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Interpretable Characteristics-based Factors:
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Abstract

We propose a new approach to construct factors from firm characteristics. In con-

trast to existing studies, each of our factors comes from the same group of statistically

related firm characteristics, making its economic interpretation straightforward. The

number of groups is not chosen ad hocly, but rather determined by data. Applying our

method to a set of 94 representative firm characteristics, we find that the factors chosen

by our approach is not only easy to interpret economically, but the associated factor

model outperforms existing models, in particular improving the recent Instrumented

Principal Components Analysis (IPCA) model of Kelly, Pruitt and Su et al. (2019) and

related recent machine learning models. Further Bayesian model comparison reaffirms

the conclusion.

JEL Classification: G11, G14

Keywords: Factor model, Cross-sectional stock return, Cluster analysis, Model comparison,

IPCA, Neural networks



1. Introduction

As surveyed by Harvey, Liu, and Zhu (2016) and Hou, Xue, and Zhang (2020), there

are potentially hundreds of firm characteristics or firm-level factors that affect the expected

returns in the cross section of stocks. Following Cochrane (2011), there are two important

questions. First, how many factors do we really need? Second, given a set of well-known

factors, such as the prominent five factors of Fama and French (Fama and French, 2015), are

there other factors that can provide incremental information for explaining the cross-sectional

variation of expected stock returns?

There are mainly two existing approaches to answer the above questions. The first is

primarily the principal component analysis (PCA). Early studies, such as Connor and Ko-

rajczyk (1986), apply it to extract factors from returns. Though PCA can be applied to

a panel of firm characteristics easily, the problem is that the extracted factors are linear

combinations of all the existing characteristics, making them difficult to interpret econom-

ically. For example, for a set of 4 characteristics with two of them being value and two

being growth, any PCA factor will be a combination of the 4, resulting a neither value nor

growth factor. Recently, Kelly et al. (2019) pioneer a new PCA method, the Instrumented

PCA, which allows factor loadings to be characteristic-dependent. However, the resulted

IPCA factors remain difficult to interpret. The second approach is the growing application

of machine learning (ML) to finance. Feng, Giglio, and Xiu (2020) and Freyberger, Neuhierl,

and Weber (2020), Han et al. (2021) and Kozak, Nagel, and Santosh (2020), among others,1

propose various ML methods to identify which firm characteristics drive the stock returns.

However, this literature tends to over-identify the number of factors that matter, as it is

difficult to handle and distinguish highly correlated factors by the existing ML models.

Our paper provides a simple approach to adress the problem. Intuitively, our method

1Other examples include Cong et al. (2021), DeMiguel et al. (2020), Gu, Kelly, and Xiu (2020), Daniel
et al.(2020), Chen and Velikov (2020), Chordia, Goyal, and Saretto (2020),Patton and Weller (2020), and
Avramov, Cheng, and Metzker (2021).
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has two steps. First, we divide the factors into statistically related clusters. If the factors

have the same economic source, they must be statistically related. In the second step, we

extract optimally a factor for each cluster that capture better the economic driving force.

Our approach is inspired by Stambaugh and Yuan (2017) who appear the first to use cluster

to isolate the factors. In contrast to their method, we apply a clustering algorithm that is

applicable to high dimensional case, and can determine the number of clusters from data

without imposing it a priori. In addition, instead of taking the average of the factors in a

cluster as the new factor, we let data to find the best factor from the cluster.

We apply our method to a set of 94 representative firm characteristics as used by Gu et

al. (2020), which is similar to the data sets used by many others. In terms of using clustering

algorithms, our paper appears the first to examine such a large data set in finance. Further-

more, we find that the resulted factor models outperform well known models, including the

IPCA of Kelly, Pruitt and Su et al. (2019). Moreover, the ML literature finds that there are

more than 20 characteristics that are critical in determining the variation of cross-sectional

expected returns. We find that there are only 9 clusters that imply 9 factors. The resulted

long-short portfolios also outperform those of the recent ML models.

We also compare models from a Bayesian perspective. Given the large number of possible

combinations of factors in a model, standard econometric techniques, mainly developed for

evaluating the adequacy of a single model, is not sufficient for identifying the best factor

pricing model(s). As argued by Lee and Potscher (2005), due to model uncertainty, models

selected from different target functions do not converge asymptotically to the same limit.

Barillas and Shanken (2018), along with Chib et al. (2020) (henceforth BS-CZZ), develop a

general Bayesian model comparison method invariant to test portfolios in testing factor mod-

els. This method is similar but better than BIC coefficient, a widely used model comparison

method in machine learning, which compares models based on their maximum likelihood

estimations. In contrast, the BS-CZZ method compares models based on a wide range of

model parameters.
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We find that our model outperforms benchmark models including a model based on

clustering factors according to economic concept, FF3, Q4, FF5 and Carhart model. Our

analysis is carried out with various model comparison measures, including out-of-sample

Sharpe ratio of the maximal Sharpe ratio portfolio, alpha test and BS-CZZ method.

The paper is organized as follows. Section 2 describes the data and cluster method we

use. Section 3 describes the way to construct factor models based on cluster analysis. Section

4 presents the empirical results on performance of the factor models. Section 5 presents the

empirical results on that the cluster method improves the IPCA and ML models. Section 6

presents the robustness results. Section 7 concludes.

2. Data and Cluster Method

2.1. Data

We use the 94 characteristics used in Gu et al. (2020) in the US market. Firm characteristics

data is from https://dachxiu.chicagobooth.edu/. Detailed characteristics definition can be

found in Table A.6 of Gu et al. (2020). Monthly stock return data is from CRSP.

The data clear process is similar to Gu et al. (2020). Firstly, we replace missing firm

characteristics with cross-sectional median at each month if the number of non-missing ob-

servations at that month is more than 500. The purpose of replacing missing values is to

avoid discarding an observation only because one of firm characteristics is missing. Secondly,

according to Gu et al. (2020), we include stocks with prices below $5, share codes beyond

10 and 11, and financial firms. Finally, we only keep stocks listed on three major exchanges,

NYSE, AMEX and NASDAQ. Data starts from January 1985 and ends in December 2021.
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2.2. Motivation for using cluster method

Cluster analysis groups a set of objects into subsets or “clusters” such that those within each

cluster are more closely related to one another than objects assigned to different clusters

(e.g., Hastie et al., 2009). Fundamental to cluster analysis is the definition of similarity or

proximity between objects. This can only come from subject matter considerations and is

similar to the specification of a loss function in prediction problems (supervised learning).

In our study, we apply cluster analysis to the firm characteristics. Following Stambaugh and

Yuan (2017), a natural definition of the similarity between the firm characteristics can be

captured by the cross-sectional correlations between them.

Previous researches construct tradable factor portfolios based on Fama-Macbeth regres-

sion (Lewellen, 2015; Han et al., 2021). Fama-Macbeth regression is first proposed by Fama

and Macbeth (1973) to examine relationship between return and risk:

rt+1 = βXt + et, (1)

where Xt ∈ RN×I is I firm characteristics of N firms in month t, and rt+1 ∈ RN is the excess

returns of N assets in month t+ 1. β ,the relationship between return and risk, is estimated

with average of cross-sectional regression coefficients

β̂ =
1

T

T∑
t=1

β̂t+1, (2)

where

β̂t+1 = (XT
t Xt)

−1XT
t rt+1. (3)

Barra (1998) finds that the estimator β̂t+1 are returns of tradable factor portfolios with stock

weights

w = (XT
t Xt)

−1XT
t . (4)
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Lewellen (2015) and Han et al. (2021) construct tradable factor portfolios based on an

out-of-sample estimate of β with rolling average of β̂t+1.

However, previous literature, such as Lewellen (2015) and Han et al. (2021), did not

construct factor models with Fama-Macbeth regression. Motivated by their method, we

construct factor models with Fama-Macbeth regression after the cluster analysis. We assume

that the true model consists of a few latent factors, firm’s exposures to which are observable

through firm characteristics with measurement error. We can filter out the error by grouping

together the firm characteristics that indicate the same signal. Specifically, for each time

t = 1, ..., T , let Xit, {i = 1, ..., I} be I firm characteristics, with each Xit ∈ RN . Assume K

factors Fkt, {k = 1, ..., K}, each observable through several firm characteristics with error.

Let Pk, {k = 1, ..., K} be a partition of the integer set {1, ..., I}, then each Xit is associated

with one Fkt if i ∈ Pk, i.e.,

Xit = Fkt + eit, i ∈ Pk, (5)

where eit ∈ RN are independent error terms and homogeneous within each cluster. For firm

characteristics in each group Pk, we can construct a factor using Fama-Macbeth regression.

Thus, with K groups, we get a K-factor model. Details on factor model construction method

is in section 3.1.

Generally, cluster algorithms fall into three distinct types: combinatorial algorithms

(e.g. hierarchical clustering), density-based algorithms (e.g. PRIM) and spectral clustering

(Hastie et al., 2009). We use a form of combinatorial algorithm, the hierarchical clustering

analysis (HCA), because it works directly on the observed data with no direct reference to

an underlying probability model. Spectral clustering also does not assume any probability

model. We do not use it because it is based on principal component analysis and sensi-

tive to noise in data (Bojchevski et al., 2017), while financial data is notorious for its low

signal-to-noise ratio. We overcome the problem of low signal-to-noise ratio with a hierarchi-

cal clustering algorithm called Chameleon (Karypis et al., 1999), which is suitable for the
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data set with arbitrary density. Specifically, if a firm characteristic measures a risk exposure

with large measurement error, it will be dissimilar to other firm characteristics. Chameleon

will divide firm characteristics with above features in a cluster with low density rather than

divide each of them as a cluster. Some modified versions based on Chameleon appear after

the publication of this algorithm, but their modifications are small and Chameleon remains

the most popular version among them. Implementation details of Chameleon are presented

in the next subsection.

