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Abstract

This paper studies explanations of anomalies by analyzing how alphas of the

characteristic-sorted portfolio evolve over months after the sorting period, re-

ferred to as the ”alpha dynamic”. In contrast, prior studies focus on the average

of alphas after sorting. I develop new tests to statistically examine alpha dy-

namic patterns. I find that alpha dynamics provide new insights in evaluating

whether anomalies (1) exist, (2) are profitable after considering trading costs,

and (3) are likely due to mispricing or rational expectations. Upon incorporating

the impacts of alpha dynamics into these questions, an analysis of 205 anomalies

reveals that relying solely on t tests may miss many real anomalies. This problem

becomes more severe with higher t cutoff values (e.g., 3.0). Also, the after-cost

profitability has been significantly underestimated. Further, in about 60% of

anomalies, the observed alpha dynamic pattern conforms to existing behavioral

models rather than rational models. Examples of well-known categories include

net share issuance, idiosyncratic volatility, and momentum.



1 Introduction

In the past few decades, researchers have reported hundreds of ”anomalies”.1 Recently,

there have been ongoing debates on interrelated explanations behind these anomalies. Key

questions include: (1) Do the reported anomalies truly exist? (2) If they exist, would they

be profitable after considering trading costs? (3) If they are profitable, are they due to

mispricing or rational expectations?

For this paper, alpha is an average monthly excess return earned a specific number of

months after a portfolio sort. For instance, if stocks are sorted only once a year, there

would be twelve alphas associated with the portfolio sort. This paper examines whether the

evolution of the alphas after sorting (henceforth, the alpha dynamic) provides new insights

into these questions.

In contrast, most prior studies focus on the average of alphas after sorting. Here is a

concrete example. Using the accruals as the characteristic, researchers sort firms in June

every year and hold characteristic-sorted portfolios from July to the following June. Then

they calculate monthly returns in excess of a given factor model’s predictions and average

these returns over all months. This method is equivalent to first calculating the alphas for

each month following the sorting period and then averaging the alphas (henceforth, the alpha

mean) over the first twelve months after sorting.2

While studying the alpha mean is useful, it does not reveal how alphas evolve over time

after sorting. That is, the alpha earned (say) one month after sorting is blended with the

alpha earned (say) six months after sorting. Are these two alphas the same? Theoretically,

should they be? It is an open question whether or not the alpha dynamic sheds new light

on anomalies. This paper is also different from the studies that examine whether alphas (or

1If a firm characteristic’s return predictability on future stock returns cannot be fully explained by an
asset pricing model, it is considered an anomaly relative to that model.

2Since alpha is an arithmetic average, the alpha mean is also an average. Additionally, when the alpha
in one particular month after sorting is examined, the alpha mean is just that alpha itself. The term, ”alpha
mean” highlights that it is an average rather than a dynamic.
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betas) vary over calendar time or other events.3 Unlike previous papers, I study anomaly

explanations by analyzing how alphas vary in event time following the portfolio sorting date

for a large number of important anomalies.

To study the impact of alpha dynamics on anomaly explanations, I examine 205 published

anomalies. I study their alpha dynamics by jointly investigating the alpha estimates over

different months after sorting. I develop new empirical tests that allow me to statistically

examine whether alphas are constant in the months after sorting and whether they exhibit

certain patterns that can be implied by several existing economic models.4 To detect different

patterns, I analyze not only the alphas within the first twelve months, but also those at longer

horizons. My main finding is that examining the patterns of alpha dynamics can provide

new and important insights into all three questions listed at the beginning.

First, regarding the existence of anomalies, the alpha dynamic can detect non-zero alphas

when the alpha mean may not. For example, a build-up of mispricing followed by a correction

could imply positive alphas for a period of time followed by negative alphas. In this case,

alphas would be non-zero, even while the alpha mean could be indistinguishable from zero.

The tests that I propose involving the alpha dynamic can alleviate problems such as this.5

Prior studies use alpha-mean tests (e.g., t tests) and argue that many anomalies do not exist

if we change slightly the portfolio construction method or adjust the statistical threshold to

address p-hacking concerns (Harvey, Liu, & Zhu, 2016; Hou, Xue, & Zhang, 2020).6 I find

that relying solely on alpha-mean tests may miss many real anomalies. Further, adjusting

the statistical thresholds (e.g., raising t cutoff to 3.0) may miss many more real anomalies.

Second, I find that the appropriate holding period to evaluate after-cost profitability

should be determined by both alpha dynamics and trading costs. Based on this rule, I provide

3For calendar time, see e.g., Boguth, Carlson, Fisher, and Simutin (2011) and Lewellen and Nagel (2006).
For other events, McLean and Pontiff (2016) study publication dates and Engelberg, McLean, and Pontiff
(2018) study corporate news and earnings announcement days.

4Alphas are considered constant if the difference between any two adjacent alphas after sorting is statis-
tically insignificant from zero.

5I discuss other problems of alpha-mean tests and how alpha-dynamic tests alleviate them in Section 2.2.
6p-Hacking occurs when large t statistics result from searching for significant results among numerous

meaningless characteristics.
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a new and simple method to determine holding periods. I find that this method might be

more appropriate to evaluate after-cost profitability and after-cost profitability may have

been significantly underestimated. When compared to prior methods,7 this method achieves

a statistically significant improvement in after-cost alpha for about 20% of anomalies. And

the improvement is about 0.3% per month across these improved anomalies.

Third, I observe that about 60% of the anomalies exhibit an alpha dynamic pattern

that conforms to existing behavioral models rather than rational models. This suggests that

they are likely to be at least partially due to mispricing. Examples of well-known categories

include net share issuance, idiosyncratic volatility, and momentum.

Let me explain the simple economic rationale behind the first finding about detecting

non-zero alphas. If anomalies do not exist, true alphas should be zero in any month after

sorting.8 This implies a null hypothesis that the alpha mean is zero and alphas are constant

within any subset of months after sorting. Therefore, either a non-constant alpha dynamic

or a non-zero alpha mean rejects the null and indicates the existence of non-zero alphas.

This suggests that we can also use alpha dynamics to detect non-zero alphas.

Why can alphas be non-constant? Both rational and behavioral theories can imply non-

constant alphas. For instance, Keloharju, Linnainmaa, and Nyberg (2021) show that several

production-based models such as Berk, Green, and Naik (1999) can imply a monotone pattern

of alphas after sorting because firm risks converge over time in those models. For behavioral

theories, the changes in mispricing over time will be reflected as alphas. When the changes

are not constant, alphas will also be non-constant. Models such as return extrapolation (e.g.,

Barberis, 2018) can imply not only monotone patterns of alphas but also a ripple pattern,

characterized by alternating increases and decreases in alphas over time.9

7Researchers usually use one-month or twelve-month holding periods (A. Y. Chen & Velikov, 2023; A. Y.
Chen & Zimmermann, 2021). Novy-Marx and Velikov (2016) determine holding periods by turnover rates.

8The true alpha represents the alpha in the population.
9More details are in Section 2.1. Furthermore, behavioral models usually assume a shock date when

mispricing initially arises and study how alphas or prices evolve after the shock date. In contrast, I study
portfolio sorting dates when firms are sorted based on a specific firm characteristic. Empirically, study-
ing sorting dates is a tradition (e.g., van Binsbergen, Boons, Opp, & Tamoni, 2023). Economically, in
Appendix B, I discuss more how shock dates and sorting dates might be related.
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Alphas only exist relative to a particular benchmark asset pricing model (Fama, 1970).

