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Abstract

We study the effects of the cost of capital on innovative efficiency and output. Using
firm peer shocks to the discount-rate component of equity valuation, we show that
costlier capital increases successful patent applications, future patent citations, and
market valuation of future patents. An interquartile increase in the cost of capital
increases the innovative efficiency per dollar of intangibles by 0.06 of the outcome’s
standard deviation or 11% of the sample average output per year. We show that
in response to our proxy of adverse shocks to cost of capital, firms reduce capital
and labor expenditures. They also tend to shrink their sales and fixed assets but
maintain their R&D expenditures. This suggests that the high adjustment costs in
R&D expenditures are consistent with firm value maximization.
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1 Introduction

Innovation is a backbone of productivity growth (Solow, 1957; Romer, 1986) and,

therefore, is crucial for economic development. It is also well established that a lack of

access to capital inhibits innovation (see, e.g., Hall and Lerner, 2010; Kerr and Nanda,

2015; Howell, 2017). However, relatively little is known about whether the level of returns

that the investors expect from innovative firms matters too. Is cheap capital (e.g., due

to government subsidies, or “market manias”) more conducive to high-impact innovation

than expensive capital? Do firms and sectors that investors fall “out of favor” (or “in

love”) with for their ESG footprint become worse or better at innovation?1

This paper sheds light on answers to these questions by studying the effects of plausibly

exogenous shocks to the cost of capital on the innovative efficiency and output in a large

sample of firms that were public as of the shock arrival. We find that a one standard

deviation increase in the cost of capital increases successful patent applications by 0.057

of the standard deviation cumulatively over the three years following the shock year, or

about 10% of the sample average patent output per year. Over 90% of that increase

cannot be explained by changes in the labor, capital, and R&D inputs and, therefore,

is driven by a higher efficiency of innovation. We find no evidence that these additional

patents are inferior—the response magnitudes are similar for the market valuation of the

granted patents and are about 30% larger for patent lifetime citations.

We apply the standard decomposition of stock returns into discount rate and cash-

flow news, as implemented in Lochstoer and Tetlock (2020), to distill the equity valuation

component that is orthogonal to firms’ profitability changes. To reduce the measurement

error on the discount-rate news at the individual firm-year level, we follow Leary and

Roberts (2014) in using peers’ average stock returns to produce plausibly exogenous

variation that the firms may respond to. We show that these discount-rate shocks do not

revert over several years and are economically significant. To further reduce the scope

for the spurious correlation with cash-flow news, we control for peers’ cash-flow news in

1See, for example, “Carbonomics: The dual action of Capital Markets transforms the Net Zero cost
curve” report by Goldman Sachs on 11/10/2021 for representative views on the “new era” in the cost of
capital differences.
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all our tests. Thus, our assumptions are that (i) peers’ stock valuations are sufficiently

correlated with those of the focal firms, (ii) firms respond to the seemingly unexplained

but persistent changes in their stock valuations (e.g., because they perceive them as

informative to the firm’s own cost of capital). We verify assumption (i) and note that we

should find no results if assumption (ii) fails.

We find that the efficiency increase is driven mostly by firm-years that receive adverse

shocks and less so by the decrease of those that receive a favorable shock. The tercile of

most adversely shocked firm-years exhibits a statistically significant increase in efficiency

across all output metrics, and at 1- to 3-year horizons, while the tercile of firm-years that

endured the largest decrease in the cost of capital exhibit a statistically significant decline

in the innovative efficiency only at a 3-year horizon. The adversely-shocked firms dispose

of assets and respond by reducing capital expenditures and employment levels faster

than favorably-shocked firms respond with increases. Favorably-shocked firms increase

net equity issuance more than adversely-shocked firms reduce it. However, consistent

with prior evidence on high adjustment cost for such investments (Hall, Griliches, and

Hausman, 1986; Hall and Lerner, 2010; Gulen, Li, Peters, and Zekhnini, 2021), neither

group changes their R&D expenditures significantly. We also examine whether financial

constraints can explain the responsiveness of the firms to the discount-rate news in the

cross-section but find no consistent results with the established proxies.

We use three patent databases to ensure that the measurement error on our innovative

output metrics is minimized: the extended database from Kogan, Papanikolaou, Seru,

and Stoffman (2017), the Global Corporate Patent Database from Bena, Ferreira, Matos,

and Pires (2017), and the DISCERN database from Arora, Belenzon, and Sheer (2021).

Our sample includes 99,948 firm-years from 1989–2017 and 1.5 million patents granted

from 1989–2020. We scale patents’ output, market valuations, and citations by the firm’s

intangible and knowledge capital (Peters and Taylor, 2017) before the shock arrival to ac-

count for heterogeneity across firms. We take advantage of both the firms’ self-proclaimed

industry membership and the 10K text-based product proximity measures of Hoberg and

Phillips (2016). Our inference is robust to auto- and cross-correlations at the industry
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level.

We subject our results to a battery of robustness tests that include changes to variable

construction and econometric methods. In particular, we show that there is no effect

before the shock arrival and after three years following the shock. We also show that

results hold with alternative VAR specifications, different sample criteria for discount-rate

shock computation, and different peer definitions. We show that results for innovative

output and efficiency hold qualitatively with cost of capital shocks derived from the

analyst forecasts (see, inter alia, Gebhardt, Lee, and Swaminathan, 2001). However,

unlike with the variables in our main analyses, these earnings forecast-based proxies of

discount-rate shocks (while being significantly correlated with our preferred proxy) do

not significantly affect the employment and capital expenditures, which can be regarded

as validation tests for the proxy strength.

We contribute to several strands of literature. The question of the determinants and

drivers of innovation has been generating much interest from scholars, who examined the

roles of firm characteristics, governance structures, and market environments in innova-

tion at mature corporations, as well as early-stage startups (see, Kerr and Nanda, 2015;

Lerner and Nanda, 2020; He and Tian, 2018; He and Tian, 2020, for recent reviews). We

relax the implicit assumption in these studies that “capital availability equals the cost

of capital,” and document a causal effect of plausibly pure discount-rate shocks on the

production of innovation at public firms. Related to us are studies measuring intangible

capital, its role and cross-sectional variation over time.2 We recognize the importance of

these trends in our variable construction.

Our results have implications for the fast-growing literature on corporate ESG matters

(see, e.g., Berg, Koelbel, and Rigobon, 2022; Edmans, 2022) and, especially, the cost of

capital implications thereof (see, e.g., Pástor, Stambaugh, and Taylor, 2021, 2022). In

particular, our estimates suggest that in the long-term “green” firms’ marginal output

may lag that of “brown” ones (i.e., firms with an adverse environmental impact), thus

2See, for example, Eisfeldt and Papanikolaou (2013), Peters and Taylor (2017), Eisfeldt, Kim, and
Papanikolaou (2020), Ewens, Peters, and Wang (2020), Falato, Kadyrzhanova, Sim, and Steri, 2022,
Belo, Gala, Salomao, and Vitorino (2022).

4



reducing the relative valuation gap between the two types (a.k.a., the “greenium”).

Our findings also relate to those in a recent study by Almeida et al. (2022), who show

that short-term incentives (i.e., a risk of the EPS-forecast miss) lead to increases in the

firms’ innovative efficiency. The authors show that the relationship is present amongst

highly innovative firms only. Our settings are different in that we look at long-term

incentives unrelated to the earnings news of the firm, and we find results on both the

intensive and extensive margins. We show that, upon adverse discount-rate arrival, not

only does the patent count increase, but so does the probability of obtaining at least one

patent.

Finally, the challenges with measuring patent output at the firm-year level (see Lerner

and Seru, 2022 for details) that we address through independent validation across mul-

tiple databases also represents a contribution to the extant literature. We show that

the pairwise concordance in positive patent counts by firm-years is less than 70%, with

discrepancies being particularly large in years before 2002. Applying our criteria of the

patent-firm-year presence in at least two databases likely eliminates false positives (and

negatives) across the databases and results in a comparable (or better) firm-year coverage

than that in any single database.

In the next section, we describe our data and the research design it commands. The

following two sections report the results and robustness tests.

2 Data and Research Design

In this section, we describe our data and key variables of interest. These variables are

feasible proxies of innovative output and plausibly exogenous shocks to the firms’ cost

of capital. The strengths and limitations of the feasible proxies determine our research

design, which we also introduce in this section.

Table 1 reports summary statistics for the panel of 99,948 COMPUSTAT firm-years

during 1988–2017, for which we can construct our cost of capital shock variable. These are

the firms that were themselves public in the year of the shock measurement. Most of the
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variables in Panel A are standard and defined in Appendix B.. All continuous variables

are winsorized at 1% and 99%, and all dollar variables are adjusted for inflation. Following

the extant literature, we drop firms whose industry classification is regulated (SIC 4900

to 4999), financial (SIC 6000 to 6999), or public service (SIC above 9000). We also drop

firms with missing or non-positive book values of assets or sales. Finally, we drop firms

that have less than 5 million dollars (in 1990 constant dollars) in fixed assets.

2.1 Cost of capital shocks

We rely on the standard decomposition of stock return decomposition (Campbell and

Vuolteenaho, 2004; Campbell, Polk, and Vuolteenaho, 2010) to construct our main proxy

of cost of capital shocks. We use the code from Lochstoer and Tetlock (2020) (LT)

to estimate a panel VAR model of expected return, and construct the firm-year level

estimates of discount-rate news (DR) and cash-flow news (CF):

ri,t+1 − Et[ri,t+1] = CFi,t+1 −DRi,t+1 (1)

, whereby ri,t+1 and Et[ri,t+1] are, respectively, the realized and the expected log returns

of stock i. We seek to examine the relation between DR and the future innovative output

of the firm.

While the LT methodology allows for predictive coefficients to vary across firms and

over time, the resulting estimates have several limitations that are important for our re-

search question. First, they are subject to measurement errors insofar the VAR coefficient

estimates are subject to uncertainty, the model can be misspecified, and, thus, a portion

of CF can be attributed to DR for some firm-years. Second, for data availability and

continuity reasons, the shock estimates are not available for many firms, especially young

and with a short record of being public. To address these limitations, we follow Leary and

Roberts (2014) in using peers’ stock returns (in our case, the DR- and CF-components

thereof) to produce plausibly exogenous variation that the firms may respond to.

We define firm peers using the best possible estimate of relatedness. We utilize both
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the self-reported SIC industry definitions from CRSP and the 10K-based product simi-

larity metrics from the text-based industry classification database (TNIC) of Hoberg and

Phillips (2016). To identify the most similar peers, we require all peers to have their

TNIC scores greater than the median score (0.0367) in the TNIC database or to have

the same SIC 2-digit industry or the same FIC 2-digit industry as the focal firm.3 If a

firm-year does not have at least 3 TNIC-peers, we use other peers that have the same

SIC-4digit industry as the focal firm with the smallest differences in sales. All firm-years

in our main tests have at least three peers and at most ten peers with LT shocks. Fur-

thermore, following the main analysis in LT, we exclude the bottom NYSE decile from

the VAR estimation, which implies that only relatively large firms will be considered as

salient-enough peers.

The first two rows of Panel A of Table 1 report those peer-average DR and CF shocks.4

For brevity, we will omit the ‘peer-average’-prefix through the remainder of the text. Of

interest here are the measures of shock dispersion. The standard deviation and interquar-

tile range of DR at 0.09 and 0.11 are less than half of those of CF (0.21 and 0.22). We

note that, unlike CF, DR shocks are rather symmetric at the 1st- and 99th-percentiles,

representing and change in the peers’ average valuation of about 22%. Importantly, per

equation (1), positive values of CF correspond to higher stock returns, while positive

values of DR correspond to lower stock returns.

