads and then explore firms’

heterogeneous responses to realized disasters. Consistent with the prediction from the one-period

bond model and previous literature, contemporaneous credit spreads are largely explained by credit

risk premiums, which have the highest R2, 0.55, in explaining the variations of credit spreads at the

cross-section. In contrast, next-period credit spreads are mostly explained by the market leverage

(R2 = 0.27). The results show that the contemporaneous changes in credit spreads respond more

to exogenous productivity shocks. The shock is embedded into the endogenous corporate policies,

which will be reflected in the credit spreads next period. In contrast, with realized disasters, default

risk explains the most variations of both contemporaneous and next-period credit spreads. The

default risk channel dominates other economic channels when disasters are materialized.

Following a realized disaster, firms lose equity value and increase credit spreads, but the effects

are heterogeneous. Consistent with findings in Fahlenbrach, Rageth, and Stulz (2021) 3, firms with

more financial flexibility lose less equity value, and their credit spreads jump less. With a recovery

state, the level of credit spreads will converge back to pre-disaster period. Similarly, more profitable

firms suffer less in equity value losses and their credit spread stay relatively stable.

How do real and financial frictions play a role? Different from the findings in Kuehn and Schmid

(2014), in normal times, more real and financial frictions decrease credit spreads by reducing firms’

leverage. When it is more costly to invest or divest, firms choose more conservative corporate

policies. Similarly, when the cost of issuing new equity or bonds is high, firms have less flexibility

in financing when there is a negative shock. Firms issue fewer bonds and have lower leverage, leading

to both lower default rates and credit spreads. Conversely, firms facing fewer real and financial

frictions choose more aggressive corporate policies to finance investments. The reason is that it

3Fahlenbrach, Rageth, and Stulz (2021) uses cash and book leverage as proxies for financial flexibility. I instead
use market leverage because I do not model cash, and it is better calibrated to the data and reflects the flexibility in
equity financing.
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becomes easier to roll over bonds or use new bonds to solve liquidity pressure, overall generating

more defaults and higher credit spreads. I also briefly explore other economic mechanisms. Lower

recovery rates and higher fixed operational costs also contribute to higher credit spreads because

both forces directly reduce repayments when bonds default.

My paper contributes to three strands of literature. The first is the literature on structural

models to quantitatively explain the credit spread puzzle. Huang and Huang (2012) finds that

standard structural models fail to generate realistically high credit spreads after being calibrated

to observed default rates and losses. Credit spreads were shown to be largely explained by macroe-

conomic fluctuations (Hackbarth, Miao, and Morellec, 2006; Chen, 2010; Gourio, 2013; Bai, 2021).

At the firm level, Kuehn and Schmid (2014) showed that real and financial frictions make corporate

bonds risky and generate realistic credit spreads.

Traditional structural credit risk models assume an exogenous evolution of a firm’s asset value

(Merton, 1974; Leland, 1994) without considring endogenous investment decisions. Such models

only align with Modigliani and Miller’s (1958) world of perfect separation between financing and

investment, contradicting reality. However, most structural models that consider endogenous in-

vestments use one-period bonds due to computational challenges. In reality, firms issue bonds

with much longer maturity (Eom, Helwege, and Huang, 2004; Driessen, 2005; Dickerson, Mueller,

and Robotti, 2023). Compared to short-term bonds, long-term bonds have different default rates

and credit spreads, and they have different implications for firms’ capital structure (Gourio and

Michaux, 2012; Kuehn and Schmid, 2014). I contribute by proposing a new firm-level capital

structure model that incorporates disaster risk and long-term bonds, providing another solution to

the credit spread puzzle. Also, I show that disaster risk has direct impacts on corporate policies,

leading to results on real and financial frictions that differ from previous findings.

Second, my paper contributes to the literature on the effects of disaster risk on asset pricing.

The existing quantitative literature has primarily focused on using disaster risk to explain the equity

premium (Gourio, 2012; Wachter, 2013; Bai et al., 2019), while bond pricing has received relatively
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less exploration. On the empirical side, Baron, Xiong, and Ye (2022) uses a sample of 20 advanced

economies from 1870 to 2021 to construct a direct measure of disaster risk. The closest two papers

are Gourio (2013) and Bai (2021). Both papers study disaster risk and credit risk at the aggregate

level with one-period bonds. Gourio (2013) studies credit risk implications of exogenous disaster

risk, without considering real and financial frictions. Bai (2021) examines how endogenous disaster

risk arises due to labor market frictions and its impact on aggregate credit risk. In contrast, my

work differs by focusing on firm-level credit spreads. I also study more realistic long-term bonds,

considering both real and financial frictions. Doing so allows for a more detailed understanding of

how disaster risk affects corporate policies and credit spreads at the firm level.

Third, and more broadly, my paper contributes to the crisis risk literature. At the aggregate

level, crises, mostly financial crises, bring fundamentally important economic questions because it

has large negative output shocks that cause real damage compared to normal recessions (Claessens

and Kose, 2013; Sufi and Taylor, 2022; Stulz, 2023) 4. At the cross-section level, firms with more

financial flexibility handle the shocks better, reflected in less loss in stock value (Fahlenbrach,

Rageth, and Stulz, 2021). Following models in the disaster risk literature, which directly model

potential large output crises, my paper sheds light on how firm-level credit spreads respond to

underlying and realized crisis risk through endogenous capital structure choices. Therefore, my

paper also contributes on how corporate policies respond to crisis risk.

The rest of this paper is organized as follows. Section 2 uses a simplified model to illustrate the

key economic mechanism. Section 3 describes the full model. Section 4 discusses the calibration

strategy. Section 5 reports the quantitative results. Section 6 concludes.

4The severe productivity loss during and after crises are non-negligible (Bordo et al., 2001; Jordà, 2005; Cerra
and Saxena, 2008; Reinhart and Rogoff, 2009; Jordà, Schularick, and Taylor, 2013). Crises were triggered by various
factors, rational or irrational (see Sufi and Taylor, 2022 for a comprehensive review). The most important ones
are credit expansion, asset price growth, and their interaction (Schularick and Taylor, 2012; Jordà, Schularick, and
Taylor, 2015; Mian, Sufi, and Verner, 2017; Baron, Verner, and Xiong, 2021; Adrian et al., 2022; Greenwood et al.,
2022). In this paper, I do not focus on the causes of crises. I use a partial equilibrium model of heterogeneous firms
that takes the feature as given to focus on the implications on firms.
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2 An Example of One-Period Bond

Before delving into the full version of the dynamic model with a long-term bond, I provide an

example using a one-period bond to explain the economic mechanisms of risk premium. Similar to

Kuehn and Schmid (2014), the defaultable one-period bond is priced as follows:

Qit = Et

[
Mt+1

(
(1− 1D

it+1)(1 + c) + 1D
it+1Rit+1

)]
(1)

in which c is coupon payment, 1D
it+1 is the default indicator, and Rit+1 is the recovery rate if default

happens. Similarly, the risk-free one-period bond is priced as:

Qf
it = (1 + c)Et[Mt+1] (2)

The credit spread is the difference between the defaultable and risk-free bond:

sit =
1 + c

Qit
− 1 + c

Qf
it

(3)

Given equations (1), (2), and (3), the credit spread can be written as:

sit =
qit − χit

Et[Mt+1](1− qit)
≈ qit − χit (4)

where qit = Et

[
Mt+1

Et[Mt+1]
1D
it+1

]
(5)

χit = Et[Mt+11
D
it+1R

∗
it+1] (6)

The credit spread sit increases with the risk-neutral default probability qit and decreases in the

value of the recovery rate χit. The approximation in equation (4) holds because the risk-free rate

1
Et[Mt+1]

is close to one and qit is close to zero. R∗
it+1 =

Rit+1

Qit
is the recovery rate adjusted by bond

price. When there is no default, the wedge between qit and χit becomes zero, meaning the credit

spread sit is zero.

To understand the economic intuitions more explicitly, qit can be decomposed into the actual
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default probability and the covariance between marginal utility and default risk, while χit can

be decomposed into the expected recovery rate and the covariance between marginal utility and

recovery risk. Formally:

qit = Et[1
D
it+1] + covt

(
Mt+1

Et[Mt+1]
,1D

it+1

)
(7)

χit =
Et[Rit+11

D
it+1]

Rf
+ covt

(
Mt+1, Rit+11

D
it+1

)
(8)

To see the economic mechanisms, consider two scenarios: normal times and disaster states. In

normal times, compared to a model with no disaster risk, the expected default probability and loss

are higher due to the potential rare but large economic crash. Suppose a disaster hits; firms will

experience a large negative shock on productivity and a sudden drop in continuation value, which

could trigger more defaults than in normal times. The introduction of disaster risk leads to a highly

nonlinear pricing kernel, Mt+1, with a stronger covariance with default, 1D
it+1, and recovery rates,

Rit+1, generating a larger risk premium. The combined effect of expected default risk and risk

premium results in a larger credit spread. However, the real default rate in normal times might be

low due to the absence of realized disaster states. Therefore, the inclusion of underlying disaster

risk helps explain the credit spread puzzle in normal times, where realized default probability and

loss are too low to account for the observed high credit spreads in the data.

In disaster states, the default rates and credit spreads are substantially higher than in normal

times. The plummet in firm value is both immediate and persistent. If the economy enters a disas-

ter state, it is expected to stay in that state for several years before entering the recovery state. The

persistent low productivity and continuation value lead to more defaults and, as a result, higher

credit spreads than in normal times.

However, there is a critical difference between a one-period bond and a long-term bond. When

a disaster is realized, a one-period bond defaults immediately because the firm cannot repay the

full principal next period, causing its continuation value to drop to negative. On the other hand,
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a long-term bond only requires a fraction of the principal repayment and has a better chance of

taking advantage of the recovery state5. This difference significantly impacts a firm’s choice of

optimal capital structure and, consequently, default risk and credit spreads. The implications will

be explored further in the following sections.