Rather than attempt to determine the correct benchmark model, I explore the new insights

from alpha dynamics given an asset pricing model. While I use the CAPM to identify alpha

dynamics, the methodology can be applied to other asset pricing models as well.10

I next explain why the holding period to evaluate after-cost profitability should be deter-

mined by alpha dynamics and trading costs. Since the alpha mean is an average of alphas,

holding periods will affect the alpha mean when alphas are time-varying after sorting. In

the accruals example, if alphas decay over time after the sort, holding the accruals portfolio

longer results in a smaller alpha mean. In the meantime, a longer holding period also reduces

portfolio turnover, thus lowering rebalancing costs. This leads to a trade-off. In a model

with exponential decay of alphas over time, I find that the appropriate holding period should

decrease with the initial size and decay rate of alphas and increase with trading costs.

Lastly, we are interested in whether alphas are due to mispricing or rational expectations.

Existing behavioral explanations can imply a ripple pattern. I calibrate and show that models

such as return extrapolation (Barberis, 2018) and inattention (Duffie, 2010) can imply a

ripple pattern. For example, the intuition behind Barberis (2018) is that extrapolators

overreact to both negative and positive returns. This results in an alternating build-up

and resolution of overpricing and underpricing over time.11 In contrast, existing rational

explanations, to the best of my knowledge, do not imply such a pattern.

Empirically, I start by developing two new tests to statistically examine whether alphas

are non-constant to determine if non-zero alphas exist. As some models can imply monotone

patterns of alphas, the first test extends the monotonicity test by Paton and Timmermann

(2010) and examines whether alphas exhibit an increasing or decreasing pattern.12 Further,

as some models can imply non-constant and non-monotone patterns such as the ripple pat-

tern, I develop the second test. The intuition of the test is that if alphas are constant, the

10I use the CAPM as the baseline model because those theories are proposed relative to the CAPM.
11I explain more intuition behind the ripple pattern in those models in Section 2.1.3.
12Patton and Timmermann (2010) apply their method to examine the monotonicity relation in the cross-

section. In contrast, I examine the monotonicity relation in the time series (event time after sorting).
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timing to form a portfolio after sorting does not affect the alpha mean. If not, it implies

that alphas are non-constant.

To compare with alpha-mean tests, I follow Hou et al. (2020) and construct value-

weighted portfolios. Within a sample period (full-sample, before-sample, in-sample, and

post-sample periods), I label those that fail the t test with a cutoff of 1.96 as suspicious

anomalies. Among the remaining anomalies, I label those that fail the t test with a cutoff

of 3.0 as HLZ suspicious anomalies. Similar to Hou et al. (2020), many anomalies do not

exist based solely on t tests. However, in the full sample period, 21% of suspicious anomalies

and 59% of HLZ suspicious anomalies may have non-zero alphas as they pass at least one of

the two alpha-dynamic tests. In the post-sample periods, these numbers are 25% and 63%.

Results suggest that alpha-mean tests alone may miss many real anomalies, and this problem

becomes more severe as the statistical threshold rises. I further find that alpha dynamics

remain useful even when several popular multi-factor models are used. Moreover, results

cannot be explained by seasonality (e.g., Heston & Sadka, 2008), since I conduct portfolio

sorts every month and track the buy-and-hold returns of each portfolio over time.

To evaluate after-cost profitability, I estimate the optimal holding period that maximizes

the after-cost alpha over time.13 To alleviate look-ahead bias and data mining concerns, I

estimate optimal holding periods using known data but evaluate after-cost alpha based on

out-of-sample returns. Compared to various prior methods, this new method improves after-

cost alpha for a similar proportion of anomalies with a similar magnitude of improvement.

With Monte Carlo simulations, I find these results cannot be generated by random variation.

To identify the ripple pattern, I analyze alphas over nine years after sorting. I divide

the nine-year period into five consecutive unconnected subperiods. I introduce a new test to

statistically assess the presence of either increasing, decreasing, or both patterns of alphas

within each subperiod. When summarizing the results from the five subperiods, I apply

13While other elements such as characteristic frequencies and cost mitigation techniques may affect the
after-cost profitability, the main focus of this analysis is to examine how holding periods impact after-cost
profitability and the role of alpha dynamics and trading costs in determining these holding periods.
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multiple comparison corrections. The ripple pattern is observed when both increasing and

decreasing patterns of alphas are present in the nine-year period. Out of the 132 anomalies

showing evidence of non-zero alphas in the full sample period, 79 (60%) exhibit the ripple

pattern. Additionally, 41% of anomalies that exhibit the ripple pattern in the in-sample

period do not exhibit it in the post-sample period.

Overall, alpha dynamics can provide new and important insights for multiple anomaly

explanations. This implies that we should study the alpha dynamic alongside the alpha

mean to better understand anomalies.

1.1 Related literature

This paper is first related to studies on explanations of anomalies. Most prior studies focus

on the alpha mean: the existence of non-zero alphas (e.g., A. Y. Chen, 2021; A. Y. Chen &

Zimmermann, 2020; Chordia, Goyal, & Saretto, 2020; Harvey, 2017; Harvey et al., 2016; Hou

et al., 2020; Jacobs & Müller, 2020; Jensen, Kelly, & Pedersen, 2022; Kelly, Pruitt, & Su,

2019; Linnainmaa & Roberts, 2018; Martin & Nagel, 2021), after-trading-cost profitability

(e.g., A. Y. Chen & Velikov, 2023; Novy-Marx & Velikov, 2016, 2019), and differentiating

between mispricing and rational expectations (e.g., Engelberg et al., 2018; McLean & Pontiff,

2016). This paper complements this literature by showing that alpha dynamics can provide

new and important insights into these anomaly explanations. McLean and Pontiff (2016, MP)

compare the alpha mean before and after publication dates. In contrast, alpha-dynamic tests

do not require two sample periods and can be applied to any period. While MP have not

studied alpha explanations in the post-sample period, this paper finds that many anomalies

exhibit alpha dynamics even in the post-sample period.

An exception is Bowles, Reed, Ringgenberg, and Thornock (2023, BRRT). They also

study the existence of anomalies from the evolution of alphas. They use a unique database

that has the precise timing of the release of accounting variables. They use this precise timing

to construct portfolios and find a large improvement in performance. Unlike their study, the
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tests in this paper are different and more general in the way that they do not need access

to a unique proprietary database or are restricted to accounting anomalies. Furthermore,

while BBRT focus only on the existence of anomalies, this paper additionally investigates

the after-cost profitability and differentiates between mispricing and rational expectations.

Studies of return momentum and reversal also examine alpha dynamics in spirit (e.g.,

De Bondt & Thaler, 1985; Jegadeesh & Titman, 1993). This paper examines not only mo-

mentum and reversal, but also anomalies from other categories. Perhaps more importantly,

the methodology employed in this paper can potentially be applied to any anomaly.

This paper is also related to the growing literature on returns and prices multiple periods

after the portfolio sorting period (e.g., Baba Yara, Boons, & Tamoni, 2020; Bessembinder,

Cooper, & Zhang, 2021; Y. Chen & Kaniel, 2021; Chernov, Lochstoer, & Lundeby, 2022; Cho

& Polk, 2019; Favero, Melone, & Tamoni, 2019; Hendershott, Menkveld, Praz, & Seasholes,

2022; Keloharju et al., 2021; van Binsbergen et al., 2023; van Binsbergen & Opp, 2019). This

paper complements the literature by exploring questions regarding the existence, after-cost

profitability, and differentiation between mispricing and rational expectations of anomalies.

