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Using forecast dispersion to proxy for the firm-level belief distribution, Fama-MacBeth

(FMB) tests show that the interaction β ×D significantly absorbs cross-sectional mis-
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1 Introduction

Empirical tests typically find a flatter security market line (SML) than predicted by conven-

tional asset pricing models. This “beta anomaly” finding is consistent in both cross-sectional

and time-series analyses (Fama and French (2004) discuss the classics1 More recently Baker

et al. (2011), Frazzini and Pedersen (2014), and Hong and Sraer (2016)). The puzzling

beta anomaly motivates the search for additional risk factors, most prominently in Fama

and French (1992), Hou et al. (2015), Fama and French (2016), and Stambaugh and Yuan

(2017), to explain why some stocks earn high returns and others earn low returns. To the

extent that proposed factors represent omitted variables from the true cross-sectional returns

model, we should expect that including such factors in empirical tests will help resolve the

beta anomaly. Thus far, this is not the case.

Recent literature has found that the beta anomaly is mitigated (or magnified) across

mutually exclusive periods. Savor and Wilson (2014) document the predictive power of

the market beta on macroeconomic announcement days. On trading days with scheduled

FOMC announcements or labor market/inflation report statistical releases, the market earns

high returns, and the single-factor CAPM predicts cross-sectional returns pretty well. On

non-announcement days, the SML is flat or negative. Hendershott et al. (2020) extend

the analysis to overnight vs. intraday returns: they find that market betas are positively

(negatively) related to overnight (intraday) returns. Jylhä (2018), Chen et al. (2022) and

Hasler and Martineau (2021) describe similar phenomena across periods of low (high) margin

requirements, low (high) short selling efficiency, and high (low) expected returns, respectively.

Savor and Wilson (2014) argue, however, that it is not possible to reconcile linear multi-factor

models with these results since time-aggregation of returns implies such models should work

consistently across mutually exclusive periods.

This paper documents that the beta anomaly is mitigated within stocks with a low degree

1Not limited to Friend and Blume (1970), Fama and MacBeth (1973), Gibbons et al. (1989), Stambaugh
(1982), and Fama and French (1996).
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of dispersion in analysts’ EPS forecasts and magnified within stocks with a high degree. We

provide a model in which when a firm exhibits high uncertainty regarding future cash flows,

heterogeneous beliefs regarding cash flow risks results in overvaluation that is linear in the

firm’s market beta, even without short-sale constraints. This effect arises when the market

clears based on reservation prices computed by heterogeneous investors, where reservation

prices are a decreasing, convex function of uncertain discount rates2. Thus, low forecast

dispersion firms have expected returns consistent with the CAPM and high dispersion firms

have expected returns that deviate downward from the CAPM. Empirically, it turns out

that this downward deviation is proportional to the firm’s market beta interacted with the

firm’s forecast dispersion level.

To test our model, we transform analysts’ forecast dispersion (D) into a cross-sectional

firm-level measure and interact this measure with the firm’s market beta (β). In Fama-

MacBeth tests, the beta-forecast dispersion interaction (β ×D) absorbs the negative return

component associated with overvaluation and allows the positive return component corre-

lated with the market beta to price separately. Conditional on the β × D interaction, we

estimate a price of market risk consistent with the observed equity premium, thus resolving

the beta anomaly. Our finding is robust to controlling for commonly used anomaly factors or

various measures of short-sale constraints, suggesting that our asset pricing model delivers

reliable performance to account for both time-series and cross-sectional stylized facts.

Figure 1 illustrates our motivational finding. In Figure 1, we plot full-sample mean

monthly (Panel A) and daily (Panel B) returns for test assets formed on stock-level market

betas and forecast dispersion against asset-level full-sample CAPM market beta loadings3.

Returns are value-weighted, and test assets are formed by simultaneously sorting stocks into

lagged market beta deciles and lagged dispersion quintiles. Figure 1 depicts the results for

the extreme dispersion quintiles (Q1 = Low Dispersion; Q5 = High Dispersion), with ten

2Related, Grinblatt and Linnainmaa (2011) show that relatively less risk-averse investors may prefer
risky assets due to Jensen’s inequality if key decision functions are concave or convex functions of unknown
parameters.

3See Appendix A1 for a complete discussion of the construction of test assets.
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beta-sorted test assets in each dispersion quintile.

[Insert Figure 1 About Here]

Focusing on the monthly returns depicted in Figure 1A, the SML for low dispersion test

assets is positively sloped4 (coefficient = 0.63%/mo.; t-Stat = 7.63) and the single-factor

CAPM explains most variation in returns (R2 = 87.9%). High dispersion test assets realize

no (or a weakly negative) market risk-return relation. The SML for high uncertainty test

assets is not significantly downward-sloped (coefficient = -0.10%/mo.; t-Stat = -0.62) and

the single-factor CAPM explains comparatively little variation in returns (R2 = 4.5%). The

Q5-Q1 difference between slopes is significant and negative (coefficient = -0.73%/mo.; t-Stat

= -3.95). Figure 1B depicts a similar pattern in daily returns.

The stylized facts exhibited in Figure 1 are robust in a wide range of cross-sectional

anomalies. We repeat and document the analysis behind Figure 1 by forming 50 test assets

on forecast dispersion within each of eight stock-level characteristics: market beta (as shown

in Figure 1), alpha, idiosyncratic volatility (ivol), size, value, investment, profitability, and

momentum. Stocks are simultaneously sorted based on lagged characteristics into character-

istic decile and dispersion quintile test assets. In Table 1, we list the SMLs estimated within

each dispersion quintile on the anomaly decile test assets in each quintile5.

[Insert Table 1 About Here]

For low dispersion (Q1) test assets, the SML is positively sloped and significant (at the

10%-level or better) in seven of eight tested characteristics, and the Q5-Q1 difference between

slopes is significant and negative in all eight. The SML point estimates decrease approxi-

mately linearly in dispersion quintiles almost uniformly across anomalies. Combining across

4See Table 1 for coefficient estimates and t-Stats.
5Each computed SML is the coefficient from the OLS regression of full-sample mean monthly excess

returns on full-sample CAPM market beta loadings for 10 test assets in the dispersion quintile. Ivol and
alpha are computed relative to the Fama and French (1992) plus momentum (Carhart (1997)) (“FFC”)
model
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all anomalies, we find the SML for low dispersion test assets is positively sloped (coefficient

= 0.71%/mo.; t-Stat = 8.55) and the SML for high dispersion test assets is negatively sloped

(coefficient = -0.52%/mo.; t-Stat = -4.82). The former is roughly comparable to the mean

excess market return in our sample period of 0.68%/mo. The Q5-Q1 difference between

slopes is significant and negative (coefficient = -1.23%/mo.; t-Stat = -9.05). Hence, Figure

1 and Table 1 suggest that high dispersion stocks drive the beta anomaly; whereas, low

dispersion stocks exhibit unconditional mean returns consistent with the CAPM6.

In cross-sectional tests including our proposed β × D interaction, we estimate a mar-

ket risk premium consistent with the observed market excess return and eliminate signifi-

cant pricing errors. Our main Fama-MacBeth (1973) test (henceforth, “FMB”) on individ-

ual stock returns benchmarked by the Fama and French (1992) plus momentum (Carhart

(1997)) model (henceforth, “FFC”) yields a highly significant and positive market risk price

of 0.64%/mo. (t-Stat: 4.62) and an insignificant pricing error (as the FMB intercept). We

compare this FMB price on estimated market betas to our in-sample mean market excess

return of 0.68%/mo and find a p-value of 89.3% for the null hypothesis of equality. The

β × D interaction carries a significant and negative price of -0.65%/mo. (t-Stat: -5.48)7.

These findings are robust to controlling for the forecast dispersion anomaly (Diether et al.

(2002)8), short sale constraints, benchmarking by alternative factor models, and previously

cited measures of cross-sectional and time-series uncertainty or disagreement.

In our model, optimistic investors exhibit upwardly biased private estimates of the firm’s

value when firm-level uncertainty is high. Aggregating beliefs across investors results in prices

for high dispersion stocks that deviate widely from fundamental values, though on average

high dispersion stocks are overvalued. Informed investors, who have access to investment

technology that filters noisy cash flows, develop private estimates for the firm’s value closer

6In Appendix Figure 1, we recreate Figure 1 using the anomaly characteristic test assets used in Table 1
7When excluding β×D, we estimate a market price of risk of 0.26%/mo. (t-Stat: 1.57). Conventionally,

downward bias in the market beta SML is thought to arise from the omitted variable problem or measurement
error. We view the inclusion of β ×D as an omitted variable solution (Giglio and Xiu (2021)).

8The authors favor Miller’s (1977) interpretation of overvaluation when pessimists are restricted by
short-sale constraints.
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to the firm’s fundamental value and trade in the direction of fundamental value.

To verify this trading mechanism, we use the net arbitrage trading measure (“NAT”) from

Chen et al. (2019). NAT measures the net aggregate long and short trades from institutional

arbitrageurs in a stock-quarter relative to the prior year. We find that arbitrageurs increase

the magnitude of their trades (|NAT|) when β×D is high and tend to trade in the direction of

future returns conditional on β×D. We provide further evidence by examining the intraday

vs. overnight return pattern documented by Hendershott et al. (2020). Recent theories and

evidence attributes this pattern to heterogeneous trading between uninformed and informed

investors (Lou et al. (2019), Lu et al. (2022)). We find nearly all the variation between the

intraday and overnight SMLs is due to β×D, suggesting that uninformed investors trade on

inflated private valuations during the day and overpricing is corrected by informed investors

towards the market close or overnight.

We use earnings announcements to test price reactions to the release of updated firm

cash flow risk (Savor and Wilson (2016)). At the earnings announcement, all investors

receive information relevant to revising firm-specific beliefs. This results in a relative shock

to the private valuations of uninformed investors vs. informed investors. Testing FFC

abnormal returns in a 10-day event window around earnings announcements, we find that

the cumulative abnormal return correlated with β × D is significantly negative and the

uncorrelated return is significantly positive. We interpret the uncorrelated return as ex-

ante compensation for announcement risk and the correlated return as ex-post partial belief

dispersion resolution. In our model, dispersion’s directional relation to price is opposite

that of risk: whereas downward revisions to a firm’s risk increases the price of the firm’s

shares, downward revisions to the belief dispersion of a firm’s investors decreases the price

of the firm’s shares. Optimists are forced into more “realistic” beliefs following earnings

announcements, inducing a downward weighting of optimists’ beliefs in the market price.

Finally, we examine pricing patterns related to the macroeconomic environment. We show

our results are robust to the macro announcement effect of Savor and Wilson (2014), though
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there is little variation in the β × D FMB price on announcement and non-announcement

days. This finding is consistent with macro announcement days revealing important system-

atic information but little relevant to investors’ idiosyncratic firm-level beliefs. Importantly,

including β×D recovers estimated market risk premiums consistent with the observed mar-

ket return on both announcement days and non-announcement days. Thus, linear factor

models including β ×D aggregate over both types of days.

Related Literature: Our paper contributes to the empirical asset pricing literature by

providing a parsimonious resolution of the beta anomaly and related asset pricing “tales.”

Our evidence supports the omitted variable interpretation of the failure of conventional fac-

tor models to price the equity market premium: our proposed β×D interaction absorbs the

overpricing in high dispersion stocks and recovers theoretically predicted pricing patterns.

These results show that uncertainty and investor heterogeneity are first-order effects in asset

pricing and necessary considerations in future theoretical work. We do not focus on mea-

surement error solutions to the beta anomaly; instead we provide a fundamental explanation

of why market betas (on their own) fail to predict returns.

The β ×D interaction does not add to the “zoo” (Cochrane (2011)) of proposed factors,

many of which are challenged in replication tests (Hou et al. (2020)). Instead, we link the

risk uninformed investors care about—the market beta (Berk and van Binsbergen (2016))—

to the realized equity market premium. We successfully use the β × D interaction jointly

with the prevailing multi-factor structures (i.e., Hou et al. (2015), Fama and French (2016),

and Stambaugh and Yuan (2017)) to recover the market price of risk. In this sense, we are

proposing a pricing model that aids in the recovery of theoretically implied risk prices and

can remain agnostic towards the true underlying factor structure.

Alternative explanations for the beta anomaly focus on short sale constraints or investor

preferences. For example, Black (1972) proposes a flat SML can result from borrowing

constraints, an idea extended by Frazzini and Pedersen (2014) (Jylhä (2018) provides com-

plementary results). A limitation of Black (1972), as pointed out by Hong and Sraer (2016),
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is that borrowing constraints are insufficient to explain negatively sloped SMLs. The latter

are empirically observable, depending on the conditions: in the time-series for high beta

stocks in Hong and Sraer (2016) or in the cross-section within high dispersion stocks in our

paper. In this vein, our paper is more similar to behavioral explanations of the beta anomaly

that focus on heterogeneous investors or alternative preferences (see lottery demand in Bali

et al. (2017a)). Our paper contributes to this literature by providing an alternative mech-

anism to explain the beta anomaly: we propose overpricing linear in market betas arises

when heterogeneous investors use a decreasing, convex function to compute their reservation

prices on a security. Empirically, the analysts’ EPS forecast dispersion for a firm proxies this

overpricing when interacted with the firm’s market beta allowing us to recover an estimate

of the market risk premium consistent with the observed market return.

Finally, our results suggest careful consideration of the appropriate benchmark for ab-

normal return tests and evaluation of asset pricing models. We show that simple, ordinary

least squares betas are “good enough” to predict returns in conventional econometric proce-

dures when the β ×D interaction is included. An open question is when including β ×D in

return benchmarks is appropriate. We re-estimate our earnings announcement results using

modified characteristic-adjusted return benchmarks that control for β×D and find the same

statistical significance but approximately half of the economic magnitude of our main result.

Furthermore, understanding the extent to which our measure affects the performance of in-

formed institutional investors and financial intermediation is an important area for future

research.

2 Market Beta & Forecast Dispersion

Consider an economy with all equity firms. Suppose that firm i ’s cash flow process Ci follows

dCi

Ci

= µi · dt+ σi · dBi (1)
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where dt is an infinitesimal time interval, µi is the constant fundamental cash flow growth

rate, σi is the cash flow volatility, and Bi is a vector of Brownian motions reflecting the

cash flow’s sensitivity to independent market-wide (W ) and idiosyncratic firm-level (Zi)

Brownian motions. We omit time t subscripts except when necessary for clarity. The firm-

level Brownian shock can also be written as

σi · dBi = βi

[
1 ωi

] dW

dZi

 (2)

where βi is firm i ’s cash flow beta on the aggregate cash flow shock dW and ωi is the ratio

of the idiosyncratic risk sensitivity to the cash flow beta. Thus, 1/ωi is the signal-to-noise

ratio β-averse investors in firm i face when valuing the firm’s cash flows.

Suppose the idiosyncratic shock9 is subject to disagreement between investors. Charac-

terize investor j ’s belief ϕj
i relative to the signal-to-noise ratio10 such that

dZj
i = dZi − ϕj

i · dt (3)

where ϕj
i satisfies the Novikov condition. Using Girsanov’s theorem, the cash flow process

according to investor j ’s beliefs follows

dCj
i

Ci

= (µi + βiϕ
j
i )dt+ βi(dW + ωi · dZj

i ) (4)

Define an optimistic investor as an investor with a positive belief ϕO
i > 0. In Equation

(4), the optimist anticipates strong firm performance reflected in their high perceived cash

flow growth rate. The optimist’s perceived cash flow growth rate exceeds the fundamental

9We could also introduce an uncertainty component to the systematic shock (W ). Prior studies such as
Chen and Epstein (2002) and Jeong et al. (2015) adopt this to model and study ambiguity aversion.

10The signal-to-noise ratio is similar to the speculative beta ratio proposed in Hong and Sraer (2016). The
authors analyze disagreement over the market-wide shock, whereas we analyze disagreement in the idiosyn-
cratic shock. The authors, nevertheless, find empirical evidence that the effect of idiosyncratic disagreement
increases in the market beta. To be precise, the investor’s beliefs ϕj

i is the component of idiosyncratic
disagreement correlated with the market beta per unit of idiosyncratic risk.
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growth rate proportional to the cash flow beta on the market shock (βi) and the strength

of their belief relative to the signal-to-noise ratio (ϕO
i ). In contrast, define a pessimist as

an investor with a negative belief ϕP
i < 0 and, therefore, a perceived growth rate below the

fundamental rate. Holding βi constant, the optimist computes a high discounted value of the

firm’s cash flows (relative to fundamental value) and the pessimists computes a low value.