Figure 1 plots the average DR and CF shocks across the firms in the bottom, top, and

middle two deciles as of the year of the decile cut, and the ten adjacent years. Panel A

plot DRs for DR-based cuts and reveals neither meaningful pre-trend in the DR shocks

nor autocorrelation (see Table A1 for details). Thus, these shocks tend not to reverse

quickly but represent a lasting change in the valuation of peers. However, panel B shows

that the average DR shock value varies notably (albeit the magnitudes are about one-

third of those from the “DR-native cut” in Panel A) across the CF-deciles. Panels C and

D show that these correlations are symmetric. This is consistent with the strong negative

3FIC industry classification is the fixed-industry version of TNIC and is also available on the Hoberg-
Phillips Data Library website.

4Before computing the averages, we exponentiate the values across the peers and subtract one.
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correlation between the firm-level discount rate and cash-flow shocks documented in LT

and underscores the need to control for CF in the analysis of the effects of DR. Given this

pattern, we decide against a binary definition of treated firm-years in favor of modeling

DR as a continuous treatment that is non-separable from that from CF (see, e.g., Su,

Ura, and Zhang, 2019).

We are agnostic about the precise nature of the DR shocks. In our regression analysis,

we control for CF shocks, year fixed-effects, and firm fixed-effects, as well as a host

of firm- and peer-level time-varying characteristics related to risk exposure and growth.

Therefore, the residual measurement error in DR, as well as pure time- and cross-sectional

variation in DR, will be absorbed. The leftover variation is within the industry clusters

and is eclipsing the behavioral- and the (unspanned) risk factors. One such potential

factor is changing investors’ attitudes towards ESG-impact of the business. An increase

in the “greenium” (Pástor, Stambaugh, and Taylor, 2021) will appear as positive DR

shocks for “brown” firms and negative DR shocks for “green” firms, all else equal.

In summary, our DR variable is capturing the, on average, “depressed stock price”

that future- and past changes in profitability of its most salient peers cannot explain. As

in Leary and Roberts (2014), we assume that the management of the focal firm likely

observes, and has incentives to act upon, this information. Should this assumption fail

in our settings, we will find no results. At this point, we note that for 46,075 firm-years

with observable ‘own DR’ (i.e., less than half of our sample), the correlation with DR

used in our analysis is 61%, which is consistent with the shock being on average relevant

even if the management does not track peers’ stock valuation. In robustness tests, we

examine several alternative measures of DR and CF, including those that exhibit a close

to zero correlation with CF shocks and that are based on analyst forecasts.

2.2 Innovative output

Our primary measure of innovative output is the number of patents that the firm

produces in the aftermath of the DR shock.

We use the June 2021 version of Kogan, Papanikolaou, Seru, and Stoffman (2017)

8



(KPSS) database as our main source of patenting data, which contains patent data

through 2020. Our focus is on patent development that results in the application fil-

ing, as opposed to the market’s price response at the patent granting date. One potential

concern is that relying solely on the KPSS database may result in a significant measure-

ment error in patent applications (that are eventually granted) since the firm may not

have publicly traded stock at the grant date and the firm may change names between the

patent filing and granting date, and filing can occur in jurisdictions other than the U.S.

We, therefore, augment and verify the patent data in KPSS with the other two major

databases of patents: the Global Corporate Patent Database (GCPD) featured in Bena,

Ferreira, Matos, and Pires (2017) (BFMP), the Duke Innovation and Scientific Enter-

prises Research Network (DISCERN) database featured in Arora, Belenzon, and Sheer

(2021) (ABS). The GCPD and DISCERN databases cover patent assignments through,

respectively, the first half of 2017 and 2015.

For years through 2015, we include a patent number observation in our final data

set if at least two of the three databases report this patent number as matching the

gvkey-permno as of the patent assignment date. This approach allows us to increase the

coverage to 23,517 firm-years with positive patent count from 15,205, whereby patent

counts coincide between KPSS and BFMP (see appendix Table A3 for details). For

patents granted in 2016 and 2017 that are present in GCPD but missing from KPSS, we

manually verify a close match between the CRSP name and the patent assignee name. We

use the standard CRSP-Compustat linking table and CRSP names table to establish the

time-specific mapping between gvkey, permno, and patent assignee names. Our final data

set includes 1,500,017 unique patents assigned to 4,247 gvkey (4,132 permno) between

1989 and 2020. Of these, 521 patents were assigned to more than one gvkey or permno.

To measure the patent output X years after DR shock, we count the number of unique

patents that have (A) application date between 1 + (X − 1) · 12 and X · 12 months after

June 30th of the shock year, and (B) that have been assigned to the same gvkey as the

shocked firm on on the patent grant date, or (ii) the shock date.

We normalize firm-year patent counts by the value of firm knowledge capital and

9



intangible capital as of the year preceding the shock year. The intangible capital is the

COMPUSTAT variable INTANO (set to zero if missing). Knowledge capital estimates

are from Peters and Taylor (2017), obtained from the WRDS repository as of June 2022.

The rationale for this normalization is two-fold. First, we reduce the heterogeneity in

the outcome variable across our panel, since the level of innovation varies greatly across

firms and is expected to be proportional to the investments in knowledge and intangible

capital. Second, recent work by Cohn, Liu, and Wardlaw (2022) shows that, unlike the

common in the prior literature logs of one plus patent counts, linear models of ratios of

counts to the relevant stock variables are not prone to spurious results.5

In addition to patent counts, we examine the market value (‘KPSS value’) and the

patent lifetime citations count (‘Total citations’), both obtained from the KPSS database

and scaled by the sum of INTANO and knowledge capital of Peters and Taylor (2017).

The summary statistics for our three output variables are reported in Panel B of Table 1

for 46,037 firms with at least one patent between 1989 and 2020. The panel shows that

the average (standard deviation) patent count is 0.022 (0.044) patents per $million of

intangible capital. The respective statistics for KPSS value and Total citations are 0.289

(0.682) $million per $million of intangible capital and 0.44 (1.218) citations per $million

of intangible capital.

To estimate the effect of DR on patent output, we run the following linear regression

for several horizons k > 0, that index year since the shock value in year t:

Patent counti,t+k = bDRi,t + cCFi,t + d′Controlsi,t−1 + t+ i+ ϵi,t (2)

where i and t indicate the firm and year fixed effects, while ϵi,t is the unobserved error

term, correlated across time and industries. The vector of ‘Controls’ include the one-year

lagged Sales, market-to-book, return on assets, PP&E, leverage, and age of the firm itself

and the average across its peers used to construct DR and CF. The main coefficient of

interest is b.

5We address the Welch (2020) critique of regressions featuring the ratios with lagged variables in our
robustness tests.
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2.3 Innovative efficiency

We model the innovative efficiency of the firm analogously to the standard definition of

productivity, as the change in output that cannot be explained by changes in the inputs:

InnovOutput = f(Labor,Employment,R&D, InnovEfficiency)

Assuming that the innovation production function f(·) is log-linear in all inputs and that

firm- and year-fixed effect address the heterogeneity in the fractions of the firm’s capital

and labor utilization in the production of innovation (as opposed to other output), we

estimate the effects of DR on the innovative efficiency by augmenting equation (2) with

changes in the inputs over the respective horizon k:

Patent counti,t+k =bDRi,t + cCFi,t + λ′
k∑

τ=1

Inputsi,t+τ (3)

+ d′Controlsi,t−1 + t+ i+ ϵi,t

where Inputsi,t+τ is a vector of changes in the natural logs of real 1+R&D, 1+CAPEX,

and the employees count from period t+ τ − 1 to t+ τ .

The summary statistics for the Inputs are reported in Panel A of Table 1. The standard

deviation fn the R&D continuously compounded change is 0.218; for CAPEX, it is 0.574;

for Employment, it is 0.234. The bottom quartile and the median change in R&D are

zero, as many firms do not report R&D separately.

We also examine whether the shocks to the cost of capital affect Input(j)t+τ by changing

the outcome variable in equation (2):

Input(j)i,t+k = bDRi,t + cCFi,t + d′Controlsi,t−1 + t+ i+ ϵi,t . (4)

Economic theory predicts that increases in the cost of capital should reduce the invest-

ments by the firm, as fewer projects will appear to have positive expected net present

value. The effects may be different across Inputs, representing various trade-offs the man-
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agement faces. For example, prior work shows that managers are reluctant to cut R&D

(REFERENCE NEEDED).

Finally, to test for asymmetry in response to positive and negative DR shocks, we

augment the models per equations (2), (3), and (4) with the interactions of DR with

‘BadDR’ and ‘GoodDR’ dummies. ’BadDR’ indicates DR shocks in the top tercile, with

the average value of DR shock of 0.05 across the tercile, corresponding to 5% decrease in

peer’s valuations that cannot be traced to peers’ earnings news. Meanwhile, ‘GoodDR’

indicate DR shocks in the bottom tercile. For these, the discount-rate driven increase in

peer valuations was 13%.

3 Results

In this section, we report the results of the tests of the effects of DR on innovative

output and efficiency using the empirical models described in the previous section. In

addition, we examine the effects of DR on capital, labor, and R&D inputs, as well as the

operational performance of the firm, its balance sheet, and capital raising activities.

3.1 Innovative output

In Panel A of Table 2, we examine the relationship between firms’ discount rate shocks

and innovation output. The columns report estimates of equation (2). Columns (1) to (3)

report regression results for patent count, columns (4) to (6) for KPSS value, and columns

(7) to (9) for total citations. The coefficient estimates on DR are positive and statistically

significant in years 1, 2, and 3 after the shock year and for all measures of innovation

output (patent count, KPSS value, and total citations), suggesting that an increase in

the cost of capital leads to higher innovation output (per $M of intangible capital) for up

to at least three years after firms experience DR shock. We also standardize all outcome

variables by their respective standard deviations, so coefficient estimates on DR represent

one standard deviation change in innovative output per unit change in the cost of capital.

For example, the coefficient on DR in column (1) is 0.164, which indicates that increasing
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the value of DR from its 25th percentile (-0.11) to its 75th percentile (0.00) is associated

with a 0.036 standard deviation increase in the number of patents applied (and eventually

granted) per $M of intangible capital.

Cumulatively over three years after an interquartile shock, the change in the patent

output corresponds to 10% of the average patent output per dollar of intangible and

knowledge capital. The corresponding magnitudes for the patents market values and

total citations are, respectively, 12% and 18%.

To rule out the possibility that our results are driven by firm-years with zero patents

(hence, zero KPSS value and citations), we re-estimate equation (2) on a sub-sample of

firms that have at least one patent in the pooled sample. As a result of this restriction,

the sample reduces by about half. Results for this sub-sample analysis are reported

in Panel B of Table 2. Similar to Panel A, all outcome variables are standardized by

their corresponding standard deviations. The coefficient estimates on DR continue to

be positive and statistically significant for most of the specifications, consistent with

innovative firms increasing their innovative output after an increase in the cost of capital.

We also observe that the magnitudes of the coefficients are very similar to those in panel

B and are about one standard error higher for the 3-year horizon. For subsequent tables,

we focus on the full sample to avoid using hindsight with regard to future positive patent

output.