3 The Model

I propose a partial equilibrium model with a combination of the dynamic corporate finance

model (Hennessy and Whited, 2005; Hennessy and Whited, 2007; Kuehn and Schmid, 2014)

and the disaster model (Rietz, 1988; Barro, 2009; Bai et al., 2019). Time is discrete and

infinite. Heterogeneous firms face financial frictions when making default, investment, and financing

decisions. They encounter both aggregate and idiosyncratic productivity shocks. The representative

consumer has Epstein-Zin utility, and the stochastic discount factor is taken by firms as given.

3.1 The Representative Consumer

A representative consumer maximizes Epstein-Zin nonseparable expected utility

Ut =

[
(1− β)C

1− 1
ψ

t + β
(
Et[U

1−γ
t+1 ]

) 1−1/ψ
1−γ

] 1
1−1/ψ

(9)

where β is the time discount factor, γ is the relative risk aversion, and ψ is the elasticity of

intertemporal substitution. The utility function yields the following pricing kernel

Mt+1 = β

(
Ct+1

Ct

)− 1
ψ

(
U1−γ
t+1

Et[U
1−γ
t+1 ]

)1− 1−1/ψ
1−γ

(10)

5Giglio, Kelly, and Stroebel (2021) discussed the difference between two types of disaster models. The first is that
economic and consumption activity causes disaster risk. The second is that disaster risk drives consumption growth.
After a disaster hits, the economy adapts and recovers from the disaster. A firm with a long-term bond adapts to the
disaster better compared to a firm with a one-period bond because it has a longer time to repay the full principal.
Bai et al. (2019) also discussed that long-term bonds have a lower yield due to similar reasons.
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Consumption growth is the only aggregate state variable that captures normal business cycles and

disasters. The log growth, denoted gct, follows

log

(
Ct

Ct−1

)
≡ gct = ḡ + gt (11)

where ḡ is the average consumption growth rate, and gt is the stochastic shock. Consumption

growth has three states: disaster state, recovery state, and normal times:

gt+1 =



(1− η)gNt + ηλD normal state at time t

θλD + (1− θ)λR disaster state at time t

νλR + (1− ν)gNt recovery state at time t

(12)

In normal times, there is a probability of η that the economy will enter the disaster state, where

consumption growth is λD < 0, representing a large negative shock. If the economy enters the

disaster state, the probability that it persists is θ. The probability that it exits and enters the

recovery state is 1− θ, where the consumption growth is λR > 0. If the economy is in the recovery

state, it will persist with a probability of ν, or it will return to a normal state. In normal times,

the consumption growth follows a standard AR(1) process.

gNt+1 = ρgg
N
t + σgϵt+1 (13)

where ϵt+1 follows a standard normal distribution.

Similar to Bai et al. (2019), I first discretize gNt into grids that capture normal economic cycles,

and then add a disaster and a recovery state. I use the Rowenhorst (1995) method to discretize gNt

into five values, {gi}5i=1, and obtain the transition matrix P∗. Specifically,

P∗ =


p11 p12 . . . p15

p21 p22 . . . p25
...

...
. . .

...

p51 p52 . . . p55

 (14)

where pij = P∗(gt+1 = gj |gt = gi), is the transition probability conditional on current consumption
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growth.

To add the disaster and recovery states, I insert g0 = λD and g6 = λR into the gt grid. Here,

λD < 0 and λR > 0 capture the size of consumption growth in the disaster and recovery states,

respectively. The transition matrix is modified as follows:

P =



θ 0 0 . . . 0 1− θ

η p11(1− η) p12(1− η) . . . p15(1− η) 0

η p21(1− η) p22(1− η) . . . p25(1− η) 0
...

...
...

. . .
...

...

η p51(1− η) p52(1− η) . . . p55(1− η) 0

0 (1− ν)/5 (1− ν)/5 . . . (1− ν)/5 ν


(15)

From any normal state, there is a probability of η that the economy enters the disaster state. The

persistence of the disaster state is measured by θ, which is the probability of staying in the disaster

state after entering. The economy only enters the recovery state following a disaster state, with

probability 1− θ. The persistence of staying in the recovery state is ν. The probability of entering

any of the normal states from the recovery state is (1− ν)/5.

3.2 Heterogeneous Firms

Firms are indexed by i and have a production function

Πit = (1− τ)(ZitX
1−α
t Kα

it − fKit) (16)

where 0 < α < 1 captures the concavity of production function. Xt is the aggregate productivity,

Zit is firm’s idiosyncratic productivity, and Kit is capital. τ is the tax rate. f is the proportional

fixed operating cost.

The growth of aggregate productivity, Xt, is linked to consumption growth. Specifically,

log

(
Xt

Xt−1

)
≡ gxt = ḡ + ϕgt (17)

where ϕ > 0, captures the relative volatility of the aggregate productivity growth, compared to the
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consumption growth.

The firm’s idiosyncratic productivity follows an AR(1) process

zit+1 = (1− ρz)z̄ + ρzzit + σzϵ
z
it+1 (18)

where zit = log(Zit). ρz captures the persistence of the shock, and z̄ is the unconditional mean.

ϵzit+1 is an independently and identically distributed random variable that follows a standard normal

distribution. Specifically, ϵzit+1 and ϵzjt+1 are uncorrelated, if i ̸= j. ϵzit+1 is uncorrelated with

aggregate shock ϵt+1, for ∀i.

Investment and Adjustment Cost

Firm i chooses investment Iit and next period capital Kit+1. Capital accumulates as

Kit+1 = (1− δ)Kit + Iit (19)

where δ is the depreciation rate. Following Zhang (2005), capital investment incurs asymmetric

adjustment costs:

ψ(Iit,Kit) =


c+

2 ( Iit
Kit

)2Kit, for Iit > 0

0, for Iit = 0

c−

2 ( Iit
Kit

)2Kit, for Iit < 0

(20)

where c− > c+ > 0, meaning that it is more costly to divest. The costly divestment is critical in

bad times when firms try to sell capital because of liquidity shortage.

Costly Financing

Following Kuehn and Schmid (2014), firm i issues long-term bonds to finance investments and

dividend distribution. Each period, firms repay κ of the principal outstanding and a fixed coupon

c. Thus, the bond has an average maturity of 1
κ periods. Net bond issuance or repayment is denoted
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by Jit, and the amount of outstanding bonds evolves as:

Bit+1 = (1− κ)Bit + Jit (21)

Bond issuance is not frictionless. I assume a positive fixed and proportional cost if the bond issuance

is positive. When firms repay bonds (negative net bond issuance), there is no cost. Formally, the

asymmetric bond adjustment cost follows:

Φ(Jit) = (ϕ0 + ϕ1Jit)1Jit>0 (22)

After making investment and bond issuance decisions, firm i generates net cash flow

eit = Πit +mit − Iit − ψ(Iit,Kit) +QitJit − Φ(Jit)− ((1− τ)c+ κ)Bit (23)

which includes three parts: net output, investment with adjustment cost, and bond issuance and

principal repayment. In the net output,mit
i.i.d.∼ N (0, 0.001) represents the transitory income shock.

As shown in Chatterjee and Eyigungor (2012), the i.i.d. transitory income shock helps the model

with a long-term bond to converge. To mitigate the impact of the transitory income shock, I choose

a relatively narrow standard deviation. The firm’s coupon and principal payments depend on the

amount of bond outstanding, Bit. The tax shield on bond financing is captured by tax-deductible

coupon payment. As bonds are risky and defaultable, the price Qit is an endogenous function and

will be explained in more detail in the next section.

Positive net cash flow means dividend distribution to shareholders, while negative net cash flow

means equity issuance. External equity is costly and includes both proportional cost, λ1, and fixed

cost, λ0. The total equity issuance cost, denoted as Λ(eit), is calculated as follows:

Λ(eit) = (λ0 + λ1|eit|)1eit<0 (24)
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Default and Bond Valuation

At time t, firm i issues the new bond and repays a portion of the outstanding bonds. The price of

the new bond, Qit, depends on the expectation of next-period repayment and recovery rate if the

firm defaults. The bond valuation follows:

Qit = Et

[
Mt+1

(
(1− 1D

it+1)(c+ κ+ (1− κ)Qit+1) + 1D
it+1ξRit+1

)]
(25)

where the recovery rate depends on the next period’s productivity and capital level and is bounded

by 100%

Rit+1 = min

{
1,

Πit+1 + (1− δ)Kit+1

Bit+1

}
(26)

The proportional loss in default is captured by ξ.

Value Maximization

Above all, there are four state variables in this model: (1) aggregate productivity Xt, (2)

idiosyncratic productivity Zit, (3) capital Kit, and (4) bond Bit. Let S(Zit,Kit, Bit, Xt) denote

the equity value before the default decision, or the continuation value. When the equity value

drops below zero, the firm defaults. The post-default equity value is denoted by

V (Zit,Kit, Bit, Xt,mit) = max{0, S(Zit,Kit, Bit, Xt,mit)} (27)

Given the pricing kernel and realized productivity levels Xt and Zit, firm i chooses the optimal

investment, Kit+1, and bond, Bit+1, to maximize its pre-default equity value:

S(Zit,Kit, Bit, Xt,mit) = max
Kit+1,Bit+1

{
eit − Λ(eit) + Et

[
Mt+1V (Zit+1,Kit+1, Bit+1, Xt+1,mit+1)

]}
(28)

subject to capital and bond accumulation, and bond pricing equations, the pre-default equity value

consists of the current net cash flow and the discounted future post-default equity value.
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4 Quantitative Results

In this section, I discuss the quantitative implications of my model, with a focus on credit spreads

and default rates. First, I explain the data and how the target moments are measured. Then, I

explain my calibration and simulation strategies.

4.1 Data

The firm-level fundamental and financial data are from Compustat’s North America Fundamental

Quarterly, spanning from 1984 to 2022. Equity market data are sourced from CRSP. The average

annual default rate is obtained from Bai (2021). The average five-year default rates and credit

spreads are obtained from Kuehn and Schmid (2014). The measurement of cumulative default rate

in the simulation follows Moody’s (2006).