2.3. Clustering firm characteristics

In this section, we introduce our cluster method in detail. First, we introduce a concept of

Intuitive Cluster (IC), which is used as prior information in our cluster method. Then, we

define similarity between firm characteristics. Finally, we show steps of Chameleon to divide

firm characteristics into clusters.

IC is an existing ad hac way to divide firm characteristics. It divides firm characteristics

into 6 clusters based on the economic concept and is widely used in the literature (Hou et

al., 2015; Hou et al., 2020; Han, et al., 2020).

Consistent with Hastie et al. (2009) and Stambaugh et al. (2017), we define the similarity

as the absolute value of time-averaged value-weighted cross-sectional Spearman correlations.

Different from Stambaugh et al. (2017), we use value-weighted correlations to put more em-

phasis on large valued stocks. Let xnit to be the cross-sectional rank of the firm characteristics

Xn
it, the time averaged weighted rank correlation is

ρij =

∣∣∣∣∣∣∣
1

T

T∑
t=1

∑Nt

n=1 w
n
t (xnit − x̄it)(xnjt − x̄jt)√∑Nt

n=1w
n
t (xnit − x̄it)2

√∑N
n=1 w

n
t (xnjt − x̄jt)2

∣∣∣∣∣∣∣ , (6)

where x̄it =
∑Nt

n=1w
n
t x

n
it, w

n
t is the value weight parameter for each stock n and

∑Nt

n=1w
n
t = 1.

6



In Karypis et al. (1999), the clustering problem is represented by a graph, where, in our

case, graph vertices represent firm characteristics, and weighted edges represent similarities

among the firm characteristics. The main feature of the clustering algorithm by Karypis et

al. (1999) is to use two pass HCA with the first pass the divisive HCA and the second pass

the agglomerative HCA (e.g. Hastie et al. 2009). In the first pass, the algorithm applies a

graph partitioning method to find the min-cut partition of clusters with roughly equal size

(Karypis et al. 1999). In the second pass, the algorithm proceeds sequentially by optimally

merging clusters. For two clusters Ci and Cj , the algorithm seeks to minimize inter-cluster

similarity, which is customarily defined suitable for specific problem. In our paper, we seek

to minimize the following:

IS(Ci, Cj) =
S̄EC{Ci,Cj}

|Ci|
|Ci|+|Cj | S̄ECCi

+
|Cj |

|Ci|+|Cj | S̄ECCj

, (7)

where S̄EC{Ci,Cj}
is inter-cluster closeness, measured as average weights of the edges that

connect vertices in Ci to vertices in Cj. S̄ECCi
is within-cluster closeness, measured as the

average weight of the edges that belong in the min-cut bisector of cluster Ci. |Ci| is number

of vertices in Ci. Intuitively, the inter-cluster similarity so defined captures the relative

similarity between clusters compared to the intra-cluster similarity.

An overview of the method is provided by Figure 1 (copied from Karypis et al., 1999).

Specifically, the algorithm is implemented as follows.

Figure 1: Clustering process
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First, a sparse graph is obtained through nearest neighbor method, i.e. the edge between

two vertices will be kept only if either of the graph vertices is among the set of knn (a

hyperparameter of the model) nearest neighbors of the other vertice, otherwise the weight

of the edge will be set to zero. This is a conventional step for graph clustering because it

helps to reduce noise.

Second, in the divisive HCA, the algorithm repeatedly applies a graph partitioning al-

gorithm until graph vertices are divided into m clusters. The graph partitioning algorithm

finds the partition of a given graph with minimum edge-cut, defined as the sum of the weight

of the edges that straddle partitions (refer to Karypis et al. 1999 for details). The purpose

of this step is to divide the graph into very small groups, each consisting of 3 or 4 vertices.

These groups are used to initialize the intra-cluster similarity. In our paper, it is this step

that we impose the prior information of IC. That is, we guarantee that the vertices (firm

characteristics) in the same cluster also belong to the same cluster in IC by replacing the

similarity between firm characteristics in different IC clusters to be 0. This restriction is

lifted in later steps.

Thirdly, a version of agglomerative HCA algorithm is applied and clustering results are

obtained for all possible numbers of clusters K. In this step, we merge clusters with the

highest inter-cluster similarity defined in equation (7).

So far, we have described the mechanism of the algorithm of Karypis et al. (1999) and

our modifications. There are three hyper-parameters {knn,m,K} to be determined, where

knn is the number of the nearest neighbors, m is the number of clusters after the first pass,

and K is the number of clusters after the second pass. We select hyper-parameters from a

grid of values: knn = {10, 15},m = {24, 31} and K = {1, 2, ..., 15}. m is chosen such that 3

or 4 vertices are in each cluster after the first pass.

To determine hyper-parameters, We define the performance measure as the average of
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inter-cluster similarity , expressed as

IS =
2

K(K − 1)

∑
i,j=1,...,K,i6=j

IS(Ci, Cj), (8)

where IS(Ci, Cj) is defined in equation (7) and K is the number of clusters. We choose the

clustering result with the smallest IS and the corresponding hyper-parameters are knn∗ =

15,m∗ = 31 and K∗ = 9.

Figure 2 demonstrates the performance measure IS versus the number of clusters K

given the optimal hyper-parameters knn∗ = 15 and m∗ = 31. The curve is approximately of

”U” shape. IS first decreases and then increases as the number of clusters increases. The

minimum IS is obtained at K = 9. In other words, at the beginning of the agglomerative

HCA, merging two clusters tends to reduce IS. However, after we have gotten 9 clusters,

further merging tends to enlarge IS. According to equation (7), it means further merging

tends to generate higher between-cluster similarity (S̄ECCi
), or lower intra-cluster similarity

(S̄ECCi
), either of which indicates that we should stop merging. Thus, we choose the result

with 9 clusters.

2.4. Data-driven Clustering vs Intuitive Clustering

In this section, we present difference between our clustering result (Data-driven Clustering,

denoted as DC) and IC.

In Table 1, we use identifiers that from DC1 to DC9 to denote 9 clusters in DC, and identi-

fiers that from IC1 to IC6 to denote 6 clusters in IC. Panel A presents the number of firm char-

acteristics in each cluster of DC and IC. It shows that the cluster Trading frictions in IC is

splitted into four clusters in DC, which are Illiquidity, Trading frictions (measured by volume),

Trading frictions (measured by return) and Beta, resp. . Illiquidity includes Amihud

illiquidity, size, etc., Trading frictions (measured by volume) includes characteristics con-
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Figure 2: Average inter-cluster similarity

The figure presents the relationship between average inter-cluster similarity IS in equation
(8) and the number of clusters K. The horizontal line is the number of clusters K and the
vertical line is average inter-cluster similarity IS.

structed based on trading volume, such as share turnover. Trading frictions (measured by return)

includes characteristics constructed based on trading price, such as idiosyncratic return

volatility, maximal return and so on. Beta contains beta and beta square.

Additionally, firm characteristics in Momentum in IC are splitted into three clusters

in DC. The first one is Long − run momentum, including 12-month momentum, 6-month

momentum. The second one is Short − run momentum, including 1-month momentum,

etc.. The third one is Growth.

Moreover, firm characteristics in Profitability, V alue, Investment and Intangible in IC

are re-clustered into Accruals, Profitability and Growth in DC.

We will construct factor models based on DC and demonstrate more properties of our
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method in the next section.

3. Clustered Factor Models (DC-Model)

In this section, we first construct factor models based on DC and IC, and show performnace

of factors in those models.

3.1. Construction of factor models through 3-step regression

As demonstrated in the previous section, given a clustering result Pk, {k = 1, ..., K}, we use

Fama-Macbeth regression to construct a factor model in 3 steps.

First, for each k = 1, 2, ..., K and in each month t, we run a cross-sectional OLS regression:

Rt = β̂0,k,t +
∑
i∈Pk

β̂i,k,tX̂i,t−1 + εt, (9)

where Rt is n-dimensional stock returns in month t, and X̂n
i,t−1 is the ith standardized firm

characteristics in month t − 1. In the appendix, we prove that under certain technical

conditions, the predictive regression of (9) converges to the true factor model.

Second, the predicted returns with firm characteristics in cluster Pk in month t is

R̂n
k,t+1 = β̄0,k +

∑
i∈Pk

β̄i,kX̂
n
i,t, (10)

where β̄i,k,t = 1
t

∑t
τ=1(β̂i,k,τ ), is the smoothed OLS (SOLS) estimator as in Han et al. (2020),

with β̂i,k,τ the OLS estimator in the cross-sectional regression (9). Then we use portfolio

sorting method based on the SOLS predictor to construct corresponding factor portfolios.

In particular, we rank the predicted return R̂n
k,t in (10) from high to low. We define the

factor portfolio Yk,t, (k = 1, 2, ..., K) to be a long-short zero investment portfolio that long
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the upper median and short the lower median. Formally, the weight of stock n in the factor

portfolio Yk,t formed in the end of month t is defined as

Y n
k,t =


2/N, R̂n

k,t+1 is in top 50%;

−2/N, R̂n
k,t+1 is in bottom 50%.

(11)

Third, we obtain K independent factors as model factors based on regression (12)

Rn
t+1 = γ0 +

K∑
k=1

γk,tY
n
k,t + ent+1, (12)

where the stock weight Y n
k,t in the factor portfolio Yk,t is used as a measure of risk exposure

of stock n on the kth factor and γk,t measures the risk premium of the kth factor.