In Panel C of Table 2, we estimate a linear probability model that is similar to Equa-

tion (2), but the dependent variable is a dummy equal to 1 if firm i has at least one patent

applied (and eventually granted) in year t+k and 0 otherwise. Columns (1) through (5)

report regression results when we examine the probability of firms having at least one

patent for only one-year ahead (i.e., year 1,2,3,4, or 5 after the DR shock year). All co-

efficient estimates on DR are positive and statistically significant, suggesting that firms

are more likely to have a patent after they experience an increase in their cost of capital.

Columns (6) to (9) of this panel report regression results for multiyear probability (i.e.,

year 1 to 2, 1 to 3, 1 to 4, or 1 to 5), and all coefficients are also positively significant at

the 1% level.
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These results suggest positive (negative) shocks to the cost of capital tend to increase

(decrease) the innovative output across all three measures, and the effects monotonically

strengthen as we go from one to a three-year horizon. In the robustness section, we show

that results are robust to including additional leads and lags of DR shocks.

3.2 Inputs

We now examine the effects of DR on inputs relevant to the output of innovation by

estimating the empirical model per Equation (4). Panel A of Table 3 reports the results.

Coefficient estimates on DR for columns (1) to (3) are not significant, suggesting that

firms do not reduce their investment in R&D following an increase in the cost of capital.

In contrast, coefficients on DR for columns (4), (5), (7), and (8) are all negative and

statistically significant, indicating that firms decrease their investment in physical and

human capital in the two years after an increase in the cost of capital.

Next, we examine whether the reduction in physical and human capital expenditures

identified above is driven by firm-years experiencing the highest increases in the cost of

capital. As discussed in section 2.3, we sort firm-years into terciles based on their DR

shocks. The average value of DR for the 3rd, 2nd, and 1st tercile is 0.05, -0.055, and -0.13,

respectively. We create two dummy variables, BadDR and GoodDR, which take the value

of one if the corresponding firm-year is sorted into the 3rd and 1st tercile, respectively,

and zero otherwise. We then interact the continuous DR variable with dummies BadDR

and GoodDR.

Panel B of Table 3 reports the results for this estimation. The two bottom rows of this

panel report the p-value of the hypothesis test that the sum of the coefficient estimates

on the baseline DR and on its interaction term with dummy BadDR (or GoodDR) is

equal to 0. In column (4), the coefficient estimate on the interaction term with BadDR

is negative and statistically significant. This indicates that firms that experience an

increasing cost of capital reduce investment in CAPX one year after the shock, whereas

firms with a decreasing cost of capital do not (interaction with GoodDR is insignificant).

In column (5), the coefficient on the interaction term with BadDR is not significant, but
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when taking the baseline DR and interaction with BadDR together, the point estimate

suggests that firms with an increase in cost of capital continue to reduce CAPX in year 2

relative to DR shock year. In column (6), the interaction term with BadDR is positively

significant; however, the joint test with baseline DR indicates that firms with bad DR

shocks do not increase their CAPX. In column (7), the interaction term with BadDR is

not significant, but taking baseline DR and interaction with BadDR together indicates

that firms with an increase in the cost of capital decrease human capital in their firms

one year after the shock year.

3.3 Innovative efficiency

To explore the effects of cost of capital on innovative efficiency, we regress measures

of innovative output on DR, controlling for ex-post changes in innovative inputs (i.e.,

the change in innovative efficiency is the change in innovative output that cannot be

explained by changes in inputs). Panel A of Table 4 reports the results of this regression

- equation (3). Coefficient estimates on DR are positive and statistically significant

across all columns, consistent with firms increasing their innovative efficiency (for up

to at least 3 years) after experiencing an increase in cost of capital, where innovative

efficiency is measured in terms of the number of patents (patent count), economic value

(KPSS value), and scientific value (total citations) of patents. Consistent with previous

tables, we also scale all dependent variables by their respective standard deviations,

so coefficient estimates on DR represent one standard deviation’s worth of change in

innovative efficiency per unit change in cost of capital. For example, in column (1), we

can interpret the coefficient estimate on DR as one unit increase in cost of capital leading

to a 0.154 standard deviation increase in the number of patents per $M of intangible

capital, and this increase in patent output is due to improved efficiency.

Panel B of Table 4 also reports results for innovative efficiency, but we interact the

continuous variable DR with dummies BadDR and GoodDR (similar to Panel B of Table

3) to explore if firms respond differently to an increase (BadDR) or decrease (GoodDR)

in cost of capital when it comes to innovative efficiency. Controls for ex-post changes
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in inputs are included in all regressions but not reported on this panel for brevity. The

interaction on BadDR is statistically and positively significant only for patent count in

year 2 and KPSS value in year 1, but p-values of joint test with baseline DR suggest

that firms increase their innovative efficiency (measured with patent count, KPSS value,

and total citations) for at least up to 3 years after they experience an increase in cost of

capital, with the exception of KPSS value in year 3 (column (6)). In contrast, most of the

p-values of the joint test of baseline DR and interaction with GoodDR are not statistically

significant, indicating that the effect of cost of capital on innovative efficiency is more

pronounced when firms experience a bad DR shock.

3.4 Operational performance

We next explore the relationship between the cost of capital and firms’ operating per-

formance (measured by the change in total sales, assets, and EBITDA margin and the

percentage change in EBITDA). We run a fixed-effects model that is similar to equa-

tion (2), but the dependent variables are those previously listed measures of operating

performance. Table 5 reports the results of this regression. Panel A looks at the effect

of cost of capital on sales growth and assets growth. The coefficient estimate on DR

is negative and statistically significant for columns (1),(2), (5), and (7), consistent with

firms decreasing their total sales and assets following an increase in cost of capital, and

these effects last up to two years for sales and three years for assets. Panel B explores

the relationship between cost of capital and the change in EBITDA margin or percentage

change in EBITDA. The coefficient estimate on DR is negative and statistically signifi-

cant for columns (1) and (5), suggesting that firms have a lower EBITDA margin and a

lower EBITDA one year after an increase in cost of capital.

3.5 Asset disposal and capital raising

We next examine the relationship between the cost of capital and the composition of

firms’ assets. We run a regression that is similar to equation (2) where the dependent

variables are cash, non-cash current assets, net PP&E, other assets, the sum of net PP&E
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and other assets, and asset turnover. Table 6 reports the results of this regression. In

Panel A, the coefficient on DR is negative and statistically significant for columns (1)

and (5), indicating that firms reduce their cash holdings and non-cash current assets

one year after experiencing an increase in cost of capital. However, firms reverse course

and increase their cash holdings in year 2, as indicated by the positive and statistically

significant coefficient on DR in column (2). In Panel B, the coefficient on DR is negative

and statistically significant in columns (1), (2), and (5), suggesting that firms reduce

PP&E in years 1 & 2 and other assets in year 1 after having an increase in cost of capital.

Panel C reinforces the results of panel B. That is, firms cut PP&E and other assets in the

two years after an increase in cost of capital, as indicated by the negative and statistically

significant coefficient on DR in columns (1) and (2). Despite a reduction in all major

components of assets, firms’ asset turnover increases in years 1 and 3 following an increase

in cost of capital, as suggested by the positive and statistically significant coefficient on

DR in columns (5) and (7) of Panel C. These results are consistent with firms increasing

not only innovative efficiency (documented in previous sections) but also asset efficiency

more broadly.

We also explore the relationship between firms’ cost of capital and capital raising.

We do this by running a regression that is similar to equation (2), but the dependent

variables are net equity issuance and net debt issuance. Panel A of Table 7 reports

results for this regression, and the coefficient estimate on DR is positive and statistically

significant for columns (2) and (3), suggesting that firms issue more equity in years 2

and 3 after an increase in cost capital. In contrast, the coefficient estimate on DR is

negative and statistically significant for columns (1) to (3), indicating that firms issue

less debt in the three years after an increase in cost of capital. In Panel B, we interact

the continuous variable DR with dummies BadDR and GoodDR (similar to Panel B

of Table 3). In column (1) of panel B, the coefficient estimate is significantly negative

on DR but positive on interaction with BadDR. This is suggestive evidence that firms

that experience the highest increase in cost of capital are less likely to issue less equity.

In column (5), the interaction on BadDR is negative but not statistically significant.
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However, when taking the interaction with BadDR and the baseline DR together, the

point estimate suggests that firms with the highest increase in the cost of capital issue

less debt (p-value of joint test equals 0.04).

4 Robustness

For robustness checks, we first investigate the relationships between cost of capital

and one-year-ahead innovative output and efficiency with the inclusion of additional leads

and lags of DR and CF shocks. Specifically, we estimate two models that are similar to

equations (2) and (3), but we also include four lag and three lead values of DR and CF

as independent variables in all regressions. Table 8 reports the regression results of this

estimation. The outcome variables are patent count in columns (1) and (3) and KPSS

value in columns (2) and (4). Columns (1) and (2) examine the innovative output, while

columns (3) and (4) explore innovative efficiency with the inclusion of one-year-ahead

changes in inputs (R&D, CAPX, and employment). The coefficient estimates on one-

and two-year-lagged values of DR are positive and statistically significant across all four

columns, which can be partly explained by the positive autocorrelation embedded in DR

shocks. However, none of the coefficients on lead values of DR are statistically significant

at the 10% level. More importantly, the coefficient estimates on contemporaneous DR

(DRt) remain positive and statistically significant across four columns, consistent with

firms increasing both innovative output and efficiency (measured by patent count and

KPSS value) following an increase in cost of capital.

Next, we re-examine cost of capital and innovative efficiency on the full sample, but

with additional controls. Table 9 reports the regression results of equation (3), but we also

control for one-year lagged levels of innovative inputs (R&D, CAPEX, and employment)

in Panel A or ratio of 1 over intangible capital in Panel B (to address the concern that our

main results on innovative efficiency are driven by the persistent scaling variable - lagged

intangible capital). In both Panels A and B, the coefficient estimates on DR remain

positive and statistically significant across all columns, consistent with firms increasing
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their innovative efficiency in the three years after an increase in cost capital.

Table 10 reports the regression results of equation (3) on a subsample that includes

only peers whose TNIC scores are greater than the median (0.0367) in the TNIC database.

That is, in contrast to the sample used in the main analysis, in this subsample we do

not use SIC peers that are closest in sales with the focal firm as peers for firm-years that

do not have at least three TNIC peers with above median TNIC scores. The difference

between Panels A & B is the inclusion of peers that are in the bottom NYSE decile. As

a result of the exclusion of SIC peers, our number of observations drops by about 29% in

Panel A and 23% in Panel B (compared with the full sample used in Panel A of Table 4).

In Panel A, the coefficient estimates on DR remain positive and statistically significant

across all columns, with the exception of total citations in year 1 (column (7).) In Panel

B, the coefficients on DR are still positive and statistically significant for patent count

and total citations in years 2 & 3 and KPSS value in year 3. We attribute the reduced

statistical power in Panel B to the inclusion of small firms in the NYSE decile that are not

salient-enough peers. Qualitatively, the results in this table reinforce that firms increase

their innovative efficiency following an increase in the cost of capital.

Finally, we examine a different methodology to construct DR shocks. This methodol-

ogy follows the implied cost of capital estimation procedure described in Gebhardt, Lee,

and Swaminathan (2001), which has been used extensively in the accounting literature.

The autocorrelation of this accounting-based DR shock (aDR) and its correlation with

DR and CF used in the main analysis are reported in the appendix Table A1. We ob-

serve that, unlike DR, aDR exhibits no persistence, a notably positive (albeit moderate)

correlation with contemporaneous DR but about as strong but negative correlation with

the two lags of DR.