Baba Yara et al. (2020) study the implications of new and old sorts for factor models. van

Binsbergen et al. (2023) classify anomalies into build-up and resolution anomalies. While

they examine patterns of prices, I examine patterns of alphas. Further, they have not studied

any of the three questions I examine.

2 Intuition

In this section, I use a simple model to provide economic intuition on why alpha dynamics

provide new information in understanding various explanations of anomalies.
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2.1 Motivation: patterns of alpha dynamics

Before discussing how alpha dynamics affect different anomaly explanations, let me first

explain what patterns of alpha dynamics can be expected under different explanations of

anomalies.

Let j be the number of months that have passed after portfolio sorting. Then j represents

event time and event time 0 is the month of portfolio sorting. Denote αj as the true alpha in

event time j: the average of returns in excess of the factor-model prediction in the population.

I omit the subscripts for characteristic X and time t in αj to ease exposition, but it can be

different both across characteristics and across time. In all that follows, I focus on alpha

with respect to the market factor.

2.1.1 True alphas are zero

The first situation is when true alpha is zero in every period after sorting. That is, αj = 0 for

all j. As shown in Figure 1a, within any subset of months after sorting, the alpha dynamic

is constant.

2.1.2 Rational expectations

If true alphas do exist, one explanation is rational expectations. That is, the factor model

used to assess anomalies may omit rational risk factors. The production-based asset pricing

literature suggests that αj can have a non-constant pattern. For example, in the models

of Gomes, Kogan, and Zhang (2003) and Zhang (2005), production risk is mean-reverting.

These models imply that αj can have a strict decreasing function since high-risk firms today

will become less risky in the future and low-risk firms today will become riskier in the

future. Moreover, Keloharju et al. (2021) show that production-based models in Berk et al.

(1999), Gomes et al. (2003), Hackbarth and Johnson (2015), and Zhang (2005) all imply a
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downward-sloping of alphas.14

2.1.3 Mispricing

Alternatively, alphas can be due to mispricing. In the behavioral literature, persistent mis-

pricing may exist due to the limits of arbitrage. Mispricing can be an arbitrage opportunity

that does not involve risk. It can also be collective and result from correlated errors in

investor expectations (e.g., Barberis, Greenwood, Jin, & Shleifer, 2015; Stambaugh & Yuan,

2017). The corrections or build-ups of mispricing will be reflected as alphas. Therefore, if

the rate of correction or build-up of mispricing is not constant over time, αj will also have a

non-constant pattern.

What non-constant patterns of alpha dynamics can be implied in behavioral models?

To explore this, I present below the mechanisms of return extrapolation (Barberis, 2018)

and inattention (Duffie, 2010; Hendershott et al., 2022). I also calibrate and plot the alpha

dynamic implied by these models in Figure 2, using the parameters from the original papers.

Model 1: Barberis (2018):15 return extrapolation. There are two types of investors,

extrapolators and arbitrageurs. Extrapolators’ belief on future price change is a weighted

average of past price changes. And arbitrageurs have bounded rationality in the way that

they do not have a full understanding of extrapolator demand. Extrapolators push the price

away from the fundamental price and arbitrageurs drag the price back to the fundamental

price.

Model 2: Duffie (2010): fixed periods of inattention. When there is a supply shock,

only a few investors (all attentive investors and part of inattentive investors) can absorb

the shock. Therefore, there is a large price recession to compensate investors who absorb

the shock. These investors then lay off the risk over time when other inattentive investors

14Keloharju et al. (2021) describe the mechanisms of these papers in Section 2.1 and show the plots of
the mechanisms in Figure 2.

15In Section 4.1 of the paper. The mechanism is similar to that in Hong and Stein (1999). Compared
to the framework in Hong and Stein (1999), Barberis (2018) is more general as it models a well-known
behavioral bias of return extrapolation that could persistently exist in the market.
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come to the market and the price reverts over time. The model has one class of inattentive

investors and they fix their periods of inattention.

Model 3: Hendershott et al. (2022): stochastic arrival of inattentive investors. The

model has market makers, attentive investors, and multiple classes of inattentive investors16.

The inattentive investors arrive stochastically. Each class of investors has random private-

value shocks each period. And the shocks between attentive and inattentive investors can be

perfectly canceled off. However, only part of inattentive investors will adjust their portfolios

after the shocks. Therefore, attentive investors are compensated with a price recession to

absorb the shocks of inattentive investors and lay off the risk when other inattentive investors

come to adjust their portfolios and price reverts over time.

Based on these mechanisms, what patterns of alpha dynamics can be expected? First, al-

pha dynamics can have a downward-sloping pattern. In all mechanisms, there is a downward-

sloping pattern of alpha dynamic within the first few periods after the initial shock. Since

alphas represent changes in mispricing, this implies that the changes are becoming slower

over time. Take the mechanism of Barberis (2018) as an example. There is a large positive

cash flow shock in period 0 (and vice versa). As shown in Figure 2a, the decreasing positive

alphas from period 1 to period 2 correspond to the build-up of overpricing because extrapo-

lators overreact to the shock. As arbitrageurs keep pulling the price back to the fundamental

price, and return extrapolators adjust their belief over time, the build-up rate slows down

over time and eventually reaches zero. As a result, alphas have a decreasing pattern.

Moreover, the mechanisms of Barberis (2018) and Duffie (2010) can imply an upward-

sloping pattern of alpha dynamics. Still, take the example of Barberis (2018). As shown in

Figure 2a, alphas increase from period 2 to period 4 if we flip the sign of the negative alphas

(same pattern from period 7 to period 9). This subperiod corresponds to the resolution of

the overpricing. Initially, the rate of resolution is slow because extrapolators are still on

the other side of arbitrageurs’ trades. As extrapolators adjust their belief over time, the

16To provide the intuition of how inattention affects the pattern of alphas, I assume one class of inattentive
investors when I simulate this model.

10



resolution rate becomes increases. The long-term reversal and value anomalies are examples

of this resolution mechanism.

Furthermore, the mechanisms of Barberis (2018) and Duffie (2010) can imply a ”ripple”

pattern: increasing and decreasing alphas with a decaying magnitude. In Barberis (2018),

the build-up and resolution of mispricing lead to opposite signs of alphas. Also, extrapolators

overreact to both positive returns and negative returns, leading to alternating underpricing

and overpricing. Therefore, prices jump above and below the fundamental price alternatively

over time, resulting in a ripple pattern. And in Duffie (2010), the ripple pattern appears

because some inattentive investors only adjust their portfolios every few periods. Therefore,

prices surge above and plunge below their steady-state level over time due to imbalances in

demand and supply. Overall, the ripple pattern is caused by investors’ biased extrapolated

beliefs or inattention.

2.2 Intuition for the tests on the existence of alphas

Section 2.1 shows that αj remains constant when true alphas are zero. In contrast, αj can

be non-constant when non-zero alphas exist. This difference in patterns of αj can be then

used to test whether non-zero alphas exist.

2.2.1 On-paper alphas

With a specific combination of the number of skipped months after portfolio sorting (k) and

holding period (h), the monthly true on-paper alpha of characteristic-sorted portfolios is

given by:

αop
k,h =

1

h

k+h∑
j=k+1

αj (1)

Here, I use the traditional overlapping portfolio approach (e.g., Jegadeesh & Titman,

1993). Therefore, in each month, there will be h portfolios that are sorted from k+ h− 1 to
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k months ago. Each portfolio has a weight of 1
h
. The portfolios are rebalanced monthly, so

there is an overlap in returns when h > 1. To deal with this overlap, I use a calendar-time

portfolio approach to calculate average monthly returns.