Weights of the kth independent factor portfolio is given by the kth column vector of ωt as

ωt = WtYt(Y
′
tWtYt)

−1, (13)

where Yt is the matrix consisting of column vector Yk,t. We scale Yk,t to make ωt have a

$1-long-position. For each factor portfolio Yk,t, the corresponding risk premium is γk,t, the

regression coefficient of (12), where Wt is the weighting matrix for the regression at time t.

We use value-weighted diagonal matrix for Wt.

So far we have used a 3-step regression to construct the DC-model with K factors. In the

next subsection, we compare the performance of DC-Model and corresponding IC-Model,

the so constructed factor model based on IC.

3.2. Performance of factors in DC-Model and IC-Model

This section presents performance of factors in DC-Model and IC-Model. Table 2 presents

the result. Panel A reports performance of Trading frictions factors, 1 in IC-Model and 4
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in DC-Model. Panel B reports performance of Momentum factors, 1 in IC-Model and 2

in DC-Model. Panel C reports performance of other factors. It is shown that by splitting

Trading frictions cluster in IC, we get factors with higher Sharpe ratios. Trading frictions

in IC are splitted into 4 clusters in DC. Corresponding factors of those 4 clusters achieve

Sharpe ratios of 0.32, 0.34, 0.11 and 0.16, all of which are much higher than 0.07, Sharpe

ratio of trading frictions factor in IC-Model. Besides, by splitting Momentum in IC, we

also obtain a factor with higher Sharpe ratio. The long-run momentum factor in DC-Model

achieves Sharpe ratio of 0.83, which is higher than 0.42, Sharpe ratio achieved by momentum

factor in IC-Model. The short-run momentum factor in DC-Model achieves Sharpe ratio of

0.36, which is comparable to that of momentum factor in IC-Model (0.42).

Table 3 presents correlations of factors in DC-Model and IC-Model and there are two

findings. First, factors in DC-Model splitted from IC are not highly correlated. For example,

the Trading frictions in IC (IC1) is splitted into four clusters by DC (DC1-DC4). Factors

corresponding to DC1-DC4 are not highly correlated, with the highest correlation of 0.44

coming from that between DC2 and DC3. Second, table 3 shows that by splitting a cluster

in IC, the resulting factors in DC-Model are not all highly correlated with the factor in

IC-Model. For example, factors corresponding to DC1 is not correlated with the factor

corresponding to IC1. It means that by splitting Trading frictions in IC, we get a factor

with additional information.

Results in Table 2 demonstrate that our method contributes to extract information more

efficiently than IC. We further illustrate that our so constructed DC-Model outperforms

popular benchmark models as well in the next section.

4. Model Comparison Tests

In this section we perform various model comparison tests between DC-Model and bench-
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mark models. We use three methods to compare models, construction of out-of-sample (OS)

maximal Sharpe ratio portfolios, alpha test and a Bayesian method. The benchmarks are

IC-Model, FF3, Car4, Q4 and FF5. FF3 is first proposed by Fama and French (1993). They

use size and BM to construct factors. Those two factors and market factors constitute FF3

factor model. Carhart (1997) adds momentum factor and constitute Car4 factor model.

Hou, Xue and Zhang (2015) propose Q4 model, where factors are constructed on size, ROE,

investment and market. Fama and French (2015) modify FF3 and add operating profitability

factor and investment factor, proposing the FF5 factor model.

4.1. Performance of OS maximal Sharpe ratio portfolio

In this section we introduce the method to form an OS maximal Sharpe ratio portfolio and

present its empirical results. This test is equivalent to searching a Stochastic Discount Factor

(SDF) close to the Hansen-Jagannathan bound (Hansen and Jagannathan, 1991). Since the

SDF is constructed by OS tradable portfolios, higher OS maximal Sharpe Ratio implies

better spanned pricing model.

Given K factors Ft = (F1,t, F2,t, ..., FK,t)
′, we can write the SDF, denoted by Mt, as

Mt = 1− b′(Ft − EFt), (14)

where b is a K × 1 vector of constant. The unconditional asset pricing implies that Mt

satisfies the following equation,

E[MtFt] = 0. (15)

Substituting Equation (14) into (15), we obtain

b = Σ−1E(Ft), (16)

where Σ is the covariance matrix of factors.
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Assume the estimated mean and covariance matrix of factors are denoted as µ̄ and Σ̄,

the estimator for b in Equation (16) is

b̂ = Σ̄−1µ̄, (17)

and the variance of SDF can be written as

σ2(Mk) = µ̄T Σ̄−1µ̄. (18)

When using the sample moment conditions, σ(Mk) is also known as Hansen-Jagannathon

bound, the upper bound for Sharpe ratios of all investable portfolios. Note that this upper

bound is not achievable by investable portfolios unless the parameters are constant.

To achieve the maximal investable Sharpe ratio, we use the conditional version of

Et[Mt+1Ft+1] = 0. (19)

That is, we use rolling sample estimation for mean and variance µt and Σt. At time t, we

hold the optimal portfolio consisting of K factor portfolios as

bt = Σ−1
t µt. (20)

Note that when bt is computed using out-of-sample Σt and µt, the portfolio is investable, and

it is the out-of-sample efficient frontier portfolio given the factor model. We call the Sharpe

ratio of this portfolio the out-of-sample (OS) maximal Sharpe ratio of the factor model and

call this portfolio the out-of-sample (OS) maximal Sharpe ratio portfolio of the factor model.

The return of an OS maximal Sharpe ratio portfolio is constructed on a purely out-of-sample

basis by using the mean and covariance matrix of estimated factors through t and tracking

the post-formation t+ 1 return.
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In addition to factor models mentioned in the beginning of section 4, we also compare

with some machine learning approaches, such as Lasso, Ridge and Enet. We obtain re-

turn predictions of those methods with panel regression in a rolling window and construct

long-short zero-investment portfolios. Specifically, at the end of each month t, we predict

returns in month t+ 1 with data through month t, where hyper-parameters are chosen with

cross-validation. Then we construct the portfolio where 50% stocks with the highest return

predictions are in the long position and the rest are in the short position.

Recall that our data is from January 1985 to December 2021. Factors are from January

1987 to December 2021, since we skip the first 24-month data to estimate predicted returns

in step (10). In addition, the OS maximal Sharpe ratio portfolios are from January 1990

to December 2021, since we skip the first 60-month data to calculate conditional mean and

covariance.

Table 4 shows performance of the OS maximal Sharpe ratio portfolios for DC-Model

and benchmarks. It is shown that for all measures DC-Model outperforms benchmarks. The

average monthly return of 0.53% for DC-model is the highest, and is about 0.06% higher than

the next best value of 0.47%, achieved by Ridge regression. As for standard deviation, DC-

Model has the lowest value of 1.38%, smaller than the next best value of 1.43%, achieved by

IC-Model. The Sharpe ratio and maximal drawdown (MDD) deliver perhaps the sharpest

differences between DC-Model and benckmarks. DC-Model has Sharpe ratio of 1.34 and

MDD of 8.22%. In contrast, Sharpe ratios are only 0.91 for FF5 and 0.9 for IC-Model, and

MDDs are larger than 17% for all benchmarks.
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4.2. Alpha test

In this section, we introduce implementation and empirical results of alpha test. Assume we

want to compare models M1,M2, ...,ML, we run the regression

ft = αl + βlFl,t + el,t, l = 1, 2, ..., L, (21)

where ft ∈ RN are N test portfolios’ returns in month t, Fl,t ∈ RK are K factors in Ml in

month t.

Table 5 compares the models on several measures that summarize abilities to accomodate

test portfolios’ returns: the average absolute alpha, the number of anomalies for which the

model produces the smallest absolute alpha among L models being compared, the number of

anomalies for which p-value is smaller than 0.1, and 0.05. Table 5 also calculates measures

based on adjusted p-value: the number of anomalies for which adjusted p-value is smaller

than 0.1, 0.05, where the adjusted p-value is adjusted for 5-lags auto-correlation in error term

{el,t}Tt=1. Panel A reports these measures for the set of 94 anomalies. For each measure, we

see the DC model performs the best, followed by the IC model. THe average absolute alpha

of 0.08% for the DC models is about 0.02$ lower than the next best value of 0.10%, achieved

by the IC model. For 27 of the 94 anomalies, the DC model achieves the lowest absolute

alpha, compared to 22 anomalies for the IC model. Among 94 anomalies, 17 and 5 anomalies

have alpha with p-value smaller than 0.1 and 0.05 for the DC model, compared to 22 and 13

anomalies for the IC model. The number of anomalies for which adjusted p-value is smaller

than 0.1 and 0.05 follows a similar pattern.

Panel B report the same measure as panel A but for a different set of anomalies. we

use 2 sets of test portfolios. Following Stambaugh et al. (2017), We reduce the set of 94

anomaly portfolios by excluding those most highly correlated with the factors in DC and IC

models. This procedure leaves 47 anomalies. Panel B deliver essentially the same message
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as those in panel A. In panel B, the gap becomes narrow for the number of anomalies for

which p-value is smaller than 0.05 and adjusted p-avlue and is smaller than 0.1.

4.3. Bayesian model comparison

In this subsection, we compare models with a Bayesian method, first proposed by Barillas

and Shanken (2018) and revised by Chib, Zeng and Zhao (2020) and thus is called BS-

CZZ method hereafter. It is a more comprehensive test than alpha test. Alpha test has

disadvantages in practice. As Barillas and Shanken (2018) said, ”Although tests of the

individual models are routinely reported, these tests often suggest ’rejection’ of the implied

restrictions, especially when the data sets are large (e.g., Fama and French, 2016). However,

a relatively large p-value may say more about imprecision in estimating a particular model’s

alphas than the adequacy of that model.”