Investment is measured as the difference between capital expenditure (CAPXY) and the sale

of property (SPPEY). Total gross property, plant, and equipment (PPEGTQ) is used to measure

capital stock and calculate investment to capital ratio. Equity issuance is the difference between

the sale of common and preferred stock (SSTKY) and the purchase of common and preferred stock

(PRSTKCY), scaled by lagged total assets (ATQ). The total amount of bond outstanding includes

debt in current liabilities (DLCQ) and long-term debt (DLTTQ). Bond issuance is measured by the

change of total debt outstanding scaled by lagged total assets. All variables that are year-to-date

are transformed into quarterly flow variables based on the fiscal year-end.

The market value of equity is calculated as the product of the price per share (PRCCQ) and

the number of shares outstanding (CSHOQ). Market leverage is computed by dividing total debt

by the sum of total debt and the market value of equity. Consistent with the standard practice in

the literature, firms with SIC codes between 4900 and 4999, 6000 and 6999, or greater than 9000

are excluded from the analysis. Additionally, only firms traded on major exchanges, with exchange

codes (EXCHG) between 11 and 14, are included in the study.
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4.2 Calibration

I calibrate the model at a quarterly frequency. Solving a model with a long-term bond can be

numerically challenging and may not guarantee convergence 6. To address this, I employ three

strategies to improve convergence. First, I use the solution of the model with a one-period bond

as the initial value for the model with a longer-term bond, following the approach in Kuehn and

Schmid (2014). During calibration, I solve the model with one-quarter, 2-year, and 4-year bonds.

Second, to address oscillation issues arising from multiple local optimal solutions, I incorporate a

transitory income shock mit, as suggested by Chatterjee and Eyigungor (2012). Third, to reduce

numerical errors, I employ interpolation on the pre-default equity value function Sit, avoiding in-

terpolation near the kink in the post-default equity value function Vit, which is bounded by zero.

Although these strategies are generally helpful, there are instances where they may fail. To ensure

credible model solutions, I experiment with a wide range of parameter values.

The benchmark parameter values are presented in Table 1. The time discount factor β is set

to be 0.955 to match the average annual risk-free rate in normal times. This value is lower than

those reported in previous literature due to the introduction of disaster risk. The high marginal

utility in the disaster state reduces the risk-free rate in normal times, necessitating a lower time

discount factor to get the average risk-free rate consistent with the data. The relative risk aversion,

γ = 7.5, and the elasticity of intertemporal substitution (EIS), ψ = 2, are chosen to match the

annual equity premium in normal times.

For the consumption dynamics, I match the key parameters to the consumption growth data

from the National Income and Product Accounts Table 7.1 Chained (2012) dollars. I use data from

1947 to 2019 to eliminate the special effects of COVID-197. Based on the empirical observations

of consumption growth, I set the unconditional mean ḡ to be 0.0036, the persistence or autocorre-

6The distance between the value function for this and the previous iteration tends to oscillate between some
repeated values after reaching some level, for example, 10−2.

7If including the COVID-19 period, the autocorrelation of consumption growth becomes -0.1, which is significantly
different from the value of 0.3 in normal times as documented in the literature.
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lation ρg to be 0.3, and the standard deviation σg to be 0.005. To ensure that the persistence and

conditional volatility of consumption growth are close to those of productivity growth, following

Bai et al. (2019), I set the relative volatility of aggregate productivity growth, ϕ = 1.

For the parameters that govern the disaster dynamics, I set the persistence of the disaster state

θ to be 0.914, which is the same as the value in Gourio (2012). The probability of entering the

disaster state from normal states η is 0.028/4, implying an annual disaster probability of 2.8%

and a quarterly disaster probability of 0.7%. The value is close to Gourio (2012) and Nakamura

et al. (2013). To find the persistence of the recovery state ν, the size of consumption crash in the

disaster state λD, and the size of the recovery state λR, I experimented with different values to

match the cumulative consumption growth pattern reported in Bai et al. (2019), Gourio (2012),

and Nakamura et al. (2013). The procedure yielded ν = 0.88, λD = −0.07, and λR = 0.037. Figure

2 reports the average and median of simulated cumulative consumption growth and its comparison

with real data (bottom figure from Gourio (2012)). The maximum short-term negative shock is

around 20%, and the long-term fall is around 15%.

To calibrate the firm-side parameters, I set most of the values following what is reported in the

literature. The curvature parameter, α = 0.65, follows Hennessy and Whited (2007). The quarterly

depreciation rate, δ, is 0.03 as in Kuehn and Schmid (2014) and Cooley, Hansen, and Prescott

(1995). The tax rate on output, τ = 0.3, is close to the values reported in Hennessy and Whited

(2007). The coupon rate is set to 2%. Following Kuehn and Schmid (2014), the parameter that

governs bond maturity, κ, is set to be 0.05, to reflect the five-year maturity. Similar to the values

reported in Kuehn and Schmid (2014), I set the persistence of the firm’s idiosyncratic volatility,

ρz, to be 0.85, its volatility, σz, to be 0.12, and the recovery rate, ξ = 0.8, when default happens.

The remaining five parameters are calibrated to match a list of various moments of corporate

policies, along with the average historical default rate and credit spreads. The asymmetric

investment adjustment costs, c+ = 0.4 and c− = 2.8, are set to match the average and volatility
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of the investment-to-asset ratio. A relatively high divestment adjustment cost reduces both the

level and volatility of the investment-to-asset ratio. As it is more costly to divest in bad times,

it discourages firms invest in normal times. The average long-run idiosyncratic productivity,

z̄ = −1.8, is set to roughly match the average credit spreads and default rates. The fixed cost

of operation, f = 0.003, is further calibrated to match the moments more accurately. I start

calibrating the parameters that govern financing frictions following Kuehn and Schmid (2014).

The bond adjustment fixed cost (ϕ0 = 0.03) and proportional cost (ϕ1 = 0.078) are set to match

the bond issue moments, both the frequency and the average amount scaled by the capital level.

The equity issuance costs, λ0 = 0.06 and λ1 = 0.03, are calibrated accordingly to match the equity

issuance moments.

5 Quantitative Results

In this section, I first discuss the tables that match the aggregate and firm-level moments and

explore how disaster risk affects credit spreads in normal times. Then, I show the counterfactual

results regarding how the key variables react when a disaster hits. Lastly, I study how real and

financial frictions affect credit spreads with the threat of disaster risk.

5.1 Aggregate and Firm-Level Moments

The benchmark parameter values of the representative consumer and firms are reported in Table

1. I independently simulate 5000 samples at a quarterly frequency, each with 5000 firms and 156

quarters (39 years) to match the length of the data. Among the 5000 samples, those without

disasters are defined as “normal times.” The parameters are calibrated to match key moments in

normal times with the data. The chosen moments are sensitive to parameter values to discipline

the model. The key variables include the cross-sectional average and dispersion of the investment-

to-asset ratio, the cross-sectional frequency, and the average amount of equity and bond financing,

the cross-sectional average and dispersion of market leverage, and the cross-sectional average of
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default rates and credit spreads.

Table 2 reports firm-level moments. The most important moments are the default rates and

credit spreads because they are the focus of this study. Bai (2021) reports an average annual default

rate of 0.7%, and Kuehn and Schmid (2014) reports a cumulative five-year default rate of 2%. My

model generates an annual default rate of 0.66% and a five-year default rate of 3.34%, which is

overall consistent with the data.

The average credit spread between Baa-rated and Aaa-rated corporate bonds is reported to be

70-100 bps in Bai (2021) and 100 bps in Kuehn and Schmid (2014). My model generates an average

credit spread of 92.79 bps and a 90% confidence interval range between 19.52 and 161.90, which

covers the empirical observations.

The market leverage in the data is around 24.3%, while Bai et al. (2019) reports an average

market leverage of 30% using international data. My model produces an average market leverage

of 31.1%. The result is higher than the empirical observation using Compustat data, but it is close

to the number using international data. The 90% confidence interval is between 6.3% and 54.6%,

covering both numbers.

My simulation results overall match the investment and financing moments. The model-

simulated average investment-to-asset ratio is 0.029, and its volatility is 0.095, which are close

to the empirical moments of 0.033 and 0.111, respectively. The equity issuance and bond issuance

moments are also overall close to the data, while the average amounts are slightly off track. The

average amount of new equity is lower in the model simulation compared to the data, while the

new bond issuance amount is higher. This discrepancy is due to the attractiveness of long-term

bonds under the threat of disaster risk. The average frequencies of new equity and bond issuance

are 0.069 and 0.274 in the data, and the simulation results are 0.181 and 0.268, respectively. Both

results fall within the 90% confidence interval.

The real and financial friction parameters jointly affect investment and financing strategies.
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Lower investment adjustment costs lead to a lower average investment ratio because firms can eas-

ily divest the capital, which also generates higher volatility of the investment ratio. It also leads to

more aggressive financing strategies because it is easier for firms to liquidate capital. Less financial

frictions have similar effects, as it becomes easier to issue new equity and bonds.

Table 3 reports the aggregate moments. My model generates a 2.75% risk-free rate and 8.46%

aggregate equity premium in normal times, which are close to the empirical observations in the data.

However, the model generates lower average volatilities of the risk-free rate and aggregate equity

return compared to the data. The cyclicality moments are from Bai (2021), including the corre-

lation between consumption growth and average default rate, credit spread, and market leverage.

My model generates qualitatively consistent results compared to the data.

To see the economic mechanisms more explicitly, I plot the policy functions of the two endoge-

nous state variables, capital (K) and bond outstanding (B) in Figure 3. When plotting the policy

function with respect to one state variable, I fix the other state variables at the average level, except

for the consumption growth. The policy functions are plotted at both average consumption growth

in normal time and disaster states, to contrast their differences.

Figure 3 Panel (a) plots the investment to capital decision with respect to K and B. The blue

line is when the consumption growth shock is zero, and the red line is when the economy is in a

disaster state. Firms invest more when the capital level is low, and divest to get liquidity when

a disaster hits. Similarly, they divest more when the bond outstanding is higher, to repay the

predetermined principal and coupon.