Holding all else constant, increasing βi increases the “wedge” between the optimist’s and

pessimist’s computed discounted values by proportionally increasing the difference between

the two investors’ perceived growth rates.

To see this explicitly, we proceed by computing investor j ’s reservation price then find-

ing the equilibrium price for firm i conditional on the belief dispersion across the investor

population. Following Harrison and Kreps (1979), denote the stochastic discount factor as

M and assume M depends only on market risk W such that

dM

M
= −r · dt− λ · dW, (5)

where r is the constant instantaneous risk-free rate and λ is the price of market risk11.

Define asset i as the equity claim on firm i’s cash flows with price Pi. Let Pi(ϕ
j
i ) denote the

perceived value of asset i by investor j. At time t, the discounted cash flow value of firm i

is computed by investor j according to

MtPi,t(ϕ
j
i ) = Ej

t

[∫ ∞

s=t

MsCi,s · ds
]

(6)

Then, the following result holds.

Theorem 1 For each asset i conditional on belief ϕ, solving for Equation (6) yields

Pi,t(ϕ) =
Ci,t

r + βi(λ− ϕ)− µi

(7)

11We assume that idiosyncratic firm-level shocks net out in aggregate, such that aggregate cash flow
depends only on the market-wide shock.

9



Proof. Equation (6) can be rewritten as

Pi,t(ϕ) = Ci,t

∫ ∞

s=t

e−(r+βi(λ−ϕ)−µi)(s−t) · ds (8)

We evaluate the integral to obtain the result.

Theorem 1 provides the reservation price for investor j with belief ϕj
i . Suppose that

heterogeneous beliefs in the population are such that we can characterize investors according

to a continuous uniform distribution ϕi ∼ U [−Φi,Φi] with Φi > 0. Assume that each

individual’s belief is private but the distribution of beliefs across the population is known

publicly12. In an equilibrium, investors compare their reservation prices (Pi(ϕ
j
i )) to the

equilibrium price Pi to determine their trading strategies. The optimistic investor’s belief is

such that Pi(ϕ
O
i ) > Pi and the pessimistic investor’s belief is such that Pi(ϕ

O
i ) < Pi. Based

on this observation and tractability, we apply a linear demand rule θ(ϕj
i ) for asset i as follows

θ(ϕi) = γ(Pi(ϕi)− Pi) (9)

where γ > 0 measures the degree of risk capacity. Note, we do not impose a short-sale

constraint. Finally, normalize the total supply of asset i to 1. Then, the market clearing

condition is ∫ Φi

−Φi

θ(ϕ)
dϕ

2Φi

= 1 (10)

Under these conditions, the following theorem solves for the equilibrium price.

Theorem 2 In equilibrium, the price of asset i is

Pi =

∫ Φi

−Φi

Pi(ϕ)
dϕ

2Φi

− 1

γ
∼=

Ci

r + βi(λ− Φi)− µi

− 1

γ
(11)

12In practice, consider that sell-side equity analysts will reveal their beliefs by publishing EPS estimates.
Since the sell-side analysts estimates are publicly known, the distribution of investors’ beliefs is publicly
known (to the extent the former is a valid proxy for the latter).
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Proof. Equations (9) and (10) imply that

Pi =

∫ Φi

−Φi

Pi(ϕ)
dϕ

2Φi

− 1

γ
(12)

Then, plugging Equation (7) into Equation (12) yields

Pi =

∫ Φi

−Φi

Ci

r + βi(λ− ϕ)− µi

dϕ

2Φi

=
Ci

2βiΦi

log

(
r + βi(λ+ Φi)− µi

r + βi(λ− Φi)− µi

)
− 1

γ

∼= − Ci

2βiΦi

(
d

dΦi

log (r + βi(λ− Φi)− µi)

)
− 1

γ

=
Ci

r + βi(λ− Φi)− µi

− 1

γ
(13)

where we apply the central difference approximation by perturbing Φi to derive the equilib-

rium price13.

Theorem 2 shows how the market value of firm i increases relative to fundamental value

when the interaction between market risk and belief dispersion (βi×Φi) is high, all else equal.

The equilibrium price increases in Φi because the price is an increasing, convex function

of the belief dispersion Φi
14. We assume optimists and pessimists can fully participate

in the market, though the results of Theorem 2 become stronger if short-sale constraints

prevented the most pessimistic investors from participating. Note, the belief level at the

margin (marginal investor) is determined by equalizing Equation (7) to Equation (11). If

individual risk capacity is high (γ → ∞), the most optimistic investor with ϕO
i = Φi becomes

the marginal investor. However, for sufficiently small γ the marginal investor exhibits ϕj
i <

13The numerical differentiation recipe used in deriving Equation (13) is frequently used in computing a
duration measure for bonds and solving partial differential equations. The method is highly accurate due to
the utilization of two points to draw a parallel line to the true slope. The truncation error is the order of
O(h2) with the step size h.

14We assume 0 < Φi <
r+βiλ−µ

βi
.
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Φi.

The asset pricing formula defined in Equation (11) turns out to be a belief dispersion

augmented Gordon growth model. Therefore, we may define the expected excess rate of

return up to the risk capacity γ as

E(rei ) ≡ βi(λ− Φi) (14)

Cross-Section of Returns: Equation (14) provides a parsimonious model to test the cross-

section of returns. If Φi is small, expected returns are proportional to market risk βi. Hence,

the stock returns of low Φi firms follow conventional factor models like the CAPM. If Φi is

large, expected returns deviate downward proportional to βi×Φi. To test these predictions,

we can transform Equation (14) into the FMB cross-sectional regression

rei = λ0 + λMKT · βi + λβ×D · (β ×D)i + εi (15)

where Di is a normalized measure of dispersion in sell-side analysts’ EPS forecasts and λβ×D

is the FMB price of the β × D interaction (“beta × forecast dispersion”). The identifying

assumption is that the distribution of revealed sell-side analysts’ beliefs (Di) is publicly

observable and proxies for the underlying distribution of investors’ beliefs (Φi). If we measure

βi’s with respect to the market portfolio, then Equation (14) implies that:

(A) λmkt = rMKT

(B) λβ×D < 0

(C) λ0 = 0

We interpret these relations that, conditional on including the β × D interaction: (A)

consistent with β-averse investors demanding proportional to market returns to hold market

risk, the FMB price of market risk (λMKT ) equals the observed market excess return (rMKT );
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(B) consistent with optimists’ share of the market price increasing in β, the β×D interaction

is correlated with overpricing in β; and (C) consistent with a complete cross-sectional pricing

model, the FMB intercept is insignificant.

Optimists vs. Pessimists: In Equation (11), beliefs are uniformly distributed in the pop-

ulation. If the belief distribution shifts towards optimism or pessimism, the equilibrium price

with shift towards overvaluation of undervaluation, respectively15. Proposition 1 formalizes

this intuition.

Proposition 1 Define the share of optimists in the population as Γi ∈ (0, 1) and the share

of pessimists as 1 − Γi. Assume optimists’ (pessimists’) beliefs are uniformly distributed

between [0,Φi] ([−Φi, 0)). Then, the equilibrium price is

P ∗
i = (1− Γi)

∫ 0

−Φi

Pi(ϕ)
dϕ

Φi

+ Γi

∫ Φi

0

Pi(ϕ)
dϕ

Φi

− 1

γ

= 2(1− Γi)

(∫ Φi

−Φi

Pi(ϕ)
dϕ

2Φi

)
+ 2(Γi − 1/2)

(∫ Φi

0

Pi(ϕ)
dϕ

Φi

)
− 1

γ

= 2(1− Γi)Pi + 2(Γi − 1/2)PO
i

= Pi + 2(Γi − 1/2)(PO
i − Pi) (16)

where Pi is the equilibrium price computed in the base case of Equation (11) and PO
i is the

belief-weighted reservation price for optimists.

Following Proposition 1, we can write the difference between the equilibrium price under

15Related, Duffie et al. (2002) incorporate a security lending fee in model with heterogeneous beliefs to
show that the extra cash flows available to long investors lead to higher asset prices than otherwise. The
existence of lending fee imposes a short-sales constraint, reducing the price impact of short sellers. This
feedback effectively increases the income streams of long positions to strengthen the overvaluation channel
of the model.
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belief shifting (P ∗
i ) and the uniform belief dispersion base case (Pi) as

P ∗
i − Pi = 2(Γi − 1/2)(PO

i − Pi) (17)

As idiosyncratic sentiment varies, the equilibrium price increases when optimists outnum-

ber pessimists (Γi > 1/2), and vice versa. Thus, we can infer that the trading strategy of

informed investors (characterized by ϕj
i → 0) will depend on belief shifting. When optimists

and pessimists are equally split in the population, the asset price is overvalued (due to the

convexity of Pi) and informed investors compute reservation prices below the market price.

When excessive pessimism (optimism) prevails, the asset price can drift below (far above)

fundamental value. Thus, the trading direction of informed investors is likely to be long

(short) when the population belief distribution drifts excessively pessimistic (optimistic).

Belief Updating: Finally, consider shocks to the firm-level information environment. While

we do not explicitly model time variation in Φi, it is straightforward to describe the impli-

cations of shocks to these quantities from Equation (14). Downward shocks in Φi result in

upward shocks to expected returns and downward shocks in price. The price reaction is

magnified proportional to βi.

3 Data & Methodology

We source data on analysts’ estimates from the Institutional Broker’s Estimate System

(IBES) maintained by Thomson Reuters, stock market data from CRSP, and firm financials

from COMPUSTAT. IBES contains financial projections and recommendations from sell-side

equity analysts dating back to 1976. We base the dispersion measure (Barron et al. (1998))

on quarterly EPS estimates, which are widely available in IBES starting in 198416. We

track EPS estimates based on the revision date provided by IBES and exclude all estimates

16Quarterly EPS estimates are available for our sample from Feb.-1984. To achieve a minimum number of
observations in first stage regressions for our Fama-MacBeth tests, our second stage cross-sectional regressions
use data starting from Aug.-1986.
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posted following the firm’s earnings reporting date or that have not been updated within 105

trailing days17. We require a minimum of two valid outstanding analyst estimates in order

to calculate dispersion. We include common stocks from CRSP (share codes 10 and 11) for

which we can match valid forecast data.

In Table 2, we compare our sample to the CRSP universe. Panel A lists summary

statistics at the beginning of our sample (02/1984), at five-year increments within our sample,

and at the end of our sample (12/2022). On average, our sample includes larger firm-months

than the CRSP universe and the sample share of CRSP increases in the second-half of our

sample period. The sample share of CRSP maximizes in 2015, when our sample captures

73.1% of the CRSP universe. Panel B compares the CRSP universe to our sample and firm-

months outside of our sample. Figures listed are monthly means. The mean monthly count

of firms in our sample is 2,286 (vs. 5,193 in CRSP) and the mean size (as the market-value of

equity, in $MM) is 5,148.8 (vs. 3,167.3 in CRSP). CRSP firm-months outside of our sample

are small (the mean size is 268.8), which skews the comparison of the CRSP universe to our

sample. Panel C compares our sample firms across the months these firms appear in our

sample with the months these firms appear in CRSP but not in our sample. For our sample

firms, we capture 61.0% of all months the firm appears in CRSP (on average, sample firms

appear 151.8 months in CRSP and 92.6 months in our sample). Typically, sample firms are

smaller when appearing in CRSP but not in our sample. To the extent that we attribute our

main effects to the firm’s information environment, testing the IBES universe biases against

our interpretation: our sample firms are larger and generally covered by at least a half-dozen

sell-side analysts. In robustness tests, we show our results do not vary by sample sub-period,

firm size, or analyst coverage.

[Insert Table 2 About Here]

Computing Firm-Level Dispersion: We use dispersion in analysts’ estimates to con-

17IBES excludes estimates older than 105 days from the consensus estimate calculation recorded in the
database.
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struct our cross-sectional measure (Barron et al. (1998)). At each earnings announcement

date, we collect the valid outstanding quarterly EPS estimates posted prior to the announce-

ment in IBES and the actual EPS announced for the quarter. Dispersion is defined as the

variance in forecasts scaled by the absolute value of the actual. After calculating disper-

sion, we lag dispersion into the next month after the earnings announcement and keep the

observed value in our sample until the next lagged measure is available or until six months

have passed. Thus, for firm i in month t, dispersion is given by

Dispersioni,t = var(Forecastj,i,q)/abs(Actuali,q) (18)

where analyst j provides a valid forecast for the quarterly earnings announced in month q < t.

Within each month, we rank dispersion cross-sectionally and normalize ranks between [0,1]

to arrive at our cross-sectional measure. In this way, dispersion is transformed to a 0 to 1

proxy for ωi∆ϕ,i, as follows:

Di,t = RANK%
t (Dispersioni,t) ∈ [0, 1] (19)

Two-Stage Regression Procedure: For each stock in our sample, we estimate rolling-

window factor loadings based on monthly returns for the prior five years18. Our main bench-

mark for this first-stage regression is the FFC model. We compute the β×D interaction by

multiplying the market beta estimated from the first-stage regression, β̂MKT
i,t , with the nor-

malized dispersion measure, Di,t, then demean cross-sectionally by the market value-weighted

interaction in each month. For example, using the FFC model to benchmark returns in the

first-stage, we estimate a rolling-window regression for each stock of the form:

18Our main tests use 60 monthly observations with a minimum of 30 monthly returns observed for
inclusion. We test 24 month and 36 month rolling windows for robustness and find consistent results. For
tests of daily returns, we estimate factor loadings for the prior 252 trading days (with a minimum of 126
returns observed for inclusion). In untabulated tests, we find our monthly results are consistent when using
factor loadings estimated using the prior 252 trading days to predict monthly returns.
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rei,t = αi + βMKT
i rMKTRF

t + βSMB
i rSMB

t + βHML
i rHML

t + βUMD
i rUMD

t + ε
(1)
i,t (20)

where rei,t is the excess return of stock i in month t. The β ×D interaction factor for firm i

in month t is then defined as:

βi,t ×Di,t ≡ β̂MKT
i,t ×Di,t −

N∑
k=1

wk,tDk,tβ̂
MKT
k,t (21)

where wk,t is the market capitalization of stock k divided by the total capitalization of all

stocks included in the sample in month t using beginning of month market equity values.

Finally, we recover factor price estimates by lagging estimated factor loadings and using

a second-stage Fama-MacBeth regression of the form:

rei,t = λ0
t +λMKT

t β̂MKT
i,t−1 +λSMB

t β̂SMB
i,t−1 +λHML

t β̂HML
i,t−1 +λUMD

t β̂UMD
i,t−1 +λβ∗D

t βi,t−1×Di,t−1+ε
(2)
i,t−1

(22)

We lag factor loadings into the next period prior to estimating each month’s cross-

sectional regression, thus we recover Fama-MacBeth prices relative to public information

available at the beginning of each month. Coefficients reflect the average ex-ante compen-

sation demanded by investors on each risk factor. Our primary tests use individual stock

returns (Ang et al. (2019)) and we report results using test assets in the appendices.

In additional to the β×D interaction, we compute the standard deviation of normalized

dispersion proxy Di,t as σ(Di,t) in each rolling window. The volatility of dispersion proxies

for a second-order effect of the β×D interaction: upward revisions in dispersion can result in

an upward shift in the distribution of uninformed value estimates, increasing the equilibrium

price. Hence, the volatility of dispersion is a risk informed investors face when going short

overvalued stocks. Alternatively, the volatility of dispersion may represent a risk to the

quality of informed investors’ private information that decreases the effectiveness of their

directional trading.
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Additional Data: We collect factor returns for the FFC and Fama-French five-factors

(“FF5”) (Fama and French (2016)) models from Kenneth French’s website. We collect factor

returns for the q-factors (“QF”) (Hou et al. (2015)) model from Lu Zhang’s website and factor

returns for the traded liquidity factor (Pástor and Stambaugh (2003)) and the mispricing

factors (“MISP”) (Stambaugh and Yuan (2017)) from Robert Stambaugh’s website. We

collect factor returns for the betting-against-beta (“BAB”) (Frazzini and Pedersen (2014))

and lottery returns (“MAX”) factors from Andrea Frazzini’s and Turan Bali’s websites,

respectively. VIX data is based on the S&P 500 VIX Index from the CBOE. The economic

uncertainty index from Jurado et al. (2015) index aggregates prediction errors from time-

series regressions on relevant macroeconomic and macro-financial variables to proxy for the

level of time-series uncertainty in the economy. Using this data, Bali et al. (2017b) find

economic uncertainty is priced in the cross-section of returns. We download the economic

uncertainty index from Sydney Ludvigson’s website.