Barillas and Shanken (2018) propose a Bayesian method to compute the posterior prob-

ability that a model holds conditional on data. The posterior probability that a model Ml

holds, Pr(Ml|D), is determined by marginal likelihood of two regressions (see equation (19)

in Barillas and Shanken (2018))

fl,t = αl + βlMktt + el,t, (22)

f ∗l,t = γlfl,t + γMkt
l Mkt+ ul,t, (23)

where fl,t is a vector that contains factors in model Ml except market factor in month t, f ∗l,t

is a vector that contains factors in all models except Ml in month t, and Mktt is market

factor in month t. Marginal likelihood of equation (22) and (23) are called unrestricted and

restricted marginal likelihood, denoted as PrU,l and PrR,l, respectively.

For unrestricted regression (22), a key assumption is the prior for αl. It is assumed that

Pr(αl|βl,Σl) = MVN(0, klΣl), where Σl is covariance matrix of el,t and kl is prior assumed
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ratio. kl is informative about expected maximal Sharpe ratio that can be produced by

combining factors in Ml, denoted as Eprior
l (Smax). Specifically, k =

(κ2−1)S2
Mkt

Kl
, where Kl is

the dimension of ft, SMkt is the (observed) Sharpe ratio of the market and

κ = Eprior
l (Smax)/SMkt. (24)

Table 6 applies the BS-CZZ method and compares DC-Model with benchmarks. It re-

ports posterior probability Pr(Ml|D) given prior for αl expressed as κ in Equation (24).

Panel A reports results of the comparison between DC-Model and each one of benchmark

models by showing the posterior probability that DC-Model holds (Pr(MDC |D)). We esti-

mate κ as the ratio of equation (18) to the Sharpe ratio of the market portfolio. The former

measures the expected maximal Sharpe ratio that can be produced by combining factors. As

the estimated κ is about 3, we take κ around 3, that is, from 2 to 4. It is shown that under

all κ, the probability is nearly 1.0, which means that the data strongly favors DC-Model.

Panel B reports results of comparison among all models simultaneously and reports posterior

probability that each model holds (Pr(Ml|D)). Results show a similar pattern as that in

panel A. Under all κ, the probability that DC-Model holds is nearly 1.0, which means that

the DC-Model is strongly favored to all benchmarks.

4.4. Analysis on out-of-sample clustering

So far the performance of DC-Model has been based on IS clustering. That is, DC is the

clustering result with data in the full sample. Next, we analyze the performance of a factor

model that is based on OS clustering.

To get an OS clustering result, we divide the 37 years of data into 27 years of training

sample (1985-2011) and 10 years of testing sample. We get the OS data-driven clustering

result (OSDC) with data in the training sample and examine performance of the correspond-
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ing factor model (OSDC-Model) in the testing sample. Table 7 shows performance of the OS

maximal Sharpe ratio portfolios in the testing sample. Generally speaking, OSDC-Model

outperforms benchmarks. The average monthly return of 0.51% for OSDC-model is higher

than IC-Model, Car4 and FF5 models, Lasso, Ridge and Enet methods, but is lower than

FF3 and Q4 models. As for standard deviation, OSDC-Model has the lowest value of 1.36%,

smaller than the next best value of 1.47%, achieved by IC-Model. The Sharpe ratio delivers

perhaps the sharpest differences between OSDC-Model and benckmarks. OSDC-Model has

the Sharpe ratio of 1.30 In contrast, Sharpe ratios are only 0.97 for Q4 and 0.92 for FF5.

Besides, OSDC-Model has the lowest maximal drawdown (MDD). The MDD for DC-Model

is 9.29%, smaller than the next best value of 10.28%, achieved by IC-Model.

5. Further Applications of Cluster Analysis

In previous sections, we construct DC-Model with Fama-Macbeth regression and demon-

strate that the cluster analysis is useful to extract information from a large set of firm char-

acteristics. In this section, we demonstrate that the cluster analysis can be complementary

to existing IPCA method by Kelly et al. (2019) and neural networks.

5.1. Clustered factor model through IPCA

In this subsection, we construct a factor model through IPCA with complementary infor-

mation from DC. IPCA is a Principal Component Analysis for conditional factor models

proposed by Kelly et al. (2019), which further allows for time-varying risk exposures as

linear functions of firm characteristics. Specifically, let

rt = βt−1ft + et, (25)
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and

βt−1 = 1NΓ0 +Xt−1Γ + ut−1, (26)

where rt ∈ RN consists of returns of N stocks in month t. ft ∈ RJ consists of J latent factors.

βt−1 ∈ RN×J consists of risk exposures of N stocks on J latent factors. Xt−1 ∈ RN×I consists

of I firm characteristics of N stocks in month t − 1. Γ ∈ RI×J contains loadings of I firm

characteristics on J risk exposures. Its element in the ith row and the jth column, Γij, reflects

the impact of ith firm characteristics on jth risk exposure. 1N ∈ RN is an all-one vector and

Γ0 ∈ R1×J contains loadings of constant on J risk exposures. Its jth element Γ0j reflects

average of jth risk exposure across all stocks and months.

Given DC, we impose two restrictions in Equation (26). First, the kth exposure is a linear

function of firm characteristics in the kth cluster, while loadings on other firm characteristics

and constant are zero.

Γij = 0, if i /∈ Pk and j = 1, ..., K. (27)

In addition, we add one more exposure that is irrelevant to all firm characteristics.

Γi,K+1 = 0, for i = 1, ..., I. (28)

Next we construct IPCA model based on Equations (25) and (26), and IPCA with DC

(denoted as IPCA+DC model) based on additional restriction in Equation (27) and (28).

Estimation of IPCA model is based on value-weighted mean squared error (MSE), the first

order conditions of which are given as

f̂t = (Γ̂′X ′t−1Wt−1Xt−1Γ̂)−1Γ̂′X ′t−1Wt−1rt, (29)

and

vec(Γ̂′) = (
T∑
t=2

X ′t−1Wt−1Xt−1 ⊗ f̂tf̂ ′t)−1(
T∑
t=2

[Xt−1Wt−1 ⊗ f̂ ′t ]′rt), (30)
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which are solved recursively as in Kelly et al. (2019). The IPCA+DC model is solved

similarly with additional restrictions in Equation (27) and (28).

To make the estimation out-of-sample, at the end of each year, we use all data through

the end of the year to solve equations (29) and (30) with or without restrictions of Equation

(27) and (28) and get estimates of Γ̂ for both models. Then we calculate the OS realized

factor returns in each month of the following year with Equation (29). Note that factors in

month t are portfolios returns with individual stock weights equal to

(Γ̂′X ′t−1Wt−1Xt−1Γ̂)−1Γ̂′X ′t−1Wt−1,

which only depend on information up to time t-1. We adjust factor portfolios by making the

portfolios zero-investment through investing in risk-free assets and scaling the long position

to be $1.

In the next subsection, we compare performance of IPCA model and IPCA+DC model

with the OS estimates.

5.2. Performance of factors in IPCA and IPCA+DC models

In this subsection, we present IS and OS performance of IPCA factors and IPCA+DC factors.

Table 8 presents results. We order IPCA+DC factors according to the order of clusters

presented in the table 1. We order IPCA factors according to standard deviation. Note that

in IPCA+DC model when J = 10, the corresponding number of clusters is K = 9 because

IPCA+DC model has an additional market factor, which is the tenth factor (DC10) in table

8. Table shows that IPCA+DC factors outperform IPCA factors. The highest three values

of OS Sharpe ratio for IPCA factors are 0.60, 0.59, and 0.53, while those for IPCA+DC

factors are 0.81, 0.57 and 0.55, resp.

Table 9 presents the correlations between IPCA factors and IPCA+DC factors. It is
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shown that factors in each model are not highly correlated, which implies that there is little

redundant information in factors. Within IPCA+DC model, correlations between most fac-

tors is below 0.4. Moreover, the correlation between IPCA+DC10 factor (the market factor)

and IPCA1 factor is 0.99, implying that the market factor plays a role of the first princi-

ple component of IPCA. Besides, correlations between most IPCA factors and IPCA+DC

factors are not high. Most are below 0.3 (except correlations with IPCA1 factor).

To assess the overall model performance, we compare IPCA and IPCA+DC pair of models

with the number of clusters K from 1 to 14. Table 10 shows performance of maximal Sharpe

ratio portfolios. In most cases, IPCA+DC models perform better than IPCA models. The

average monthly returns of IPCA+DC models are higher when K = 3, 4, 5, 6, 8, 12, 13, 14,

which range from 0.53% to 0.82%. As for standard deviation, IPCA+DC model has lower

values when K = 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14. The Sharpe ratio deliver perhaps the sharpest

differences between IPCA+DC and IPCA models. The Sharpe ratio for IPCA+DC models

are higher in all cases except when K = 1, 2, 10. The maximal drawdown (MDD) are smaller

when K = 3, 4, 5, 6, 7. It implies that by adding some clustering structure when estimating

factor models, we can get a better spanned pricing model.

Table 11 presents the results of alpha tests. We use the same measure as table 5.

IPCA+DC models perform better than IPCA models whenK is large. WhenK = 9, 11, 12, 13, 14,

the average absolute alpha for IPCA+DC models range from 4.82% to 6.33%, smaller than

values achieved by the IPCA models, which range from 6.61% to 7.27%. For more than half

of the 94 anomalies, the IPCA+DC models achieve the smallest absolute alpha, compared

to less than half of anamalies for IPCA models. Among 94 anomalies, 34, 27, 28, 27, 22

anomalies have alpha with p-value smaller than 0.1 for the IPCA+DC models, compared to

39, 39, 38, 33 and 34 anomalies for the IPCA models. The number of anomalies for which

adjusted p-value is smaller than 0.1 and 0.05 follows a similar pattern.