Figure 3 Panel (b) plots the bond issue to the total bond outstanding decision. Firms issue more

bonds when the capital level is low because they cannot rely on the output to maintain operations

and repay liabilities. In a disaster state, if the firm does not default, the firm issues more bonds

to mitigate the large negative productivity and output shock. Firms issue bonds when they have

more bonds outstanding, showing a tendency to use new bonds to repay old bonds.
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There is heterogeneity across firms’ policy functions when they have different amounts of cap-

ital and bond outstanding. Figure 4 plots the investment decisions for small (lowest K) and big

(highest K) firms, and firms with more (highest B) or less (lowest B) bonds outstanding. Small

firms default when the bond outstanding is too high. If they do not default, they invest a lot to

accumulate more capital. In comparison, in normal times, big firms invest more when the bond

outstanding is not too high, and invest less if they have a large liability outstanding. They divest

when a disaster hits regardless of their bond level.

Firms with different levels of bond outstanding have different investment decisions. The invest-

ment decision with respect to the capital level generally shows a convex pattern. Firms with less

capital invest to accumulate more capital, and firms with a lot of capital invest less because of the

decreasing return to scale. Firms with moderate amounts of capital divest to mitigate the negative

productivity shock because they lack enough capital to produce and meet operation and liability

requirements. Firms with fewer bonds outstanding will most time invest and divest when a disaster

hits. However, firms with more bonds outstanding but not high enough capital will divest a lot to

repay the liabilities because of the sudden drop of output.

Figure 5 plots the bond issue decisions. Small firms, if not default, are bond issuers and they

rely on new bonds to repay old bonds. They are more likely to default and issue less bonds in a

disaster state. Big firms, on the other hand, are savers. They rely more on capital and output

to operate. Firms with fewer bonds outstanding do not default. In the disaster state, they issue

more bonds when the capital level is low, but repay the bonds when the capital level is high. In

comparison, firms with more bonds outstanding default when the capital level is low. They, if not

default, always issue bonds especially when the capital level is low.

In this section, I show that the model does a reasonable job of matching the key aggregate and

firm-level moments. I also show the underlying policy functions that are generating the results.

With a calibrated model, I use it to explore other implications in the following sections.
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5.2 Disaster Risk Implications

As a solution to the “credit spread puzzle,” the benchmark results successfully match the default

rate, credit spread, and equity premium in the data. To further explore the underlying economic

mechanisms, in this section, I discuss the effects of disaster risk on credit spreads in normal times.

I focus on three dimensions: disaster probability (η), the severity of disaster (λD), and the persis-

tence of disaster (θ). I separately explore the model under higher and lower η, λD, and θ, while

keeping all other factors fixed.

As a counterfactual analysis, I explore parameter values that differ but are close to the bench-

mark values. I do not completely shut down the disaster risk because the model results are very

sensitive to parameter values. If I completely remove disaster risk from the model, the results

would be fundamentally different. The aggregate and corporate policy moments would deviate sig-

nificantly from the benchmark moments, making it difficult to compare the default rate and credit

spread results. Therefore, I focus on exploring the changes when the disaster risk becomes more or

less severe while keeping it present in the model.

Table 4 reports the model simulation results with different scenarios of the disaster risk. Over-

all, increased disaster risk (higher probability, more severity, or higher persistence) leads to higher

credit spreads in normal times. There are two main economic mechanisms driving these results.

First, more disaster risk is related to a higher risk premium and expected default rate. Second,

firms adopt different bond financing strategies in response to different levels of disaster risk. When

the disaster risk is more severe, firms face difficulty in accumulating capital as investors become

more hesitant to invest in risky assets. Firms have to issue new bonds to maintain liquidity and roll

over existing bonds. Meanwhile, long-term bonds serve as a hedging instrument for firms due to

lower promised principal repayment and potential recovery states. With the same amount of bonds,

a lower capital level leads to lower equity value and, therefore, higher leverage. This combination of

factors causes higher credit spreads and higher default rates when the disaster risk is more severe.
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Using the benchmark parameter values, the model generates an average annual default rate of

0.66%, a five-year default rate of 3.34%, an average credit spread of 92.79 bps, and an average

market leverage of 31.1%. First, I study two scenarios of disaster probability. With lower disaster

probability, the average annual default rate decreases to 0.24%, and the average credit spread de-

creases to 30.36 bps, along with an average leverage of 12.3%. In contrast, with a higher disaster

probability, the model generates an average annual default rate of 2.41%, an average credit spread

of 159.68 bps, and an average market leverage of 42.8%.

Then, I study the two scenarios of the consumption growth crash. If I decrease λD, which

means a model with a more severe consumption growth crash when a disaster is realized, the model

generates an annual default rate of 1.36%, an average credit spread of 254.03 bps, and an average

market leverage of 0.86%. In contrast, higher λD, or less severe consumption growth crash, leads

to an annual default rate of 0.55%, an average credit spread of 33.96 bps, and an average market

leverage of 9.8%.

Lastly, I study the two scenarios of the persistence of a disaster. If the disaster risk is less

persistent, with lower θ, the annual default rate decreases to 0.45%, the average credit spread

decreases to 21.18 bps, and the market leverage decreases to 19.5%. In contrast, with more

persistent disaster risk, or higher θ, the model generates an annual default rate of 2.12%, an

average credit spread of 138.09 bps, and an average market leverage of 37.2%.

5.3 Disaster States

In this section, I report the model predictions during disaster states. Tables 5 and 6 present the

key moments in the simulation samples where disasters occur. Compared to normal times, more

firms default, and credit spreads increase significantly. The annual default rate is more than ten

times higher than in normal times, with a 90% confidence interval from 1.13% to 27.10%. The

average credit spread more than triples the normal time average, with a 90% confidence interval

from 111.25 bps to 652.73 bps This is consistent with the observations around the Great Depression
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as plotted in Figure 1. During the Great Depression, the annual default rate peaked at 8% and the

credit spread was as high as 6%.

Realized disasters vastly affect corporate policies. Surviving firms reduce investments, or even

divest, to compensate for the substantial negative cash flow shock. The average investment ratio

drops to slightly negative, -0.005, and the cross-sectional volatility of investment increases to 0.14.

Bond financing becomes more challenging than in normal times due to financing frictions, low ex-

pected recovery rates, and high expected default rates. The average frequency and amount of new

bond issuance both drop to 0.22. Equity financing is almost frozen, with the frequency of new

equity issuance dropping to 0.021, and the average amount dropping to 0.008.

To provide a more explicit demonstration of the economic mechanisms, I simulate a long sample

of 100,000 quarters after dropping the burning period of 1000 quarters and plot key variables with

respect to consumption growth. The key variables are depicted in heatmaps to show the density

of observations. As both disaster and recovery states are discrete in my model, the variables are

plotted vertically. In normal times, I simulate the economic states in a more continuous way. In

each figure, I report the correlation between the variable and the consumption growth to illustrate

how they vary with different macroeconomic conditions.

Figure 6 displays the dynamics of default rates and credit spreads. Both have a strong neg-

ative correlation with consumption growth. In the disaster state, the average default rate and

credit spread are significantly higher. However, the range is wide due to different states before the

economy enters the disaster state. If the economy was performing well and firms are financially

stronger, there will be less default, and the credit spread will be lower when a disaster is realized.

Figure 7 shows the dynamics of investment. The investment-to-capital ratio is positively cor-

related with consumption growth, while its dispersion has a strong negative correlation. Firms

liquidate capital when there is a large negative productivity and cash flow shock to maintain op-

eration and repay bond principals. The divestment incentives vary largely across firms, depending
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on their financial conditions, which leads to a large cross-sectional dispersion.

Figure 8 displays the dynamics of bond and equity financing. Equity financing is positively

correlated with consumption growth. In the disaster state, the new equity issuance frequency and

amount are very close to zero. The new bond issuance frequency is also close to zero in the disaster

state, but the amount has a negative correlation with consumption growth. However, most obser-

vations are clustered around zero. The negative relationship is driven by the disaster following a

good economic condition. Survival firms are financially strong and can take advantage of long-term

bonds when a disaster hits. Therefore, the amount of new bond issuance in the disaster state has

a wide range, which generates a negative correlation.

Figure 9 demonstrates the dynamics of market leverage and recovery rate. Market leverage is

negatively correlated with consumption growth, while the recovery rate has a positive correlation.

The high market leverage is driven by the plummet of firm values and persists in the recovery state.

The recovery rate has a similar but opposite pattern, driven by the large negative productivity and

cash flow shock.

5.4 Decompose the Credit Spread

The results of previous sessions show that in both normal times and realized disaster states, credit

spreads change along with endogenous leverage choices. Meanwhile, as shown in the literature,

credit spreads are determined by the expected default probability and loss, and the risk premium.

In this section, I decompose the credit spreads into three channels (default risk, credit risk premium,

and leverage), and study their relative importance. Specifically, I restructure equation (7) and (8)

and define the “Expected Loss in Default” as

Et[1
D
it+1]−

Et[Rit+11
D
it+1]

Rf
(29)

which is the difference between the expected default probability and the expected recovery rate if

a default happens. The higher (lower) the default rate (recovery rate) is, the higher the “Expected
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Loss in Default” (hereafter expected loss) is. I use this term to represent the degree of default risk.

The “Credit Risk Premium” is defined as

covt

(
Mt+1

Et[Mt+1]
,1D

it+1

)
− covt

(
Mt+1, Rit+11

D
it+1

)
(30)

which captures the covariance between the marginal utility and the default. In bad times, marginal

utility and default probability are high, while the recovery rate is low. Therefore, the first term is

positive and the second term is negative, leading to a positive “Credit Risk Premium”.

The definitions above are based on a model with one-period bonds because there is no closed-

form solution for long-term bonds. Although not perfect, they are proxies for the default risk

and risk premium, which can be used to shed light on how much the credit spreads are explained

by the three channels. Furthermore, the default risk and risk premium are firm-specific, giving

explanations on firm-level credit spreads.

To decompose the credit spreads, I simulate a panel of firms, and regress credit spreads on

market leverage, the expected loss, and the credit risk premium. I use different combinations of

the explanatory variable and explore their incremental contribution to R2. The coefficients and R2

are averaged across 5000 independent simulations. Following each coefficient estimate, I also report

the 5% and 95% percentiles of the estimate across all simulations to show the confidence interval.