Table A2 in the appendix explores the relationship between the accounting-based

DR shock and innovative output, inputs, the probability of getting a patent, innovative

efficiency, fixed assets, and asset turnover. We use the contemporaneous stock returns

as an alternative measure of cash flow shocks. Panel A of this table reports regression

results for equation 2 (with accounting-based DR shock), and the coefficient estimates on
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DR are positive for most specifications except column (2). However, those estimates are

only statistically significant for KPSS value in columns (4) to (6) and for total citations

in columns (7) and (9). This suggests that firms’ economic and scientific values of patents

increase after an increase in accounting-based cost of capital. In Panel B, the coefficient

estimate on DR is only positive and statistically significant in column (9) at the 5% level,

indicating that firms are more likely to obtain a patent during a period of five years after

a DR shock. Panel C reports the regression results of equation 4, and although some of

the coefficient estimates on DR are negative, none is statistically significant. The results

of this panel suggest that firms do not cut their investment in R&D and in physical

and human capital even when their cost of capital increases, which is not consistent with

standard corporate finance theory and can be partly explained by the measurement errors

introduced by analyst forecasts used in the accounting-based-DR estimation procedure.

However, even with reduced statistical power due to measurement errors, the positive and

statistically significant coefficients on DR in most specifications of Panel D still indicate

that firms increase their innovative efficiency after an increase in cost of capital. In

Panel E, we rerun equation 4, but the dependent variables are ∆ Net PP&E and Other

Assets and Asset Turnover. In contrast with results using LT-based measures of shocks,

the coefficient estimates on DR are not statistically significant in columns (1) and (2),

suggesting that firms do not decrease PP&E and Other Assets following an increase in

cost of capital. However, the positive and statistically significant coefficient on DR in

column (5) indicates that firms increase their asset efficiency one year after an increase

in cost of capital, consistent with results using LT shocks.

5 Conclusion

This paper studies the effect of firms’ perceived cost of capital on the production of

innovations and the efficiency thereof. Our proxy of changes in the cost of capital is

based on the equity return component that is orthogonal to the cash-flow news of the

firm. Contrary to the notion that subsidies spur innovations, we find that adverse shocks
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to the cost of capital drive higher innovative output and efficiency.

Also—in contrast to scaling back capital expenditures, employment, and fixed assets—

firms seem to be reluctant to cut R&D expenditure in response to adverse shocks to the

cost of capital. In light of our results on the innovative output, this reluctance seems

to be concordant with the shareholder value maximization rather than reflecting higher

information asymmetry (and, hence, higher agency costs) of R&D expenditures.

One way to reconcile our results with the extant literature on the importance of sub-

sidization for innovation is that the cost of capital is not tantamount to its availability.

While the availability of capital is a necessary condition for financing the innovation,

a low expected return on that capital is conducive to neither innovative efficiency nor

higher output. This result has important policy implications.

Our results are consistent with venture capital-backed being responsible for a dispro-

portionately large fraction of the production of innovation (Lerner and Nanda, 2020)

despite the cost of capital being high for the venture capitalists (Ewens, Jones, and

Rhodes-Kropf, 2013) and, hence, for the startups in which they invest.
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Table 1: Summary Statistics

This table reports the summary statistics of all variables constructed using a sample of US public firms
from 1988 to 2017. Refer to Appendix B for variable definitions. Panel A reports summary statistics for
variables of all firms in the sample. Panel B reports summary statistics for innovative efficiency measures
of firms with at least one patent applied (and eventually granted) in the sample.

Panel A: All firm-years

count mean stdev p1 p25 median p75 p99
DR 99,949 −0.045 0.088 −0.22 −0.11 −0.06 0.00 0.23
CF 99,949 0.047 0.212 −0.42 −0.08 0.02 0.14 0.87
Sales p 99,949 6.813 1.315 2.53 6.10 6.95 7.69 9.54
MTB p 99,876 2.008 1.260 0.66 1.18 1.62 2.40 7.58
ROA p 99,948 0.113 0.101 −0.33 0.09 0.13 0.17 0.26
PPE p 99,949 0.301 0.205 0.04 0.14 0.25 0.42 0.84
LEV p 99,949 0.210 0.116 0.01 0.12 0.20 0.29 0.51
Age p 99,949 2.306 0.462 1.28 1.97 2.31 2.64 3.30
Sales f 94,799 6.181 2.007 1.20 4.80 6.10 7.51 11.11
MTB f 85,671 1.594 1.326 0.31 0.80 1.16 1.86 8.04
ROA f 94,690 0.098 0.151 −0.58 0.06 0.12 0.18 0.42
PPE f 94,799 0.313 0.238 0.02 0.12 0.24 0.46 0.91
LEV f 94,449 0.247 0.226 0.00 0.05 0.21 0.37 1.00
Age f 93,183 2.196 0.823 0.00 1.61 2.30 2.83 3.56
∆ ln(1+XRD) 92,195 0.028 0.218 −0.80 0.00 0.00 0.04 1.02
∆ ln(1+CAPX) 92,195 0.015 0.574 −1.79 −0.27 0.03 0.32 1.71
∆ ln(EMP) 88,325 0.044 0.234 −0.77 −0.05 0.03 0.13 0.92
∆ ln(Sales) 92,195 0.068 0.251 −0.54 −0.05 0.05 0.17 0.82
∆ ln(Assets) 92,195 0.057 0.278 −0.74 −0.07 0.03 0.15 1.13
∆ EBITDA/Sales 92,027 0.011 0.342 −1.66 −0.02 0.00 0.02 2.21
% Change EBITDA 92,026 0.018 0.990 −3.21 −0.23 0.04 0.29 3.17
∆ Cash 87,149 0.012 0.104 −0.24 −0.02 0.00 0.03 0.38
∆ Non-cash Current Assets 85,341 0.045 0.150 −0.23 −0.02 0.02 0.08 0.59
∆ Net PP&E 88,252 0.041 0.120 −0.14 −0.01 0.01 0.05 0.54
∆ Other Assets 86,228 0.040 0.141 −0.18 −0.01 0.00 0.04 0.63
∆ Net PP&E & Other Assets 86,228 0.087 0.244 −0.25 −0.02 0.02 0.11 1.10
Asset Turnover 92,195 1.123 0.852 0.05 0.57 0.95 1.45 4.07
Net Equity Issuance 80,726 0.029 0.182 −0.24 −0.01 0.00 0.01 1.20
Net Debt Issuance 87,793 0.048 0.217 −0.36 −0.03 0.00 0.05 1.32
N peers 99,949 8.986 2.080 3.00 10.00 10.00 10.00 10.00
avg score 84,488 0.080 0.052 0.01 0.04 0.07 0.11 0.23
1/intan17 94,799 0.030 0.079 0.00 0.00 0.01 0.02 0.52
Beta*Mkt Return 99,949 0.156 0.212 −0.34 0.03 0.16 0.28 0.74

Panel B: Firms with a patent

count mean stdev p1 p25 median p75 p99
Patent count 46,037 0.022 0.044 0.00 0.00 0.00 0.02 0.21
KPSS value 45,034 0.289 0.682 0.00 0.00 0.01 0.20 3.44
Total citations 45,999 0.438 1.218 0.00 0.00 0.00 0.18 6.41
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Table 2: Innovative Output

Panel A and B report OLS regression results of the model Patent counti,t+k (or KPSS valuei,t+k or Total
citationsi,t+k ) = bDRi,t + cCFi,t + d′Controlsi,t−1 + t + i + errori,t. Panel C reports OLS regression
results of the model I(Patent)i,t+k = bDRi,t + cCFi,t + d′Controlsi,t−1 + t + i + errori,t. I(Patent)i,t+k

is a dummy equal to 1 if firm i has at least one patent applied (and eventually granted) in year t+k and
0 otherwise. Controls include Sales p, MTB p, ROA p, PPE p, LEV p, Age p, Sales f, MTB f, ROA f,
PPE f, LEV f, and Age f. Refer to Appendix B for variable definitions. Year fixed effects, t, and firm
fixed effects, i, are included in all regressions. Higher value of DR reflects negative returns and higher
cost of capital. Higher value of CF reflects higher returns. All dependent variables are scaled by their
respective standard deviation. Coefficient estimates are shown, and their standard errors are clustered
by industry and displayed in parentheses below. ∗∗∗(∗∗)(∗) denotes significance at the 1% (5%) (10%)
two-tailed level.

Panel A: All firms

Patent count KPSS value Total citations

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.123∗∗ 0.133∗∗ 0.233∗∗∗ 0.061 0.098∗ 0.191∗∗∗ 0.148 0.203∗∗ 0.261∗∗

(2.14) (2.29) (2.83) (1.13) (1.67) (2.78) (1.60) (2.50) (2.60)
CF 0.048∗ 0.085∗∗ 0.134∗∗∗ 0.132∗∗∗ 0.116∗∗∗ 0.134∗∗∗ 0.123∗∗ 0.131∗∗ 0.172∗∗∗

(1.70) (2.30) (2.67) (3.58) (2.92) (2.91) (2.24) (2.43) (2.99)
betaXmkt 0.147∗∗ 0.205∗∗∗ 0.269∗∗∗ 0.313∗∗∗ 0.286∗∗∗ 0.227∗∗∗ 0.296∗∗∗ 0.332∗∗∗ 0.310∗∗∗

(2.41) (3.44) (4.50) (4.37) (3.61) (2.78) (3.24) (3.27) (2.89)
Observations 85,250 85,250 85,250 84,488 84,509 84,531 85,227 85,226 85,227
R-squared 0.063 0.075 0.087 0.064 0.068 0.077 0.095 0.106 0.114

Panel B: Firms with at least one patent

Patent count KPSS value Total citations

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.095 0.076 0.309∗ 0.069 0.096 0.261∗∗ 0.139 0.234 0.372∗

(0.88) (0.72) (1.99) (0.61) (0.81) (2.17) (0.75) (1.57) (1.96)
CF 0.040 0.112∗∗ 0.218∗∗∗ 0.220∗∗∗ 0.190∗∗∗ 0.222∗∗∗ 0.172∗∗ 0.201∗∗ 0.285∗∗∗

(0.81) (2.13) (3.06) (3.88) (3.25) (3.38) (2.04) (2.57) (3.51)
Observations 41,333 41,333 41,333 40,571 40,592 40,614 41,310 41,309 41,310
R-squared 0.112 0.135 0.156 0.106 0.118 0.135 0.163 0.182 0.197

Panel C: Probability of getting a patent.