Table 12 uses BS-CZZ method to compare IPCA models and IPCA+DC models with the
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same number of clusters k. Table presents posterior probability that each IPCA+DC model

holds versus prior expectation κ, which is defined in equation (24). In all cases except the

case when K ≤ 2 or K = 10, the posterior probability that IPCA+DC model holds is larger

than 0.5. In other words, IPCA+DC model has higher probability to be the right model

than IPCA model for most J .

5.3. Cross-sectional return prediction through neural networks

with clustering

In this section, we combine clustering with neural networks to predict cross-sectional stock

returns. We focus on neural networks for two reasons. First, it is a widely used machine

learning method and is found useful in predicting stock returns. Second, different from

IPCA, it can capture nonlinear relationship between firm characteristics and stock returns.

Previous section shows that clustering can enhance performance in a linear situation, that

is IPCA. Consequently, we want to examine whether clustering can enhance accuracy of

prediction in a non-linear situation, that is neural network.

5.3.1. Neural networks with clustering

A neural network recognizes the relationship between firm characteristics and stock returns

by mimicing the operations of a brain. It contains layers of interconnected neurons (details

are in Gu et al. (2020)). Each neuron accepts information through its connection with other

neurons and produces a signal by a multiple linear function. Then it feeds the signal into an

activation function that may be nonlinear and sends it to other neurons through connection.

We combine clustering with neural networks by limiting connection among neurons.

Specifically, we require that only neurons contain information of firm characteristics in the

same cluster are connected. Subfigure (a) of figure 3 shows an illustrative example of a neu-
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ral network with clustering, which contains three hidden layers with 36, 18 and 9 neurons.

Otherwise, a neuron in a network without clustering are connected to all neurons, which is

shown in subfigure (b). 2.

As it is impossible to find the optimal network by searching over uncountably many

architectures, we fix network architectures ex ante and estimate each of these. We consider

three network architectures with 1 hidden layer, which contains 9 neurons. As for activation

function, we use rectified linear unit (ReLU) according to Gu et al. (2020). In the following

two subsections, we compare performance of neural networks with and without clustering by

comparing out-of-sample performance of long-short portfolios and R square.

2Similar to Gu et al (2020), our analysis focuses on traditional ”feed-forward” neural networks, where
information is conveyed in one direction. In a ”feed-forward” neural network, a neuron acccepts information
only from neurons in the lower layer and sends information only to neurons to the higher layer.
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(a) Networks with clustering

(b) Networks without clustering

Figure 3: Neural networks with and without clustering
The figure provides a diagram of neural networks with and without clustering. Grey circles
denote the input layer (firm characteristics), and dark red circles denote the output layer.

5.3.2. Performance of long-short portfolios

In this section, we compare performance of neural networks with and without clustering by

comparing performance of long-short portfolios.

We construct the long-short portfolios by longing stocks with the highest 20% predicted

returns and shorting stocks with the lowest 20% predicted returns. To make the perfor-

mance out-of-sample, we divided the 37 years of data into 18 years of training sample (Jan.
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1985 - Dec. 2002) and the reserved sample, and examine performance in the reserved sam-

ple. Performance varies with hyperparameters as they control model complexity (Gu et al.,

2020). To show robustness of the results, performances under various hyperparameters are

presented.

Panel A of table 13 shows results. Each row shows performance under a hyperparameter

value. Hyper-parameters include learning rate (lr), patience of early stopping algorithm (p),

and batch size (batch size). Illustration of those hyper-parameters can be found in Gu et al.

(2020). The learning rate is fixed at 0.001, and other hyperparameters are in a grid of values

batchsize = {100000, 15000}, p = {10, 20, 30}. Panel A of table 13 shows that the networks

with clustering have higher Sharpe ratio than the networks without clustering in most cases.

For example, when batch size is 10000 and patience is 20, the Sharpe ratio for network with

clustering is 0.56, while is 0.35 for network without clustering. The pattern is similar when

hyperparameters take other values. If we choose the optimal hyperparameter with R square

in the valiadation sample, the optimal hyperparameter is {batchsize = 15000, patience = 10}

for both networks with and without clustering. When the networks have 1 hidden layer, the

networks with clustering achieve higher Sharpe ratios when patience is larger than 10. In

those cases, the Sharpe ratios for networks with clustering are 1.70, 1.90, 1.75 and 1.79 for

different hyperparameters. While the networks with clustering achieve 1.16, 1.42, 1.72 and

1.64. The gap widen when the networks have 2 or 3 hidden layers. When the networks have

2 or 3 hidden layers, the network with clustering have higher Sharpe ratios under all values

of hyperparameters.

5.3.3. R-squared

In this section, we compare performance of neural networks with and without clustering by

comparing R-squared.

According to Gu et al. (2020), R-squared serves as the objective function when training
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models.

R2 = 1−
∑T

t=1

∑N
i=1(rn,t − r̂n,t)2∑T

t=1

∑N
i=1 r

2
n,t

, (31)

where rn,t is stock return of firm n in month t and r̂n,t is predicted stock return.

Table 14 shows results. The networks with clustering have higher R square than the

networks without clustering. Specifically, the networks with clustering achieve positive R

square in most cases while the networks without clustering achieve negative R square.

6. Robustness Tests

In previous results, we use full sample and do not drop small firms. To avoid that the results

are driven by small firms, we construct portfolios in equation (11) with NYSE breakpoints

and repeat all tests. Results are in table 15 to 17 and all results are robust.

Table 15 presents performance of factors constructed with NYSE breakpoints. Results

are consistent with the result we get when construct factors with full-sample breakpoints. By

splitting Trading frictions and Momentum in IC, we get factors with higher Sharpe ratios.

Table 16 shows performance of OS maximal Sharpe ratio portfolios. DC-Model has the

highest average monthly return, the lowest standard deviation and thus the highest Sharpe

ratio. In addition, it has the lowest MDD. Table 17 applies the BS-CZZ method and reports

posterior probability Pr(Mi|D) versus prior expectation κ in equation (24). It is shown that

the DC-Model has the highest probability to be the true model whether compared with each

of benchmarks or all benchmarks simultaneously.

7. Conclusion

In this paper, we propose a new approach to construct a factor model from firm character-

istics. Similar to IPCA model of Kelly et al. (2019), our model allows for latent factors
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and time-varying loadings by introducing observable characteristics that instrument for the

unobservable dynamic loadings. Instead of using principal component analysis to reduce

the dimensionality of the return covariance matrix, we use a version of hierarchical cluster

analysis to blocklize the cross-sectional firm characteristics covariance matrix, and hence

effectively reduce the dimension of the factor model. As each of our factors are correlated to

a cluster of firm characteristics, our factors are economically interpretable. Besides, we find

the optimal number of clusters endogeneously.

The factor model based on our approach outperforms other benchmark models through

various statistical and model comparison tests. Furthermore, viewed as a preprocessor of

data, our approach complements IPCA and machine learning methods.
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A. Appendix

In this appendix, we prove the convergence of our method. Denote β̂kt = (β̂0,k,t, β̂1,k,t, ..., βIk,k,t)
′

with Ik the number of characteristics in the k-th cluster. As Equation (5), for each cluster

k, normalized X̂t = (X̂1t, ..., X̂Ik,t),

X̂it = Fkt + ei,k,t (A1)

with ei,k,t the homogeneous measurement errors with standard deviation σek,t. Here we as-

sume the cross-sectional standard deviation of measurement errors are the same across the

characteristics i = 1, ..., Ik within each cluster. Let σFk
be the cross-sectional standard devi-

ation for the single hidden factor Fk,t. The first step OLS regression, Equation (9), can be

written as

Rn
t = β̂0,k,t +

Ik∑
i=1

β̂i,k,t(F
n
k,t−1 + eni,k,t−1) + εnt

= β̂0,k,t +

Ik∑
i

β̂i,k,tF
n
k,t−1 +

Ik∑
i=1

β̂i,k,te
n
i,k,t−1 + εnt . (A2)

The OLS predictive regression consists of measurement error term
∑Ik

i=1 β̂i,k,te
n
i,k,t−1. We

will show that this variance of this measurement error term decreases with Ik under certain

technical conditions.

Assume the unbiased estimator β̂0
k,t for

Rn
t = β̂0

0,k,t + β̂0
k,tF

n
k,t−1 + νnt . (A3)

Obviously,

|
Ik∑
i=1

β̂i,k,t| < |β̂0
k,t|.

We assume the cross-sectional standard deviation of Fk is larger than that of measurement
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errors, σek, which guarantees that the factor has the largest eigenvalue and β̂i,k,t are of the

same sign for all i = 1, ..., Ik. Hence

Ik∑
i=1

|β̂i,k,t| < |β̂0
k,t|,

and the cross-sectional variance of measurement error in Equation (A2) is given by

V ar(

Ik∑
i=1

β̂i,k,tei) =

Ik∑
i=1

β̂2
i,k,tσ

2
e ≤ (

Ik∑
i=1

β̂i,k,t)
2σ2

e ≤ (β̂0
k,t)

2σ2
e , (A4)

which decreases monotonically with Ik. This says that when there is measurement error

in explanatory variable, the more independent measurements the better. The additional

explanatory variables serve as instrumental variables. Note For Ik → +∞, the measurement

error variance disappears. Hence, our 3-step regression approach is consistent.
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Table 1: DC and IC

Table presents DC and IC. Panel A presents number of firm characteristics in each cluster
of DC and IC. The darkness of color represents how large the value is. For example, value
in the first row and first column is 5, meaning that there are 5 firm characteristics in IC1
cluster and in DC1 cluster. We use DC1-DC9 as identification (ID) for 9 clusters in DC, and
IC1-IC6 as ID for 6 clusters in IC. Clusters corresponding to those IDs are in Panel B and
C.