We capture informed trading using the net arbitrage trading (“NAT”) measure from

Chen et al. (2019). NAT measures the difference in hedge fund long positions and short-

interest at a stock level, where both long and short data is de-trended over the trailing four

quarters. We download the data from Yong Chen’s website and lag the quarterly measure

into the next quarter so that we test the prediction implied by arbitrageurs’ past directional

trading in future returns.

We collect macroeconomic announcement dates from the Bureau of Labor Statistics

(BLS) and the Board of Governors of the Federal Reserve System websites (as in Savor

and Wilson (2014)). From the BLS, we find inflation (producer price index, PPI) and labor

report releases; from the Fed, we find scheduled FOMC meetings. We use PPI reports for

inflation because the PPI release typically occurs before other inflation statistical releases.

We use the last date of multiday FOMC meetings to proxy for interest rate announcements.
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4 Main Results

This section presents our main empirical results. First, we document FMB tests of individual

stock returns on lagged factor loadings including and excluding the β ×D interaction. We

show the inclusion of β ×D recovers an estimate of the market price of risk consistent with

the observed equity premium and eliminates pricing errors. Consistent with our asset pricing

model, we show the β × D return relation is linear in the cross-section of returns and find

significantly effects from both first- and second-order dispersion measures. Our main finding

is robust in common factor structures and unrelated to alternative proxies for uncertainty

or disagreement.

Fama-MacBeth Tests: Table 3 compares Fama-MacBeth results for individual stocks ex-

cluding and including the β×D interaction factor. Columns (1)-(4) list results for variations

to the CAPM and (5)-(8) list results for variations to the FFC model. In both cases, we

present results for the baseline model, the model controlling for the dispersion anomaly

(Disagreement-Minus-Agreement, “DMA”)19, and the model including the β×D interaction

factor. Coefficients listed in the table are monthly risk prices (in percentage points) esti-

mated by the Fama-MacBeth procedure. t-Stats are listed below coefficients (in parentheses)

computed using Newey-West standard errors with six-months of lags. |t-Stats| > 2.00 are

indicated in bold.

Table 3 shows that when including the β × D interaction, the FMB price of market

risk is highly significant and consistent with the in-sample equity premium. Across models,

we estimate a price of market risk (MKT) between 0.61%/mo. and 0.64%/mo. with t-

Stats between 3.92 and 4.62. This compares to an in-sample observed equity premium of

0.68%/mo. Excluding β×D, we fail to estimate a significant price of market risk, consistent

with the well-known beta anomaly. To provide further intuition for this result, we compute

19This is the factor loading estimated when including the long-short portfolio of low dispersion vs. high
dispersion stocks studied in Diether et al. (2002). See Appendix A1 for a description of the construction of
the DMA factor
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p-values for the hypothesis test that our estimated price of market risk equals the observed

equity premium20. Including β×D, p-values range from 80.2% to 89.3%; whereas, excluding

β ×D we marginally reject the estimated risk price equals the observed risk price.

[Insert Table 3 About Here]

Including β×D, furthermore, eliminates significant pricing errors. Taking FMB intercepts

as pricing errors, we find that excluding β×D yields positive, significant errors and including

β×D yields insignificant errors. The best performing specification includes the FFC factors

and β ×D: in column (6), the pricing error is 0.18%/mo. with a t-Stat of 0.88. Together,

these results are consistent with the inclusion of β×D resolving the omitted variable problem

in FMB regressions. Examining β × D, we see the interaction is highly significant and

negatively priced. The point estimates for the FMB price on the β × D interaction range

from -0.62%/mo. to -0.65%/mo. and the corresponding t-Stats range from -4.83 to -5.94.

Thus, Fama-MacBeth testing is consistent with overvaluation in high dispersion stocks that

is linear in market betas21.

Linearity of β×D Effect: A potential concern in these FMB results is that a small subset

of stocks are driving our findings. To address this concern, we examine the linearity of the

β ×D interaction. Following the methodology of Stambaugh et al. (2015), we estimate the

relation between FFC abnormal returns and β×D. For each month t, we compute individual

stock FFC abnormal returns based on lagged factor loadings. Using the same lagged factor

loadings, we compute the individual stock β ×D then split stocks into deciles based on this

measure. Once each stock i is assigned to a decile bucket (β ×D)d, we estimate

êFFC
i,t = ω0,t + ft(βi,t−1 ×Di,t−1) + ηi,t (23)

20For the 437 months tested in Table 3, the mean market excess return is 0.68%/mo. with a standard
error of 0.22%/mo.

21We replicate these results in a pooled specification in Appendix Table 1. Using standard errors clustered
by month and rolling, lagged factor loadings, we find all results are economically and statistically consistent
across Fama-MacBeth and pooled specifications.
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where êFFC
i,t is the FFC abnormal return for stock i in month t. ft(·) is a piecewise linear

function with dummy variables for intercepts and interactions with β × D for each decile

bucket, as follows:

ft(β ×D) =
10∑
d=1

I(β ×D ∈ (β ×D)d)× (ad,t + bd,t · β ×D) (24)

To estimate Equation (23), we restrict coefficients ad,t and bd,t so that the function is con-

tinuous at decile threshold values and use the FMB procedure to find the mean value of the

distribution function across our sample period.

We plot the results in Figure 2, where the x-axis is the percentile distribution of β ×D

in the population and the y-axis is mean monthly FFC abnormal returns (in bps).

[Insert Figure 2 About Here]

In Figure 2, the effect of β×D is linear and decreasing across the population distribution

(β × D percentile). Average mispricing (relative to FFC) is low for low β × D stocks,

and vice versa for high β × D stocks. The effect is not concentrated in any subset of the

population. Instead, Figure 2 shows overvaluation increases linearly in the β×D nexus. We

argue this validates our model’s base case of uniformly distributed beliefs and proportional

belief dispersion sensitivity. The statistical significance of the FMB price of β ×D, indeed,

is driven by stocks in the inner quintiles of the normalized dispersion measure. In essence,

risk-return relations follow proportionally shallower SMLs as dispersion increases.

Additional Forecast Dispersion Proxies: In Table 4, we present results benchmarked by

the FFC that include higher-order risk and dispersion proxy variables. We test the dispersion

level uncorrelated with the beta-dispersion interaction (Di,t), the volatility of each firm’s

dispersion measure in the first-stage rolling window (σ(Di,t)), and higher-order interactions.

We find our main results are unaffected by the inclusion of these variables in the second-stage,

though the results of Diether et al. (2002) are recovered through including the state variable
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(Di,t)
22. FMB prices for the dispersion level range from -0.76%/mo. to -2.22%/mo. with

t-Stats between -3.12 and -3.63. The volatility of dispersion is significantly and positively

priced, and the effect is concentrated in high dispersion stocks (unconditionally in column

(3), the volatility of dispersion carries a coefficient of 1.94%/mo. with a t-Stat of 3.69;

interacted with dispersion in column (5), the coefficient is 6.90%/mo. with a t-Stat of 2.41.).

Hence, the component of dispersion orthogonal to beta continues to have an important role

in cross-sectional return patterns outside of our main findings. Also, the positive FMB

price on the volatility of dispersion is consistent with our intuition that informed traders

alternatively demand compensation for the risk to shorting from positive dispersion stocks

or for the lower value of private information.

[Insert Table 4 About Here]

Short-Selling Measures: We conduct two main tests to evaluate the role of short-sale

constraints in the returns exhibited by high β × D stocks. First, we proxy for the cost of

borrowing shares using the TED spread. We divide our sample into sub-periods based on the

beginning of the month level of the TED spread. We download the TED spread, the three

month LIBOR minus the three month T-Bill rate, from FRED23. Second, we proxy for the

supply of shares available for shorting with outstanding short interest, as a percent of shares

outstanding. We compute short interest using COMPUSTAT data and divide our sample

into cross-sectional sub-samples. In both cases, we divide our sample at the median. High

TED spread periods capture above median short-sale costs and high short interest stocks

capture a below median supply of shares for borrowing.

[Insert Table 5 About Here]

In Table 5, we show the results for FMB regressions of individual stock returns on β×D

variables benchmarked by the FFC. Each column reflects the results for sub-samples defined

22We cross-sectionally residualize Di,t on βMKT
i,t and βMKT × Ui,t to reduce collinearity.

23The TED spread is discontinued as of 2022, and results reflect only periods in our sample for which the
TED spread is available.
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by the TED spread or short interest, respectively. We find the estimated price of market

risk and the β ×D interaction are significant across specifications. In the time-series TED

comparison, the FMB price on the interaction does not appear to vary. In the cross-sectional

short interest comparison, the price on the interaction insignificantly increases in high short

interest stocks. When there is lower supply of shares available to short, arbitrageurs face

a friction in applying their private information to resolve overpricing. However, given the

insignificance of this friction to our results, we see that short-sale constraints are not a

first-order effect.

Comparison with Common Factor Models: Turing to common factor models, we repli-

cate our main result on individual stock returns in the CAPM, the Fama-French three-factors

plus momentum model (Carhart (1997)), the Fama-French three-factors plus momentum plus

liquidity model (Pástor and Stambaugh (2003)), the Fama-French five-factors model (Fama

and French (2016)), the q-factors model (Hou et al. (2015)), and the mispricing factors model

(Stambaugh and Yuan (2017))24. In Table 6, Panel A shows results excluding the β × D

interaction and Panel B shows results including the interaction. Excluding β×D, the FMB

estimates for the market premium across all models are either insignificant or marginally

significant and the pricing errors (FMB intercepts) are positive and significant (t-Stats for

intercepts are at least at or above 2.79). Including β×D, estimates for the market premium

are significant (t-Stats between 3.67 and 4.62) and consistent with the observed premium,

intercepts are insignificant, and the β × D interaction is significant and negative (t-Stats

between -4.68 and -5.48). We omit the estimated prices of the additional risk factors from

each model in Table 6 for brevity; though, we note that the inclusion of the β ×D interac-

tion does not change the direction of point estimates in any model and marginally affects

significance.

[Insert Table 6 About Here]

24We end estimation of the mispricing factors model in 2016 based on data availability.
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Additional Tests: In the internet appendix, we supplement these results with a battery

of robustness tests. Our main results hold using a pooled specification (Appendix Table 1);

using daily stock returns benchmarked by factors estimated over the prior year of daily re-

turns (Appendix Table 2); when we split our sample at the midpoint of Oct.-2004 (Appendix

Table 3); splitting our sample by analyst coverage (Appendix Table 3); splitting our sample

into low and high forecast dispersion stocks (Appendix Table 3); in small and large stocks

(Appendix Table 3); or with alternative first-stage rolling windows (Appendix Table 3). We

winsorize factor loadings at the 5% and 95% levels to mitigate the effect of outliers. We

collect a wide range of firm and risk characteristics (including alternative beta anomaly ex-

planations) and, using these characteristics as controls, find our results are robust (Appendix

Table 4).

Similar to our common factor model results, we find our β × D interaction results are

unaffected by the inclusion of alternative time-series measures of uncertainty, disagreement,

or beta anomaly factors (Appendix Table 5). Finally, our results are similar when estimated

using test assets (instead of individual stocks) in our main specification (Appendix Table 9)

and common factor models (Appendix Table 10).

5 Investor Heterogeneity

In our model, uninformed investors potentially overvalue (excessive optimism) or undervalue

(excessive pessimism) firms when cash flow noise is high. In either case, informed investors

will tend to trade in the direction of fundamental value. As an investor’s ability or investment

technology quality increases, the investor’s private estimate of fundamental value converges

to the true value. The informed investor, therefore, is short overvalued stocks relative to the

positioning of uninformed investors, and vice versa.

We analyze this trading in two contexts: arbitrage trading and intraday vs. overnight

returns. First, we test the β ×D interaction against the net-arbitrage trading (Chen et al.
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(2019) of sophisticated investors. Net-arbitrage trading (“NAT”) measures the holdings

of hedge funds identified through SEC From 13-F filings against aggregate short interest.

Thus, NAT is high (low) when sophisticated arbitrageurs in aggregate identify and trade in

the direction of undervaluation (overvaluation). Second, we examine intraday vs. overnight

returns. A growing literature has documented the “tug-of-war” (Lou et al. (2019)) in intraday

vs. overnight returns between informed and uninformed investors. Hendershott et al. (2020)

recover a strongly negative (positive) intraday (overnight) SML, which the authors attribute

to beta speculators trading intraday. Lu et al. (2022) provide a theory in which frictions

between different types of arbitrageurs give rise to the pattern as fast arbitrageurs attempt

to satisfy speculative demand and slow arbitrageurs work to correct mispricing. Thus, high

β ×D stocks will be overpriced (corrected) during the day (at night) based on the presence

in the market of uninformed and informed investors.

Net Arbitrage Trading: We access NAT data from Yong Chen’s website, which is available

based on 13-F filings from the fourth quarter of 1989. For each stock, NAT is defined as

aggregate hedge fund long positions less aggregate short interest where both values are

demeaned relative to the trailing four quarters. NAT is expressed as a percent of market

capitalization, so that NAT captures the recent directional trading of arbitrageurs relative

to the size of each firm. We measure the effects of NAT in the quarter immediately following

the period represented in the 13-F filings so that we capture holdings and trade positioning

prior to returns. Since (on average) uninformed investors overvalue stocks, we predict that

arbitrageurs will increase shorting of high β×D stocks. However, this effect will be mitigated

by the cases when uninformed investors undervalue stocks. Thus, we also expect to observe

an increase in absolute NAT in high β ×D stocks. Finally, we predict the direction of NAT

will predict the direction of returns in high β×D stocks. That is, sophisticated arbitrageurs

will correctly position trades long or short in high β ×D stocks.

We present our results in Table 7. In Panel A, we correlate NAT activity with stock-

level factor loadings and firm characteristics. We include a vector of firm characteristics
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relevant to investor demand as controls25. First, we examine NAT: in both FMB and fixed

effects (firm-by-year FE’s) specifications, we find no significant relationship between NAT

and β×D. In cross-sectional results, market betas are negatively related to NAT consistent

with informed investors shorting high beta stocks. Next, we examine |NAT|: we find |NAT|

is significantly and positively related to β ×D (t-Stats of 7.41 and 3.21 in FMB and fixed

effects specifications, respectively). Hence, both long and short activity increases in high

β ×D stocks.

[Insert Table 7 About Here]

In Panel B, we test individual stock returns based on NAT interacted with β × D.

Tests include FFC factor loadings and the β × D interaction as controls. If sophisticated

arbitrageurs place trades in the direction of fundamental value conditional on β × D, we

would expect to observe positive FMB prices on the interaction of NAT and β×D. In FMB

specifications, we estimate a positive but insignificant price on the interaction of NAT and

β ×D. The magnitude is about one-third of the main NAT effect. In pooled specifications,

the economic effect of the interaction is closer to two-thirds of the main NAT effect and

is significant (t-Stats between 3.38 and 3.40). Both results from Panel A and Panel B are

consistent with sophisticated arbitrageurs placing directional bets in high β×D stocks that

are, on average, towards fundamental value.

Intraday vs. Overnight Returns: If arbitrageurs trade against mispricing in high β×D

stocks, the recent literature on intraday vs. overnight returns suggests we should detect low

(high) intraday (overnight) returns in high β ×D stocks. Differences in returns within the

24-hour cycle must come from differences in the marginal investor across the cycle, rather

than differences in risk prices within the cycle. In particular, Lu et al. (2022) provide a

model in which uniformed speculators trade at the open and arbitrageurs trade throughout

25Controls include the log of market equity, book-to-market ratio, operating profitability, investment,
debt-to-equity ratio, 11-1 return and dividend yield. All values are winsorized at the 1% and 99% level. See
Appendix A2 for a description of controls.
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the day. Fast arbitrageurs (such as market makers or high-frequency traders) can predict

order-flow, thus satisfy uninformed demand at the open. Slow arbitrageurs (such as sta-

tistical arbitrageurs) respond throughout the day to mispricing. Thus, high β × D stocks

will be overvalued at the open (when uninformed investors trade) and will move towards

fundamental value at the close (as informed investors correct mispricing).