Lemma 1 When αj remains constant in j, αop
k,h is constant in k and h. And when αj is

non-constant in j, αop
k,h is not constant in k and h.

Lemma 1 is obvious based on Eq. 1. This implies that testing whether the alpha dynamic

αj is constant is the same as testing whether the on-paper alpha αop
k,h is constant in k and

h. The two tests in the next two sections are on the pattern of αop
k,h in k and h based on

Lemma 1.

2.2.2 The monotonicity test

The first test examines whether the alpha dynamic has a strictly increasing or strictly de-

creasing pattern within a subset of months after sorting. Testing monotonicity patterns is

motivated by both rational production-based models (Keloharju et al., 2021) and behavioral

models as discussed in Section 2.1. Specifically, the monotonicity test examines the following

hypotheses:

H0 : αop
0,h has a constant pattern in h.

H1 : αop
0,h has a strictly increasing or decreasing pattern in h.

(2)

If αop
0,h is shown to have a strictly increasing or decreasing pattern, alphas exist. The

reason to examine how on-paper alphas change in h is that this addresses the issue that

we may not be able to directly observe when alphas disappear. For example, assume that

alphas strictly decrease over time and disappear after 20 months. Suppose that we examine

alphas in the first 60 months after sorting in the test. Then on-paper alphas will be zero for

k > 19. Therefore, using k alone will fail to identify a strictly decreasing pattern. However,
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using h will be able to identify a strictly decreasing pattern since on-paper alphas decrease

in h even when h > 19.

2.2.3 The optimization test

Non-constant patterns are not limited to monotone patterns. Instead, alphas may show other

types of non-constant patterns.17 The second test is designed to identify a more general non-

constant pattern of alpha dynamics. Further, by conducting both tests, the issue of a lack

of statistical power in each test is reduced.

According to Lemma 1, when αj is constant in j, αop
k,h is the same for all strategies based

on k and h. In contrast, when αj is non-constant, Let αj∗ be a maximum. To maximize the

on-paper alpha, the problem is:

max
k,h

αop
k,h = max

k,h

1

h

k+h∑
j=k+1

αj

(3)

Proposition 1 The optimal strategy to obtain the highest αop
k,h is k∗ = j∗ − 1 and h∗ = 1.

Proof: See Appendix C.

Further, this optimal strategy also maximizes the wealth of investors that have a long

investment horizon as well. This is because this strategy is optimal in any month theoreti-

cally.

Proposition 1 shows that there is at least one strategy (the optimal strategy) that can

generate a higher on-paper alpha than the average of the on-paper alphas of alternative

strategies on k and h when the alpha dynamic is non-constant:

17One example is the ripple pattern discussed in Section 2.1.
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H0 : All strategies in k generate the same αop
k,1.

H1 : There is a strategy in k that can generate a αop
k,1 higher than the average of the αop

k,1

of alternative strategies in k.

(4)

It is important to note that αop
k,1 here is the true on-paper alpha in population rather

than an estimate from a finite sample. This hypothesis design is to address two empirical

challenges. First, we do not directly observe the true optimal k∗ that generates the highest

αop
k∗,1. However, the rejection of the hypothesis only requires that one strategy generates

a higher alpha than the average of the alternatives. Empirically, I estimate the optimal k∗

based on past known information before a month t and record the return of this optimization

strategy in t+1. This alleviates look-ahead bias and data mining concerns. Then I examine

whether the returns of this strategy in t + 1 generate an alpha higher than the average of

the alphas of alternative strategies in k.

The second challenge is that we cannot compare the returns of the optimization strategy

with the returns of a strategy based on an arbitrary k, as we do not observe which k generates

the highest true on-paper alpha. This challenge is addressed by comparing the alpha of the

optimization strategy with the average of all alternative strategies. The intuition is that the

optimization strategy should produce a higher alpha unless the true alphas are all the same.

Furthermore, alpha-dynamic tests alleviate some of the potential problems associated

with alpha-mean tests. First, as in the build-up and resolution of the mispricing example

discussed in Section 1, the choice of holding periods in portfolio construction often influences

the results of alpha-mean tests and may lead to conflicting conclusions.18 Given that the

alpha dynamic is non-constant in that example, alpha-dynamic tests could serve to identify

non-zero alphas. Moreover, alpha-dynamic tests study alphas jointly, thus alleviating the

18See Bessembinder, Burt, and Hrdlicka (2022), Hasler (2022), and Hou et al. (2020).

14



data mining concerns in the choice of holding periods in alpha-mean tests. Additionally,

failing alpha-mean tests could be due to low statistical power. This problem would be more

significant for value-weighting portfolios and in the post-publication period due to typically

small alphas. However, alpha-dynamic tests may not encounter this issue simultaneously,

as their statistical power depends on the differences between alphas after sorting and the

volatility of these differences.

2.3 Intuition for the impact on after-cost profitability

It does not challenge market efficiency if characteristic-sorted portfolios generate alphas on

paper, but agents cannot actually trade profitably because of transaction costs. To evaluate

after-cost profitability, we need to choose an appropriate holding period. While prior studies

use ad hoc holding periods or determine the holding period by the turnover rates, this section

shows the intuition of why we should jointly consider alpha dynamic and trading costs to

determine the holding period.

2.3.1 After-cost alphas

Let c represent the population mean of monthly rebalancing costs (in percentage). Further,

assume c is exogenous. c can also be different across characteristics X and across time t.

The monthly true after-cost alpha for a combination of k and h is then given by:

αac
k,h =

1

h

k+h∑
j=k+1

αj −
c

h
= αop

k,h −
c

h
(5)

Based on Lemma 1, when the alpha dynamic αj is constant, holding periods do not affect

on-paper alpha αop
k,h. And holding periods will affect αop

k,h when αj is non-constant.

The appropriate k and h to evaluate after-cost profitability should be the optimal k∗ and

h∗ that maximizes the αac
k,h. Next, I will show how k∗ and h∗ are affected by alpha dynamics

and trading costs.
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2.3.2 Exponential decay in alphas

I model the behavior of alphas the same as that in Hendershott et al. (2022, HMPS). In

HMPS, alphas are due to mispricing.19 A shock happens each month t. Denote initial

mispricing due to the shock as −δ0.
20 Denote the expected mispricing j months after the

shock as Pj (in percentage). Pj is assumed to follow an Ornstein-Uhlenbeck (OU) process.

Therefore, Pj follows an exponential decay and reverts to zero over time. In equilibrium,

the decay rate is the inattentiveness of inattentive investors, λ (λ > 0). Then Pj can be

expressed as:

Pj = −δ0e
−λj for j ≥ 0 (6)

Let δ0 > 0.21 Alphas are changes in Pj. Thus, the evolution of alphas can be expressed

as:

αj = Pj − Pj−1 = δ0(1− e−λ)e−λ(j−1) for j ≥ 1 (7)

Eq. 7 indicates that alphas also reverts to zero over time.

2.3.3 Optimization

To maximize the after-cost alpha, the problem is:

max
k,h

αac
k,h = max

k,h

1

h

k+h∑
j=k+1

αj −
c

h

= max
k,h

1

h
δ0e

−λk(1− e−λh)− c

h

(8)

Since αac
k,h decreases in k, k∗ = 0. Replace k = 0 and take FOC on h:

19The following results can also apply to alphas resulting from rational expectations if omitted risk premia
follow the same behavior as in Eq 7.