Panel A: # firm characteristics in DC and IC

DC1 DC2 DC3 DC4 DC5 DC6 DC7 DC8 DC9

IC1 5 5 4 2 0 0 0 0 0
IC2 0 0 0 0 3 2 0 4 0
IC3 0 0 0 0 0 0 8 0 0
IC4 0 0 0 0 0 0 9 4 0
IC5 0 0 0 0 0 0 18 15 3
IC6 0 0 0 0 0 0 3 9 0

Panel B: clusters in DC

Cluster ID Cluster

DC1 Trading frictions (measured by volume)
DC2 Illiquidity
DC3 Trading frictions (measured by return)
DC4 Beta
DC5 Long-run momentum
DC6 Short-run momentum
DC7 Profitability
DC8 Growth
DC9 Accruals

Panel C: clusters in IC

Cluster ID Cluster

IC1 Trading frictions
IC2 Momentum
IC3 Value
IC4 Profitability
IC5 Intangible
IC6 Investment
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Table 2: Performance of DC and IC factors

Table presents performance of factors in DC-Model and IC-Model. Panel A reports performance of factors constructed on
firm characteristics in Trading frictions in IC. Those factors include trading frictions factor in IC-Model and 4 factors in
DC-Model. Panel B reports performance of factors constructed on firm characteristics in Momentum in IC. Those factors
include momentum factor in IC-Model, long-run momentum factor and short-run momentum factor in DC-Model. Panel C
reports performance of other factors in IC-Model and DC-Model. Performance measures include sample mean, sample standard
deviation, annualized Sharpe ratio, and maximum drawdown (MDD) of monthly return. The sample period is from Jan. 1990
through Dec. 2021.

Cluster Mean(%) S.D.(%) Sharpe MDD(%)

Panel A: Trading frictions cluster

IC1 Trading frictions 0.03 1.55 0.07 24.50
DC1 Trading frictions (measured by volume) 0.10 1.05 0.32 15.17
DC2 Illiquidity 0.19 1.94 0.34 22.96
DC3 Trading frictions (measured by return) 0.10 3.00 0.11 51.21
DC4 Beta 0.11 2.28 0.16 25.84

Panel B: Momentum cluster

IC2 Momentum 0.26 2.10 0.42 28.40
DC5 Short− run momentum 0.17 1.58 0.36 20.49
DC6 Long − run momentum 0.38 1.57 0.83 13.66

Panel C: Other clusters

IC3 V alue 0.19 1.54 0.43 22.35
IC4 Profitability 0.22 1.11 0.70 12.87
IC5 Intangibles 0.14 1.24 0.40 11.07
IC6 Investment 0.10 1.13 0.32 18.65
DC7 Profitability 0.27 1.12 0.85 10.38
DC8 Growth 0.09 1.05 0.29 23.38
DC9 Accruals 0.08 1.32 0.20 28.89
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Table 3: Correlation of factors in DC-Model and IC-Model

Table presents correlations of factors in DC-Model and IC-Model. Each column or each row represents a factor corresponding
to a cluster among DC1-DC9 and IC1-IC6. Clusters corresponding to DC1-DC9 and IC1-IC6 are in the bottom of table 1. The
sample period is from Jan. 1990 through Dec. 2021.

factors in C model factors in NC model
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6

1 1.00 0.16 0.19 -0.06 0.02 0.06 0.04 0.19 -0.12 0.04 0.04 0.07 -0.02 0.13 0.19
2 0.16 1.00 0.44 0.16 -0.05 0.23 0.09 0.15 -0.20 -0.54 0.06 0.27 0.28 0.19 -0.10
3 0.19 0.44 1.00 0.20 0.01 0.21 -0.10 0.27 -0.43 -0.42 -0.09 0.59 0.32 0.30 -0.25
4 -0.06 0.16 0.20 1.00 -0.08 -0.18 -0.02 0.03 -0.15 -0.40 -0.22 0.13 0.19 0.02 -0.11

factors in 5 0.02 -0.05 0.01 -0.08 1.00 -0.01 -0.21 0.03 0.03 0.13 0.75 0.02 -0.10 -0.09 -0.05
C model 6 0.06 0.23 0.21 -0.18 -0.01 1.00 0.07 -0.04 0.08 -0.11 0.40 0.14 0.09 0.09 -0.10

7 0.04 0.09 -0.10 -0.02 -0.21 0.07 1.00 0.08 -0.12 0.05 -0.03 -0.12 0.44 0.35 0.22
8 0.19 0.15 0.27 0.03 0.03 -0.04 0.08 1.00 -0.17 -0.08 0.08 -0.01 0.13 0.54 0.31
9 -0.12 -0.20 -0.43 -0.15 0.03 0.08 -0.12 -0.17 1.00 0.01 0.16 -0.34 -0.40 0.02 0.01
1 0.04 -0.54 -0.42 -0.40 0.13 -0.11 0.05 -0.08 0.01 1.00 0.05 -0.19 -0.11 -0.18 0.16
2 0.04 0.06 -0.09 -0.22 0.75 0.40 -0.03 0.08 0.16 0.05 1.00 -0.06 -0.15 0.01 0.08

factors in 3 0.07 0.27 0.59 0.13 0.02 0.14 -0.12 -0.01 -0.34 -0.19 -0.06 1.00 0.26 0.10 -0.26
NC model 4 -0.02 0.28 0.32 0.19 -0.10 0.09 0.44 0.13 -0.40 -0.11 -0.15 0.26 1.00 0.06 -0.10

5 0.13 0.19 0.30 0.02 -0.09 0.09 0.35 0.54 0.02 -0.18 0.01 0.10 0.06 1.00 0.04
6 0.19 -0.10 -0.25 -0.11 -0.05 -0.10 0.22 0.31 0.01 0.16 0.08 -0.26 -0.10 0.04 1.00
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Table 4: Performance of maximal Sharpe ratio portfolios

The table reports performance of maximal Sharpe ratio portfolios for DC-Model and factor
models, including IC-Model, FF3, Car4, Q4, FF5, and cross-sectional stock return predic-
tion method, including Lasso, Ridge and Enet. For 6 factor models, The returns of max-
imal Sharpe ratio portfolios are constructed on a purely out-of-sample basis by using the
mean and covariance matrix of estimated factors through t and tracking the post-formation
t + 1 return. For cross-sectional return prediction method, the returns of portfolios are
constructed based on return prediction with panel regression using data through t, where
hyper-parameters are chosen with cross-validation, and tracking the post-formation t + 1 re-
turn. In the portfolios, 50% stocks with the highest return prediction are in the long position
and the rest are in the short position. Performance measures include sample mean, sample
standard deviation, annualized Sharpe ratio and maximum drawdown (MDD) of monthly
return. The sample period is from Jan. 1990 through Dec. 2021.

Models
Performance of OS maximal Sharpe ratio portfolio

Mean(%) S.D.(%) Sharpe MDD(%)

DC 0.53 1.38 1.34 8.22
IC 0.37 1.43 0.90 17.88
FF3 0.37 2.60 0.49 33.38
Car4 0.42 2.67 0.55 30.39
Q4 0.31 1.60 0.68 22.68
FF5 0.40 1.51 0.91 17.12
Lasso 0.33 4.22 0.27 36.45
Ridge 0.47 4.71 0.35 40.29
Enet 0.41 4.21 0.34 36.41
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Table 5: Alpha Test

The table reports results of alpha tests. For model l, We run regression ft = αl + βlFl,t + el,t,
where ft ∈ RN are test portfolios returns in month t, Fl,t are factors in model l in month t. We
test 6 models, DC-Model, IC-Model, FF3, Car4, Q4 and FF5. We use 2 sets of ft in Panel A and
Panel B, respectively. In Panel A, the test portfolios returns are 94 anomalies. In Panel B, the test
portfolio returns are 47 anomalies: For each factor in DC and IC models, the five anomalies which
are most highly correlated with the factor are eliminated. This procedure leaves 47 anomalies in
Panel B. The table reports the average absolute alpha, the number of anomalies for which DC
model produces the smallest absolute alpha among the models being compared in the table, the
number of anomalies for which p-value is smaller than 0.1, and 0.05, the number of anomalies
for which adjusted p-value is smaller than 0.1, and 0.05. Adjusted p-value is adjusted for 5-lags
auto-correlation in error term {el,t}Tt=1. The sample period is from Jan. 1990 through Dec. 2021.

DC IC FF3 Car4 Q4 FF5

Panel A. 94 anomalies

Avg. |α| (%) 0.08 0.10 0.14 0.15 0.13 0.13
# min |α| 27 22 16 10 9 10
# p < 0.1 17 22 31 39 38 52
# p < 0.05 5 13 21 32 28 39
# padj < 0.1 11 17 26 34 38 47
# padj < 0.05 6 8 18 22 26 36

Panel B. 47 anomalies

Avg. |α| (%) 0.22 0.24 0.26 0.26 0.25 0.24
# min |α| 15 7 2 10 4 9
# p < 0.1 19 22 21 23 26 25
# p < 0.05 16 17 20 19 24 22
# padj < 0.1 16 16 21 21 23 23
# padj < 0.05 15 13 18 19 21 18
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Table 6: BS-CZZ method: posterior probability versus prior expectation

The table applies the BS-CZZ method and compares DC-Model with benchmarks. It reports
posterior probability Pr(Ml|D) versus prior expectation κ. Panel A compares the DC-Model
with each of benchmarks and reports posterior probability that the DC-Model holds. Panel
B compares all models simultaneously and reports posterior probability that each model
holds. The sample period is from Jan. 1990 through Dec. 2021.