In Table 8, we turn our attention to FMB regressions on intraday vs. overnight returns.

Factor loadings are estimated on 252 days26 of trailing returns and returns are raw intraday

and overnight returns. Loadings are then lagged to the next day to predict returns. Based

on the availability of CRSP data, estimates of intraday vs. overnight returns restrict our

sample to trading days after June 15, 1992. We report results for FMB estimates using

Newey-West standard errors with 10 lags.

[Insert Table 8 About Here]

First, we compare results for intraday returns excluding and including β × D. Bench-

marking using the market-model (D1) and FFC model (D3), we find results consistent with

Hendershott et al. (2020): the intercept is significant and positive (coefficients range from

6.10 bps/day to 6.76 bps/day and t-Stats range from 8.78 to 10.00)27 and the estimated

price market risk is significant and negative (coefficients range from -4.51 bps/day to -7.02

bps/day and t-Stats range from -4.35 to -5.53). When adding β ×D (D2 and D4), we find

the negative intraday return is almost entirely concentrated in the interaction effect: the

estimate price of β ×D is significant and negative (coefficients range from -9.05 bps/day to

-10.62 bps/day and t-Stats range from -13.24 to -15.55) and the estimated price of market

risk is insignificant. The intercepts are insignificant (D2) or marginally significant (D4) and

positive, with an economically and meaningfully lower magnitude than the estimate obtained

when excluding β ×D.

26We require a minimum of 126 observed returns required for inclusion.
27We use “bps/day” to describe the units of coefficients presented, though these coefficients represent

returns realized only in the portion of each day analyzed.
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Comparing results for overnight returns, we find the pattern is reversed. Excluding β×D

(N1 and N3), we find the estimated price of market risk is significant and positive (coefficients

range from 3.87 bps/day to 7.31 bps/day and t-Stats range from 6.83 to 12.09). Including

β × D (N2 and N4), the estimated price of the interaction term is significant and positive

(coefficients range from 5.40 bps/day to 7.54 bps/day and t-Stats range from 16.05 to 18.13)

and the estimated price of market risk is significant and positive in the market model (N2)

and positive but not significant in the FFC model (coefficients range from 0.65 bps/day to

2.39 bps/day and t-Stats range from 1.08 to 3.83). Including β×D, intercepts are significant

and positive (coefficients range from 3.19 bps/day to 3.89 bps/day and t-Stats range from

7.02 to 7.93); excluding β × D, intercepts are insignificant. This overnight reversal of the

conditional SML is consistent with uninformed investors overvaluing high-dispersion stocks,

as the positive overnight price of β×D reflects high opening prices for these stocks the next

day.

The β×D interaction resolves some puzzling aspects previously document in intraday vs.

overnight returns. First, since we regress raw intraday and overnight returns, the intercepts of

the FMB regression estimate the risk-free rate in intraday and overnight periods. Excluding

β × D, the estimated risk-free rate varies widely between intraday (significantly positive)

and overnight (insignificant) periods. Including β × D, the estimated risk-free rates are

significantly positive and economically higher overnight. If the risk-free rate is somewhat

higher overnight, this would be consistent with lower liquidity for financial intermediaries

overnight.

Second, including β ×D recovers an estimated equity premium consistent with the ob-

served market return intraday. Using the SPY S&P 500 ETF to proxy for the intraday

and overnight market returns, we estimate an average intraday (overnight) market return

of 0.40bps/day (3.90bps/day) with a standard error of 1.12bps/day (0.78bps/day)28. Even

though we estimate on raw returns, coefficient estimates will still reflect excess return risk

28SPY returns are available starting from February 2, 1993; so, we recompute coefficient estimates only
for the period with comparable SPY returns to calculate p-values listed in Table 8.
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prices (the risk-free rate estimate is absorbed by the intercept), so the SPY return will be an

upwardly biased proxy for our p-value test. With this caveat, we find the estimated intraday

price of market risk is not (is) significantly different from the SPY return when including

(excluding) β ×D (p-values of 63.7% and 81.9% when including and 0.0% and 0.2% when

excluding). Overnight, the two-factor β×D model (N2) and the FFC (without β×D) (N3)

recover the SPY return with p-values of 10.6% and 91.2%, respectively. The market model

estimate excluding β×D (N1) is significantly higher (p-value of 0.1%) than the SPY return

and the FFC with β ×D estimate (N4) is significantly lower (p-value of 0.1%). Overall, we

conclude that the inclusion of β×D in intraday vs. overnight FMB tests recovers more rea-

sonable estimates of the risk-free rate and the equity premium while absorbing a substantial

portion of the variation between intraday and overnight returns associated with uninformed

demand.

6 Market Events

Our model does not explicitly introduce time-series dynamics to dispersion, but nevertheless

offers intuition for price responses to a changing beliefs distribution. Unlike increases in

risk, increases in dispersion increase the market price of the firm’s shares. Optimists have

high return expectations and optimistic beliefs are weighted in the equilibrium price in

proportion to the dispersion level. Conversely, partial resolution of uncertainty decreases the

market price by mitigating the effect of belief dispersion. We test potential time-series effects

by examining firm earnings and macroeconomic announcements. Earnings announcements

represent a partial resolution of firm-level uncertainty and macro announcements provide

systematic information.

Firm-Level Earnings-Cycle: We investigate return patterns in the earnings-cycle with

event studies on earnings announcement dates. When firms release updated cash flow data,

heterogeneity in private valuations across investors partially resolves. Ex-ante, informed in-
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vestors will demand high returns to hold assets subject to announcement risk (Savor and

Wilson (2016)); whereas ex-post, downward revisions in uninformed investors’ private valu-

ations will result in low returns for high β ×D stocks.

To perform these event studies, we collect earnings announcement dates from IBES. For

earnings announcements marked as posted after the market close (4:00PM ET), we set the

event date to the day after the earnings announcement. We test an event window of t =

[-5,5] around the earnings event for each stock in our sample. Factor loadings are estimated

on 252 days of trailing returns (with a minimum of 126 observed returns) and lagged 50

days prior to the event window. βi,t−1 × Di,t−1’s are estimated using the firm’s dispersion

measured at the prior earnings announcement. We measure abnormal returns in the event

window benchmarked by the FFC and a modified DGTW (Daniel et al. (1997)) benchmark.

To construct our modified DGTW benchmark returns, we match stocks to portfolios by

sorting on market beta (quintiles), dispersion (quintiles), size (3-4-3 decile groupings), and

value (3-4-3 decile groupings). We test returns by sorting stocks into dispersion quintiles

and comparing low (Q1) and high (Q5) stocks and by benchmarking with the FFC model

including the β ×D interaction. For the latter test, we regress abnormal returns on market

betas and β ×D interacted with event-day fixed effects, as follows:

êi,k,t = δ0 + δ1,t + δ2,tβ̂
MKT
i,k + δ3,t(β ×D)i,k + δ⃗4 · ⃗̂βFFC

i,k + εi,k,t (25)

for stock i in earnings event k on event date t where
⃗̂
βFFC
i,k is the vector of FFC factor

loadings. Standard errors are clustered by event.

In Table 9, we show event day results for abnormal returns computed using the FFC.

Comparing low (Q1) and high (Q5) dispersion stocks, both groups earn positive and signif-

icant abnormal returns prior to the event day. On the event day, Q1 stocks earn a large

positive and significant abnormal returns (coefficient of 18.84 bps with a t-Stat of 6.48) and

Q5 stocks earn a large negative and significant abnormal returns (coefficient of -38.63 bps
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with a t-Stat of -8.36). Both groups realize little significant abnormal returns following the

event day, but the coefficient estimates following the event day continue in the same direction

as the event day return. Cumulatively, Q1 stocks earn a 67.72 bps (t-Stat: 11.25) abnormal

return in the 10-day window immediately around the earnings date and Q5 stocks earn a

-34.04 bps (t-Stat: -3.31) abnormal return.

[Insert Table 9 About Here]

Our interaction test shows that pre-announcement abnormal returns are unrelated to

β×D whereas event day returns are significantly related to market risk and β×D loadings.

On the event day, market betas predict a 24.67 bps (t-Stat: 4.77) abnormal return and

the β × D interaction predicts a -53.31 bps (t-Stat: -10.09) abnormal return. The large

positive abnormal return correlated with market betas is consistent with informed investors

demanding high returns ex-ante to compensate for announcement risk. The large negative

abnormal return attributable to β×D is consistent overvaluation in high β×D stocks that is

partially resolved by uncertainty resolution on the event day. Cumulatively, abnormal returns

correlated with market betas (coefficient of 34.90 bps; t-Stat of 2.93) and β ×D (coefficient

of -99.48 bps and a t-Stat of -8.38) persist in the 10-day window and the uncorrelated

return reverses by the end of the event window. The former is due to a modestly negative

post-announcement drift that may reflect slow adjustment of beliefs conditional on earnings

information.

In Appendix Table 8, we repeat this analysis using our modified DGTW benchmark to

compute abnormal returns. We believe using a modified benchmark is appropriate since the

β×D interaction is highly significantly priced in the cross-section of returns. Benchmarking

with stocks of similar dispersion levels controls for the average mispricing in the stock market

correlated with β × D. We find that when using modified DGTW benchmarks to account

for β×D, the significance of our results remains but the magnitudes are decreased by up to

two-thirds. In Appendix Figure 2, we plot cumulative abnormal returns in the event window

for our interaction test based on both the FFC and modified DGTW benchmarks, which
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visually demonstrates the extent to which cumulative abnormal returns may be biased away

from zero without controlling for the β ×D interaction.

Macro Announcements: Savor and Wilson (2014) identify a macro announcement beta

anomaly in which the CAPMworks well on announcement days but not on non-announcement

days. The authors argue it is difficult to reconcile a linear factor model with the return pat-

terns observed on announcement and non-announcement days. In order for such models

to aggregate over mutually exclusive time periods, linear factor models need to successfully

price returns in each time period (i.e., the factor structure cannot be of different on different

types of days).

We repeat the main FMB tests of Savor and Wilson (2014) including the β ×D interac-

tion. Announcement days include all days during our sample period (Aug. 1986-Dec. 2022)

with FOMC meetings29 or Bureau of Labor Statistics employment or producer price statis-

tics releases. We identify 1,138 announcement days and 8,041 non-announcement days. In

Table 10, we estimate regressions of individual stock returns on lagged factor loadings sepa-

rately for announcement and non-announcement days. Columns (A1)-(A4) show results on

announcement days for the market model and FFC model (including / excluding the β ×D

interaction factor) and (N1)-(N4) show comparable results for non-announcement days. On

announcement days, the estimated market price of risk is significantly priced across specifi-

cations (coefficients range from 9.62 bps/day to 13.32 bps/day and t-Stats range from 2.49 to

3.28) reflecting the high market returns on announcement days (p-values for comparing our

FMB estimates to the in-sample market return range from 36.3% to 96.9%). For β×D, the

estimate benchmarked by the FFC model is significant (coefficient is -3.59 bps/day with a

t-Stat of -2.89) and the estimate benchmarked by the market model is marginally significant

but economically consistent (coefficient is -2.66 bps/day with a t-Stat of -1.64).

[Insert Table 10 About Here]

29The date tested is policy announcements on the final day of the meeting
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On non-announcement days, the market premium is positive only when including β×D.

In (N2) and (N4) we find coefficient estimates for the price of market risk of 1.89bps/day

and 1.72bps/day when benchmarking by the market model and FFC model, respectively.

Neither estimate is significant; however, given the low market returns on non-announcement

days these coefficients are consistent with observed market returns (p-values of 75.2% and

67.4%, respectively). When excluding β ×D (N1 and N3), the point estimates for the FMB

price of market risk are negative on non-announcement days.

In particular, β×D is highly significant on non-announcement days: coefficients are -4.19

bps/day with a t-Stat of -6.68 (market model) and -4.50b bps/day with a t-Stat of -9.54

(FFC). Economically, results for β × D are consistent across the two types of days. Our

interpretation of these results is that macro announcement days reveal systematic informa-

tion relevant for the equity market as a whole; whereas, β×D captures disagreement at the

firm-level across both types of days. Including β ×D recovers an estimated equity premium

consistent with the observed market return on both types of days; thus, we conclude β ×D

is the omitted variable needed to aggregate returns across different types of days.

7 Conclusion

Our parsimonious solution to the beta anomaly resolves many of the puzzling findings pre-

sented in recent asset pricing “tales.” Studying the beta anomaly is different from many

problems in empirical finance because we know what the correct answer should be: the

estimated price of market risk should equal the observed market return. In a variety of sce-

narios and benchmarking by conventional factor models, we find that including an interaction

variable of risk exposure and investor disagreement (β × D) in FMB tests produces point

estimates consistent with the market return. The β × D interaction is highly significantly

priced in its own right and the inclusion of β×D is consistent with a complete cross-sectional

asset pricing model (intercepts are insignificant). We interpret our main results as strong
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evidence that trading induced by high firm-level dispersion is important for stock prices and

the resulting mispricing is increasing in market beta. Investors have the CAPM in mind

when they attempt to price assets (Berk and van Binsbergen (2016)); thus, conditional on

β ×D, investors demand high returns to hold market risk. Optimistic investors err in esti-

mating the future cash flows available to investors when uncertainty is high and empirically

(it turns out) the market beta magnifies such errs.

There are certainty many interesting avenues for future research in β×D. The variation

of returns in high β×D stocks across the time-series is an issue we ignore here. An empirical

question is the extent to which uninformed investors are aware of the level of uncertainty

they face in pricing stocks: it is possible the high price paid by retail investors for active

mutual fund management is more reasonable when β ×D is accounted for. If investors are

paying active managers to rent their private information, we may observe low returns to

active strategies when managers buy high dispersion stocks. Nevertheless, investors may

be earning positive alphas relative to their own abilities to trade in high dispersion stocks.

Alternatively, the degree to which inefficient financial markets and the real economy interact

has attracted increasing attention in recent literature (e.g., Dong et al. (2021), Horstman

(2022)), and skilled firm managers potentially have a role to play in high dispersion firms.