20This is the −pGt in Equation 12 of HMPS. In HMPS, the absolute value of δ0 decreases in the fraction
of attentive investors (mF in HMPS) and increases in inattentiveness.

21The sign of δ0 does not affect the conclusion. We can flip the sign of long-short portfolios so that alphas
are positive when δ0 < 0.
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foc =
δ0(λh+ 1)e−λh + c− δ0

h2
(9)

Since alphas decay over time by assumption, if α1 is less than c, αac
k,h will be negative for

any combination of k and h. Therefore, let us assume that α1 > c. Then δ0(1 − e−λ) > c

according to Eq. 7 and δ0 > c. Since δ0(λh + 1)e−λh converges in h to zero and δ0 > c, foc

cannot be always positive. Thus, there could be only two cases.

Proposition 2 Case 1: When λ+1
eλ

≤ 1− c
δ0
, the optimal holding period h∗ = 1.

Proof: See Appendix C.

The intuition is that when trading costs c are tiny relative to λ or δ0, trading costs can

be ignored, and the problem is similar to the one for the on-paper alpha. Therefore, similar

to Proposition 1, the optimal holding period is h∗ = 1.

Proposition 3 Case 2: When λ+1
eλ

> 1 − c
δ0
, the optimal holding period h∗ satisfies

λh∗+1
eλh∗

= 1− c
δ0
. And h∗ (1) decreases in δ0, (2) decreases in λ, and (3) increases in c.

Proof: See Appendix C.

Proposition 3 indicates that the closed-form solution does not exist when λ+1
eλ

> 1− c
δ0
,22

but we can know how δ0, λ, and c affect h∗. The intuition for (1) is that when initial

mispricing δ0 is larger, the decay in alphas will also be larger over time when everything

else is the same. Then having a longer holding period will reduce the on-paper alpha and

thereby reduce the after-cost alpha. The intuition behind (2) is similar. If the attentiveness

or decay rate λ is greater, alphas decay more quickly. Finally, (3) is because when trading

costs c are higher, a longer holding period can reduce rebalancing costs.

Overall, analysis indicates that when alphas decay exponentially over time, k∗ = 0 and

h∗ depends on the initial mispricing level δ0, rate of reversion of mispricing λ, and trading

22It is a Lambert’s W function.
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costs c. Prior studies use ad-hoc holding periods or turnover rates to determine holding

periods. This may lead to a large underestimation of after-cost profitability.

Is k∗ always zero? The assumption that alphas decay monotonically is motivated by the

existing models. In reality, the alpha dynamic may also have other patterns. For example,

when the alpha in the first period (α1) is not the maximum among all possible αj, Proposi-

tion 1 suggests that the optimal k to maximize the on-paper alpha will be greater than zero.

Then the optimal k for after-cost alpha can also be different from zero.23 Although such a

scenario is possible, I do not find any model that implies such a pattern of alpha dynamics,

making it difficult to model the behavior of alphas. Instead, I empirically examine whether

k matters for after-cost profitability in Section 4.2.

2.4 Intuition for differentiating mispricing from rational expecta-

tions

Patterns of alpha dynamics provide new moments to evaluate asset pricing models. Among

models that explain an anomaly, if behavioral models can imply a pattern that cannot be

observed in rational models, such a pattern can be used to differentiate between existing

behavioral and rational models.

As discussed in Section 2.1, existing behavioral models such as Barberis (2018) and

Duffie (2010) feature a ”ripple” pattern in the alpha dynamic. The ripple pattern is a

pattern that contains both increasing and decreasing patterns in the alpha dynamic. As

far as I am aware, existing rational models may imply a monotone pattern of alphas, but

not a non-monotone ripple pattern. For example, production-based models (e.g., Zhang,

2005) imply a monotonically decreasing pattern of alpha dynamic as firms’ production risk

is mean-reversed. Moreover, although the risk of a firm may go up and down over time due

to random variation, a rational model needs to explain why the risk of a firm goes up and

down over time on average after portfolio sort dates.

23For example, when trading costs are extremely low, the effect of trading costs can be ignored.
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Moreover, the mechanisms of return extrapolation (Barberis, 2018) and inattention (Duffie,

2010) are also general. As a result, they might be the underlying mechanism for any anomaly.

3 Data

3.1 Characteristic-sorted portfolios

I collect 205 firm or return-based characteristics from the website24. Authors of A. Y.

Chen and Zimmermann (2021) create the website and kindly provide the data. The data is

monthly and ranges from December 1925 to June 2022. Stock characteristics are taken from

the Center for Research in Security Prices (CRSP) database. Returns of the factors are from

Kenneth French’s website and the q-factor library25. All firms that are listed on the NYSE,

AMEX, and NASDAQ are included.

For each characteristic, I sort stocks into decile groups at the end of each month. Then I

construct value-weighted long-short spread portfolios.26 Then I track the monthly buy-and-

hold returns of the spread portfolios. When a stock delists, I reinvest the amount of money

in the stock (net of the delisting return) to the rest of the stocks in the portfolio with value

weighting.

Finally, I investigate four periods, full-sample, before-sample, in-sample, and post-sample

periods.

3.2 Trading cost measures

Stock-level trading cost measures are collected from Andrew Chen’s website. A. Y. Chen

and Velikov (2023) use these cost measures to estimate the profit after trading costs for each

characteristic. They estimate effective spreads as measures of trading costs and argue that

24https://www.openassetpricing.com/
25http://global-q.org/factors.html
26A. Y. Chen and Zimmermann (2021) sign the characteristics so that the average return of the spread

portfolios is positive within the sample period of the original paper. I use the same signs as A. Y. Chen and
Zimmermann (2021).
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their trading cost aims to measure the minimum amount by which prices would have been

moved. Effective spreads are measured as twice the absolute difference between the midpoint

of bid-ask spreads and the executed prices. The effective spread measures include one high-

frequency (HF) measure and three low-frequency (LF) measures. Following A. Y. Chen

and Velikov (2023), I employ half HF effective spreads as trading costs whenever possible

and take half of the average of the three LF spreads as trading costs when HF spreads are

missing.

Upon merging the trading costs data with stock returns data, I find that about 12% of

the observations contain missing trading costs. Since I’m interested in whether portfolio

construction choices will affect after-cost returns that consider trading costs, I will need

trading cost estimates for any stock in any month. Otherwise, the estimate of portfolio

rebalancing costs is imprecise. Therefore, I fill the missing trading cost of a stock in month t

in the following sequence: If the trading cost of the stock in month t− 1 is available, I use it

to fill in the trading cost for the stock in month t. If the trading cost in the previous month

is not available, I then sort stocks into deciles based on their firm size in month t. I use the

average of the trading costs of the decile the stock is in month t to fill in the missing trading

cost. Last, if the firm size of the stock is missing in month t, then I use the average of the

trading costs of all stocks in month t to fill in the missing trading cost.

In Appendix E, I plot how effective spreads vary across time and stocks in Fig E1. I also

plot the portfolio-level distribution of rebalancing costs and turnover in Fig E2 and Fig E3.

These figures show that trading costs vary significantly across stocks, portfolios, and time.

4 Empirical design and results

In this section, I empirically test the impact of alpha dynamics on the explanations of

anomalies based on the intuition discussed in Section 2.
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4.1 Existence of alphas

4.1.1 Motivating evidence

The traditional method to test the existence of non-zero alphas is conducting t tests to

investigate whether the alpha mean is significantly different from zero. To examine whether

there is an additional contribution from the new alpha-dynamic tests, I first conduct the

traditional t tests on 205 characteristic-sorted portfolios.