Single year Multiyear

t+1 t+2 t+3 t+4 t+5 t+1:2 t+1:3 t+1:4 t+1:5
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.063∗∗∗ 0.066∗∗∗ 0.062∗∗∗ 0.064∗∗ 0.055 0.063∗∗∗ 0.084∗∗∗ 0.092∗∗∗ 0.084∗∗∗

(2.96) (3.01) (2.70) (2.15) (1.66) (3.62) (4.05) (4.70) (4.13)
CF 0.012∗∗ 0.018∗∗∗ 0.034∗∗∗ 0.021∗∗∗ 0.012 0.015∗∗∗ 0.025∗∗∗ 0.026∗∗∗ 0.024∗∗∗

(2.58) (3.37) (4.18) (2.91) (1.36) (3.26) (5.15) (7.23) (7.46)
Observations 85,250 85,250 85,250 85,250 85,250 85,250 85,250 85,250 85,250
R-squared 0.015 0.023 0.047 0.080 0.109 0.022 0.028 0.035 0.041
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Table 3: Innovative Inputs

Panel A reports OLS regression results of the model ∆ ln(1+XRD)i,t+k (or ∆ ln(1+CAPX)i,t+k or ∆
ln(EMP)i,t+k ) = bDRi,t + cCFi,t + d′Controlsi,t−1 + t + i + errori,t. Panel B is similar to Panel A,
but all observations are sorted into terciles based on their DR. The average DR for the 3rd(2nd)(1st)
tercile is 0.054(-0.055)(-0.132). BadDRi,t (GoodDRi,t) is a dummy equal to 1 if firmi-yeart observation
is sorted into the 3rd (1st) DR tercile and 0 otherwise. We interact BadDR and GoodDR dummies with
the continuous variable DR. Controls include Sales p, MTB p, ROA p, PPE p, LEV p, Age p, Sales f,
MTB f, ROA f, PPE f, LEV f, and Age f. Refer to Appendix B for variable definitions. Year fixed effects,
t, and firm fixed effects, i, are included in all regressions. Higher value of DR reflects negative returns
and higher cost of capital. Higher value of CF reflects higher returns. All dependent variables are scaled
by their respective standard deviation. Coefficient estimates are shown, and their standard errors are
clustered by industry and displayed in parentheses below. ∗∗∗(∗∗)(∗) denotes significance at the 1% (5%)
(10%) two-tailed level.

Panel A: No interaction with BadDR and GoodDR

∆ ln(1+XRD) ∆ ln(1+CAPX) ∆ ln(EMP)

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR −0.038 −0.006 0.103 −0.432∗∗∗ −0.826∗∗∗ −0.052 −0.689∗∗∗ −0.212∗ −0.030
(−0.34) (−0.08) (1.14) (−3.27) (−2.97) (−0.39) (−6.23) (−1.78) (−0.38)

CF 0.189∗∗∗ 0.268∗∗∗ −0.003 0.394∗∗∗ 0.280∗∗∗ −0.183∗∗ 0.344∗∗∗ 0.179∗∗∗ −0.092∗∗

(5.39) (5.15) (−0.10) (5.26) (3.98) (−2.15) (8.93) (3.82) (−2.12)
Observations 78,690 73,146 68,027 78,690 73,146 68,027 76,294 70,977 66,112
R-squared 0.026 0.018 0.014 0.061 0.054 0.049 0.097 0.070 0.062

Panel B: Interaction with BadDR and GoodDR

∆ ln(1+XRD) ∆ ln(1+CAPX) ∆ ln(EMP)

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

BadDR=1 x DR −0.020 0.305 −0.028 −0.916∗∗∗ 0.378 0.836∗ −0.408 0.804∗∗ 0.506
(−0.08) (0.77) (−0.11) (−3.41) (0.93) (1.84) (−1.66) (2.26) (1.41)

GoodDR=1 x DR 0.143 0.052 0.132 0.221 0.104 0.248 0.052 0.424∗∗ 0.350
(1.48) (0.47) (0.78) (1.41) (0.66) (1.37) (0.39) (2.52) (1.57)

DR −0.099 −0.170 0.052 −0.124 −1.048∗∗ −0.555∗ −0.530∗∗ −0.785∗∗∗ −0.431
(−0.74) (−0.96) (0.31) (−0.65) (−2.30) (−1.73) (−2.45) (−2.85) (−1.38)

CF 0.194∗∗∗ 0.264∗∗∗ 0.001 0.416∗∗∗ 0.276∗∗∗ −0.190∗∗ 0.352∗∗∗ 0.178∗∗∗ −0.090∗∗

(5.05) (5.30) (0.04) (5.90) (3.73) (−2.28) (9.51) (4.12) (−2.17)
Observations 78,690 73,146 68,027 78,690 73,146 68,027 76,294 70,977 66,112
R-squared 0.026 0.018 0.014 0.062 0.054 0.050 0.097 0.070 0.062
Pr{DR×(1+BadDR)}=0 0.573 0.577 0.863 0.000 0.000 0.223 0.000 0.919 0.560
Pr{DR×(1+GoodDR)}=0 0.671 0.326 0.297 0.566 0.032 0.221 0.001 0.048 0.491
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Table 4: Innovative Efficiency

Panel A reports OLS regression results of the model Patent counti,t+k (or KPSS valuei,t+k or Total

citationsi,t+k ) = bDRi,t + cCFi,t + d′Controlsi,t−1 + e′
∑k

τ=1Inputsi,t+τ + t + i + errori,t. Panel B
is similar to Panel A, but all observations are sorted into terciles based on their DR. The average DR
for the 3rd(2nd)(1st) tercile is 0.054(-0.055)(-0.132). BadDRi,t (GoodDRi,t) is a dummy equal to 1 if
firmi-yeart observation is sorted into the 3rd (1st) DR tercile and 0 otherwise. We interact BadDR and
GoodDR dummies with the continuous variable DR. Inputs are ∆ ln(1+XRD), ∆ ln(1+CAPX), and
∆ ln(EMP). Controls include Sales p, MTB p, ROA p, PPE p, LEV p, Age p, Sales f, MTB f, ROA f,
PPE f, LEV f, and Age f. Refer to Appendix B for variable definitions. Year fixed effects, t, and firm
fixed effects, i, are included in all regressions. Higher value of DR reflects negative returns and higher
cost of capital. Higher value of CF reflects higher returns. All dependent variables and Inputs are scaled
by their respective standard deviation. Coefficient estimates are shown, and their standard errors are
clustered by industry and displayed in parentheses below. ∗∗∗(∗∗)(∗) denotes significance at the 1% (5%)
(10%) two-tailed level.

Panel A: No interaction with BadDR and GoodDR

Patent count KPSS value Total citations

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.114∗∗ 0.121∗ 0.233∗∗∗ 0.053 0.098∗ 0.213∗∗∗ 0.140 0.224∗∗ 0.256∗∗

(2.06) (1.82) (2.69) (1.01) (1.77) (2.89) (1.39) (2.36) (2.34)
CF 0.029 0.055 0.118∗∗ 0.111∗∗∗ 0.081∗∗ 0.123∗∗∗ 0.117∗∗ 0.113∗ 0.168∗∗∗

(1.11) (1.47) (2.37) (3.00) (2.01) (2.73) (2.06) (1.90) (2.76)
∆ ln(1+XRD):

t + 1 0.050∗∗∗ 0.067∗∗∗ 0.077∗∗∗ 0.047∗∗∗ 0.061∗∗∗ 0.067∗∗∗ 0.049∗∗∗ 0.062∗∗∗ 0.075∗∗∗

(4.53) (5.56) (5.79) (4.19) (4.48) (4.79) (4.08) (4.53) (5.01)
t + 2 0.049∗∗∗ 0.069∗∗∗ 0.052∗∗∗ 0.067∗∗∗ 0.054∗∗∗ 0.065∗∗∗

(4.56) (5.66) (4.11) (4.66) (4.73) (4.66)
t + 3 0.054∗∗∗ 0.059∗∗∗ 0.054∗∗∗

(3.90) (3.87) (3.73)
∆ ln(1+CAPX):

t + 1 −0.006 0.000 0.001 0.005 0.009∗ 0.010∗∗ −0.004 0.002 −0.001
(−1.39) (0.09) (0.32) (1.66) (1.73) (2.16) (−0.94) (0.56) (−0.16)

t + 2 −0.000 0.005 0.012∗∗∗ 0.016∗∗∗ 0.002 0.007∗∗

(−0.11) (0.84) (4.77) (2.71) (0.62) (2.02)
t + 3 0.003 0.014∗∗∗ 0.005∗

(0.66) (3.28) (1.81)
∆ ln(EMP):

t + 1 0.019∗∗∗ 0.013∗∗ 0.003 0.022∗∗∗ 0.006∗∗ 0.002 0.007 −0.002 −0.006
(3.28) (2.59) (0.69) (4.40) (2.07) (0.58) (1.47) (−0.33) (−0.93)

t + 2 0.016∗∗∗ 0.006 0.020∗∗∗ 0.000 0.004 −0.007
(2.68) (1.09) (4.26) (0.03) (0.76) (−1.14)

t + 3 0.009∗ 0.013∗∗ −0.001
(1.73) (2.62) (−0.15)

Observations 76,294 70,144 64,671 75,572 69,459 64,013 76,275 70,125 64,653
R-squared 0.067 0.085 0.105 0.072 0.085 0.103 0.101 0.116 0.131

Panel B: Interaction with BadDR and GoodDR

Patent count KPSS value Total citations

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

BadDR=1 x DR 0.164 0.326∗ 0.165 0.423∗∗∗ 0.315∗ −0.113 0.477 0.377 0.134
(1.14) (1.86) (0.90) (3.31) (1.68) (−0.91) (1.60) (0.95) (0.43)

GoodDR=1 x DR 0.019 0.255∗ 0.109 0.159 0.256∗ 0.053 0.113 0.158 0.029
(0.16) (1.84) (0.69) (1.64) (1.81) (0.53) (0.64) (0.72) (0.12)

DR 0.031 −0.151 0.105 −0.216∗∗ −0.169 0.240∗ −0.131 −0.025 0.181
(0.29) (−1.04) (0.80) (−2.58) (−1.07) (1.87) (−0.56) (−0.08) (0.60)

CF 0.027 0.057 0.118∗∗ 0.108∗∗∗ 0.084∗∗ 0.127∗∗∗ 0.112∗ 0.112∗ 0.167∗∗∗

(0.99) (1.54) (2.41) (2.86) (2.09) (2.82) (1.98) (1.86) (2.85)
Observations 76,294 70,144 64,671 75,572 69,459 64,013 76,275 70,125 64,653
R-squared 0.067 0.085 0.105 0.072 0.085 0.103 0.101 0.116 0.131
Pr{DR×(1+BadDR)}=0 0.018 0.041 0.022 0.015 0.025 0.168 0.004 0.010 0.019
Pr{DR×(1+GoodDR)}=0 0.608 0.336 0.054 0.589 0.408 0.002 0.900 0.380 0.162
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Table 5: Cost of Capital and Operational Performance

This table reports OLS regression results of the model Yi,t+k = bDRi,t + cCFi,t + d′Controlsi,t−1 + t
+ i + errori,t. Y is ∆ln(Sales) or ∆ln(Assets) in Panel A and ∆EBITDA/Sales or % Change EBITDA
in Panel B. Controls include Sales p, MTB p, ROA p, PPE p, LEV p, Age p, Sales f, MTB f, ROA f,
PPE f, LEV f, and Age f. Refer to Appendix B for variable definitions. Year fixed effects, t, and firm
fixed effects, i, are included in all regressions. Higher value of DR reflects negative returns and higher
cost of capital. Higher value of CF reflects higher returns. All dependent variables are scaled by their
respective standard deviation. Coefficient estimates are shown, and their standard errors are clustered
by industry and displayed in parentheses below. ∗∗∗(∗∗)(∗) denotes significance at the 1% (5%) (10%)
two-tailed level.