Finally, benchmarks including β × D can deliver economically different results from con-

ventional return benchmarks. Drift phenomena, including the post-earnings announcement

drift, seem ripe for studying in this framework.
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Note: Mean excess returns for twenty (ten "high" and ten "low") beta decile test
assets contstructed on analysts' forecast dispersion quintiles. Q1 (green) test assets
include stocks from the bottom quintile of forecast dispersion and Q5 (red) test
assets from the top. Test assets are constructed monthly based on the prior month's
stock-level market beta and dispersion using simultaneous sorting. In Figure 1A,
stock-level betas are computed using rolling 60 mo. windows (min. 30
observations). In Figure 1B, stock-level betas are computed using rolling 252 day
windows (min. 126 obs.). Test asset returns are value-weighted. The sample period
is Aug. 1986-Dec. 2022. Dotted lines are SMLs fitted from regressions of full sample
mean returns on full sample market betas, computed using monthly (1A) and daily
(1B) data, respecitvely.
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Note: Mean monthly FFC abnormal returns attributable to the βD interaction for
individual stocks, plotted by percentile of the population ranked by βD. We
estimate the distribution function each month based on lagged factor loadings
following Stambaugh, Yu, and Yuan (2015), then average the estimate over the
sample period via the Fama-MacBeth procedure. The sample period is Aug. 1986-
Dec 2022. Dotted lines represent 90%-confidence intervals.
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Figure 2: FFC Abnormal Returns vs. βD
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Q1 Q2 Q3 Q4 Q5 Q5-Q1
Beta 0.63 0.59 0.09 0.13 -0.10 -0.73

(7.63) (3.23) (1.39) (1.65) (-0.62) (-3.95)
Alpha 0.81 0.68 0.38 0.22 -0.48 -1.29

(3.53) (3.09) (0.65) (0.85) (-2.54) (-4.34)
Ivol 0.88 0.65 0.03 0.36 -0.50 -1.38

(5.02) (4.40) (0.15) (1.20) (-2.01) (-4.53)
Momentum 0.06 0.39 -0.09 -0.03 -0.80 -0.86

(0.16) (1.30) (-0.50) (-0.05) (-3.27) (-2.00)
Size 2.03 1.17 0.57 0.69 -1.17 -3.20

(5.20) (3.89) (3.09) (2.75) (-2.56) (-5.32)
Value 1.87 -0.11 -0.74 -1.04 -1.68 -3.55

(4.50) (-0.30) (-3.30) (-2.01) (-2.06) (-3.88)
Profitability 0.91 0.58 0.24 -0.52 -1.00 -1.91

(3.28) (1.54) (0.97) (-1.40) (-1.73) (-2.98)
Investment 0.87 -0.79 -0.70 -1.07 -1.28 -2.15

(2.00) (-1.62) (-1.67) (-1.92) (-1.49) (-2.23)
All 0.71 0.57 0.07 0.13 -0.52 -1.23

(8.55) (7.19) (0.97) (1.33) (-4.82) (-9.05)

Table 1: Mean Monthly Excess Returns vs. Market Betas

Characteristic Decile  Forecast Dispersion Quintile Test Assets, Value Weighted

Security Market Line (SML) Coefficients (t -Stats)

Note: Results for OLS regressions of full sample mean monthly excess returns on full sample
market betas for 400 test assets, formed by simultaneously sorting on eight characteristics
(deciles) and analysts' forecast dispersion (quintiles). There are 50 test assets formed on each
characteristic and returns are value weighted. Characteristics tested are market beta, alpha
(computed using the Fama-French-Carhart (FFC) model), ivol (computed using the FFC model),
momentum, size, value, profitability, and investment. Momentum, value, profitability, and
investment test assets are formed on the NYSE breakpoints available on Kenneth French's
website. Otherwise, we sort into characteristic deciles based on our sample. For size, we sort
based on our sample due to the relatively low number of small stocks with valid analysts'
forecast data. Factor loadings are computed in a first stage regression using 60 month rolling
windows. We require a minimum of 30 return observations for a stock to be included. Stocks
are sorted into month t+1 portfolios based on factor loadings and characteristics computed
using data up to month t . See Appendix A1 for a description of test asset construction. t -Stat  
are reported in parentheses and computed using OLS standard errors. |t -Stats| > 2.00 are
indicated in bold.
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Firms Size IBES Sample Firms Size Analysts
Date (count ) (mean, $MM ) (% ) (count ) (mean, $MM ) (mean )

02/1984 5,736 307.6 3.4 195 2,435.3 4.7
12/1985 5,791 345.6 15.1 873 1,517.2 4.4
12/1990 5,746 466.5 29.5 1,693 1,444.4 5.7
12/1995 7,009 890.7 28.3 1,987 2,692.2 4.2
12/2000 6,439 2,192.6 49.7 3,202 4,225.7 6.6
12/2005 4,792 3,096.7 60.7 2,911 4,954.4 7.9
12/2010 3,983 3,410.8 67.7 2,698 4,926.9 8.9
12/2015 3,781 5,847.0 73.1 2,763 7,888.4 9.0
12/2020 3,751 9,966.3 72.9 2,733 13,375.4 8.0
12/2022 4,404 9,200.9 69.6 3,066 12,965.6 7.6

Firms (count ) 5,193 2,286 2,907
Size (mean, $MM ) 3,167.3 5,148.8 268.8

Monthly Excess Returns
Mean, E(R) 0.70 0.71 0.57
Std Dev, σ(R) 4.52 4.54 4.65

Months (mean ) 151.8 92.6 61.0
Size (mean, $MM ) 3,739.3 5,148.8

Monthly Excess Returns
Mean, E(R) 0.71 0.71
Std Dev, σ(R) 4.53 4.54

CRSP Universe IBES Sample Ex-IBES Sample

Table 2: Sample Statistics

Panel A: Sample & Analyst Coverage by Year

CRSP Universe IBES Sample

Panel B: IBES Sample vs. CRSP Universe vs. Ex-IBES Sample, Monthly Means

Panel C: IBES Sample Membership

In CRSP In IBES Sample %

Note: "IBES Sample" reflects firm-month observations included in our main tests. The sample period is Feb.
1984-Dec. 2022 and firms must have at least two valid analyst estimates available at the firm's most recent
earnings announcement date for inclusion. Panel A compares CRSP to our sample at the beginning of our
sample and at five-year increments within our sample. Statistics are averages at each period listed. "IBES
Sample (%)" is the percentage of CRSP firms appearing in our sample. Panel B compares firm-month
observations in our sample to firm-month observations in CRSP but outside of our sample. Statistics are
aggregated to each month, then averaged across the sample period. Panel C analyzes all firm-month
observations for firms that appear at any point in our sample. "In CRSP" shows statistics for the CRSP
lifetime of sample firms and "In IBES" shows statistics for the same set of firms only for the months the
firms appear in our sample. All return statistics are value-weighted.
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(1) (2) (3) (4) (5) (6) (7) (8)
Intercept 0.58 0.24 0.60 0.25 0.54 0.18 0.55 0.20

(2.79) (1.04) (2.88) (1.12) (2.94) (0.88) (3.03) (0.96)
MKT 0.26 0.63 0.24 0.61 0.26 0.64 0.25 0.63

(1.40) (4.04) (1.35) (3.92) (1.57) (4.62) (1.55) (4.55)
βD -0.62 -0.65 -0.65 -0.65

(-4.83) (-5.94) (-5.48) (-5.90)
SMB 0.02 0.05 0.02 0.05

(0.27) (0.58) (0.28) (0.56)
HML 0.10 0.11 0.09 0.11

(0.98) (1.14) (0.92) (1.11)
UMD -0.20 -0.23 -0.20 -0.23

(-1.90) (-2.29) (-1.96) (-2.30)
DMA 0.09 0.16 0.14 0.21

(1.35) (3.92) (1.28) (2.04)
SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 437 437 437 437 437 437 437 437
Adj. R2 2.5% 3.1% 3.3% 3.7% 4.8% 5.2% 5.2% 5.6%
p(MKT:λ=R) 14.8% 86.8% 11.8% 80.2% 12.1% 89.3% 12.1% 89.3%

Table 3: Fama-MacBeth Regressions, Individual Stock Monthly Returns vs. Factor Loadings

Note: Results for Fama-MacBeth regressions of monthly excess returns on factor loadings for individual
stocks. Factor loadings are computed in a first stage regression using 60 month rolling windows. We require
a minimum of 30 return observations for a stock to be included. In the second stage, month t+1 excess
returns are then regressed on factor loadings computed in the rolling window ending in month t . The βD 
interaction is found by multiplying the stock-level market beta and our analysts' forecast dispersion
measure. We cross-sectionally demean the interaction each month prior to the second stage regression.
"DMA" is the analysts' forecast dispersion anomaly, tested as the factor loadings on a long-short portfolio of
high vs. low dispersion stocks (Diether et al., 2002). See Appendix A1 for detail on construction of the DMA
factor. t -Stats are reported in parentheses and computed using Newey-West standard errors with six-
months of lags. |t -Stats| > 2.00 are indicated in bold. Adjusted R2 values are computed using the Fama-
MacBeth procedure. p(MKT:λ=R) is the p -value for the hypothesis test that the Fama-MacBeth price of
market risk equals the in-sample mean market excess return.
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(1) (2) (3) (4) (5) (6) (7)
Intercept 0.18 0.17 -0.12 -0.16 -0.14 -0.03 -0.04

(0.88) (0.80) (-0.61) (-0.76) (-0.68) (-0.14) (-0.18)
MKT 0.64 0.65 0.63 0.63 0.61 0.61 0.59

(4.62) (4.64) (4.51) (4.53) (4.42) (4.35) (4.24)
βD -0.65 -0.66 -0.63 -0.64 -0.63 -1.04 -1.09

(-5.48) (-5.48) (-5.35) (-5.36) (-5.33) (-5.07) (-5.29)
D -0.79 -0.85 -2.04 -2.22

(-3.12) (-3.37) (-3.32) (-3.63)
σ(D) 1.94 2.06 2.01 1.47 1.49

(3.69) (3.98) (3.90) (3.06) (3.20)
D*σ(D) 6.90 7.82

(2.41) (2.76)
βD*σ(D) 2.59 2.95

(3.02) (3.52)
Model FFC FFC FFC FFC FFC FFC FFC
SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 437 437 437 437 437 437 437
Adj. R2 5.2% 5.4% 5.4% 5.5% 5.6% 5.5% 5.8%
p(MKT:λ=R) 89.3% 90.8% 84.0% 85.4% 80.7% 78.1% 73.9%

Table 4: Forecast Dispersion Proxies

Note: Results for Fama-MacBeth regressions of monthly excess returns on factor loadings for
individual stocks. Fama-French-Carhart (FFC) factor loadings are computed in a first stage
regression using 60 month rolling windows. We require a minimum of 30 return observations for
a stock to be included. In the second stage, month t+1 excess returns are then regressed on factor
loadings computed in the rolling window ending in month t . The βD interaction is found by
multiplying the stock-level market beta and our analysts' forecast dispersion measure. We cross-
sectionally demean the interaction each month prior to the second stage regression. D and σ (D  
are the level and volatility (in the first stage rolling window) of our forecast dispersion measure.
To reduce collinearity, we cross-sectionally residualize D each month on β and βD prior to the
second stage regression. t -Stats are reported in parentheses and computed using Newey-West
standard errors with six-months of lags. |t -Stats| > 2.00 are indicated in bold. Adjusted R2 values
are computed using the Fama-MacBeth procedure. p(MKT:λ=R) is the p -value for the hypothesis
test that the Fama-MacBeth price of market risk equals the in-sample mean market excess return.
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< Median ≥ Median < Median ≥ Median
Intercept 0.48 -0.06 -0.04 0.30

(1.95) (-0.23) (-0.16) (1.49)
MKT 0.44 0.88 0.71 0.52

(2.89) (4.19) (4.76) (3.54)
βD -0.60 -0.71 -0.74 -0.49

(-3.59) (-3.91) (-4.81) (-3.52)
Model FFC FFC FFC FFC
SE's FMB FMB NW(6) NW(6)
T (Mos.) 215 211 437 437
Adj. R2 4.7% 5.8% 5.4% 5.5%
p(MKT:λ=R) 32.5% 67.3% 91.3% 55.5%

Table 5: Short Sale Constraints

TED Spread Short Interest

Note: Results for Fama-MacBeth regressions of monthly excess returns on factor loadings
for individual stocks. Fama-French-Carhart (FFC) Factor loadings are computed in a first
stage regression using 60 month rolling windows. We require a minimum of 30 return
observations for a stock to be included. In the second stage, month t+1 excess returns are
then regressed on factor loadings computed in the rolling window ending in month t . The
βD interaction is found by multiplying the stock-level market beta and our analysts'
forecast dispersion measure. We cross-sectionally demean the interaction each month
prior to the second stage regression. "TED Spread" seperates our sample based on the
beginning of the month level of the TED Spread (3 mo. LIBOR minus 3 mo. T-Bill rates,
downloaded from https://fred.stlouisfed.org/series/TEDRATE). High TED spreads proxy
for high short-selling costs. "Short Interest" seperates our sample each month based on
the stock-level of shares sold short relative to shares outstanding from the COMPUSTAT
monthly short interest file. Short sale data is lagged one month. t -Stats are reported in
parentheses and computed using Fama-MacBeth (FMB) or Newey-West (NW) standard
errors with six-months of lags. |t -Stats| > 2.00 are indicated in bold. Adjusted R2 values
are computed using the Fama-MacBeth procedure. p(MKT:λ=R) is the p -value for the
hypothesis test that the Fama-MacBeth price of market risk equals the in-sample mean
market excess return.
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Market Model
FF Three-
Factors + 

Momentum

FF Three-
Factors + 

Momentum + 
Liquidity

FF Five 
Factors Q Factors Mispricing 

Factors

Intercept 0.58 0.54 0.54 0.53 0.58 0.61
(2.79) (2.94) (2.98) (2.82) (2.97) (2.83)

MKT 0.26 0.26 0.25 0.28 0.26 0.21
(1.40) (1.57) (1.58) (1.68) (1.63) (1.19)

SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 437 437 437 437 437 365
Adj. R2 2.5% 4.8% 5.1% 5.1% 4.9% 4.9%
p(MKT:λ=R) 14.8% 12.1% 11.3% 14.9% 11.7% 14.7%

Intercept 0.24 0.18 0.19 0.16 0.25 0.28
(1.04) (0.88) (0.93) (0.78) (1.11) (1.15)

MKT 0.63 0.64 0.63 0.68 0.62 0.57
(4.04) (4.62) (4.60) (4.59) (4.47) (3.67)

βD -0.62 -0.65 -0.64 -0.66 -0.64 -0.64
(-4.83) (-5.48) (-5.48) (-5.35) (-5.29) (-4.68)

SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 437 437 437 437 437 365
Adj. R2 3.1% 5.2% 5.5% 5.5% 5.3% 5.3%
p(MKT:λ=R) 86.8% 89.3% 85.1% 99.4% 83.2% 82.4%

Table 6: Price of Market Risk in Factor Models

Panel A: w/o βD Interaction

Panel B: w/ βD Interaction

Note: Results for Fama-MacBeth regressions of monthly excess returns on factor loadings for individual
stocks. Factor loadings are computed in a first stage regression using 60 month rolling windows. We require
a minimum of 30 return observations for a stock to be included. We compute loadings seperately for various
common factor models. In the second stage, month t+1 excess returns are then regressed on factor loadings
computed in the rolling window ending in month t . The βD interaction is found by multiplying the stock-
level market beta and our analysts' forecast dispersion measure. We cross-sectionally demean the
interaction each month prior to the second stage regression. t -Stats are reported in parentheses and
computed using Newey-West standard errors with six-months of lags. |t -Stats| > 2.00 are indicated in bold . 
Adjusted R2 values are computed using the Fama-MacBeth procedure. p(MKT:λ=R) is the p -value for the
hypothesis test that the Fama-MacBeth price of market risk equals the in-sample mean market excess return.
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FMB FirmYear FE FMB FirmYear FE
MKT -0.09 0.02 -0.12 0.04

(-2.29) (0.32) (-2.20) (0.93)
βD 0.04 0.04 0.55 0.08

(0.75) (0.93) (7.41) (3.21)
D 0.18 0.10 0.72 0.12

(1.56) (0.96) (6.70) (1.86)
Controls Yes Yes Yes Yes
SE's NW(24) Cl(FirmYear) NW(24) Cl(FirmYear)
N (Obs.) 321,000 321,000 321,000 321,000
Adj. R2 2.3% 55.1% 12.1% 62.2%

(F1) (F2) (P1) (P2)
NAT 0.83 0.82 0.99 0.99

(6.23) (6.22) (3.26) (3.28)
NAT*βD 0.23 0.29 0.70 0.69

(0.96) (1.13) (3.40) (3.38)
NAT*D 0.46 0.12

(0.42) (0.21)
Model FFC + βD FFC + βD FFC + βD FFC + βD
SE's NW(6) NW(6) Cl(Mo.) Cl(Mo.)
T (Mos.) 312 312 312 312
Adj. R2 6.7% 6.9% 0.1% 0.1%
Note: Results for Fama-MacBeth, pooled, and firmyear fixed effects regressions. Panel A gives
results for regressing net abribtrage trading ("NAT" from Chen, Da, and Huang, 2019) and |NAT| on
stock-level factor loadings and controls. See Appendix A2 for detail on firm-level controls. NAT is the
difference between aggregate hedge funds' 13F long positions and aggregate short sales, expressed
relative to total shares outstanding and demeaned over the trailing four quarters. NAT is available
between Jan. 90-Dec. 15 and is downloaded from Yong Chen's website. The βD interaction is found
by multiplying the stock-level market beta and analysts' forecast dispersion. We cross-sectionally
demean the interaction each month prior to the second-stage regression. Panel B gives results for
regressing monthly excess returns on factor loadings & factor interactions with NAT. Prior to the
second-stage regression, "D" is cross-sectionally residualized each month on β and βD. Panel B
controls for Fama-French-Carhart (FFC) factor loadings and βD variables. In both panels, t -Stats 
are reported in parentheses and computed using Newey-West standard errors with twenty-four (A)
or six (B) months of lags (FMB) or clustered by month (pooled) or firm (firmyear fixed effects). |t -
Stats| > 2.00 are indicated in bold. Adjusted R2 values computed using the FMB procedure for FMB
results.