I report results from pooled panel regressions with and without time-fixed effects.

Table 7 reports the results in normal times and times with realized disasters. Intuitively, all the

coefficients on explanatory variables are positive. In normal times, the credit risk premium has the

strongest explanatory power, with R2 of 0.55. In comparison, market leverage and the expected

loss alone have R2 of 0.29 and 0.39, respectively. The combination of the credit risk premium and

the expected loss explains around 90% variation of the credit spread. Adding time-fixed effects

only marginally increases the R2. The results are almost unchanged.

In times of realized disasters, the expected loss has the strongest explanatory power. It alone
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has a R2 of 0.86, showing that the default risk plays the biggest role in explaining the credit spreads.

Adding time-fixed effects increases the explanatory power of all factors, especially market leverage

and credit risk premium. However, the results are qualitatively unchanged: default risk still plays

the biggest role. Intuitively, in realized disaster periods, the default probability is expected to be

much higher because of the persistent disaster state. Meanwhile, the recovery rate is much lower if

a default happens because of the plummet in productivity. In contrast, market leverage has limited

explanatory power. When a disaster is realized, all firms suffer from the productivity shock. The

large negative shock drives firm values directly to negative, regardless of their leverage level.

The comparative statics in Table 4 show that different degrees of disaster risk have direct effects

on both the market leverage and the credit spread. The first impression of the result is that market

leverage drives the change in credit spreads. However, it is only part of the story. Table 7 shows that

the credit risk premium and the expected loss together explain a large portion of the credit spreads.

Then, is the market leverage redundant? The answer is no, because it is still strongly significant

after controlling the credit risk premium and the expected loss. To make it more explicit, I run

two tests. First, I explore the effects on next-period credit spreads. Then I run more cross-section

regressions on other relevant variables to explore what is driving the results. The regressions on

next-period credit spreads show that market leverage plays the biggest role in normal times. In

comparison, when disasters are realized, default risk still plays the biggest role, and the second

explanatory one now becomes market leverage. The striking difference between contemporaneous

and lagged regressions is due to the exogenous productivity shocks on firms, which directly impact

current period credit risk premium, default risk, and credit spreads. In contrast, next-period credit

spread can only be predicted by market leverage, which is endogenously chosen by firms.

To further disseminate the effects, I regress market leverage on the credit risk premium and the

expected loss and test if it is fully explained. The first three columns in Table 9 report the regres-

sion results. Intuitively, the coefficients are both positive and significant. Higher risk premiums

27



and expected losses are transformed into higher market leverages. The regression results show that

the credit risk premium has more explanatory power on market leverage, both in normal times and

disaster states. However, the combination of both only explains less than 20% variations in market

leverage, showing that the market leverage cannot be subsumed.

To see how the market leverage is affected more clearly, I report regressions using other related

variables. Table 9 shows that higher risk premiums and expected losses are transformed into lower

capital levels and firm equity values, increasing market leverages. The credit risk premium has

stronger effects than the expected loss. They also lower firm bond issuance, leading to a more

conservative financing strategy.

In summary, the credit spread can be decomposed into three channels: credit risk premium,

default risk, and market leverage. Consistent with previous bond pricing models, the first two

channels have strong explanatory power on contemporaneous credit spreads. They also increase

market leverage by lowering firm capital level and equity value. The heightened market leverage will

be transmitted into next-period credit spreads. Endogenous dynamics of market leverage contribute

to the credit spreads in normal times but have limited impacts in disaster states.

5.5 Cross-Section Analysis

The decomposition of credit spread highlights the interesting results at the firm level. Firms’ char-

acteristics are important in explaining credit spreads in both normal times and disaster states. In

this section, I study more cross-section implications. First, I verify if my model generates cross-

section implications that are generally consistent with previous literature (Gomes and Schmid,

2021). Second, I explore how different firms react to the realization of disasters.

Table 10 reports the regression results between credit spread and market leverage, and other

key firm characteristics. The data column is from Gomes and Schmid (2021). Overall, the credit

spread column is consistent with the data, except for the size. Higher market leverage increases

credit spreads, while higher profitability decreases credit spreads. In my model, bigger firms have
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more capital and output more. All else equal, bigger firms have lower credit spreads. However,

the market leverage column is counter-intuitive. The size and profitability coefficients are both

opposite to empirical observations. The reason is that bigger firms are more productive and have

higher equity value, which decreases the market leverage. When firms are profitable, they have

more capacity to hold more bonds which increases the market leverage. This is opposite to the

empirical findings that firms, in good time, repay bonds to increase borrowing capacity.

Other than the relationship between contemporaneous characteristics, firms respond differently

when a disaster hits. For example, right after the COVID-19 hit, financially more flexible firms lost

less value in their stock prices and suffered less during the pandemic period (Fahlenbrach, Rageth,

and Stulz, 2021; Stulz, 2023). Figure 10 plots the impulse response functions of average firm equity

value and credit spread. I separately plot firms with more or less financial flexibility, which is

defined as market leverage 8. The results are qualitatively the same as the empirical findings. More

financially flexible firms have less drop in equity value and a jump in credit spreads. With a recovery

state, the lost equity value is partially recovered, and credit spreads decrease to the pre-disaster

period. Without a recovery state, the lost equity value and increased credit spreads are not restored.

Table 11 reports the collapse period equity return and credit spread on other firm characteristics.

The collapse period is defined as the first quarter when a disaster is realized. Intuitively, more

profitable firms lose less equity value, and the credit spreads increase less. Conditional on market

leverage, bigger firms lose less equity value. However, they face high divestment costs to liquidate

capital, which is transmitted into higher next-period credit spreads.

5.6 Effects of Other Economic Forces

In this section, I study how various economic factors affect credit spreads. I first explore firm-side

parameters, and then analyze consumer-side parameters. On the firm side, I focus on real and fi-

8Fahlenbrach, Rageth, and Stulz (2021) uses cash and book leverage to define financial flexibility. I use market
leverage here for two reasons. First, I do not have cash in my model, and market leverage is well-calibrated to the
data moments. Second, market leverage sheds light on the channel of equity issues as a financing instrument.

29



nancial frictions during normal times. I analyze the model by resolving it with different parameter

values that govern investment adjustment costs and financing costs while keeping all other factors

constant. Contrary to the findings in Kuehn and Schmid (2014), I find an opposite effect of real

and financial frictions. In their paper, they find that real and financial frictions increase credit

spread because bonds become riskier. However, in my model, with more friction, both the default

rate and credit spread decrease. When it is more costly to roll over bonds or issue equity, the

hedging motive becomes less attractive. As a result, firms choose more conservative bond financing

strategies, and market leverage drops. Conversely, when there is less friction, firms choose more

aggressive financing strategies because it becomes easier to roll over bonds.

Additionally, the effects of the recovery rate (ξ) and fixed operation cost (f) are more intu-

itive. A lower recovery rate or a higher fixed operation cost leads to an increase in the default

rate and credit spread. These findings shed light on how real and financial frictions, and other

economic forces, play a crucial role in determining credit spreads in the model, providing a better

understanding of the economic mechanisms during normal times.

Table 12 reports the detailed comparative statics during normal times. In Panel A, we observe

the effects of more friction, including higher investment adjustment costs and financing costs, lower

recovery rates, and higher fixed operation costs. Higher investment adjustment costs cause lower

leverage, leading to less default and a lower credit spread. The credit spread decreases from 92.79

bps to less than 40 bps. Similar effects are observed with higher financing costs. Even small changes

in fixed equity and bond financing costs have strong effects, reducing the credit spread to less than

20 bps. Lower proportional financing costs have similar but more moderate effects. Lower pro-

portional equity issuance costs lower the credit spread to 70.11 bps, and lower proportional bond

issuance costs lower it to 35.54 bps. A lower recovery rate increases the credit spread to 348.15

bps, while a higher fixed operation cost increases it to 150.82 bps.

Panel B of Table 12 presents the effects of less friction, which are generally opposite to Panel
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A. Lower investment adjustment costs encourage more investments during normal times. However,

firms with more capital become riskier due to the asymmetric investment adjustment costs. It

becomes costly to divest when there is a negative shock and firms need to liquidate capital. Higher

investment costs increase the credit spread to 93.51 bps, and higher divestment costs increase it

to 164.80 bps. Lower costs of equity and bond financing increase default rates and credit spread.

As it becomes cheaper to finance, firms opt for more aggressive corporate policies. Higher fixed

(proportional) equity issuance costs increase the credit spread to 256.32 bps (161.60 bps). Lower

fixed (proportional) bond issuance costs increase the credit spread to 222.92 bps (225.47 bps). Con-

versely, a higher recovery rate lowers the credit spread to 23.19 bps, and a lower fixed operation

cost lowers it to 74.64 bps.

The effects of real and financial frictions in the disaster state are more limited because default

risk dominates other economic forces. Although limited, the pattern of default rate, credit spread,

and market leverage is similar to the pattern in normal times. With more friction, the average

credit spread is around 200 bps, slightly lower than the benchmark, and the annual default rate

is around 10%, which is close to the benchmark result. Table 13 reports the detailed results and

shows that the negative aggregate productivity shock has a more direct and critical impact, while

frictions only have marginal effects when a disaster hits.

Now I explore the effects of the stochastic discount factor. Table 14 reports the comparative stat-

ics of key parameters that govern the dynamic of the stochastic discount factor. Panel A reports the

results with higher parameter values, with everything else held fixed. Panel B reports results with

lower parameter values. I focus on the impacts on market leverage, default rate, and credit spreads.

Overall, more patient (higher β), more risk averse (higher γ), and more volatile aggregate pro-

ductivity (higher ϕ) lead to higher credit spreads. However, the economic mechanisms are slightly

different. More patience leads to lower default rates because it directly increases firm value in all

states and decreases the probability of default. Firms choose more aggressive financing decisions,

31



which generates higher market leverage, and then causes credit spreads to increase. In contrast,

more risk aversion and more volatile aggregate productivity shock decrease firm value and increase

default productivity, which also generates higher market leverage and credit spreads.