κ = 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Panel A: Compare the DC-Model with each of benchmarks

IC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FF3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Car4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Q4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FF5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel B: Compare the DC-Model with benchmarks simultaneously

DC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
IC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FF3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Car4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FF5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 7: OS Clustering: Performance of maximal Sharpe ratio portfolios

The table reports performance of maximal Sharpe ratio portfolios for OSDC-Model and
factor models, including IC-Model, FF3, Car4, Q4, FF5, and cross-sectional stock return
prediction method, including Lasso, Ridge and Enet. For 6 factor models, The returns of
maximal Sharpe ratio portfolios are constructed on a purely out-of-sample basis by using the
mean and covariance matrix of estimated factors through t and tracking the post-formation
t + 1 return. For cross-sectional return prediction method, the returns of portfolios are
constructed based on return prediction with panel regression using data through t, where
hyper-parameters are chosen with cross-validation, and tracking the post-formation t + 1
return. In the portfolios, 50% stocks with the highest return prediction are in the long
position and the rest are in the short position. Performance measures include sample mean,
sample standard deviation, annualized Sharpe ratio and maximum drawdown (MDD) of
monthly return. The sample period is from Jan. 2012 through Dec. 2021.

Model Performance of maximal Sharpe ratio portfolio

Mean(%) S.D.(%) Sharpe MDD(%)

OSDC 0.51 1.36 1.30 9.29
IC 0.30 1.47 0.71 10.28
FF3 0.62 2.60 0.83 21.50
Q4 0.63 2.25 0.97 32.25
Car4 0.43 1.92 0.77 22.09
FF5 0.42 1.58 0.92 21.06
Lasso 0.05 2.61 0.07 16.38
Ridge 0.15 2.84 0.18 14.79
Enet 0.12 2.58 0.16 12.68
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Table 8: Performance of factors in IPCA and IPCA+DC

Table presents performance of factors in IPCA and IPCA+DC models. Each row for IPCA+DC shows performance of factors
corresponding to the cluster ID. The relationship between cluster and cluster ID is in Panel B of table 1. IPCA+DC10 represent
the factor to which exposure is not correlated to firm characteristics. IPCA1 - IPCA10 represent 10 factors in IPCA model
and are ordered according to standard deviation. Performance measures include sample mean, sample standard deviation,
annualized Sharpe ratio, and maximum drawdown (MDD) of monthly return. The sample period is from Jan. 1990 through
Dec. 2021.

IPCA+DC IPCA

Factor Mean(%) S.D.(%) Sharpe MDD(%) Mean(%) S.D.(%) Sharpe MDD(%)

1 0.06 1.93 0.12 37.26 0.72 4.92 0.51 58.83
2 0.09 1.99 0.16 45.78 0.34 2.21 0.53 23.33
3 0.47 2.99 0.55 35.70 0.21 1.90 0.39 26.99
4 0.13 2.97 0.16 37.92 0.11 1.94 0.20 38.71
5 0.27 2.57 0.37 24.92 0.25 2.15 0.40 38.77
6 0.74 3.19 0.81 40.23 0.11 1.79 0.21 22.27
7 0.19 2.27 0.28 43.25 0.22 1.61 0.47 15.42
8 0.13 1.71 0.27 19.74 0.37 2.15 0.59 32.52
9 0.05 1.29 0.14 19.44 0.34 1.98 0.60 17.53
10 0.74 4.48 0.57 53.70 0.01 1.97 0.02 43.16
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Table 9: Correlation of factors in IPCA and IPCA+DC

Table presents correlations of factors in IPCA and IPCA+DC models with OS estimates. Each column or each row represents a factor corresponding to the cluster ID. The
relationship between cluster and cluster ID is in Panel B of table 1. IPCA+DC10 represent the factor to which exposure is not correlated to firm characteristics. IPCA1 - 10
represent 10 factors in IPCA model. The sample period is from Jan. 1990 through Dec. 2021.

IPCA+DC IPCA

IPCA+DC1 2 3 4 5 6 7 8 9 10 IPCA1 2 3 4 5 6 7 8 9 10

IPCA+DC1 1.00 0.12 -0.41 0.17 0.14 -0.01 0.13 0.07 0.06 0.33 0.33 -0.14 0.06 -0.24 0.00 0.07 0.03 -0.28 -0.02 -0.21
2 0.12 1.00 -0.05 0.05 -0.01 0.08 0.14 0.27 -0.02 0.05 0.05 -0.11 0.02 0.00 -0.03 0.11 0.17 -0.22 0.16 0.12
3 -0.41 -0.05 1.00 -0.26 -0.19 0.01 0.07 0.14 -0.06 -0.51 -0.52 0.23 0.07 0.09 0.19 0.16 -0.07 0.35 0.10 0.39
4 0.17 0.05 -0.26 1.00 0.23 -0.17 -0.09 -0.04 0.16 0.57 0.63 -0.04 0.04 -0.15 0.03 -0.23 -0.40 -0.12 0.06 -0.07
5 0.14 -0.01 -0.19 0.23 1.00 -0.61 -0.18 0.01 -0.01 0.31 0.32 -0.25 -0.02 0.04 0.09 -0.05 -0.09 0.48 -0.17 0.11
6 -0.01 0.08 0.01 -0.17 -0.61 1.00 0.15 0.10 -0.02 -0.11 -0.14 0.36 0.18 0.15 0.01 0.17 0.31 -0.39 0.25 -0.34
7 0.13 0.14 0.07 -0.09 -0.18 0.15 1.00 0.12 0.01 -0.13 -0.14 -0.01 0.23 -0.06 -0.35 0.26 0.17 -0.22 0.37 -0.01
8 0.07 0.27 0.14 -0.04 0.01 0.10 0.12 1.00 -0.05 0.00 -0.03 -0.05 0.07 0.08 -0.02 0.07 0.27 0.01 0.04 -0.05
9 0.06 -0.02 -0.06 0.16 -0.01 -0.02 0.01 -0.05 1.00 0.01 0.01 -0.14 0.13 -0.18 0.02 -0.14 -0.05 -0.06 0.09 -0.01
10 0.33 0.05 -0.51 0.57 0.31 -0.11 -0.13 0.00 0.01 1.00 0.99 -0.14 -0.02 -0.12 0.01 -0.14 0.06 -0.03 -0.12 -0.11

IPCA1 0.33 0.05 -0.52 0.63 0.32 -0.14 -0.14 -0.03 0.01 0.99 1.00 -0.13 -0.03 -0.13 0.03 -0.16 -0.05 -0.03 -0.11 -0.11
2 -0.14 -0.11 0.23 -0.04 -0.25 0.36 -0.01 -0.05 -0.14 -0.14 -0.13 1.00 0.15 -0.01 0.00 -0.14 -0.05 0.03 0.02 -0.08
3 0.06 0.02 0.07 0.04 -0.02 0.18 0.23 0.07 0.13 -0.02 -0.03 0.15 1.00 -0.14 -0.13 -0.02 0.03 0.00 0.01 -0.12
4 -0.24 0.00 0.09 -0.15 0.04 0.15 -0.06 0.08 -0.18 -0.12 -0.13 -0.01 -0.14 1.00 -0.10 0.09 0.13 0.02 -0.02 0.03
5 0.00 -0.03 0.19 0.03 0.09 0.01 -0.35 -0.02 0.02 0.01 0.03 0.00 -0.13 -0.10 1.00 -0.03 -0.16 0.17 -0.09 0.08
6 0.07 0.11 0.16 -0.23 -0.05 0.17 0.26 0.07 -0.14 -0.14 -0.16 -0.14 -0.02 0.09 -0.03 1.00 0.19 0.01 0.17 -0.03
7 0.03 0.17 -0.07 -0.40 -0.09 0.31 0.17 0.27 -0.05 0.06 -0.05 -0.05 0.03 0.13 -0.16 0.19 1.00 -0.15 0.04 -0.10
8 -0.28 -0.22 0.35 -0.12 0.48 -0.39 -0.22 0.01 -0.06 -0.03 -0.03 0.03 0.00 0.02 0.17 0.01 -0.15 1.00 -0.21 0.23
9 -0.02 0.16 0.10 0.06 -0.17 0.25 0.37 0.04 0.09 -0.12 -0.11 0.02 0.01 -0.02 -0.09 0.17 0.04 -0.21 1.00 0.00
10 -0.21 0.12 0.39 -0.07 0.11 -0.34 -0.01 -0.05 -0.01 -0.11 -0.11 -0.08 -0.12 0.03 0.08 -0.03 -0.10 0.23 0.00 1.00
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Table 10: Performance of maximal Sharpe ratio portfolio of IPCA+DC and IPCA models

The table compares maximal Sharpe ratio portfolios performance of IPCA+DC model and
IPCA model for each number of cluster K. Performance measures include sample mean,
sample standard deviation, annualized Sharpe ratio and maximum drawdown (MDD) of
monthly return. The sample period is from Jan. 1990 through Dec. 2021.