Table 7: Net Arbitrage Trading

Panel A: Trading Activity Correlated with βxD

NAT |NAT|

Panel B: Individual Stocks & NAT

FMB Pooled
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(D1) (D2) (D3) (D4) (N1) (N2) (N3) (N4)
Intercept 6.76 0.92 6.10 1.24 -0.44 3.89 0.20 3.19

(8.78) (1.01) (10.00) (1.66) (-1.05) (7.93) (0.50) (7.02)
MKT -7.02 -0.39 -4.51 0.68 7.31 2.39 3.87 0.65

(-5.53) (-0.34) (-4.35) (0.65) (12.09) (3.83) (6.83) (1.08)
βD -10.62 -9.05 7.54 5.40

(-13.24) (-15.55) (18.13) (16.05)
Model MM MM FFC FFC MM MM FFC FFC
SE's NW(10) NW(10) NW(10) NW(10) NW(10) NW(10) NW(10) NW(10)
T (Days) 7,694 7,694 7,694 7,694 7,694 7,694 7,694 7,694
Adj. R2 2.7% 3.0% 6.3% 6.5% 1.6% 1.7% 2.7% 2.8%
p(MKT:λ=R) 0.0% 63.7% 0.2% 81.9% 0.1% 10.6% 91.2% 0.1%

Table 8: Intraday vs. Overnight Returns

Intraday Returns Overnight Returns

Note: Results for Fama-MacBeth regressions of intraday versus overnight returns on factor loadings for individual stocks. Returns are expressed in
basis points. Factor loadings are computed in a first stage regression using 252 day rolling windows. We require a minimum of 126 return observations
for a stock to be included. In the second stage, day t+1 excess returns are then regressed on factor loadings computed in the rolling window ending on
day t . The βD interaction is found by multiplying the stock-level market beta and our analysts' forecast dispersion measure. We cross-sectionally
demean the interaction each month prior to the second stage regression. Fama-MacBeth estimates are seperate for intraday and overnight returns. t
Stats are reported in parentheses and computed using Newey-West standard errors with ten days of lags. |t -Stats| > 2.00 are indicated in bold  
Adjusted R2 values are computed using the Fama-MacBeth procedure. p(MKT:λ=R) is the p -value for the hypothesis test that the Fama-MacBeth price
of market risk equals the in-sample SPY (S&P 500 ETF) mean return. SPY data is available from 02/02/93 and we recompute coefficients to correspond
for this availability to compare.
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Event
Day Q1 Q5 Intercept MKT βD

4.65 -1.54 0.96 0.14 -4.80
(4.77) (-0.94) (0.48) (0.07) (-2.48)

2.61 4.09 -1.92 4.58 0.79
(1.45) (1.41) (-0.54) (1.29) (0.23)
5.57 6.53 1.73 2.20 -2.20

(3.32) (2.25) (0.49) (0.62) (-0.65)
6.46 8.85 3.22 -0.09 -0.96

(3.84) (3.07) (0.90) (-0.03) (-0.28)
11.04 11.23 5.15 3.36 -1.13
(6.36) (3.77) (1.44) (0.96) (-0.32)
18.74 -38.63 -19.19 24.67 -53.31
(6.48) (-8.62) (-3.68) (4.77) (-10.09)

8.30 -12.48 -5.29 7.78 -20.07
(4.28) (-3.86) (-1.36) (2.03) (-5.21)

1.35 -8.36 1.41 -0.23 -6.34
(0.79) (-2.81) (0.40) (-0.07) (-1.84)
2.37 -2.18 2.68 -1.60 -3.09

(1.40) (-0.75) (0.77) (-0.47) (-0.88)
1.92 -0.75 6.19 -4.57 -1.84

(1.16) (-0.25) (1.74) (-1.33) (-0.54)
4.71 -0.79 6.28 -1.32 -6.54

(2.86) (-0.28) (1.82) (-0.39) (-1.95)
67.72 -34.04 1.23 34.90 -99.48

(11.25) (-3.38) (0.10) (2.93) (-8.38)
Model FFC FFC
SE's Cl(Event) Cl(Event)
Events 66,780 55,725
Note: Results for event studies of abnormal returns for individual stocks in the [-5,5] event window
around earnings announcement dates. Returns are expresses in basis points. Abnormal returns are
computed with respect to Fama-French-Carhart (FFC) factor loadings. Factor loadings are computed
in a first stage regression using 252 day rolling windows. We require a minimum of 126 return
observations for a stock to be included. Loadings are lagged 50 days prior to the start of the event
window. The βD interaction is found by multiplying the stock-level market beta and analysts'
forecast dispersion, where forecast dispersion is computed using data on each firms's prior earnings
announcement. We cross-sectionally demean the interaction each month prior to the second stage
regression. t -Stats are reported in parentheses and computed using standard errors clustered by
events.  |t-Stats| > 2.00 are indicated in bold. 
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Table 9: Event Windows around Earnings Announcement Dates
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(A1) (A2) (A3) (A4) (N1) (N2) (N3) (N4)

Intercept -0.42 -1.43 0.23 -1.55 4.10 1.99 3.86 1.52
(-0.24) (-0.82) (0.17) (-1.01) (5.35) (2.47) (6.68) (2.43)

MKT 12.16 13.32 9.62 11.56 -0.49 1.89 -0.75 1.72
(2.92) (3.28) (2.49) (2.94) (-0.31) (1.22) (-0.51) (1.17)

βD -2.66 -3.59 -4.19 -4.50
(-1.64) (-2.89) (-6.68) (-9.54)

Model MM MM FFC FFC MM MM FFC FFC
SE's FMB FMB FMB FMB FMB FMB FMB FMB
T (Days) 1,138 1,138 1,138 1,138 8,041 8,041 8,041 8,041
Adj. R2 3.1% 3.3% 6.8% 6.9% 2.9% 3.1% 6.8% 7.0%
p(MKT:λ=R) 53.3% 36.3% 96.9% 61.0% 13.8% 75.2% 8.7% 67.4%

Table 10: Fama-MacBeth Regressions, Macroeconomic Announcement Days

Announcement Days Non-Announcement Days

Note: Results for Fama-MacBeth regressions of daily excess returns on factor loadings for individual stocks. Returns are expressed in basis points per
day. Factor loadings are computed in a first stage regression using 252 day rolling windows. We require a minimum of 126 return observations for a
stock to be included. In the second stage, day t+1 excess returns are then regressed on factor loadings computed in the rolling window ending on day t.
The βD interaction is found by multiplying the stock-level market beta and our analysts' forecast dispersion measure. We cross-sectionally demean
the interaction each month prior to the second stage regression. Fama-MacBeth estimates are estimated seperately for "Announcement Days" and
"Non-Announcement Days", where "Announcement Days" are days in our sample with scheduled FOMC meetings (using only the second day for two
day meetings), BLS releases of job market data and producer prices. t -Stats are reported in parentheses and computed using Fama-MacBeth standard
errors. |t -Stats| > 2.00 are indicated in bold. Adjusted R2 values are computed using the Fama-MacBeth procedure. p(MKT:λ=R) is the p-value for the
hypothesis test that the Fama-MacBeth price of market risk equals the in-sample mean market excess return.
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Appendix A1: Construction of Test Assets

We construct 400 test assets by simultaneously sorting on eight characteristics and forecast

dispersion. Test assets are sorted into characteristic deciles and dispersion quintiles, so that

for each characteristic we form 50 test assets. Returns are value-value weighted according

to the beginning of the month market capitalization for each stock included in a test asset.

The characteristics we test are market beta, alpha, idiosyncratic volatility (ivol), size, value,

investment, profitability, and momentum. Below, we explain how stocks are sorted on each

anomaly characteristic.

Forecast Dispersion: We compute our dispersion variable each month by ranking stocks

according to lagged values of dispersion in analysts’ EPS forecasts (See Section 3, “Com-

puting Firm-Level Dispersion”). Analyst forecasts are collected from the IBES system. To

be considered current, a forecast must be posted in IBES within 105 days of the earnings

announcement and posted prior to the earnings announcement. Dispersion is calculated

at each earnings announcement as the standard deviation of the available analyst forecasts

scaled by the absolute value of the actual EPS reported. Dispersion values are then lagged

into the month following the earnings announcement and maintained in our sample until

the next lagged value is available or six months have elapsed. Stocks are sorted into test

assets by quintile in the dispersion measure, so that there are are five levels of variation

in dispersion across test assets from low (Q1) to high (Q5) dispersion. Quintile groups are

computed relative to our sample in each month.

Market Beta: We compute market beta for each stock in our sample using 60 month rolling

window regressions of the market model. We require a minimum of 30 observed returns in

each rolling window to compute a valid market beta and be included in market beta test

assets. We lag betas into the next month following each rolling window then sort stocks

into beta deciles relative to our sample each month. For each beta decile, we assign stocks

to one of five test assets based on each stocks’ dispersion quintile assignment. Thus, stocks

are sorted into 50 tests assets where sorting is simultaneous on market betas and dispersion.

For daily returns, we compute betas using 252 day rolling windows with a minimum of 126

return observations.

Alpha & Ivol: We compute alpha for each stock in our sample using 60 month rolling

window regressions of the FFC model, such that alpha reflects mispricing relative to known

risk factors. We compute ivol as the standard deviation of residuals from the same rolling

window regression. We require a minimum of 30 observed returns in each rolling window to

compute valid parameters and be included in test assets. As when constructing market beta
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test assets, we lag parameters into the next month then sort stocks into deciles relative to

our sample each month. For each alpha or ivol decile, we assign stocks to one of five test

assets based on each stocks’ dispersion quintile assignment. Thus, stocks are sorted into 50

tests assets where sorting is simultaneous on alphas and dispersion or ivol and dispersion.

Size: We compute size as the market equity at the end of each month. Market equity is the

shares oustanding (CRSP:SHROUT) times the share price (CRSP:PRC). We lag size into the

next month then sort stocks into deciles relative to our sample each month. Since our sample

is biased towards larger stocks, we sort based on our sample instead of NYSE breakpoints

so that each test asset has a similar number of stocks. For each size decile, we assign stocks

to one of five test assets based on each stocks’ dispersion quintile assignment. Thus, stocks

are sorted into 50 tests assets where sorting is simultaneous on size and dispersion.

Value: We follow Fama and French (2016) in computing value as the ratio of book equity

to market equity, that is the BE/ME ratio. Book equity is computing using COMPUSTAT

data based on annual filings for each firm, then lagged from the year data is reported into the

next July for July to June assignment. Book equity equals stockholders equity (COMUP-

STAT:SEQ or CEQ+PSTK or AT-LT) plus deferred tax assets (COMPUSTAT:TXDITC)

less pension liabilities (COMPUSTAT:PRCA) less preferred stock (COMPUSTAT:PSTKRV

or PSTKL or PSTK). Market equity is taken as the December value for the year in which

book equity data is reported, then lagged from December to July. We sort stocks into BE-

ME deciles based on the breakpoints we download for NYSE stocks from Kenneth French’s

website. For each BE-ME decile, we assign stocks to one of five test assets based on each

stocks’ dispersion quintile assignment. Thus, stocks are sorted into 50 tests assets where

sorting is simultaneous on value and dispersion.

Profitability: We follow Fama and French (2016) in computing profitability as the ratio

of operation profitability to book equity. Operating profitability is computed using COM-

PUSTAT data based on annual filings for each firm, then lagged from the year data is

reported into the next July for July to June assignment. Operating profitability equals rev-

enue (COMPUSTAT:REVT) less the costs of goods sold (COMPUSTAT:COGS), less selling,

general, and administrative expenses (COMPUSTAT:XSGA), less interest expense (COM-

PUSTAT:XINT). Operating profitability is scaled by book equity (computed as above) then

sorted into profitability deciles based on the breakpoints we download for NYSE stocks from

Kenneth French’s website. For each profitability decile, we assign stocks to one of five test

assets based on each stocks’ dispersion quintile assignment. Thus, stocks are sorted into 50

tests assets where sorting is simultaneous on profitability and dispersion.
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Investment: We follow Fama and French (2016) in computing investment as the growth in

total assets. Investment is computed using COMPUSTAT data based on annual filings for

each firm, then lagged from the year data is reported into the next July for July to June

assignment. For each year, investment is the change in total assets (COMPUSTAT:AT)

from the prior year, scaled by the prior year value. We sort firms into investment deciles

based on the breakpoints we download for NYSE stocks from Kenneth French’s website.

For each investment decile, we assign stocks to one of five test assets based on each stocks’

dispersion quintile assignment. Thus, stocks are sorted into 50 tests assets where sorting is

simultaneous on investment and dispersion.

Momentum: We compute momentum as the 11-1 return for each stock, where returns are

cumulated for 11 months then lagged 1 month prior to decile assignment. We sort stocks into

momentum deciles based on the breakpoints we download for NYSE stocks from Kenneth

French’s website. For each momentum decile, we assign stocks to one of five test assets based

on each stocks’ dispersion quintile assignment. Thus, stocks are sorted into 50 tests assets

where sorting is simultaneous on momentum and dispersion.

DMA Factor: To control for the forecast dispersion anomaly (Diether et al. (2002)), we

construct a “Disagreement” minus “Agreement” zero cost portfolio from our market beta by

forecast dispersion test assets. For the long leg, we take the mean return each month of the

10 market beta test assets formed from high (Q5) dispersion stocks. The short leg uses the

10 test assets formed from low (Q1) dispersion stocks.
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Appendix A2: Control Variables

We include the following firm-level controls in Table 7, Panel A when regressing net arbitrage

trading (NAT) on market betas, β ×D, and D.

• ln(ME): The log of market equity, which is computed with CRSP data as shares

outstanding (CRSP:SHROUT) times price per share (CRSP:PRC). We lag values one

month.

• BEME: The ratio of book equity to market equity. Book equity is computing using

COMPUSTAT data based on annual filings for each firm, then lagged from the year

data is reported into the next July for July to June assignment. Book equity equals

stockholders equity (COMUPSTAT:SEQ or CEQ+PSTK or AT-LT) plus deferred tax

assets (COMPUSTAT:TXDITC) less pension liabilities (COMPUSTAT:PRCA) less

preferred stock (COMPUSTAT:PSTKRV or PSTKL or PSTK). Market equity is taken

as the December value for the year in which book equity data is reported, then lagged

from December to July.

• OP: Operating profitability is computed using COMPUSTAT data based on annual fil-

ings for each firm, then lagged from the year data is reported into the next July for July

to June assignment. Operating profitability equals revenue (COMPUSTAT:REVT)

less the costs of goods sold (COMPUSTAT:COGS), less selling, general, and adminis-

trative expenses (COMPUSTAT:XSGA), less interest expense (COMPUSTAT:XINT).

Operating profitability is scaled by book equity (computed as above).

• INV: Investment is computed using COMPUSTAT data based on annual filings for

each firm, then lagged from the year data is reported into the next July for July to June

assignment. For each year, investment is the change in total assets (COMPUSTAT:AT)

from the prior year, scaled by the prior year value.

• D/E: The debt to equity ratio, computed using COMPUSTAT data as the ratio of total

liabilities (COMPUSTAT:LT) to book equity (computed as above) based on annual

filings for each firm. D/E is computed from the year data is reported then lagged into

the next July for July to June assignment.

• 11-1 Ret: We compute momentum as the 11-1 return for each stock, where returns

are cumulated for 11 months then lagged 1 month.

• Div. Yield: We compute dividend yield as the ratio dividends paid per share (COM-

PUSTAT:DIVRAT) to the share price (CRSP:PRC), where we lag price data from
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CRSP one month and dividend data from COMPUSTAT by three months to ensure

we include data that is publicly available in our tests. We set missing values to zero

and include a dummy for missing values.