For each characteristic, I construct value-weighted long-short decile portfolios. Portfolios

are then held for one month and rebalanced. The use of value weighting to evaluate anomalies

is also used in Hou et al. (2020). Within a sample period (full-sample, before-sample, in-

sample, post-sample periods), I label anomalies that fail the t test with a cutoff of 1.96

as suspicious anomalies. Moreover, in light of potential p-hacking, Harvey et al. (2016)

recommend increasing the t-cutoff to 3.0. I label the anomalies that fail the t test with a

cutoff of 3.0 as HLZ suspicious anomalies. The remaining anomalies are labeled as robust.

In the full sample period, I find that there are 92 suspicious, 41 HLZ suspicious, and 72

robust anomalies. The failure rate based on t tests is similar to Harvey et al. (2016) and Hou

et al. (2020). Recently, researchers have also begun to worry that the portfolio construction

method adopted by the original authors may be subject to data mining (Hasler, 2022). These

studies indicate many anomalies may not truly exist.

Conversely, instead of using the same portfolio construction method for each anomaly,

A. Y. Chen and Zimmermann (2021) use the portfolio construction method adopted by the

original authors.27 They find a 0% failure rate for this same set of 205 characteristics. Their

study indicates that all these anomalies exist.

Overall, it remains uncertain whether alphas exist based solely on t tests from prior

studies due to potential problems of t tests. Different portfolio construction methods and t

cutoffs can affect t test outcomes, and low statistical power could also contribute to failing

a t test. Motivated by these potential problems of t tests and the potential that alpha

27The construction decisions include the holding period, listing exchanges, the weighting scheme, etc.
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dynamics can complement t tests as discussed in Section 2, I proceed to examine whether

the monotonicity and the optimization test developed in Eq. 2 and 4 complement t tests in

evaluating the existence of non-zero alphas.

4.1.2 The monotonicity test

The first test examines whether the alpha dynamic after the portfolio sorting period has a

monotone pattern (strictly increasing or strictly decreasing) as proposed in Eq. 2.

I examine the pattern in the on-paper alphas of the eleven characteristic-sorted portfolios

with a fixed number of months skipped after sorting k = 0 and holding periods of h =

1, 6, 12, 18, ..., 60. In Figure 3a, I demonstrate how calendar time t relates to k and h. Since

it is unknown how long it will take for alphas to decay to zero, I take the average of alphas

over time by varying holding periods. In this way, even when alphas monotonically decay

to zero before the 60th month, this method still may be able to identify the monotonically

decreasing pattern of the alpha dynamic. Moreover, with a holding period gap of six months,

the difference in alpha may be large, thereby increasing statistical power.

To examine the monotone pattern in alpha dynamics, I extend the monotonicity test

proposed by Patton and Timmermann (2010, PT). While PT use the test to examine

monotone relations in the cross-section of stocks, I use it to examine monotone relations in the

time series (event time). With k = 0 and h = 1, 6, 12, 18, ..., 60, denote their on-paper alphas

as αop
1,t, α

op
2,t, ..., α

op
11,t. Let ∆i = E[αop

i,t]− E[αop
i+1,t] for i = 1, ..., 11. Let ∆ ≡ [∆1, ...,∆11]

′. I

examine four tests proposed by PT. The first is to test a strict monotone relation (MR test)

in ∆. The null is a constant or weakly decreasing pattern and the alternative is a strictly

increasing pattern.

H0 : ∆ ≤ 0

H1 : ∆ > 0

(10)

The alternative hypothesis is the one that I would like to test. Therefore, I flip the long

22



and short portfolios when I would like to examine whether alphas decrease over time and do

not flip if I would like to examine whether alphas increase over time.

If statistical power is low, the MR test may fail to detect a monotone pattern for these

anomalies. To address the issue of low statistical power, PT propose the next two tests.

They examine whether at least some parts of the pattern of ∆ are strictly positive (Up test)

or negative (Down test). The Up and Down tests both have a null hypothesis of a constant

pattern. Therefore, they are less restricted than the MR test and potentially detect any

small deviation from a constant pattern. Specifically, for the Up test,

H0 : ∆ = 0

H+
1 :

11∑
i=1

|∆i|1{∆i > 0} > 0
(11)

where the indicator 1{∆i > 0} is one if ∆i > 0. And for the Down test,

H0 : ∆ = 0

H−
1 :

11∑
i=1

|∆i|1{∆i < 0} > 0
(12)

where the indicator 1{∆i < 0} is one if ∆i < 0. Up and Down tests apply a non-

parametric method. The distribution of the statistics in the tests is estimated from 1,000

bootstrapping replications.

The last test is Bonferroni bound. This test is more conservative as discussed by PT.

It analyzes whether the minimum t-statistic on estimated ∆i, i = 1, ..., 11, falls below the

critical value derived from a bound on the probability of a Type I error.

With the statistics on monotonicity, I investigate whether the alpha dynamic has a mono-

tone pattern. Under a 5% significance level, I examine whether the statistics in either the

MR test, the Up test, the Down test, or the Bonferroni bound test are significant. In the

MR test and the Bonferroni bound test, I examine both the null of weakly decreasing and

weakly increasing patterns. Thus, this exercise is designed to identify the anomalies whose
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alpha dynamic has a pattern that is strictly increasing, strictly decreasing, or if some parts

are strictly increasing, or some parts are strictly decreasing.

4.1.3 The optimization test

The second test is proposed in Eq. 4. The test is to investigate whether all strategies in k

generate the same CAPM alpha.

The first step is to obtain the returns of the optimization strategy. Motivated by Propo-

sition 1, the holding period is set to one month (h = 1). To alleviate data mining concerns

and look-ahead bias, I conduct a conditional analysis by running expanding regressions. The

first 60 months are burn-out months. At the end of any month t ≥ 60, I search for the op-

timal number of months to skip (k∗) that maximizes the on-paper alpha from the set of

{0, 12, 24, ..., 60} and is based on the information already known at t. This set of k ensures

that the same subset of months is considered as in the monotonicity test. I form a spread

portfolio based on k∗ at the end of month t. And I calculate the return of the portfolio in

t + 1. The return in t + 1 can then be considered out-of-sample returns. This process is

repeated until the end of the sample.

In Figure 3a, I demonstrate how calendar time t relates to k and h. And in Figure 3b,

I present the timeline for the estimation of k∗, formation of the portfolio, and measurement

of the returns. This timeline is also used in all optimization strategies of the paper.

Next, I obtain the returns of the benchmark strategy. At the end of any month t ≥ 60, I

form a portfolio by equally weighting the portfolios based on k = 0, 12, 24, ..., 60. That is, I

form a portfolio with equal weight on the portfolios that are sorted at the end of months t,

t−12, ..., and t−60. I then calculate the return of this portfolio in month t+1. This process

is repeated until the end of the sample. The benchmark strategy is to obtain the average of

the returns of alternative strategies in k consistent with the alternative hypothesis of Eq. 4.

As discussed in Section 2.2.3, the intuition is that although the optimization strategy based

on k∗ produces the highest alpha before month t by design, it will, on average, generate the
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same alpha in t+ 1 as that of the benchmark strategy if the alpha dynamic is constant.

Finally, I compare the alpha of the optimization strategy to that of the benchmark

strategy. Specifically, I run the following regression:

ropt,t − rb,t = aopt + bmrm,t + ϵopt,t (13)

where ropt,t, rb,t, and rm,t are the returns of the optimization strategy, the benchmark

strategy, and the market.