Panel A: Sales Growth and Assets Growth

∆ ln(Sales) ∆ ln(Assets)

t+1 t+2 t+3 t+4 t+1 t+2 t+3 t+4
(1) (2) (3) (4) (5) (6) (7) (8)

DR −1.127∗∗∗ −0.923∗ −0.002 0.148 −0.803∗∗∗ −0.168 −0.201∗ 0.126
(−8.81) (−1.77) (−0.02) (0.42) (−5.13) (−1.26) (−1.74) (0.58)

CF 0.429∗∗∗ −0.015 −0.220∗∗ 0.101 0.514∗∗∗ 0.262∗∗∗ −0.097∗∗ 0.085
(3.51) (−0.10) (−2.23) (0.78) (9.10) (5.34) (−2.12) (1.04)

Observations 78,690 73,146 68,027 63,190 78,690 73,146 68,027 63,190
R-squared 0.170 0.117 0.110 0.105 0.120 0.079 0.068 0.062

Panel B: Growth in EBITDA Margin and EBITDA

∆ EBITDA/Sales % Change EBITDA

t+1 t+2 t+3 t+4 t+1 t+2 t+3 t+4
(1) (2) (3) (4) (5) (6) (7) (8)

DR −1.423 −0.033 0.141 0.366 −0.489∗∗∗ −0.382 −0.211 −0.051
(−1.66) (−0.41) (0.72) (1.59) (−6.48) (−1.39) (−1.49) (−0.21)

CF −0.178 −0.275∗∗ −0.093∗ 0.204 0.286∗∗∗ −0.020 −0.169∗∗∗ −0.004
(−1.26) (−2.12) (−1.83) (1.59) (4.02) (−0.30) (−2.93) (−0.05)

Observations 78,607 73,059 67,941 63,112 78,606 73,058 67,940 63,111
R-squared 0.030 0.011 0.008 0.009 0.021 0.013 0.015 0.014
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Table 6: Cost of Capital and Asset Utilization

This table reports OLS regression results of the model Yi,t+k = bDRi,t + cCFi,t + d′Controlsi,t−1 + t
+ i + errori,t. Y is ∆Cash or ∆Non-cash Current Assets in Panel A, ∆Net PP&E or ∆Other Assets
in Panel B, and ∆Net PP&E and Other Assets or Asset Turnover in Panel C. Controls include Sales p,
MTB p, ROA p, PPE p, LEV p, Age p, Sales f, MTB f, ROA f, PPE f, LEV f, and Age f. Refer to
Appendix B for variable definitions. Year fixed effects, t, and firm fixed effects, i, are included in all
regressions. Higher value of DR reflects negative returns and higher cost of capital. Higher value of
CF reflects higher returns. All dependent variables are scaled by their respective standard deviation.
Coefficient estimates are shown, and their standard errors are clustered by industry and displayed in
parentheses below. ∗∗∗(∗∗)(∗) denotes significance at the 1% (5%) (10%) two-tailed level.

Panel A: Current assets

∆ Cash ∆ Non-cash Current Assets

t+1 t+2 t+3 t+4 t+1 t+2 t+3 t+4
(1) (2) (3) (4) (5) (6) (7) (8)

DR −0.279∗∗ 0.197∗∗∗ −0.056 0.127 −0.488∗∗∗ −0.014 −0.049 0.222∗

(−2.13) (2.79) (−0.61) (1.50) (−4.43) (−0.10) (−0.77) (1.87)
CF 0.282∗∗∗ 0.073∗∗ −0.021 0.049 0.474∗∗∗ 0.223∗∗∗ −0.045 0.072

(4.63) (2.11) (−0.56) (1.17) (8.36) (3.50) (−1.26) (1.43)
Observations 77,715 72,341 67,275 62,458 76,210 70,982 66,047 61,350
R-squared 0.020 0.012 0.017 0.017 0.097 0.083 0.082 0.085

Panel B: Non-current assets by type

∆ Net PP&E ∆ Other Assets

t+1 t+2 t+3 t+4 t+1 t+2 t+3 t+4
(1) (2) (3) (4) (5) (6) (7) (8)

DR −0.351∗∗∗ −0.382∗∗∗ −0.295 −0.020 −0.390∗∗ −0.104 −0.030 0.010
(−3.87) (−2.98) (−1.59) (−0.09) (−2.35) (−1.12) (−0.39) (0.09)

CF 0.278∗∗∗ 0.290∗∗∗ 0.086 0.106 0.220∗∗∗ 0.225∗∗∗ 0.073∗∗ 0.060
(2.87) (9.81) (1.44) (1.31) (5.83) (6.17) (2.14) (1.43)

Observations 78,690 73,146 68,027 63,190 77,007 71,627 66,653 61,948
R-squared 0.134 0.113 0.105 0.105 0.051 0.040 0.037 0.034

Panel C: Fixed assets and turnover

∆ Net PP&E and Other Assets Asset Turnover

t+1 t+2 t+3 t+4 t+1 t+2 t+3 t+4
(1) (2) (3) (4) (5) (6) (7) (8)

DR −0.473∗∗∗ −0.275∗∗∗ −0.137 0.035 0.154∗∗∗ 0.006 0.015 0.023
(−3.46) (−2.73) (−1.12) (0.18) (2.92) (0.12) (0.23) (0.44)

CF 0.302∗∗∗ 0.299∗∗∗ 0.090∗ 0.103 0.085∗∗∗ 0.022 −0.012 −0.003
(4.75) (9.57) (1.97) (1.62) (3.69) (1.11) (−0.54) (−0.17)

Observations 77,007 71,627 66,653 61,948 78,690 73,146 68,027 63,190
R-squared 0.104 0.084 0.080 0.078 0.034 0.038 0.054 0.064
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Table 7: Cost of Capital and External Financing

Panel A reports OLS regression results of the model Net Equity Issuancei,t+k (or Net Debt Issuancei,t+k )
= bDRi,t + cCFi,t + d′Controlsi,t−1 + t + i + errori,t. Panel B is similar to Panel A, but all observations
are sorted into terciles based on their DR. The average DR for the 3rd(2nd)(1st) tercile is 0.054(-0.055)(-
0.132). BadDRi,t (GoodDRi,t) is a dummy equal to 1 if firmi-yeart observation is sorted into the 3rd (1st)
DR tercile and 0 otherwise. We interact BadDR and GoodDR dummies with the continuous variable
DR. Controls include Sales p, MTB p, ROA p, PPE p, LEV p, Age p, Sales f, MTB f, ROA f, PPE f,
LEV f, and Age f. Refer to Appendix B for variable definitions. Year fixed effects, t, and firm fixed
effects, i, are included in all regressions. Higher value of DR reflects negative returns and higher cost of
capital. Higher value of CF reflects higher returns. All dependent variables are scaled by their respective
standard deviation. Coefficient estimates are shown, and their standard errors are clustered by industry
and displayed in parentheses below. ∗∗∗(∗∗)(∗) denotes significance at the 1% (5%) (10%) two-tailed level.

Panel A: No interaction with BadDR and GoodDR

Net Equity Issuance Net Debt Issuance

t+1 t+2 t+3 t+4 t+1 t+2 t+3 t+4
(1) (2) (3) (4) (5) (6) (7) (8)

DR −0.204 0.108 0.116∗ 0.156 −0.188 −0.197∗∗ −0.160∗ 0.046
(−1.16) (1.49) (1.77) (1.36) (−1.37) (−2.10) (−1.69) (0.34)

CF 0.295∗∗∗ 0.170∗∗∗ −0.014 −0.009 0.092∗ 0.163∗∗∗ 0.034 0.046
(4.04) (3.17) (−0.73) (−0.30) (1.91) (4.35) (0.81) (1.06)

Observations 72,031 67,166 62,644 58,312 78,477 72,897 67,766 62,922
R-squared 0.063 0.052 0.046 0.037 0.073 0.054 0.045 0.042

Panel B: Interaction with BadDR and GoodDR

Net Equity Issuance Net Debt Issuance

t+1 t+2 t+3 t+4 t+1 t+2 t+3 t+4
(1) (2) (3) (4) (5) (6) (7) (8)

BadDR=1 x DR 1.021∗∗∗ 0.573∗∗ −0.426 −0.117 −0.105 0.126 0.505 0.047
(3.56) (2.02) (−1.63) (−0.58) (−0.31) (0.64) (1.60) (0.20)

GoodDR=1 x DR −0.262∗∗ 0.067 −0.204∗ −0.011 −0.019 −0.333∗∗∗ 0.284∗ 0.249∗

(−2.19) (0.60) (−1.83) (−0.08) (−0.16) (−2.73) (1.78) (1.89)
DR −0.539∗∗ −0.186 0.410∗∗ 0.216 −0.131 −0.093 −0.528∗∗ −0.095

(−2.23) (−0.96) (2.52) (1.40) (−0.45) (−0.47) (−2.01) (−0.51)
CF 0.270∗∗∗ 0.163∗∗∗ −0.013 −0.007 0.094∗ 0.150∗∗∗ 0.034 0.053

(3.93) (3.08) (−0.71) (−0.25) (1.82) (3.73) (0.81) (1.28)
Observations 72,031 67,166 62,644 58,312 78,477 72,897 67,766 62,922
R-squared 0.064 0.052 0.046 0.037 0.073 0.055 0.045 0.042
Pr{DR×(1+BadDR)}=0 0.010 0.002 0.914 0.455 0.086 0.746 0.849 0.790
Pr{DR×(1+GoodDR)}=0 0.002 0.359 0.030 0.175 0.538 0.004 0.148 0.229
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Table 8: Innovative Output and Efficiency with Leads and Lags

Column 1(2) reports OLS regression results of the model Patent counti,t+1 (KPSS valuei,t+1) =∑k=3
k=−4 b’DRi,t+k +

∑k=3
k=−4 c

′CFi,t+k + d’Controlsi,t−1 + t + i + errori,t. Columns (3) and (4) are
similar to columns (1) and (2), but we also controls for ∆ln(1+XRD), ∆ln(1+CAPX), and ∆ln(EMP)
in year t+1. Controls include Sales p, MTB p, ROA p, PPE p, LEV p, Age p, Sales f, MTB f, ROA f,
PPE f, LEV f, and Age f. Refer to Appendix B for variable definitions. Year fixed effects, t, and firm
fixed effects, i, are included in all regressions. Higher value of DR reflects negative returns and higher
cost of capital. Higher value of CF reflects higher returns. All dependent variables are scaled by their
respective standard deviation. Coefficient estimates are shown, and their standard errors are clustered
by industry and displayed in parentheses below. ∗∗∗(∗∗)(∗) denotes significance at the 1% (5%) (10%)
two-tailed level.