All values are winsorized at the 1% and 99% level.
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Note: Mean excess returns for twenty (ten "high" and ten "low") test assets contstructed eight anomaly characteristics (deciles) and
analysts' forecast dispersion (quintiles). Q1 (green) test assets include stocks from the bottom quintile of forecast dispersion and Q5
(red) test assets from the top. Characteristics tested are market beta, alpha (computed using the Fama-French-Carhart (FFC) model),
ivol (computed using the FFC model), momentum, size, value, profitability, and investment. See Appendix A1 for description of
anomaly characteristic test assets. Test asset returns are value-weighted. The sample period is Aug. 1986-Dec. 2022. Dotted lines are
SMLs fitted from regressions of full sample mean returns on full sample market betas, computed using monthly data.
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Appendix Figure 1: Anomaly Characteristics x Forecast Dispersion Test Assets

58



Appendix Figure 2

Note: Cumulative abnormal returns correlated with MKT and βD factor loadings at earnings announcements. Panel A plots abnormal returns
computed with respect the the FFC. Panel B plots abnormal returns relative to our modified DGTW benchmark returns, computed by sorting on
market betas, dispersion, size and value. Dotted lines represent 90%-confidence intervals.
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(1) (2) (3) (4) (5) (6) (7) (8)
Intercept 0.58 0.30 0.65 0.36 0.63 0.37 0.66 0.39

(2.85) (1.25) (3.12) (1.51) (3.30) (1.58) (3.38) (1.64)
MKT 0.28 0.60 0.23 0.55 0.26 0.55 0.23 0.52

(1.59) (3.91) (1.46) (3.90) (1.74) (4.56) (1.63) (4.44)
βD -0.50 -0.51 -0.47 -0.49

(-2.71) (-2.88) (-2.58) (-2.75)
SMB -0.01 0.01 0.00 0.02

(-0.10) (0.06) (0.05) (0.22)
HML 0.00 0.01 -0.02 -0.01

(0.05) (0.12) (-0.24) (-0.17)
UMD -0.20 -0.22 -0.22 -0.23

(-1.94) (-2.23) (-2.27) (-2.49)
DMA 0.04 0.08 0.09 0.12

(1.46) (3.90) (0.92) (1.36)
SE's Cl(Mo.) Cl(Mo.) Cl(Mo.) Cl(Mo.) Cl(Mo.) Cl(Mo.) Cl(Mo.) Cl(Mo.)
T (Mos.) 437 437 437 437 437 437 437 437
Adj. R2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
p(MKT:λ=R) 16.4% 76.0% 10.2% 60.9% 11.0% 59.6% 11.0% 59.6%

Appendix Table 1: Pooled Regressions, Individual Stock Monthly Returns vs. Factor Loadings

Note: Results for pooled regressions of monthly excess returns on factor loadings for individual stocks.
Factor loadings are computed in a first stage regression using 60 month rolling windows. We require a
minimum of 30 return observations for a stock to be included. In the second stage, month t+1 excess returns
are then regressed on factor loadings computed in the rolling window ending in month t . The β D 
interaction is found by multiplying the stock-level market beta and our analysts' forecast dispersion
measure. We cross-sectionally demean the interaction each month prior to the second stage regression.
"DMA" is the analysts' forecast dispersion anomaly, tested as the factor loadings on a long-short portfolio of
high vs. low dispersion stocks (Diether et al., 2002). See Appendix A1 for detail on construction of the DMA
factor. t -Stats are reported in parentheses and computed using standard errors clustered by month. |t -Stats| 
> 2.00 are indicated in bold. p(MKT:λ=R) is the p -value for the hypothesis test that the Fama-MacBeth price
of market risk equals the in-sample mean market excess return.
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(1) (2) (3) (4)
Intercept 3.54 1.57 3.41 1.14

(4.14) (1.61) (5.60) (1.59)
MKT 1.08 3.31 0.53 2.94

(0.82) (2.76) (0.47) (2.61)
βD -4.00 -4.39

(-5.35) (-8.75)
SMB -0.10 0.13

(-0.13) (0.17)
HML 0.43 0.51

(0.57) (0.68)
UMD -1.48 -1.76

(-1.27) (-1.53)
SE's NW(10) NW(10) NW(10) NW(10)
T (Days) 9,179 9,179 9,179 9,179
Adj. R2 2.9% 3.1% 6.8% 6.9%
p(MKT:λ=R) 19.6% 96.3% 8.4% 78.7%

Appendix Table 2: Daily Stock Returns

Note: Results for Fama-MacBeth regressions of daily excess returns on factor
loadings for individual stocks. Returns are expressed in basis points. Factor
loadings are computed in a first stage regression using 252 day rolling windows.
We require a minimum of 126 return observations for a stock to be included. In
the second stage, day t+1 excess returns are then regressed on factor loadings
computed in the rolling window ending on day t . The βD interaction is found by
multiplying the stock-level market beta and our analysts' forecast dispersion
measure. We cross-sectionally demean the interaction each month prior to the
second stage regression. t -Stats are reported in parentheses and computed using
Newey-West standard errors with ten days of lags. |t -Stats| > 2.00 are indicated
in bold. Adjusted R2 values are computed using the Fama-MacBeth procedure.
p(MKT:λ=R) is the p -value for the hypothesis test that the Fama-MacBeth price of
market risk equals the in-sample mean market excess return.
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Winzorized

1st-Half 2nd-Half < Median ≥ Median < Median ≥ Median < Median ≥ Median 24 Mos. 36 Mos. Betas
Intercept 0.26 0.09 0.12 0.23 0.19 -0.11 0.13 0.27 0.32 0.23 0.10

(1.07) (0.26) (0.52) (1.14) (0.98) (-0.40) (0.48) (1.51) (1.40) (1.06) (0.51)
MKT 0.56 0.75 0.76 0.57 0.57 1.07 0.84 0.50 0.52 0.60 0.70

(2.94) (3.52) (4.87) (3.82) (3.41) (5.73) (5.56) (3.27) (4.71) (4.62) (4.31)
βD -0.55 -0.76 -0.82 -0.50 -0.87 -1.08 -0.86 -0.50 -0.51 -0.58 -0.72

(-3.35) (-4.30) (-5.97) (-3.78) (-5.07) (-4.62) (-5.91) (-4.22) (-4.62) (-4.99) (-5.32)
Model FFC FFC FFC FFC FFC FFC FFC FFC FFC FFC FFC
SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 219 218 437 437 437 437 437 437 437 437 437
Adj. R2 6.6% 3.9% 4.3% 7.8% 5.5% 5.0% 3.8% 8.4% 4.4% 5.0% 5.2%
p(MKT:λ=R) 88.3% 98.5% 75.4% 68.2% 69.1% 17.0% 55.0% 50.1% 52.1% 75.3% 92.6%
Note: Results for Fama-MacBeth regressions of monthly excess returns on factor loadings for individual stocks. Fama-French-Carhart (FFC) Factor
loadings are computed in a first stage regression using 60 month rolling windows. We require a minimum of 30 return observations for a stock to be
included. In the second stage, month t+1 excess returns are then regressed on factor loadings computed in the rolling window ending in month t . The
βD interaction is found by multiplying the stock-level market beta and our analysts' forecast dispersion measure. We cross-sectionally demean the
interaction each month prior to the second stage regression. "Sample Period" splits our sample at the midpoint (Oct.-2004) and tests before (1st-Half)
and after (2nd-Half) subperiods. "Analyst Coverage" splits our sample each month at the median number of analysts covering each stock in our sample.
"Forecast Dispersion" splits our sample each month at the median level of forecast dispersion in the IBES sample. "Size" splits our sample each month
at the median market value of equity. "Estimation Window" uses factor loadings estimated in 24 month (min. 18 obs.) and 36 month (min. 24 obs.)
rolling windows. "Winzorized Betas" uses factor loadings winzorized each month at the 5% and 95% levels to mitigate the effect of outliers. t -Stats are
reported in parentheses and computed using Newey-West standard errors with six-months of lags. |t -Stats| > 2.00 are indicated in bold. Adjusted R2
values are computed using the Fama-MacBeth procedure. p(MKT:λ=R) is the p -value for the hypothesis test that the Fama-MacBeth price of market
risk equals the in-sample mean market excess return for each period tested.

Appendix Table 3: Robustness Tests

Sample Period Analyst Coverange Forecast Dispersion Size (MVE) Estimation Window
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(U1) (U2) (U3) (U4) (U5) (R1) (R2) (R3) (R4) (R5)
Intercept 0.47 -0.02 0.52 0.22 0.55 1.25 0.08 0.30 0.24 1.18

(1.50) (-0.09) (2.14) (0.95) (1.62) (1.56) (0.42) (1.31) (1.11) (1.61)
MKT 0.62 0.70 0.67 0.65 0.69 0.62 0.66 0.66 0.64 0.65

(4.30) (4.74) (4.42) (4.15) (5.53) (4.30) (4.43) (4.41) (4.11) (5.05)
βD -0.67 -0.68 -0.65 -0.62 -0.72 -0.67 -0.68 -0.61 -0.61 -0.69

(-5.94) (-5.54) (-5.18) (-5.13) (-6.53) (-5.98) (-5.74) (-4.76) (-4.94) (-6.41)
SIZE -0.42 -0.44 -0.07 -0.07

(-1.47) (-1.58) (-1.50) (-1.54)
BEME 0.39 0.12 0.16 0.03

(1.69) (0.44) (1.03) (0.22)
INVT -0.63 -0.51 -0.58 -0.48

(-4.53) (-4.51) (-4.92) (-4.80)
PROF -0.01 0.14 -0.03 0.09

(-0.04) (0.60) (-0.23) (0.64)
Model MM MM MM MM MM MM MM MM MM MM
SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 437 437 437 437 437 437 437 437 437 437
Adj. R2 4.1% 3.8% 3.4% 3.6% 5.5% 4.1% 3.8% 3.4% 3.6% 5.4%
p(MKT:λ=R) 83.6% 93.6% 97.6% 92.2% 97.6% 83.1% 95.4% 95.4% 89.7% 91.3%

Appendix Table 4: Stock Characteristics

Panel A: Firm Characteristics

Unitized Winsorized (1%-99%)

Note: Results for Fama-MacBeth regressions of monthly excess returns on characteristics for individual stocks. Market betas are computed in a first
stage regression using 60 month rolling windows. We require a minimum of 30 return observations for a stock to be included. In the second stage,
month t+1 excess returns are then regressed on firm characteristics available in the rolling window ending in month t . The βD interaction is found
by multiplying the stock-level market beta and our analysts' forecast dispersion measure. We cross-sectionally demean the interaction each month
prior to the second stage regression. "Unitized" results regress excess returns on characteristics mapped to a [0,1] ranking each month. "Winsorized"
results regress excess returns on characteristics winsorized at the 1% and 99% levels each month. See Appendix A2 for a description of stock
characteristics. t -Stats are reported in parentheses and computed using Newey-West standard errors with six-months of lags. |t -Stats| > 2.00 are
indicated in bold. Adjusted R2 values are computed using the Fama-MacBeth procedure. p(MKT:λ=R) is the p -value for the hypothesis test that the
Fama-MacBeth price of market risk equals the in-sample mean market return.

Panel A: "SIZE" is the log of market capitalization. Following Fama and French (2015), "BEME" is the book-to-market value of equity, "INVT" is the
change in total assets, and "PROF" is operating profitability. 
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(U1) (U2) (U3) (U4) (U5) (R1) (R2) (R3) (R4) (R5)
Intercept 0.18 0.30 0.31 0.14 0.26 0.12 0.24 0.32 0.24 0.16

(0.79) (1.17) (1.47) (0.70) (1.20) (0.45) (1.06) (1.60) (1.09) (0.68)
MKT 0.56 0.63 0.62 0.63 0.57 0.56 0.63 0.64 0.63 0.56

(4.32) (4.10) (4.43) (4.30) (5.08) (4.26) (4.10) (4.73) (3.98) (5.14)
βD -0.63 -0.63 -0.62 -0.65 -0.66 -0.67 -0.63 -0.62 -0.62 -0.68

(-6.43) (-5.06) (-4.84) (-5.55) (-6.75) (-7.11) (-5.12) (-4.88) (-4.99) (-7.43)
IVOL 0.33 0.31 0.03 0.08

(0.89) (0.84) (0.40) (0.92)
COSKEW -0.11 -0.07 -0.01 -0.01

(-0.76) (-0.54) (-1.37) (-0.78)
DRISK -0.14 -0.16 -0.10 -0.14

(-0.63) (-0.74) (-0.79) (-0.89)
ILLQ 0.22 0.07 -0.07 0.22

(0.90) (0.32) (-0.10) (0.41)
Model MM MM MM MM MM MM MM MM MM MM
SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 437 437 437 437 437 437 437 437 437 437
Adj. R2 4.5% 3.4% 3.7% 4.0% 5.7% 4.8% 3.5% 3.8% 3.6% 6.0%
p(MKT:λ=R) 63.7% 86.6% 83.8% 85.6% 66.9% 63.0% 86.0% 89.5% 84.8% 62.9%

Appendix Table 4: Stock Characteristics

Panel B: Risk Measures

Unitized Winsorized (1%-99%)

Panel B: "IVOL" is idiosyncratic volatility relative to the Fama-French-Carhart (FFC) model. "COSKEW" is coskewness with the market return as in
Harvey and Siddique (2000). "DRISK" is downside beta, which is the beta on the market return when the market return is below average, as in Bawa
and Lindenberg (1977). IVOL, COSKEW, and DRISK are computed on the prior year of daily returns ending in month t. "ILLQ" is the month t average of
absolute stock return relative to the daily dollar trading volume as in Amihud (2002). We require a minimum of 15 daily returns to compute ILLQ.
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(U1) (U2) (U3) (U4) (U5) (R1) (R2) (R3) (R4) (R5)
Intercept 0.23 0.12 0.42 0.39 0.61 0.19 0.23 0.44 0.43 0.74

(0.71) (0.51) (1.95) (1.44) (1.73) (0.87) (1.01) (1.97) (1.47) (2.98)
MKT 0.50 0.62 0.66 0.65 0.62 0.51 0.63 0.66 0.66 0.61

(3.58) (4.00) (4.82) (4.31) (5.05) (3.60) (4.02) (4.71) (4.40) (4.92)
βD -0.57 -0.63 -0.57 -0.64 -0.58 -0.57 -0.63 -0.57 -0.64 -0.56

(-4.98) (-5.06) (-5.05) (-5.64) (-6.03) (-4.89) (-4.98) (-5.18) (-5.63) (-5.86)
MOME 0.31 0.33 0.24 0.24

(0.94) (1.00) (0.93) (0.94)
SKEW 0.27 0.11 0.07 0.03

(2.14) (0.97) (2.01) (0.91)
MAX -0.42 -0.64 -0.10 -0.11

(-1.63) (-3.10) (-2.49) (-3.32)
SPEC -0.32 -0.49 -0.78 -1.02

(-1.31) (-2.29) (-1.72) (-2.47)
Model MM MM MM MM MM MM MM MM MM MM
SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 437 437 437 437 437 437 437 437 437 437
Adj. R2 4.2% 3.3% 4.0% 3.9% 5.7% 4.2% 3.3% 4.2% 3.9% 5.9%
p(MKT:λ=R) 50.4% 84.0% 94.5% 91.4% 80.4% 51.4% 84.5% 94.3% 94.1% 79.4%

Unitized Winsorized (1%-99%)

Panel C: "MOME" is 11-1 raw return. "SKEW" is the unadjusted skewness of returns, measured over the prior year of daily returns. "MAX" is lottery
returns as in Bali et al. (2017), defined as the average of the five highest returns observed in month t. We require a minimum of 15 daily returns to
compute MAX. "SPEC" is speculative beta as in Hong and Sraer (2016), defined as the ratio of a stock's market beta to idiosyncratic volatility. We
compute market model betas and idiosyncratic volatility on the prior year of daily returns for SPEC.