Under a 5% significance, if aopt is positive and statistically significant, the optimization

strategy generates a higher alpha than the average of the alphas of alternative strategies in

k. This rejects the null hypothesis that all strategies generate the same CAPM alpha and

indicates the existence of non-zero alphas.

The challenge then lies in how to infer the statistical significance of aopt. I study the full-

sample, before-sample, in-sample, and post-sample periods for each anomaly. Throughout

the paper, all regressions require at least 20 observations. However, statistical inference

may still be biased when the sample size is small. Furthermore, errors (ϵopt,t) may have

heteroskedasticity and autocorrelation issues.

To address these concerns, I use a bootstrapping approach to estimate the p-value of aopt.

Let {ri,t | t = 1, ..., T ; i = opt, b, m} be the actual returns recorded for the optimization

strategy, the benchmark strategy, and the market over T months for a sample period. I

first use the stationary bootstrap of Politis and Romano (1994) to randomly draw (with

replacement) a new sample of returns {r̃(b)i,τ | τ(1), ..., τ(T ); i = opt, b, m}. Here, τ(t) is the

new time index, randomly drawn from the actual data {1, ..., T}. τ(t) is common across

i to preserve cross-sectional dependencies in returns. The bootstrap replication number,

denoted as b, ranges from 1 to 2,000. Furthermore, to account for time series dependencies,

returns data are drawn in blocks, I choose the average block length to be 10 months. Within

each bootstrapping replication, I estimate Eq. 17 and obtain an estimate of aopt. Finally, I

obtain a distribution of aopt, and I calculate whether aopt is greater than 0 in 95% of 2,000
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replications.

4.1.4 Results

Results are shown in Table 2. In the full sample period, out of 92 suspicious and 41 HLZ

suspicious anomalies, 19 (21%) suspicious and 24 (59%) HLZ suspicious anomalies pass alpha-

dynamic tests. Therefore, true alphas are likely to exist in these anomalies. This suggests

that alpha-dynamic tests have an additional contribution in identifying the existence of non-

zero alphas relative to t tests. Furthermore, the results suggest that simply raising the t

cutoff from 1.96 to 3.0 for all anomalies may miss many real anomalies.

Additionally, in the before-sample, in-sample, and post-sample periods, the numbers of

suspicious anomalies that pass alpha-dynamic tests are 17, 28, and 37. Results suggest that

the tests are useful across subperiods, especially in the post-sample periods.

Among all 205 anomalies, the total number of anomalies that present a non-constant

pattern of alpha dynamics are 102, 39, 93, and 75 in the full sample, before-sample, in-

sample, and post-sample periods. Results are consistent with McLean and Pontiff (2016).

Since anomalies that are due to mispricing are likely to be arbitraged away after publication,

fewer anomalies should have true alphas in the post-sample period.

Furthermore, the monotonicity test and the optimization test complement each other

well. In each subperiod, both tests can detect anomalies that may have true alphas while

the other test cannot. One reason is that although both tests examine the same subset of

months after portfolio sorting, they use different information. The monotonicity test uses

all alphas in the 60 months after sorting. In contrast, the optimization test only uses alphas

in the first month, 12 months later, 24 months later,..., and 60 months later. Furthermore,

the optimization test may identify non-constant patterns not limited to monotone patterns.

In Appendix E, Figure E4 shows the number of anomalies that generate the highest alpha

at different k values. This figure shows that k = 0 generates the highest alphas for most of

the anomalies. This suggests that alphas decay over time for the majority of the anomalies.
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Therefore, the results cannot be explained by random variation in the patterns of alpha

dynamics.

4.1.5 Robustness: Multi-factor models

The CAPM is used as an illustration. It might be also interesting to examine alpha-dynamic

tests with multi-factor models. In this section, I examine alphas relative to Fama and French

(1993, FF3) three-factor model, a four-factor model including the factors in the FF3 and

momentum (FF3+MOM), Fama and French (2015, FF5) five-factor model, and Hou, Xue,

and Zhang (2015, HXZ) model.

I examine the same alpha-dynamic tests (both the monotonicity test and the optimization

test) for different models. Results are shown in Table 3. The classifications of suspicious,

HLZ suspicious, and robust anomalies are similar. The t test now examines the alpha relative

to different asset pricing models.

The total number of anomalies that pass alpha-dynamic tests for the CAPM, FF3,

FF3+MOM, FF5, and HXZ are 102, 96, 85, 77, and 65 in the full sample period. These

numbers drop when the model becomes bigger, consistent with bigger models digesting more

anomalies.

The numbers of suspicious anomalies that pass alpha-dynamic tests for the CAPM, FF3,

FF3+MOM, FF5, and HXZ are 19, 23, 24, 23, and 34 in the full sample period. Addition-

ally, all models have similar numbers of suspicious anomalies that pass alpha-dynamic tests

in the post-sample and in-sample periods. These results indicate that alpha-dynamic tests

are useful not only for the CAPM but also for other models. Perhaps more interestingly,

although the number of robust anomalies decreases with bigger models, the number of sus-

picious anomalies does not decrease. This suggests that although bigger models digest more

anomalies, their performance was overstated.
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4.2 After-cost profitability

If an anomaly does not have non-zero alphas, it is relatively meaningless to study its after-cost

profitability. Therefore, I examine after-cost profitability only on the anomalies that either

pass the t test or alpha-dynamic tests. In total, I examine 132, 65, 128, and 92 anomalies in

the full-sample, before-sample, in-sample, and after-sample periods. This section examines

whether prior studies underestimate after-cost profitability of anomalies.

To study the impact of alpha dynamics on after-cost profitability, I start by conducting an

optimization strategy on the holding period h to maximize the after-cost alpha. Similar to the

procedure of the optimization strategy for on-paper alphas, I conduct conditional analysis

by running expanding regressions to alleviate look-ahead bias and data mining concerns.

Motivated by Section 2.3, I first restrict the number of months skipped k = 0. At the end

of any month t, the optimal holding period h∗ is searched from the set of {1, 3, 6, 9, 12} and

is based on the information already known at t. This set is chosen to enable a comparison

with previous studies, as prior studies mainly use h = 1 and h = 12. Then I construct

spread portfolios based on h∗ with the overlapping portfolio approach, and record the returns

between t+ 1 and t+ h∗.

In Figure 3a, I demonstrate how calendar time t relates to k and h. And in Figure 3b,

I present the timeline for the estimation of h∗, formation of the portfolio, and measurement

of the returns.

One important difference is that I estimate the optimal h∗ every five years. This means

that I use the same h∗ in the following five years after an estimation. This reduces the

computing time in calculating the rebalancing costs.

4.2.1 Benchmark strategies

To investigate whether alpha dynamics impact after-cost profitability, I first compare the

performance with a benchmark strategy that always takes k = 0 and h = 12 (henceforth,

H12). Since h is searched from {1, 3, 6, 9, 12} and H12 already uses the longest holding period
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among alternative holding periods, trading costs cannot be further reduced by considering

optimal h∗. Therefore, any superior performance from the optimization strategy should only

come from the impact of alpha dynamics on the on-paper alphas. That is, comparing the

performance of the optimization strategy with that of H12 allows for a clear understanding

of the impact of alpha dynamics on after-cost profitability.

To have a complete analysis of whether prior studies underestimate after-cost profitability,

I also consider three other benchmark strategies. The second benchmark strategy always

takes k = 0 and h = 1 (henceforth, H1). Using this benchmark is because H1 is the most

frequently used portfolio construction methods in the literature (A. Y. Chen & Zimmermann,

2021).