Innovative Output t+1 Innovative Efficiency t+1

Patent count KPSS value Patent count KPSS value
(1) (2) (3) (4)

DR shocks:
t - 4 0.040 (0.39) 0.065 (0.80) −0.021 (-0.19) 0.018 (0.18)
t - 3 0.066 (0.66) 0.041 (0.39) 0.069 (0.67) 0.045 (0.39)
t - 2 0.379∗∗∗ (3.03) 0.238∗∗∗ (3.14) 0.386∗∗∗ (3.00) 0.277∗∗∗ (2.99)
t - 1 0.364∗∗∗ (2.97) 0.240∗∗∗ (3.23) 0.361∗∗ (2.63) 0.268∗∗∗ (3.01)
t 0.265∗∗∗ (2.67) 0.229∗∗ (2.35) 0.246∗∗ (2.49) 0.224∗∗ (2.26)
t + 1 0.109 (0.95) 0.159 (1.21) 0.064 (0.52) 0.120 (0.92)
t + 2 0.089 (1.05) 0.055 (0.55) 0.064 (0.70) 0.024 (0.23)
t + 3 0.063 (0.73) 0.077 (0.77) 0.063 (0.72) 0.077 (0.75)

CF shocks:
t - 4 0.028 (0.98) 0.055 (1.54) 0.021 (0.69) 0.055 (1.40)
t - 3 0.062 (1.66) 0.085∗∗ (2.11) 0.063 (1.62) 0.090∗∗ (2.13)
t - 2 0.139∗∗∗ (3.58) 0.115∗∗∗ (3.19) 0.148∗∗∗ (3.61) 0.129∗∗∗ (3.31)
t - 1 0.160∗∗∗ (4.47) 0.161∗∗∗ (3.70) 0.154∗∗∗ (3.99) 0.157∗∗∗ (3.26)
t 0.118∗∗∗ (3.56) 0.231∗∗∗ (3.95) 0.097∗∗∗ (3.34) 0.215∗∗∗ (3.56)
t + 1 0.068∗∗∗ (3.05) 0.219∗∗∗ (4.60) 0.066∗∗ (2.49) 0.231∗∗∗ (4.35)
t + 2 0.033∗∗ (2.38) 0.154∗∗∗ (4.55) 0.022 (1.66) 0.159∗∗∗ (5.16)
t + 3 −0.005 (-0.22) 0.052∗∗∗ (3.01) −0.017 (-0.79) 0.046∗∗∗ (2.85)

Input Changes t+1:
∆ ln(1+XRD) 0.213∗∗∗ (4.30) 0.204∗∗∗ (4.20)
∆ ln(1+CAPX) −0.006 (-0.98) 0.010∗ (2.00)
∆ ln(EMP) 0.091∗∗∗ (3.57) 0.092∗∗∗ (3.97)

betaXmkt 0.151∗∗ (2.31) 0.288∗∗∗ (4.13) 0.146∗∗ (2.18) 0.306∗∗∗ (4.42)
Observations 77,313 76,587 69,187 68,496
R-squared 0.062 0.074 0.066 0.083
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 9: Innovative Efficiency with additional controls

Panel A and B report OLS regression results of the model Patent counti,t+k (or KPSS valuei,t+k or Total

citationsi,t+k ) = bDRi,t + cCFi,t + d′Controlsi,t−1 + e′
∑k

τ=1Inputsi,t+τ + f ′Extrai,t−1 + t + i +
errori,t. Extra includes levels of XRD, CAPX, and EMP in Panel A or 1/intan17 in Panel B. Inputs
are ∆ ln(1+XRD), ∆ ln(1+CAPX), and ∆ ln(EMP). Controls include Sales p, MTB p, ROA p, PPE p,
LEV p, Age p, Sales f, MTB f, ROA f, PPE f, LEV f, and Age f. Refer to Appendix B for variable
definitions. Year fixed effects, t, and firm fixed effects, i, are included in all regressions. Higher value of
DR reflects negative returns and higher cost of capital. Higher value of CF reflects higher returns. All
dependent variables and Extra are scaled by their respective standard deviation. Coefficient estimates are
shown, and their standard errors are clustered by industry and displayed in parentheses below. ∗∗∗(∗∗)(∗)
denotes significance at the 1% (5%) (10%) two-tailed level.

Panel A: Control for 1/intangibles

Patent count KPSS value Total citations

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.152∗∗ 0.172∗∗ 0.306∗∗∗ 0.140∗∗ 0.175∗∗∗ 0.269∗∗∗ 0.216∗ 0.317∗∗∗ 0.346∗∗∗

(2.43) (2.42) (3.25) (2.44) (3.29) (3.47) (1.92) (2.89) (3.08)
CF 0.036 0.065∗ 0.133∗∗ 0.128∗∗∗ 0.097∗∗ 0.135∗∗∗ 0.132∗∗ 0.133∗∗ 0.187∗∗∗

(1.37) (1.74) (2.62) (3.14) (2.27) (2.91) (2.24) (2.19) (2.99)
1/intan17 −0.024 −0.038 −0.053∗ −0.051∗∗ −0.068∗∗ −0.096∗∗ −0.075∗∗ −0.093∗∗ −0.107∗∗

(−1.08) (−1.45) (−1.81) (−2.07) (−2.14) (−2.66) (−2.24) (−2.35) (−2.65)
Observations 76,293 70,143 64,670 75,571 69,458 64,012 76,274 70,124 64,652
R-squared 0.066 0.085 0.104 0.071 0.085 0.105 0.101 0.116 0.131

Panel B: Control for lagged levels of Inputs

Patent count KPSS value Total citations

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.147∗∗ 0.162∗∗ 0.303∗∗∗ 0.129∗∗ 0.158∗∗∗ 0.254∗∗∗ 0.212∗ 0.303∗∗∗ 0.340∗∗∗

(2.45) (2.28) (3.27) (2.35) (3.15) (3.33) (1.99) (2.90) (3.22)
CF 0.036 0.065∗ 0.135∗∗ 0.126∗∗∗ 0.095∗∗ 0.132∗∗∗ 0.132∗∗ 0.132∗∗ 0.188∗∗∗

(1.40) (1.74) (2.62) (3.02) (2.17) (2.75) (2.25) (2.15) (3.03)
XRDt−1 −0.031∗∗ −0.054∗∗ −0.076∗∗ −0.175∗∗∗ −0.208∗∗∗ −0.232∗∗∗ −0.094∗ −0.114∗ −0.132∗∗

(−2.07) (−2.13) (−2.09) (−5.85) (−5.83) (−5.67) (−1.89) (−2.00) (−2.06)
CAPXt−1 0.021∗∗ 0.027∗∗ 0.033∗∗ 0.035 0.031 0.027 0.039∗∗ 0.044∗∗ 0.047∗∗

(2.00) (2.20) (2.38) (1.61) (1.20) (0.94) (2.35) (2.35) (2.35)
EMPt−1 0.043 0.047 0.052 0.029∗ 0.031∗ 0.034∗ 0.050 0.052 0.055

(1.65) (1.62) (1.59) (1.81) (1.74) (1.68) (1.61) (1.56) (1.55)
Observations 75,758 69,675 64,250 75,045 68,996 63,599 75,739 69,656 64,232
R-squared 0.068 0.088 0.108 0.087 0.107 0.130 0.104 0.121 0.137
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Table 10: Sub-sample analysis for Innovative Efficiency

This table uses a subsample which only has peers whose TNIC scores are greater than the median, and
reports OLS regression results of the model Patent counti,t+k (or KPSS valuei,t+k or Total citationsi,t+k )

= bDRi,t + cCFi,t + d′Controlsi,t−1 + e′
∑k

τ=1Inputsi,t+τ + t + i + errori,t. Inputs are ∆ ln(1+XRD),
∆ ln(1+CAPX), and ∆ ln(EMP). Controls include Sales p, MTB p, ROA p, PPE p, LEV p, Age p,
Sales f, MTB f, ROA f, PPE f, LEV f, and Age f. Refer to Appendix B for variable definitions. Year
fixed effects, t, and firm fixed effects, i, are included in all regressions. In Panel A, we exclude peers
that are in the bottom NYSE decile. In Panel B, we include those peers in the analysis. Higher value of
DR reflects negative returns and higher cost of capital. Higher value of CF reflects higher returns. All
dependent variables are scaled by their respective standard deviation. Coefficient estimates are shown,
and their standard errors are clustered by industry and displayed in parentheses below. ∗∗∗(∗∗)(∗) denotes
significance at the 1% (5%) (10%) two-tailed level.

Panel A: Peers are above median TNIC score

Patent count KPSS value Total citations

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.202∗ 0.210∗ 0.370∗∗∗ 0.186∗∗ 0.219∗∗ 0.351∗∗∗ 0.256 0.318∗ 0.345∗∗

(1.87) (1.75) (2.78) (2.00) (2.15) (2.68) (1.64) (1.88) (2.40)
CF 0.059∗ 0.074∗ 0.136∗∗ 0.146∗∗∗ 0.105∗ 0.140∗∗ 0.151∗∗ 0.127∗ 0.171∗∗∗

(1.74) (1.82) (2.51) (2.69) (1.85) (2.43) (2.22) (1.93) (2.69)
Observations 54,070 49,542 45,552 53,527 49,027 45,066 54,058 49,529 45,539
R-squared 0.090 0.113 0.136 0.092 0.109 0.130 0.116 0.135 0.154

Panel B: Peers are above median TNIC score and inclusive of bottom NYSE size decile

Patent count KPSS value Total citations

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.111 0.172∗∗ 0.187∗∗∗ −0.015 0.098 0.126∗ 0.076 0.177∗∗ 0.230∗∗

(1.41) (2.34) (2.84) (−0.36) (1.59) (1.92) (0.61) (2.09) (2.22)
CF 0.027 0.036∗ 0.055∗∗ 0.068∗∗ 0.048 0.054∗ 0.077∗∗ 0.064∗∗ 0.088∗∗

(1.41) (1.79) (2.36) (2.19) (1.49) (1.97) (2.26) (2.05) (2.62)
Observations 58,961 54,035 49,676 58,395 53,495 49,162 58,949 54,022 49,663
R-squared 0.084 0.107 0.129 0.087 0.103 0.123 0.110 0.128 0.146
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Figure 1: Time series properties of DR and CF shocks

Panel A (B) plots the average DR shocks for deciles 1, 5&6, and 10 of DR (CF). Panel C (D) plots
the average CF shocks for deciles 1, 5&6, and 10 of CF (DR). Decile 10 of DR (CF) corresponds to a
bad (good) shock experienced by firms. Higher value of DR reflects negative returns and higher cost of
capital. Higher value of CF reflects higher returns.

Panel A: DR shocks for DR deciles Panel B: DR shocks for CF deciles

Panel C: CF shocks for CF deciles Panel D: CF shocks for DR deciles
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Appendices

Appendix A. Additional results

Table A1: Correlations among DR and CF shocks

This table reports the Pearson correlation coefficients among contemporaneous DR (CF), DRt−1 (CFt−1),
and DRt+1 (CFt+1). These DR and CF shocks follow Lochstoer and Tetlock (2020). We also report
correlation coefficients among those shocks and alternative measures of discount rate shocks (denoted
aDR and aDRt+1) that follow Gebhardt, Lee, and Swaminathan (2001).

DRt−1 DRt DRt+1 CFt−1 CFt CFt+1 aDRt aDRt+1

DRt−1 1.000
DRt 0.298 1.000
DRt+1 0.050 0.315 1.000
CFt−1 -0.443 0.095 0.144 1.000
CFt -0.088 -0.478 0.086 -0.001 1.000
CFt+1 0.015 -0.133 -0.456 -0.133 0.060 1.000
aDRt -0.173 0.189 -0.021 0.116 -0.244 0.046 1.000
aDRt+1 -0.166 -0.111 0.179 0.058 0.087 -0.192 0.015 1.000

Table A2: Results with alternative definition of shocks

This table uses alternative measures of discount rate and cash flow shocks that follow Gebhardt, Lee, and
Swaminathan (2001), and it reports pooled OLS regression results of the model Yi,t+k = bDRi,t + cCFi,t

+ d’Controlsi,t−1 + t + i + errori,t. In Panels A & D, Y is Patent count, KPSS value, or Total citations.
In Panel B, Y is I(Patent), and I(Patent) is a dummy equal to 1 if firm i has at least one patent applied
(and eventually granted) in year t+k and 0 otherwise. In Panel C, Y is ∆ ln(1+XRD), ∆ ln(1+CAPX),
or ∆ ln(EMP). In Panel E, Y is ∆ Net PP&E and Other Assets and Asset Turnover. Controls include
Sales p, MTB p, ROA p, PPE p, LEV p, Age p, Sales f, MTB f, ROA f, PPE f, LEV f, and Age f. In
Panel D, Controls also include ex-post log changes in innovative inputs (similar to Panel A of Table 4).
Refer to Appendix B for variable definitions. Year fixed effects, t, and firm fixed effects, i, are included
in all regressions. Higher value of DR reflects negative returns and higher cost of capital. Higher value
of CF reflects positive returns. All dependent variables are scaled by their respective standard deviation.
Coefficient estimates are shown, and their standard errors are clustered by industry and displayed in
parentheses below. ∗∗∗(∗∗)(∗) denotes significance at the 1% (5%) (10%) two-tailed level.