Appendix Table 4: Stock Characteristics

Panel C: Lottery Demand
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(1) (2) (3) (4) (5)
Intercept 0.19 0.24 0.17 0.16 0.22

(0.79) (1.06) (0.82) (0.77) (1.06)
MKT 0.66 0.60 0.65 0.66 0.60

(4.04) (3.64) (4.43) (4.62) (4.29)
βD -0.65 -0.57 -0.67 -0.66 -0.60

(-5.20) (-5.30) (-5.81) (-5.89) (-5.18)
VIX -0.66

(-2.01)
VIX Δ -0.21

(-1.68)
EUNC -0.66

(-1.71)
BAB 0.10

(0.90)
FMAX 0.08

(0.46)
Model FFC FFC FFC FFC FFC
SE's NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 365 365 437 437 437
Adj. R2 5.2% 4.9% 5.5% 5.5% 5.6%
p(MKT:λ=R) 92.4% 75.5% 92.9% 93.0% 77.5%

Appendix Table A5: Alternative Risk Factors

Note: Results for Fama-MacBeth regressions of monthly excess returns on factor
loadings for individual stocks. Fama-French-Carhart (FFC) Factor loadings are
computed in a first stage regression using 60 month rolling windows. We require a
minimum of 30 return observations for a stock to be included. In the second stage,
month t+1 excess returns are then regressed on factor loadings computed in the
rolling window ending in month t . The βD interaction is found by multiplying the
stock-level market beta and our analysts' forecast dispersion measure. We cross-
sectionally demean the interaction each month prior to the second stage
regression. In addition to FFC factors, we control for alternative risk factors in the
first stage regression and test loadings on each alternative in the second stage.
"VIX" and "VIX Δ" test the beginning of month level and concurrent shock of the
S&P 500 VIX index from the CBOE. "EUNC" is the macroeconomic uncertainty index
from Jurado et al. (2015) and Bali et al. (2017A). "BAB" is the betting-against-beta
factor from Frazzini and Pedersen (2014). "FMAX" is the lottery return factor from
Bali et al. (2017B). t -Stats are reported in parentheses and computed using Newey-
West standard errors with six-months of lags. |t -Stats| > 2.00 are indicated in bold. 
Adjusted R2 values are computed using the Fama-MacBeth procedure. p(MKT:λ=R)
is the p -value for the hypothesis test that the Fama-MacBeth price of market risk
equals the in-sample mean market excess return for each period tested.
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< Median ≥ Median < Median ≥ Median
Intercept 0.03 -0.29 -0.39 0.19

(0.11) (-0.94) (-1.62) (0.86)
MKT 0.41 0.88 0.63 0.55

(2.75) (4.18) (4.31) (3.68)
βD -0.56 -0.72 -0.65 -0.48

(-3.41) (-3.96) (-4.37) (-3.50)
D -0.60 -1.10 -0.89 -0.96

(-2.21) (-3.44) (-2.84) (-3.53)
σ(D) 2.78 1.30 2.57 0.48

(4.48) (1.67) (3.87) (0.82)
Model FFC FFC FFC FFC
SE's FMB FMB NW(6) NW(6)
T (Mos.) 215 211 437 437
Adj. R2 4.9% 6.1% 5.9% 5.8%
p(MKT:λ=R) 28.9% 67.8% 86.0% 61.5%

Appendix Table A6: Short Sale Constraints, Fama-MacBeth Regressions

TED Spread Short Interest

Note: Results for Fama-MacBeth regressions of monthly excess returns on factor loadings
for individual stocks. Fama-French-Carhart (FFC) Factor loadings are computed in a first
stage regression using 60 month rolling windows. We require a minimum of 30 return
observations for a stock to be included. In the second stage, month t+1 excess returns are
then regressed on factor loadings computed in the rolling window ending in month t . The
βD interaction is found by multiplying the stock-level market beta and our analysts'
forecast dispersion measure. We cross-sectionally demean the interaction each month
prior to the second stage regression. D and σ(D) are the level and volatility (in the first
stage rolling window) of our forecast dispersion measure. To reduce collinearity, we
cross-sectionally residualize D each month on β and βD prior to the second stage
regression. "TED Spread" seperates our sample based on the beginning of the month level
of the TED Spread (3 mo. LIBOR minus 3 mo. T-Bill rates, downloaded from
https://fred.stlouisfed.org/series/TEDRATE). High TED spreads proxy for high short-
selling costs. "Short Interest" seperates our sample each month based on the stock-level
of shares sold short relative to shares outstanding from the COMPUSTAT monthly short
interest file. Short sale data is lagged one month. t -Stats are reported in parentheses and
computed using Fama-MacBeth (FMB) or Newey-West (NW) standard errors with six-
months of lags. |t -Stats| > 2.00 are indicated in bold. Adjusted R2 values are computed
using the Fama-MacBeth procedure. p(MKT:λ=R) is the p -value for the hypothesis test
that the Fama-MacBeth price of market risk equals the in-sample mean market excess
return.
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(1) (2) (3)
Intercept -0.20 -0.13 -0.20

(-0.60) (-0.42) (-0.55)
MKT 0.54 0.51 0.52

(4.60) (3.83) (3.97)
βD -0.48 -0.40 -0.43

(-2.45) (-2.41) (-2.32)
D -1.05 -0.90 -1.05

(-4.23) (-3.67) (-4.02)
σ(D) 3.06 2.88 2.79

(-4.23) (2.57) (2.30)
TED Spread -0.41 -0.40

(4.60) (-0.66)
βD -0.03 -0.03

(-0.11) (-0.10)
D -0.64 -0.75

(-1.91) (-2.22)
σ(D) -1.72 -2.52

(-1.47) (-2.09)
Short Interest 0.62 0.55

(6.07) (5.34)
βD -0.03 -0.05

(-0.33) (-0.60)
D 0.12 0.09

(-6.09) (0.63)
σ(D) -3.20 -2.71

(-6.09) (-5.31)
Model FFC FFC FFC
SE's Cl(Mo.) Cl(Mo.) Cl(Mo.)
T (Mos.) 426 437 426
Adj. R2 0.3% 0.1% 0.4%
p(MKT:λ=R) 57.9% 50.0% 53.6%

Appendix Table 7: Short Sale Constraints, Pooled Regressions

Note: Results for pooled regressions of monthly excess returns on factor loadings for individual stocks.
Fama-French-Carhart (FFC) Factor loadings are computed in a first stage regression using 60 month
rolling windows. We require a minimum of 30 return observations for a stock to be included. In the
second stage, month t+1 excess returns are then regressed on factor loadings computed in the rolling
window ending in month t . The βD interaction is found by multiplying the stock-level market beta and
our analysts' forecast dispersion measure. We cross-sectionally demean the interaction each month
prior to the second stage regression. D and σ(D) are the level and volatility (in the first stage rolling
window) of our forecast dispersion measure. To reduce collinearity, we cross-sectionally residualize D
each month on β and βD prior to the second stage regression. "TED Spread" seperates our sample
based on the beginning of the month level of the TED Spread (3 mo. LIBOR minus 3 mo. T-Bill rates,
downloaded from https://fred.stlouisfed.org/series/TEDRATE). High TED spreads proxy for high short-
selling costs. "Short Interest" seperates our sample each month based on the stock-level of shares sold
short relative to shares outstanding from the COMPUSTAT monthly short interest file. Short sale data is
lagged one month. t -Stats are reported in parentheses and computed using Fama-MacBeth (FMB) or
Newey-West (NW) standard errors with six-months of lags. |t -Stats| > 2.00 are indicated in bold  
Adjusted R2 values are computed using the Fama-MacBeth procedure. p(MKT:λ=R) is the p -value for
the hypothesis test that the Fama-MacBeth price of market risk equals the in-sample mean market
excess return.
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Event
Day Q1 Q5 Intercept MKT βD

1.69 1.81 1.23 -0.59 -0.79
(1.84) (1.14) (0.67) (-0.32) (-0.43)
0.32 6.12 -1.81 2.87 3.51

(0.19) (2.19) (-0.52) (0.86) (1.08)
0.96 7.72 1.54 0.29 5.01

(0.61) (2.77) (0.48) (0.09) (1.56)
3.09 9.90 1.51 0.79 3.25

(1.96) (3.56) (0.47) (0.25) (1.01)
6.40 11.92 5.37 1.98 3.53

(3.90) (4.18) (1.64) (0.62) (1.06)
14.91 -28.48 -11.96 17.40 -38.49
(5.46) (-6.84) (-2.55) (3.71) (-7.69)

5.69 -6.89 -4.64 6.84 -14.01
(3.12) (-2.22) (-1.30) (1.94) (-3.85)
-0.35 -4.83 0.37 -0.95 -2.05

(-0.22) (-1.69) (0.12) (-0.30) (-0.63)
-0.08 1.13 2.25 -1.68 2.07

(-0.05) (0.40) (0.70) (-0.53) (0.63)
-0.91 1.59 4.10 -2.38 2.81

(-0.58) (0.56) (1.24) (-0.75) (0.87)
1.29 4.38 3.65 -0.75 1.37

(0.84) (1.58) (1.15) (-0.24) (0.43)
33.01 4.36 1.62 23.81 -33.80
(5.85) (0.45) (0.15) (2.18) (-3.01)

Model DGTW* DGTW*
SE's Cl(Event) Cl(Event)
Events 63,781 50,975
Note: Results for event studies of abnormal returns for individual stocks in the [-5,5] event window
around earnings announcement dates. Returns are expresses in basis points. Abnormal returns are
computed with respect to our modified DGTW benchmark portfolios. Following Daniel et al. (1997),
we form portfolios based on market beta (quintiles), dispersion (quintiles), size (3-4-3 deciles), and
book-to-market value (3-4-3 deciles). The βD interaction is found by multiplying the stock-level
market beta and analysts' forecast dispersion, where forecast dispersion is computed using data on
each firms's prior earnings announcement. We cross-sectionally demean the interaction each month
prior to the second stage regression. t -Stats are reported in parentheses and computed using
standard errors clustered by events.  |t-Stats| > 2.00 are indicated in bold. 
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(1) (2) (3) (4) (5) (6) (7) (8)
Intercept 0.66 0.04 0.43 0.08 0.77 0.12 0.59 0.13

(2.68) (0.14) (1.71) (0.29) (5.11) (0.59) (3.76) (0.72)
MKT 0.06 0.59 0.31 0.58 -0.05 0.52 0.13 0.51

(0.19) (1.90) (1.01) (1.84) (-0.24) (2.76) (0.68) (2.72)
βD -0.73 -0.65 -0.68 -0.67

(-5.07) (-5.36) (-5.28) (-5.40)
SMB 0.05 0.11 0.09 0.11

(0.36) (0.90) (0.74) (0.85)
HML -0.19 0.02 -0.12 0.01

(-1.20) (0.10) (-0.81) (0.07)
UMD 0.17 0.00 0.10 0.02

(0.90) (0.01) (0.56) (0.09)
DMA -0.40 0.01 -0.45 0.02

(-2.61) (0.07) (-3.03) (0.14)
SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 437 437 437 437 437 437 437 437
Adj. R2 10.9% 15.2% 15.4% 17.2% 20.0% 22.6% 21.7% 23.1%
p(MKT:λ=R) 10.8% 82.2% 33.4% 78.7% 1.8% 58.3% 6.0% 56.3%

Appendix Table 9: Fama-MacBeth Regressions, 400 Test Assets vs. Factor Loadings

Note: Results for Fama-MacBeth regressions of monthly excess returns on factor loadings for 400 test assets.
There are 50 test assets formed on each of eight stock-level characteristics and returns are value weighted.
Characteristics tested are market beta, alpha (computed using the Fama-French-Carhart (FFC) model), ivol
(computed using the FFC model), momentum, size, value, profitability, and investment. Momentum, value,
profitability, and investment test assets are formed on the NYSE breakpoints available on Kenneth French's
website. Otherwise, we sort into characteristic deciles based on our sample. For size, we sort based on our
sample due to the relatively low number of small stocks with valid analysts' forecast data. See Appendix A1
for a description of test asset construction. Factor loadings are computed in a first stage regression using 60
month rolling windows. We require a minimum of 30 return observations for a stock to be included. In the
second stage, month t+1 excess returns are then regressed on factor loadings computed in the rolling
window ending in month t . The βD interaction is found by multiplying the stock-level market beta and our
analysts' forecast dispersion measure. We cross-sectionally demean the interaction each month prior to the
second stage regression. "DMA" is the analysts' forecast dispersion anomaly, tested as the factor loadings on
a long-short portfolio of high vs. low dispersion stocks (Diether et al., 2002). See Appendix A1 for detail on
construction of the DMA factor. t -Stats are reported in parentheses and computed using Newey-West
standard errors with six-months of lags. |t -Stats| > 2.00 are indicated in bold. Adjusted R2 values are
computed using the Fama-MacBeth procedure. p(MKT:λ=R) is the p -value for the hypothesis test that the
Fama-MacBeth price of market risk equals the in-sample mean market excess return.
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Market Model
FF Three-
Factors + 

Momentum

FF Three-
Factors + 

Momentum + 
Liquidity

FF Five 
Factors Q Factors Mispricing 

Factors

Intercept 0.66 0.77 0.78 0.72 0.69 0.78
(2.68) (5.11) (5.29) (4.52) (4.00) (4.35)

MKT 0.06 -0.05 -0.06 -0.00 0.03 -0.08
(0.19) (-0.24) (-0.29) (-0.01) (0.15) (-0.36)

SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 437 437 437 437 437 365
Adj. R2 10.9% 20.0% 20.7% 19.8% 19.4% 19.4%
p(MKT:λ=R) 10.8% 1.8% 1.5% 3.1% 4.0% 2.9%

Intercept 0.04 0.12 0.13 0.08 0.15 0.24
(0.14) (0.59) (0.66) (0.35) (0.67) (1.02)

MKT 0.59 0.52 0.50 0.56 0.52 0.40
(1.90) (2.76) (2.71) (2.59) (2.31) (1.78)

βD -0.73 -0.68 -0.71 -0.71 -0.67 -0.67
(-5.07) (-5.28) (-5.43) (-5.15) (-4.60) (-4.35)

SE's NW(6) NW(6) NW(6) NW(6) NW(6) NW(6)
T (Mos.) 437 437 437 437 437 365
Adj. R2 15.2% 22.6% 23.0% 22.1% 21.8% 22.1%
p(MKT:λ=R) 82.2% 58.3% 54.4% 71.4% 60.2% 47.3%

Appendix Table 10: Price of Market Risk in Factor Models, 400 Test Assets

Panel A: w/o βD Interaction

Panel B: w/ βD Interaction

Note: Results for Fama-MacBeth regressions of monthly excess returns on factor loadings for 400 test assets.
There are 50 test assets formed on each of eight stock-level characteristics and returns are value weighted.
Characteristics tested are market beta, alpha (computed using the Fama-French-Carhart (FFC) model), ivol
(computed using the FFC model), momentum, size, value, profitability, and investment. Momentum, value,
profitability, and investment test assets are formed on the NYSE breakpoints available on Kenneth French's
website. Otherwise, we sort into characteristic deciles based on our sample. For size, we sort based on our
sample due to the relatively low number of small stocks with valid analysts' forecast data. See Appendix A1
for a description of test asset construction. Factor loadings are computed in a first stage regression using 60
month rolling windows. We require a minimum of 30 return observations for a stock to be included. We
compute loadings seperately for various common factor models. In the second stage, month t+1 excess
returns are then regressed on factor loadings computed in the rolling window ending in month t . The βD 
interaction is found by multiplying the stock-level market beta and our analysts' forecast dispersion
measure. We cross-sectionally demean the interaction each month prior to the second stage regression. t
Stats are reported in parentheses and computed using Newey-West standard errors with six-months of lags.
|t -Stats| > 2.00 are indicated in bold. Adjusted R2 values are computed using the Fama-MacBeth procedure.
p(MKT:λ=R) is the p -value for the hypothesis test that the Fama-MacBeth price of market risk equals the in-
sample mean market excess return.
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Q1 Q5 Q1 Q5 Q1 Q5 Q1 Q5
Mean 0.06 0.02 0.23 -0.35 1.13 0.18 3.36 -19.52
Std. Dev. 2.91 4.65 6.70 9.29 12.93 20.45 46.08 79.21
Skew 5.65 7.51 0.08 5.48 8.44 5.01 -2.15 -1.46
Percentile

99% 8.29 13.33 19.03 24.62 36.00 62.37 100.85 138.03
95% 4.04 6.21 10.37 12.78 19.02 29.35 60.00 81.85
90% 2.68 4.00 7.03 8.26 13.36 19.33 46.13 56.45
75% 1.15 1.58 2.96 3.12 6.55 8.05 27.77 25.39
50% -0.02 -0.02 0.09 -0.06 0.88 -0.49 8.69 -5.52
25% -1.09 -1.75 -2.34 -3.78 -4.72 -9.29 -14.02 -50.90
10% -2.57 -4.02 -6.21 -9.14 -11.28 -19.88 -43.27 -115.60

5% -3.83 -5.91 -9.91 -13.95 -16.68 -27.99 -72.16 -167.47
1% -7.59 -11.47 -20.43 -26.59 -31.33 -47.47 -152.14 -289.62

Obs. 4,718,544 4,224,478 67,582 56,985 247,483 247,567 18,060 15,717
Note: Mean excess returns for stocks classified as low (Q1) and high (Q5) in forecast dispersion. "Daily Returns" are
returns averaged for each day in our sample. "Earnings Event Days" are returns averaged on earnings announcment
days, where the classification of each stock is based on results from the prior earnings announcment. "Monthly Returns"
are returns for each month in out sample. "Log Annual Returns" are calendar year annualized log returns, where the
classification of each stock is based on data available in the last month of the prior year and a minimum of eight returns
are required for inclusion.

Appendix Table 11: Mean Excess Returns by Dispersion Quintiles

Daily Returns Earnings Event Day Monthly Returns Log Annual Returns
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