Higher elasticity of intertemporal substitution (ψ), persistence (ρg), and volatility (σg) of con-

sumption growth generate slightly higher default rates, lower market leverages, and lower credit

spreads. When ψ is high, the representative consumer is more willing to accept fluctuations, which

leads to more diverse firm values and generates higher default rates. In response, firms choose more

conservative financing policies. The capital structure decision dominates the default risk in normal

times and generates lower credit spreads. When consumption growth (and aggregate productivity

growth) is more persistent, firms’ output is also more persistent. Firms have lower market lever-

age, which generates lower credit spreads. When consumption growth (and aggregate productivity

growth) volatility is high, firms are more likely to get negative continuation values, which generates

high default rates. In response, firms adopt more conservative financing policies, which leads to

lower credit spreads.

In summary, both firm-side frictions and consumer-side preferences affect credit spreads. More

real and financial friction leads to lower credit spreads. Overall, the effects of market leverages

dominate the effects of default rates. The changes in credit spreads align with the direction of the

changes in market leverages, which highlights the impacts of endogenous corporate policy choices

on credit spreads.

6 Conclusion

Macroeconomic conditions have important implications for corporate credit risk. Disaster risk, as

a type of rare but severe macroeconomic downturn, directly impacts corporate credit spreads by

affecting default risk and risk premium. Additionally, it critically influences a firm’s capital struc-

ture due to its effects on corporate policies. To explore how disaster risk affects credit spreads, I

develop a dynamic structural model that rationalizes corporate investment, financing, and default
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decisions. The model simulations are divided into economies with and without realized disasters.

When disaster risk is realized, the model predicts a significantly higher credit spread, default

rate, and market leverage. In normal times when disaster risk is not realized, disaster risk influences

credit spreads through its impact on default risk, risk premium, and corporate decisions. Higher

disaster risk leads to a higher default probability and a more nonlinear pricing kernel. Meanwhile,

firms have higher leverage as they face difficulty in accumulating capital and experience lower eq-

uity value. Without enough capital and output, firms are forced to issue new bonds to roll over

existing ones and maintain bond levels. At the same time, long-term bonds offer the opportunity to

take advantage of subsequent recovery states and have less pressure on principal repayment. These

factors collectively result in higher market leverage and credit spreads on average.

I also explore the effects of other economic forces, with a focus on real and financial frictions.

The results differ from previous findings when there is disaster risk, mainly due to their varying

impacts on firm leverage.

Solving a dynamic model with a long-term bond is computationally challenging. To keep the

setting tractable, I abstract from many interesting aspects, such as corporate cash holding and

Bayesian updates of disaster risk. It would be useful to study more interactions between disaster

risk and other aspects of corporate finance in future research.
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Table 1: Benchmark Parameter Values

This table lists the benchmark parameter values used to solve and simulate the model at a quarterly frequency.

I break all the parameters into two groups. The top group includes parameters from the utility function of

the representative consumer. The bottom group includes parameters from the firm side. For each parameter,

I list its notation, value, and explanation.

Parameter Value Meaning

Consumer

β 0.955 Subjective discount factor

γ 7.5 Relative risk aversion

ψ 2 Elasticity of intertemporal substitution

ḡ 0.0036 Average consumption growth

ρg 0.3 Persistence of consumption growth

σg 0.005 Volatility of consumption growth

η 0.028/4 Probability of entering a disaster state

θ 0.914 Persistence of disaster state

ν 0.88 Persistence of recovery state

λD -0.07 Severity of disaster state

λR 0.037 Size of recovery state

Firm

α 0.65 Concavity of production function

δ 0.03 Depreciation rate

ϕ 1 Relative volatility of aggregate productivity

τ 0.3 Tax rate

c 0.02/4 Coupon rate

κ 0.05 Bond maturity

ρz 0.85 Persistence of idiosyncratic productivity

σz 0.12 Volatility of idiosyncratic productivity

ξ 0.8 Recovery rate of bond

c+ 2.6 Investment adjustment cost

c− 0.4 Divestment adjustment cost

z̄ -1.8 Average idiosyncratic productivity

λ0 0.06 Fixed cost of equity issuance

λ1 0.03 Proportional cost of equity issuance

ϕ0 0.03 Fixed cost of bond issuance

ϕ1 0.078 Proportional cost of bond issuance

f 0.003 Fixed cost of operation
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Table 2: Corporate Policies and Credit Spread in Normal Times

This table reports a set of key firm-level moments generated under the benchmark parameters reported in

Table 1 in normal times. The data moments for investment, equity issue, bond issue, and market leverage

moments are calculated from CRSP-Compustat Merged. The 1-year default rate data moment is from Bai

(2021). The 5-year default rate and credit spread data moments are from Kuehn and Schmid (2014). The

simulation moments are calculated across 5000 independent simulations, which do not have realized disasters.

Each simulation has 156 quarters (39 years).

Data Mean 5% 25% 50% 75% 95%

Average Investment-to-Asset 0.033 0.029 0.026 0.028 0.029 0.031 0.033

Volatility Investment-to-Asset 0.111 0.095 0.051 0.078 0.099 0.115 0.128

Frequency of New Equity Issue 0.069 0.181 0.037 0.109 0.185 0.257 0.316

Average New Equity to Asset 0.176 0.098 0.096 0.097 0.098 0.099 0.1

Frequency of New Bond Issue 0.274 0.268 0.054 0.159 0.274 0.379 0.471

Average New Bond to Asset 0.071 0.368 0.363 0.366 0.368 0.369 0.373

Average Market Leverage 0.243 0.311 0.063 0.186 0.317 0.439 0.546

1 Year Default Rate 0.7 (%) 0.656 0.131 0.394 0.663 0.92 1.166

5 Years Default Rate 2 (%) 3.341 0.683 2.023 3.383 4.675 5.918

Credit Spread 100 (b.p.) 92.792 19.524 55.809 94.273 130.941 161.897

Table 3: Aggregate Moments and Cyclicality in Normal Times

This table reports a set of key aggregate and cyclical moments generated under the benchmark parameters

reported in Table 1 in normal times. The cyclicality is the correlation between the variable and the

consumption growth. All numbers are annualized. The data moments for the average and volatility of

the market excess return are from the CRSP value-weighted market return. The data moments for the

average and volatility of the risk-free rate are from Kenneth French’s website. The cyclicality moments are

from Kuehn and Schmid (2014). he simulation moments are calculated across 5000 independent simulations,

which do not have realized disasters. Each simulation has 156 quarters (39 years).

Data Mean 5% 25% 50% 75% 95%

Average Excess Equity Return 8.577 8.457 7.66 8.2 8.52 8.779 9.035

Volatility of Excess Return 16.967 1.303 0.842 0.987 1.204 1.516 2.087

Risk-Free Rate 3.503 2.752 2.751 2.752 2.752 2.753 2.753

Volatility of Risk-free Rate 2.79 0.003 0.002 0.003 0.003 0.003 0.003

Cyclicality

Default Rate -0.33 -0.183 -0.314 -0.236 -0.186 -0.131 -0.049

Credit Spread -0.36 -0.417 -0.536 -0.47 -0.422 -0.367 -0.285

Market Leverage -0.11 -0.014 -0.186 -0.085 -0.018 0.055 0.163
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Table 4: Disaster Risk Implications in Normal Times

This table reports the impacts of disaster risk in normal times, focusing on three parameters that govern the

disaster risk: disaster probability η, size of consumption crash in disaster states λD, and disaster persistence

θ. For each parameter, I study both more and less disaster risk. Panel A reports the four key moments

under the benchmark parameters: 1-year cumulative default rate, 5-year cumulative default rate, average

credit spread, and average market leverage. Panel B and Panel C report the comparative statics with lower

and higher disaster probability. Panel D and Panel E report comparative statics with more and less severe

consumption crashes in disaster states. Panel F and Panel G report comparative statics with more and

less persistent disasters. The default rates are reported in percentages. The credit spread is reported in

basis points. All the model moments are calculated across 5000 independent simulations, which do not have

realized disasters.

Data Mean 5% 25% 50% 75% 95%

Panel A: Benchmark (η = 0.007, λ = −0.07,θ = 0.914)

1 Year Default Rate 0.7 (%) 0.656 0.131 0.394 0.663 0.92 1.166

5 Years Default Rate 2 (%) 3.341 0.683 2.023 3.383 4.675 5.918

Credit Spread 100 (b.p.) 92.792 19.52 55.81 94.273 130.94 161.897

Market Leverage 0.243 0.311 0.063 0.186 0.317 0.439 0.546

Panel B: Low η = 0.003 (Lower Disaster Probability)

1 Year Default Rate 0.7 (%) 0.239 0.013 0.017 0.167 0.408 0.728

5 Years Default Rate 2 (%) 1.231 0.066 0.091 0.865 2.092 3.721

Credit Spread 100 (b.p.) 30.36 2.651 3.089 21.419 51.006 90.46

Market Leverage 0.243 0.123 0.007 0.009 0.086 0.208 0.375

Panel C: High η = 0.009 (Higher Disaster Probability)

1 Year Default Rate 0.7 (%) 2.406 1.482 2.022 2.449 2.821 3.201

5 Years Default Rate 2 (%) 11.639 7.215 9.843 11.887 13.543 15.315

Credit Spread 100 (b.p.) 159.68 82.06 126.8 162.5 195.14 223.54

Market Leverage 0.243 0.428 0.214 0.336 0.436 0.525 0.615

Panel D: Low λD = −0.071 (More Severe Disaster)

1 Year Default Rate 0.7 (%) 1.363 1.109 1.286 1.38 1.463 1.564

5 Years Default Rate 2 (%) 6.627 5.37 6.222 6.7 7.109 7.673

Credit Spread 100 (b.p.) 254.03 205.5 252.7 260.99 266.88 273.06

Market Leverage 0.243 0.855 0.69 0.856 0.881 0.899 0.912

Panel E: High λD = −0.069 (Less Severe Disaster)