K IPCA+DC IPCA

Mean (%) S.D. (%) Sharpe MDD (%) Mean (%) S.D. (%) Sharpe MDD (%)

1 0.49 4.46 0.38 61.77 0.58 2.90 0.69 40.97
2 0.65 3.50 0.64 43.84 0.73 2.90 0.87 37.52
3 0.74 2.37 1.09 30.38 0.58 2.83 0.71 33.29
4 0.70 2.18 1.11 21.97 0.54 2.60 0.72 37.08
5 0.72 2.09 1.19 17.74 0.64 2.37 0.94 25.71
6 0.65 2.00 1.12 18.31 0.61 2.29 0.93 25.29
7 0.56 1.75 1.11 20.31 0.57 2.08 0.94 23.53
8 0.53 1.76 1.05 18.88 0.53 2.05 0.89 18.30
9 0.71 1.68 1.46 22.25 0.72 1.86 1.34 22.08
10 0.73 1.68 1.50 19.91 0.75 1.59 1.64 13.39
11 0.71 1.44 1.72 16.68 0.72 1.55 1.61 11.65
12 0.78 1.51 1.79 17.45 0.71 1.54 1.61 11.85
13 0.82 1.62 1.75 17.54 0.73 1.49 1.69 12.01
14 0.78 1.46 1.85 15.42 0.67 1.50 1.54 12.61
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Table 11: Alpha test between IPCA+DC and IPCA models

The table uses alpha test to compare IPCA and IPCA+DC model with each number of clusters K. We run regression
ft = αl + βlFl,t + el,t, where ft are 94 managed portfolio returns and Ft are model factors. For each model, the table reports
the average absolute alpha, the number of anomalies for which IPCA+DC produces the smaller absolute alpha, the number of
anomalies for which p-value is smaller than 0.1, and 0.05, the number of anomalies for which adjusted p-value is smaller than
0.1, and 0.05. Adjusted p-value is adjusted for 5-lags auto-correlation in error term {el,t}Tt=1. The sample period is from Jan.
1990 through Dec. 2021.

Statistics Model K

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Average |α| (%) IPCA+DC 10.21 9.83 10.08 10.08 10.76 10.75 9.22 8.32 6.33 6.54 5.29 5.33 5.36 4.82
IPCA 8.04 6.94 6.97 7.40 6.45 6.45 6.34 6.70 6.61 6.47 7.27 7.03 6.77 6.66

# min |α| IPCA+DC 30 23 25 20 21 19 28 31 56 54 56 58 62 57
IPCA 64 71 69 74 73 75 66 63 38 40 38 36 32 37

# p < 0.1 IPCA+DC 57 55 56 57 56 57 52 45 34 36 27 28 27 22
IPCA 54 35 38 39 36 34 34 38 39 28 39 38 33 34

# p < 0.05 IPCA+DC 45 48 50 49 52 52 47 40 26 25 23 17 18 13
IPCA 43 27 32 34 29 24 23 29 32 20 29 30 24 25

# padj < 0.1 IPCA+DC 53 50 48 46 50 49 48 39 31 31 24 26 24 18
IPCA 51 34 35 36 35 30 30 34 37 24 34 36 28 28

# padj < 0.05 IPCA+DC 43 37 36 37 37 39 39 34 21 20 22 15 17 12
IPCA 38 28 29 32 29 24 21 26 24 18 24 27 21 23

45



Table 12: BS-CZZ method for IPCA: posterior probability versus prior expectation

The table uses BS-CZZ method to compare IPCA and IPCA+DC model for each number
of clusters K. Table presents posterior probability that IPCA+DC model holds versus prior
expectation κ, which is defined in equation (24). The sample period is from Jan. 1990
through Dec. 2021.

K κ

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
2 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.88 0.88 0.88 0.88
7 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05
11 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

46



Table 13: Sharpe of long-short portfolios for neural networks with and without clustering

The table reports Sharpe ratio of long-short portfolios for neural networks with and with-
out clustering. We compare 6 models in total: networks with or without clustering and
1-3 hidden layers. Each row shows performance under a hyperparameter value. Hyper-
parameters include learning rate (lr), patience of early stopping algorithm (p), and batch
size (batch size). Illustration of those hyper-parameters can be found in Gu et al. (2020).
The learning rate is fixed at 0.001, and other hyperparameters are in a grid of values
batchsize = {100000, 15000}, p = {10, 20, 30}. The sample period is from Jan. 2012 through
Dec. 2021.

Hyper-parameter Without clustering With clustering

batch size patience NN3 NN4 NN5 NN3 NN4 NN5

10000 10 1.35 1.46 1.38 1.07 1.80 1.83
10000 20 1.16 1.66 1.27 1.70 2.21 1.96
10000 30 1.42 1.43 1.32 1.90 2.31 2.26
15000 10 1.75 1.37 1.45 1.38 1.75 1.87
15000 20 1.72 1.38 1.20 1.75 2.15 1.91
15000 30 1.64 1.31 1.79 1.79 2.10 2.16

47



Table 14: R square for neural networks with and without clustering

The table reports out-of-sample R square for neural networks with and without clustering.
We compare 6 models in total: networks with or without clustering and 1-3 hidden lay-
ers. Each row shows performance under a hyperparameter value. Hyper-parameters include
learning rate (lr), patience of early stopping algorithm (p), and batch size (batch size). Illus-
tration of those hyper-parameters can be found in Gu et al. (2020). The learning rate is fixed
at 0.001, and other hyperparameters are in a grid of values batchsize = {100000, 15000}, p =
{10, 20, 30}. The sample period is from Jan. 2012 through Dec. 2021.

Hyper-parameter Without clustering With clustering

batch size patience NN3 NN4 NN5 NN3 NN4 NN5

10000 10 -0.32 -0.45 -0.28 0.28 0.11 0.27
10000 20 -0.56 -0.52 -0.60 0.16 0.04 -0.01
10000 30 -0.32 -0.68 -0.69 0.08 -0.15 -0.09
15000 10 -0.24 -0.54 -0.30 0.40 0.17 0.19
15000 20 -0.29 -0.79 -0.66 0.31 0.12 0.39
15000 30 -0.38 -1.08 -1.29 0.30 0.11 0.14
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Table 15: Performance of DC and IC factors with NYSE breakpoints

Table presents performance of factors in DC-Model and IC-model constructed with NYSE
breakpoints. Panel A reports performance of factors constructed on firm characteristics in
Trading frictions in IC. Those factors include trading frictions factor in IC-Model and 4
factors in DC-Mmodel. Panel B reports performance of factors constructed on firm charac-
teristics in Momentum in IC. Those factors include momentum factor in IC-Model, long-run
momentum factor and short-run momentum factor in DC-Model. Panel C reports perfor-
mance of other factors in IC-Model and DC-Model. Performance measures include sample
mean, sample standard deviation, annualized Sharpe ratio, and maximum drawdown (MDD)
of monthly return. The sample period is from Jan. 1990 through Dec. 2021.

Cluster Mean(%) S.D.(%) Sharpe MDD(%)

Panel A: Trading frictions cluster

IC1 Trading frictions 0.00 1.35 0.00 20.08
DC1 Trading frictions (measured by volume) 0.05 0.99 0.16 15.59
DC2 Illiquidity 0.09 1.66 0.19 22.21
DC3 Trading frictions (measured by return) 0.01 1.85 0.02 36.38
DC4 Beta 0.14 2.53 0.19 27.50
Panel B: Momentum cluster

IC2 Momentum 0.25 2.01 0.44 31.35
DC5 Short− run momentum 0.38 1.57 0.83 17.36
DC6 Long − run momentum 0.16 1.75 0.33 22.64

Panel C: Other clusters

IC3 V alue 0.22 1.62 0.47 20.03
IC4 Profitability 0.17 1.07 0.55 11.61
IC5 Intangibles 0.13 1.22 0.36 11.42
IC6 Investment 0.10 1.09 0.31 18.20
DC7 Profitability 0.28 1.24 0.77 12.65
DC8 Growth 0.09 1.10 0.27 23.37
DC9 Accrual 0.07 1.19 0.21 24.37

49



Table 16: Performance of OS maximal Sharpe ratio portfolios with NYSE breakpoints

The table reports performance of OS maximal Sharpe ratio portfolios for DC-Model and
factor models, including IC-Model, FF3, Car4, Q4, FF5, and cross-sectional stock return
prediction method, including Lasso, Ridge and Enet. Portfolios are constructed with NYSE
breakpoints. For 6 factor models, The returns of OS maximal Sharpe ratio portfolios are
constructed on a purely out-of-sample basis by using the mean and covariance matrix of esti-
mated factors through t and tracking the post-formation t + 1 return. For cross-sectional re-
turn prediction method, the returns of portfolios are constructed by using prediction through
t, where hyper-parameters are chosen with cross-validation, and tracking the post-formation
t + 1 return. In the portfolios, stocks with return prediction higher than 50% percentile of
return prediction in NYSE sample are in the long position and the rest are in the short po-
sition. Performance measures include sample mean, sample standard deviation, annualized
Sharpe ratio and maximum drawdown (MDD) of monthly return. J is number of factors in
each model. The sample period is from Jan. 1990 through Dec. 2021.

Models K
Performance of OS maximal Sharpe ratio portfolio

Mean(%) S.D.(%) Sharpe MDD(%)

DC 9 0.56 1.43 1.36 8.08
IC 6 0.44 1.54 0.99 18.34
FF3 3 0.39 2.42 0.56 37.64
Car4 4 0.43 2.46 0.60 32.03
Q4 4 0.30 1.62 0.64 24.62
FF5 5 0.38 1.47 0.91 20.15
Lasso 1 0.37 3.60 0.35 28.73
Ridge 1 0.43 4.02 0.37 36.21
Enet 1 0.38 3.59 0.36 27.98
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Table 17: BS-CZZ method for models with NYSE breakpoints: posterior probability versus
prior expectation

The table applies the BS-CZZ method and compares DC-Model with benchmarks with NYSE
breakpoints. It reports posterior probability Pr(Ml|D) versus prior expectation κ, which
is defined in equation (24). Panel A compares the DC model with each of benchmarks
and reports posterior probability that the DC model holds. Panel B compares all models
simultaneously and reports posterior probability that each model holds. The sample period
is from Jan. 1990 through Dec. 2021.

κ = 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

Panel A: Compare the DC model with each of benchmarks

IC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FF3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Car4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Q4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FF5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel B: Compare the DC model with benchmarks simultaneously

DC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
IC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FF3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Car4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FF5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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