Panel A: Innovative Output

Patent count KPSS value Total citations

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.038 −0.004 0.022 0.078∗ 0.064∗∗ 0.073∗∗ 0.057∗∗ 0.025 0.049∗∗

(1.58) (−0.32) (1.55) (1.70) (2.59) (2.36) (2.48) (1.49) (2.52)
CF 0.036∗∗ 0.049∗∗ 0.062∗∗ 0.114∗∗∗ 0.084∗∗∗ 0.073∗∗∗ 0.099∗∗∗ 0.098∗∗∗ 0.108∗∗∗

(2.36) (2.36) (2.34) (3.37) (2.81) (2.72) (4.09) (3.42) (3.69)
Observations 82,240 82,240 82,240 81,505 81,525 81,552 82,217 82,217 82,216
R-squared 0.064 0.076 0.087 0.064 0.069 0.079 0.096 0.106 0.116
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Table A2: continued.

Panel B: Probability of getting a patent

Single year Multiyear

t+1 t+2 t+3 t+4 t+5 t+1:2 t+1:3 t+1:4 t+1:5
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.004 −0.002 −0.000 0.003 −0.008 0.005 0.006 0.007 0.010∗∗

(1.03) (−0.48) (−0.01) (0.31) (−0.91) (1.32) (1.12) (1.32) (2.15)
CF −0.005 −0.003 0.010∗∗ 0.002 −0.001 −0.002 0.001 −0.001 0.000

(−1.10) (−0.78) (2.06) (0.53) (−0.26) (−0.51) (0.37) (−0.30) (0.12)
Observations 82,240 82,240 82,240 82,240 82,240 82,240 82,240 82,240 82,240
R-squared 0.015 0.023 0.046 0.079 0.110 0.022 0.028 0.034 0.041

Panel C: Changes in innovative input

∆ ln(1+XRD) ∆ ln(1+CAPX) ∆ ln(EMP)

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.021 −0.023 0.017 0.082 −0.033 −0.017 −0.025 0.025 0.042
(0.63) (−1.18) (1.00) (1.47) (−0.97) (−0.87) (−0.97) (0.95) (1.50)

CF 0.067∗∗ 0.190∗∗∗ 0.038 0.209∗∗∗ 0.388∗∗∗ 0.065 0.192∗∗∗ 0.244∗∗∗ 0.017
(2.47) (6.25) (1.01) (6.90) (5.56) (1.35) (8.09) (5.93) (0.55)

Observations 75,965 70,600 65,674 75,965 70,600 65,674 73,598 68,464 63,788
R-squared 0.024 0.018 0.015 0.056 0.056 0.049 0.091 0.073 0.062

Panel D: Innovative Efficiency

Patent count KPSS value Total citations

t+1 t+2 t+3 t+1 t+2 t+3 t+1 t+2 t+3
(1) (2) (3) (4) (5) (6) (7) (8) (9)

DR 0.036 −0.006 0.024 0.086∗ 0.073∗∗ 0.088∗∗ 0.052∗∗ 0.020 0.051∗∗

(1.36) (−0.40) (1.36) (1.70) (2.42) (2.12) (2.26) (1.09) (2.57)
CF 0.037∗∗ 0.048∗ 0.058∗ 0.115∗∗∗ 0.073∗∗ 0.063∗ 0.105∗∗∗ 0.098∗∗∗ 0.112∗∗∗

(2.19) (1.89) (1.99) (3.05) (2.09) (1.99) (4.08) (2.86) (3.38)
Observations 73,598 67,677 62,416 72,902 67,016 61,789 73,579 67,658 62,397
R-squared 0.069 0.088 0.106 0.074 0.087 0.106 0.102 0.119 0.133

Panel E: Fixed assets and turnover

∆ Net PP&E and Other Assets Asset Turnover

t+1 t+2 t+3 t+4 t+1 t+2 t+3 t+4
(1) (2) (3) (4) (5) (6) (7) (8)

DR −0.004 0.012 0.057∗∗∗ 0.005 0.028∗∗∗ 0.008 0.011 0.016
(−0.08) (0.25) (4.32) (0.27) (3.43) (0.89) (0.81) (1.26)

CF 0.136∗∗∗ 0.302∗∗∗ 0.161∗∗∗ 0.078∗ 0.030∗∗ 0.024∗∗ 0.003 0.001
(5.16) (4.82) (3.46) (1.87) (2.61) (2.14) (0.21) (0.10)

Observations 74,393 69,183 64,380 59,872 75,965 70,600 65,674 61,041
R-squared 0.099 0.086 0.083 0.080 0.041 0.048 0.067 0.076
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Table A3: Public firm patents information across different databases

This table compares patent counts by firm-year across three databases: (i) Kogan, Papanikolaou, Seru,
and Stoffman (2017) (KPSS) accessed in June 2022, (ii) the Global Corporate Patent Database featured
in Bena, Ferreira, Matos, and Pires (2017) (BFMP), (iii) and the DISCERN database of Arora, Belenzon,
and Sheer (2021) (ABS) over the years of overlapping coverage. Column (1) contains firm-year counts
whereby the positive number of patents is the same in KPSS and BFMP. Column (2) contains firm-years
with positive count in KPSS but zero in BFMP. Columns (3) and (4) contain firm-years with positive
counts in KPSS (Nk) and BFMP (Nb), such that, respectively, 2 ≥ Nk − Nb ≥ 1 and Nk − Nb > 2.
Column (5) contains firm-years with positive count in BFMP but zero in KPSS. Columns (6) and (7)
contain firm-years with positive counts in KPSS and BFMP, such that, respectively, 2 ≥ Nb−Nk ≥ 1 and
Nb −Nk > 2. Column (8) contains firm-counts with patents, in which the individual patent information
coincides in at least two databases out of three. Relative to the counts in column (8), KPSS database has
5,827 firm-years with different patent count and 3,017 with missing patents, BFMP database has 3,539
firm-years with different and 5,038 with missing, whereas the ABS database has 6,694 firm-years with
different patent count relatively to those that match exactly in KPSS and BFMP.

Grant KPSS∩ BFMP KPSS surplus BFMP surplus 2+ DBs

year (1) (2) (3) (4) (5) (6) (7) (8)

1989 202 251 78 79 26 48 27 525
1990 286 284 69 76 26 44 30 612
1991 315 294 67 82 36 47 36 670
1992 384 289 95 93 40 23 31 722
1993 397 283 97 87 42 29 42 718
1994 476 314 94 86 56 44 43 826
1995 476 298 88 69 66 88 78 877
1996 618 274 118 85 68 40 72 960
1997 651 273 125 81 64 59 77 1,005
1998 717 261 157 86 79 52 106 1,077
1999 690 209 146 77 80 64 121 1,032
2000 722 152 46 54 115 184 173 1,097
2001 714 127 55 50 116 187 175 1,123
2002 784 106 40 55 88 139 145 1,069
2003 809 109 51 56 95 77 150 1,050
2004 763 103 52 55 107 102 141 1,007
2005 728 78 40 59 104 111 128 942
2006 628 77 29 57 120 190 180 992
2007 573 64 25 45 122 192 200 939
2008 578 61 29 48 116 147 164 838
2009 622 69 32 52 119 97 119 797
2010 571 59 34 66 123 117 151 756
2011 550 57 32 44 167 112 163 734
2012 432 60 21 30 163 190 258 833
2013 469 53 23 37 201 158 243 812
2014 536 49 29 43 224 140 170 755
2015 513 37 27 50 244 142 167 749

Total 15,204 4,291 1,699 1,702 2,807 2,823 3,390 23,517
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Appendix B. Variable definitions

Variables Name Variable Definitions

DR Average of peers’ discount rate shocks.
CF Average of peers’ cash flow shocks.
Sales p Average of peers’ ln(SALE).
MTB p Average of peers’ market-to-book (MTB) ratios, with MTB

defined as (PRCC F*CSHPRI + DLC + DLTT + PSTKL -
TXDITC)/AT.

ROA p Average of peers’ ratios of OIBDP to AT.
PPE p Average of peers’ ratios of PPENT to AT.
LEV p Average of peers’ ratios of (DLC+DLTT) to AT.
Age p Average of peers’ ln(age), with age equal the number of years

since IPO.
Sales f Firm’s ln(SALE).
MTB f Firm’s MTB ratio.
ROA f Firm’s ratio of OIBDP to AT.
PPE f Firm’s ratio of PPENT to AT.
LEV f Firm’s ratio of (DLC+DLTT) to AT.
Age f Firm’s ln(age), with age equal the number of years since IPO.
∆ ln(1+XRD) ln(1 + XRDt+k)− ln(1 + XRDt+k−1), adjusted for inflation.
∆ ln(1+CAPX) ln(1 + CAPXt+k)− ln(1 + CAPXt+k−1), adjusted for inflation.
∆ ln(EMP) ln(EMPt+k)− ln(EMPt+k−1)
∆ ln(Sales) ln(SALEt+k)− ln(SALEt+k−1), adjusted for inflation.
∆ ln(Assets) ln(ATt+k)− ln(ATt+k−1), adjusted for inflation.
∆ EBITDA/Sales Change in ratio of EBITDA to SALE from year t+k-1 to t+k.
% Change EBITDA Change in EBITDA from year t+k-1 to t+k, scaled by

EBITDAt+k−1.
∆ Cash Change in CH from year t+k-1 to t+k, scaled by ATt−1.
∆ Non-cash Current Assets Change in (ACT - CH) from year t+k-1 to t+k, scaled by ATt−1.
∆ Net PP&E Change in PPENT from year t+k-1 to t+k, scaled by ATt−1.
∆ Other Assets Change in (AT - ACT - PPENT ) from year t+k-1 to t+k, scaled

by ATt−1.
∆ Net PP&E & Other Assets Change in (AT - ACT) from year t+k-1 to t+k, scaled by ATt−1.
Asset Turnover Ratio of SALE to AT in year t+k.
Net Equity Issuance SSTK - PRSTKC in year t+k, scaled by ATt−1.
Net Debt Issuance Change in (DLTT + DLC) from year t+k-1 to t+k, scaled by

ATt−1.
N peers Average number of peers of each firm-year.
avg score Average TNIC score of peers of each firm-year. TNIC scores are

from Hoberg and Phillips (2010).
intan17 The sum of knowledge capital, organizational capital, and IN-

TANO, adjusted for inflation. Knowledge and organizational
capital are from Peters and Taylor (2017).

Patent count The number of all patents applied (and eventually granted) in
year t+k, scaled by intan17t−1.

KPSS value The sum of KPSS values of all patents applied (and eventually
granted) in year t+k, scaled by intan17t−1.

Total citations The sum of forward citations received by all patents applied (and
eventually granted) in year t+k, scaled by intan17t−1.
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