1 Year Default Rate 0.7 (%) 0.552 0.012 0.106 0.399 0.909 1.541

5 Years Default Rate 2 (%) 2.892 0.065 0.567 2.13 4.774 7.971

Credit Spread 100 (b.p.) 33.96 1.681 7.313 24.854 55.259 92.033

Market Leverage 0.243 0.098 0.002 0.019 0.071 0.161 0.27

Panel F: Low θ = 0.85 (Less Persist Disaster)

1 Year Default Rate 0.7 (%) 0.445 0.13 0.37 0.633 0.872 1.095

5 Years Default Rate 2 (%) 2.297 0.672 1.888 3.222 4.46 5.555

Credit Spread 100 (b.p.) 21.183 20.37 55.08 93.311 128.82 159.436

Market Leverage 0.243 0.195 0.068 0.189 0.322 0.446 0.555

Panel G: High θ = 0.924 (More Persist Disaster)

1 Year Default Rate 0.7 (%) 2.121 1.246 1.681 2.119 2.57 2.978

5 Years Default Rate 2 (%) 10.301 6.088 8.232 10.293 12.446 14.365

Credit Spread 100 (b.p.) 138.09 64.18 101.7 138.85 175.92 208.795

Market Leverage 0.243 0.372 0.164 0.268 0.373 0.48 0.573
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Table 5: Credit Spread and Default Rate in Disaster States

This table reports the default rates and credit spread in simulations with realized disasters. The first

column lists the simulation moments in normal times for comparison. The default rates are reported

in percentages. The credit spread is reported in basis points. The moments are calculated across 5000

independent simulations which include realized disasters.

Normal Times Disaster States

Mean Mean 5% 25% 50% 75% 95%

1 Year Default Rate 0.656 10.445 1.131 4.125 8.117 14.602 27.104

5 Years Default Rate 3.341 25.207 3.9 15.548 20.655 32.977 55.2

Credit Spread 92.792 315.148 111.25 189.846 272.377 402.774 652.731

Table 6: Corporate Policies in Disaster States

This table reports the corporate policies in simulations with realized disasters. The corporate policies are

the same as in Table 2. The first column lists the simulation moments in normal times for comparison. The

moments are calculated across 5000 independent simulations which include realized disasters.

Normal Times Disaster States

Mean Mean 5% 25% 50% 75% 95%

Average Investment-to-Asset 0.029 -0.005 -0.066 -0.02 0.003 0.018 0.027

Volatility Investment-to-Asset 0.095 0.14 0.092 0.124 0.14 0.157 0.187

Frequency of New Equity Issue 0.181 0.021 0 0 0 0 0.251

Average New Equity to Asset 0.098 0.008 0 0 0 0 0.098

Frequency of New Bond Issue 0.268 0.224 0 0 0.193 0.456 0.559

Average New Bond to Asset 0.368 0.218 0 0 0.375 0.408 0.447

Average Market-to-Book 2.473 1.629 0.919 1.267 1.556 1.932 2.593

Average Market Leverage 0.311 0.563 0.281 0.476 0.586 0.67 0.769
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Table 7: Decompose the Credit Spread

This table reports the decomposition of the cross-sectional credit spread, by regressing credit spreads on

market leverage (ML), the credit risk premium (CRP), and the expected loss in default (Exp. Loss) using

simulated data. Standard errors are in the parenthesis. Each column of the table reports the coefficients

and R2 from regressions with different combinations of dependent variables. The coefficients and R2 are

averaged across 5000 simulations. The standard errors are calculated across simulations. The credit risk

premium and the expected loss in default are computed using equations (29) and (30) using a model with

one-period bonds. Panel A and Panel B respectively report the results in normal times and times with

realized disasters.

Panel A: Normal Times

(1) (1) (2) (2) (3) (3) (4) (4) (5) (5) (6) (6) (7) (7)

Constant 0 0 0.004 0.004 0.008 0.009 0 0 0 0 0.003 0.004 0 0

5% -0.001 -0.001 0.001 0.001 0.002 0.003 0 0 -0.001 -0.001 0.001 0.001 0 0

95% 0 0 0.007 0.007 0.015 0.015 0 0 0 0 0.006 0.006 0 0

ML 0.031 0.031 0.015 0.016 0.028 0.028 0.013 0.013

5% 0.03 0.03 0.015 0.015 0.027 0.027 0.012 0.012

95% 0.031 0.032 0.016 0.016 0.029 0.029 0.014 0.014

CRP 0.597 0.594 0.504 0.504 0.578 0.575 0.5 0.5

5% 0.569 0.564 0.499 0.499 0.554 0.55 0.497 0.496

95% 0.625 0.622 0.509 0.509 0.601 0.598 0.504 0.504

Exp. Loss 0.463 0.462 0.435 0.434 0.442 0.441 0.431 0.431

5% 0.454 0.451 0.432 0.431 0.438 0.436 0.428 0.428

95% 0.474 0.473 0.437 0.436 0.446 0.446 0.434 0.433

Time FE N Y N Y N Y N Y N Y N Y N Y

R2 0.285 0.285 0.545 0.548 0.388 0.397 0.605 0.606 0.624 0.625 0.897 0.899 0.939 0.94

Panel B: Realized Disasters

(1) (1) (2) (2) (3) (3) (4) (4) (5) (5) (6) (6) (7) (7)

Constant -0.006 0.008 0.011 0.014 0.012 0.012 -0.003 0.01 -0.001 -0.003 0.005 0.005 0 -0.001

5% -0.017 -0.002 0.004 0.005 0.005 0.005 -0.008 0 -0.003 -0.007 0.002 0.002 -0.001 -0.002

95% -0.001 0.025 0.021 0.027 0.017 0.017 0 0.029 0 -0.001 0.007 0.007 0 0

ML 0.064 0.041 0.027 0.01 0.024 0.027 0.011 0.012

5% 0.031 0.032 0.016 -0.006 0.018 0.023 0.008 0.01

95% 0.12 0.06 0.041 0.017 0.028 0.029 0.013 0.013

CRP 1.272 1.058 1.158 1.021 0.565 0.557 0.523 0.512

5% 0.606 0.594 0.537 0.531 0.546 0.541 0.506 0.503

95% 2.54 1.936 2.367 1.932 0.589 0.584 0.546 0.524

Exp. Loss 0.493 0.5 0.479 0.491 0.453 0.457 0.45 0.456

5% 0.466 0.469 0.446 0.452 0.437 0.44 0.431 0.436

95% 0.507 0.513 0.496 0.509 0.46 0.463 0.458 0.464

Time FE N Y N Y N Y N Y N Y N Y N Y

R2 0.119 0.392 0.338 0.572 0.863 0.871 0.358 0.58 0.897 0.904 0.972 0.974 0.978 0.98
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Table 8: Decompose Next-Period Credit Spread

This table reports the decomposition of the cross-sectional credit spread next period, by regressing credit

spreads on market leverage (ML), the credit risk premium (CRP), and the expected loss in default (Exp.

Loss) using simulated data. Standard errors are in the parenthesis. Each column of the table reports the

coefficients and R2 from regressions with different combinations of dependent variables. The coefficients and

R2 are averaged across 5000 simulations. The standard errors are calculated across simulations. The credit

risk premium and the expected loss in default are computed using equations (29) and (30) using a model

with one-period bonds. Panel A and Panel B respectively report the results in normal times and times with

realized disasters.

Panel A: Normal Times

(1) (2) (3) (4) (5) (6) (7)

Constant 0 0.008 0.01 0 0 0.008 0

5% 0 0.002 0.003 0 0 0.002 0

95% 0 0.015 0.016 0 0 0.015 0

ML 0.03 0.03 0.03 0.03

5% 0.029 0.029 0.029 0.029

95% 0.031 0.031 0.031 0.031

CRP 0.172 0 0.173 0

5% 0.113 -0.006 0.114 -0.006

95% 0.225 0.005 0.225 0.006

Exp. Loss 0.003 -0.027 -0.004 -0.027

5% -0.009 -0.029 -0.012 -0.029

95% 0.014 -0.025 0.003 -0.025

Time FE Y Y Y Y Y Y Y

R2 0.272 0.057 0.011 0.272 0.274 0.058 0.274

Panel B: Realized Disasters

(1) (2) (3) (4) (5) (6) (7)

Constant 0.008 0.037 0.044 0.006 0.015 0.043 0.015

5% -0.001 0.011 0.013 -0.002 -0.001 0.011 -0.001

95% 0.023 0.085 0.104 0.02 0.049 0.104 0.047

ML 0.042 0.057 0.051 0.055

5% 0.031 0.032 0.031 0.032

95% 0.063 0.108 0.09 0.098

CRP -0.292 -0.5 0.081 -0.125

5% -1.094 -1.455 0.002 -0.317

95% 0.127 -0.01 0.169 -0.009

Exp. Loss -0.263 -0.28 -0.27 -0.27

5% -0.412 -0.421 -0.414 -0.405

95% 0.003 -0.018 -0.001 -0.018

Time FE Y Y Y Y Y Y Y

R2 0.39 0.358 0.518 0.43 0.589 0.522 0.591
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Table 9: Decompose Other Variables

This table reports the decomposition of the cross-sectional firm variables on the credit risk premium (CRP)

and the expected loss in default (Exp. Loss) using simulated data. Standard errors are in the parenthesis.

Each column of the table reports the coefficients and R2 from regressions with different combinations of

dependent variables. The coefficients and R2 are averaged across 5000 simulations. The standard errors are

calculated across simulations. The credit risk premium and the expected loss in default are computed using

equations (29) and (30) using a model with one-period bonds. Panel A and Panel B respectively report the

results in normal times and times with realized disasters.

Panel A: Normal Times

Dependent Market Leverage Equity Value Capital Bond Issue

Constant 0.262 0.308 0.261 2.479 0.969 0.059

(0.004) (0.004) (0.004) (0.013) (0.003) (0.001)

CRP 6.001 5.965 -20.174 -4.128 -0.811

(0.030) (0.030) (0.110) (0.026) (0.007)

Exp. Loss 1.041 0.809 -2.715 -0.618 -0.008

(0.006) (0.004) (0.014) (0.003) (0.001)

R2 0.179 0.006 0.183 0.140 0.033 0.038

Panel B: Realized Disasters

Dependent Market Leverage Equity Value Capital Bond Issue

Constant 0.504 0.545 0.500 1.681 0.844 0.113

(0.003) (0.003) (0.002) (0.009) (0.002) (0.001)

CRP 4.301 3.907 -13.308 -3.062 -1.351

(0.024) (0.021) (0.074) (0.017) (0.005)

Exp. Loss 0.572 0.296 -0.988 -0.313 -0.059

(0.003) (0.002) (0.007) (0.001) (0.000)

R2 0.132 0.043 0.139 0.121 0.059 0.058

42



Table 10: Cross-Section Regressions

This table reports the cross-section regression of credit spread and market leverage on firm characteristics.

The numbers in the data column are from Gomez and Schmid (2020). The coefficients are averaged across

5000 independent simulations. Under each coefficient, I report the 5% and 95% quantiles of the coefficient,

which indicates the confidence interval.

Data Credit Spread Data Market Leverage

Market Leverage 0.090 0.034

5% 0.031

95% 0.038

Size -0.002 -0.004 0.009 -0.408

5% -0.006 -0.665

95% -0.002 -0.113

Profitability -0.071 -0.218 -0.286 1.8

5% -0.349 0.896

95% -0.063 2.161

R2 0.354 0.271

Table 11: Collapse Period Regressions

This table reports the cross-section regression of equity return and credit spread on firm characteristics during

the collapse period. The collapse period indicates the first period of a realized disaster. he coefficients are

averaged across 5000 independent simulations. Under each coefficient, I report the 5% and 95% quantiles of

the coefficient, which indicates the confidence interval.

Collapse Period Equity Return Credit Spread

Market Leverage -0.78 -0.788 0.354 0.395

5% -0.83 -0.852 0.337 0.347

95% -0.749 -0.755 0.376 0.478

Profitability 1.046 -0.278

5% 0.147 -0.671

95% 1.814 0.032

Size 0.033 0.058

5% -0.013 0.003

95% 0.096 0.182

R2 0.889 0.904 0.568 0.582
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Figure 1: Credit spread and default rate over the business cycle. This figure is from Chen (2010).
It plots Moody’s annual corporate default rates and the monthly Baa-Aaa credit spreads from 1920
to 2008.

Figure 2: The impulse response of consumption to a disaster shock in the model. In simulations,
I calculate the cumulative fractional drop in consumption for 25 years after the economy enters
a disaster state. The impulse response is aggregated from the quarterly to annual frequency, and
calculated across 10000 simulations. The blue solid line is the mean impulse response, and the red
dotted line is the median.
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(a) Investment to Capital

(b) Bond issue to bond outstanding

Figure 3: Policy function at average capital (K) or bond outstanding (B). The upper left figure
plots investment-to-capital against K, holding B fixed at the average in the simulation. The upper
left figure plots investment-to-capital against B, holding K fixed at the average in the simulation.
The lower left figure plots bond issue to bond outstanding against K. The lower right figure plots
bond issue to bond outstanding against B. The red line indicates the disaster state. The blue line
indicates the average state in normal times.
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(a) Capital Size

(b) Bond Outstanding

Figure 4: Investment policy function against capital (K) or bond outstanding (B). The upper
figures plot investment-to-capital against B, holding K at minimum (left) or maximum value (right).
The lower figures plot investment-to-capital against K, holding B at minimum (left) or maximum
value (right). The red line indicates the disaster state. The blue line indicates the average state in
normal times.
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(a) Capital Size

(b) Bond Outstanding

Figure 5: Bond issue policy function against capital (K) or bond outstanding (B). The upper
figures plot bond issue to outstanding against B, holding K at minimum (left) or maximum value
(right). The lower figures plot bond issue to outstanding against K, holding B at minimum (left)
or maximum value (right). The red line indicates the disaster state. The blue line indicates the
average state in normal times.
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(a) Credit Spread

(b) Default Rate

Figure 6: Heatmaps of average cross-section credit spread and default rate against the
consumption growth. Plots are based on a long simulation with 50000 quarters. Panel A shows
the average credit spread. Panel B shows the average default rate. The correlation and its p-value
are reported on the left top corner. In each plot, a regression line is fitted against the consumption
growth to show the cyclicality. In each heatmap, red indicates high density, whereas yellow indicates
low density.

51



(a) Investment to Capital Rate

(b) Volatility of Investment to Capital Rate

Figure 7: Heatmaps of average and volatility of cross-section investment-to-capital ratio against
the consumption growth. Plots are based on a long simulation with 50000 quarters. Panel A shows
the average investment-to-capital ratio. Panel B shows the volatility of the investment-to-capital
ratio. In each plot, a regression line is fitted against the consumption growth to show the cyclicality.
The correlation and its p-value are reported on the left top corner. In each heatmap, red indicates
high density, whereas yellow indicates low density.
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(a) Frequency of New Equity Issue (b) New Equity Issue to Capital

(c) Frequency of New Bond Issue (d) New Bond Issue to Capital

Figure 8: Heatmaps of bond and equity financing against the consumption growth. Plots are based
on a long simulation with 50000 quarters. Panel A shows the frequency of new equity issues. Panel
B shows the amount of new equity issues as a portion of capital. Panel C shows the frequency
of new bond issues. Panel B shows the amount of new bond issues as a portion of capital. In
each plot, a regression line is fitted against the consumption growth to show the cyclicality. The
correlation and its p-value are reported on the left top corner. In each heatmap, red indicates high
density, whereas yellow indicates low density.
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(a) Market Leverage

(b) Recovery Rate

Figure 9: Heatmaps of average market leverage and recovery rate against the consumption growth.
Plots are based on a long simulation with 50000 quarters. Panel A shows the average market
leverage. Panel B shows the recovery rate. In each plot, a regression line is fitted against the
consumption growth to show the cyclicality. The correlation and its p-value are reported on the
left top corner. In each heatmap, red indicates high density, whereas yellow indicates low density.
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(a) Equity Value

(b) Credit Spread

Figure 10: Impulse response functions of equity value and credit spread after a disaster hits. The
black line indicates the average across all survival firms. The red dashed line indicates the average
across survival firms with lower market leverage. The blue dashed line indicates the average across
survival firms with higher market leverage. The upper figures in Panel A and Panel B include
recovery states following the disaster states. The lower figures include only disaster states.
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A Numerical Solution

To use the value function iteration method to solve the model, I first detrend the original model

to a stationary model without growth. I follow the standard method in macroeconomics literature

to use last period aggregate productivity, Xt−1, to deflate capital and bond. Deflated capital and

bond are respectively denoted as K̂it =
Kit
Xt−1

and B̂it =
Bit
Xt−1

. Consumption growth, gt, replaces Xt

as another state variable because productivity growth gxt is a linear function of gt. The deflated

post-default value function is denoted as V̂ (Zit, K̂it, B̂it, gt) =
V (Zit,Kit,Bit,Xt)

Xt−1
.

Other model elements are deflated and denoted in a similar way. Below summarizes the

stationary model that will be solved by grid search

V̂ (Zit, K̂it, B̂it, gt) =max{0, Ŝ(Zit, K̂it, B̂it, gt)} (A.1)

Ŝ(Zit, K̂it, B̂it, gt) = max
Îit,B̂it+1

{
êit + Λ(êit) + Et

[
Mt+1V̂ (Zit+1, K̂it+1, B̂it+1, gt+1)

]
exp(ḡ + ϕgt)

}
(A.2)

subject to (A.3)

K̂it+1exp(ḡ + ϕgt) = (1− δ)K̂it + Îit (A.4)

B̂it+1exp(ḡ + ϕgt) = (1− κ)B̂it + Ĵit (A.5)

The bond pricing equation has the following form

Qit = Et

[
Mt+1

(
(1− 1

Ŝit+1<0
)(c+ κ+ (1− κ)Qit+1) + 1

Ŝit+1<0
ξRit+1

)]
(A.6)

where the recovery rate is not changed

Rit+1 = min{1, Πit+1 + (1− δ)Kit+1

Bit+1
} = min{1, Π̂it+1 + (1− δ)K̂it+1

B̂it+1

} (A.7)

and default decision depends on the detrended continuation value

1D
it+1 = 1

Ŝit+1<0
(A.8)
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The model is solved using value function iteration. Both the current states of capital and

bonds, Kit and Bit, are discretized into 30 grid points. I use the Rowenhorst method to discretize

aggregate consumption growth, gt, into 7 grid points, including 5 normal states, 1 disaster state,

and 1 recovery state. Similarly, I discretize idiosyncratic productivity, zit, into 9 states, and the

transitory income shock, mit, into 5 states using a truncated Gaussian distribution. To obtain more

accurate model solutions, I use finer grids for the decision variables, Kit+1 and Bit+1, which are

discretized into 300 grids.

Due to the finer grid for decision variables, the bond pricing function is also defined on finer

grids. Consequently, I need to interpolate the value function on these finer grids. However, the post-

default value function, Vit, has a kink at zero, leading to numerical errors during interpolations. To

address this issue and prevent convergence problems, I instead interpolate on the pre-default value

function, Sit, which is a smoother surface. I then obtain the post-default value function based on the

interpolated Sit, reducing numerical errors and helping the model converge. Additionally, I include

a transitory income shock following the approach in Chatterjee and Eyigungor (2012), which helps

in solving multiple local optimum problems and prevents oscillations during the solution process.

To solve the model efficiently, I follow the procedure in Kuehn and Schmid (2014). I start by

solving the model with a one-period bond and use its solution as the initial point for solving the

model with a two-year bond, and so on. For tractability, I solve the model with two and four-year

bonds. The convergence threshold for both the value function and bond pricing function is set at

10−4, and in most cases, the value function converges to a level of 10−7. However, it is important

to note that these tips do not guarantee convergence, as it also depends on the parameter values.

To ensure convergence, I experiment with a wide range of parameter values.
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