Furthermore, the third benchmark strategy determines the holding period by the turnover

rate rule in Novy-Marx and Velikov (2016, henceforth, the NV method). The rule is that if

each of the long and short sides, on average, turns over less than once a year, a one-month

holding period is used. In other cases, a twelve-month holding period is used.

Finally, the fourth benchmark strategy takes the holding period used in the original paper

(henceforth, the CV method). A. Y. Chen and Velikov (2023) use this method to evaluate

after-cost profitability. Therefore, this benchmark is to compare with there results.28

Next, I will describe the performance metrics I use to compare the performance.

4.2.2 Performance metrics

I first use the following regression to explore whether an optimization strategy generates a

higher after-cost alpha than the benchmark strategy.

rs,t − rb,t = a+ bmrm,t + ϵs,t (14)

where rs,t is the after-cost return of the optimization strategy for a characteristic-sorted

28In the original papers, holding periods were distributed as follows: one month (104 anomalies), three
months (7 anomalies), six months (2 anomalies), twelve months (91 anomalies), and thirty-six months (1
anomaly).
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portfolio in month t, rb,t is the after-cost return of a benchmark strategy, and rm,t is the

after-cost market return. If a is positive and significant at the 5% significance level, the op-

timization strategy generates a higher after-cost CAPM alpha than the benchmark strategy.

Further, if an investor only invests in a single anomaly, then a is the performance metric of

interest.

In addition, we may want to know which strategy should be used to be combined with

the market factor so that the highest Sharpe ratio is obtained. rs,t may be exposed to the

same risk factors as rb,t. Then even if one strategy has a higher CAPM alpha than the other,

they will generate the same Sharpe ratio if they are optimally combined with the market

factor.

In contrast, rs,t may be exposed to additional risk factors that rb,t is not exposed to. This

is possible if rs,t contains some time-series information that rb,t does not contain. If so, rs,t

is the strategy that will generate a higher Sharpe ratio if it is optimally combined with the

market factor. A second performance metric is obtained from the regression of:

rs,t = as + bsrb,t + bmrm,t + ϵs,t (15)

Then a strategy is considered to outperform a benchmark strategy if as is positive and

significant at a 5% significance level. In other words, allocating some positive weight to

the strategy can improve the investment opportunity of the investors already trading the

benchmark strategy and the market factor.

4.2.3 Results

First, in Panel A of Table 4, I present the number of anomalies for which the optimization

strategy outperforms the benchmark strategies. Under a 5% significance level, I find that

31, 6, 30, and 12 anomalies generate a higher after-cost alpha than that of H12 in the full-

sample, before-sample, in-sample, and post-sample periods, respectively. Further, 26, 5, 28,

and 10 anomalies cannot be fully explained by the returns of H12 and the market factor.
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These results suggest that alpha dynamics affect after-cost profitability.

In Panel B, I present the results when H1 is the benchmark. Although fewer anomalies

(16) generate a higher after-cost alpha in the full sample period, more anomalies (34) cannot

be explained by H1 and the market factor. This indicates that the appropriate holding

periods to evaluate after-cost profitability are different across anomalies.

In Panel C and D, I present the results when the benchmark is NV and CV, respectively.

Results are similar to those for H1 and H12. For economic magnitudes, the average improve-

ment in monthly after-cost alpha (a) is 0.30% when NV is the benchmark and 0.28% when

CV is the benchmark in the full-sample period. Post-sample improvements are stronger. The

average improvement in monthly after-cost alpha is 0.46% when NV is the benchmark and

0.44% when CV is the benchmark. These results suggest that prior studies have significantly

underestimated after-cost profitability of anomalies.

Can these results be generated from random variation? I further examine this question by

conducting simulations following a similar procedure as in Bessembinder, Burt, and Hrdlicka

(2021). In Appendix D, I describe how I conduct the simulations. The basic idea is to assume

a data-generating process that no strategy based on k and h can outperform H1 based on

statistics a and as. Then I conduct the same optimization strategies with simulated returns

and investigate how many anomalies can outperform H1 in each simulation. Results show

that random variation alone cannot explain the results in Panel A of Table 4. For example,

under a t-cutoff of 1.96, 2.00, 2.50, 3.00, 3.50, and 4.00, the maximum numbers of anomalies

that have positive and statistically significant a from 2,000 simulations are 10, 10, 5, 4, 2, 1

in the full-sample period. In contrast, these numbers are 16, 15, 10, 10, 7, and 7 from the

actual data when the optimization strategy searches for h only.

4.2.4 Robustness: Search for both k and h

In this section, I empirically examine whether the number of months skipped k also af-

fects after-cost profitability. Instead of restricting k = 0, I search for both k and h in the
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optimization strategy.

Results are shown in Table E1. I compare the results with the optimization strategy that

searcher for h only. The number of anomalies that outperform the benchmark strategies H1

and H12 is lower when searching for both k and h. Results suggest that k does not have a

significant impact on after-cost profitability.

4.3 Mispricing or rational expectations

If alphas exist, they could be due to mispricing or rational expectations. In this section, I

focus on the anomalies that show evidence of the existence of non-zero alphas from either

t tests or alpha-dynamic tests. As discussed in Section 2.4, behavioral explanations such

as Barberis (2018) and Duffie (2010) predict that the alpha dynamic may exhibit a pattern

with decaying ripples (both increasing and decreasing patterns exist in the alpha dynamic)

as shown in Figure 2.

The next challenge is to identify such a ripple pattern empirically. The monotonicity

test proposed by Patton and Timmermann (2010, PT) cannot be directly used to test ripple

patterns since PT’s tests can only test monotonicity patterns. Instead, to detect possible

ripple patterns in alpha dynamics, I extend the methodology of estimating the optimal

strategy for on-paper alphas in Section 4.1.3. There are two differences. First, I divide all

the months after portfolio sorting into multiple consecutive unconnected subperiods. Next,

I examine the pattern of the alpha dynamic in each subperiod. Second, I compare the alpha

of the optimal strategy with the alphas at the start and end of the subperiod. This is to

examine whether the maximum alpha in this subperiod occurs at the start, end, or middle.

In this way, I can determine if the alpha dynamic has an increasing pattern, a decreasing

pattern, or both.

To provide the intuition, denote a subperiod as [kstart+1, kend+1]. At the end of each

month t, the optimal strategy searches for the optimal k∗ that generates the highest alpha

from [kstart, kend]. By running expanding regressions, this search is based on known informa-

32



tion before month t. Then at the end of month t, a long-short portfolio is constructed based

on k∗ and the return in month t+1 is calculated. Figure 3a demonstrates how calendar time

t relates to k and h. And Figure 3b presents the timeline for the estimation of k∗, formation

of the portfolio, and measurement of the returns.

Last, I examine whether the CAPM alpha of the optimal strategy is statistically higher

than the CAPM alphas at the start and end of the subperiod (αkstart+1 and αkend+1). The

alphas at the start and end of the subperiod are estimated separately from the strategy that

always takes k = kstart and h = 1 and the strategy that always takes k = kend and h = 1.

Specifically, to compare the alphas between the optimal strategy and those at the start and

end of the subperiod, I run the following regression:

ropt,t − redge,t = ϕ0 + ϕ1rm,t + ϵt (16)

where ropt,t is the return of the optimization strategy and redge,t is either the return on

the left edge of the subperiod or the return on the right edge of the subperiod. rm,t is the

market return and ϵt is the residule. If ϕ0 is statistically significant and positive, it implies

that the optimization strategy generates a higher CAPM alpha.

If the optimal strategy generates a CAPM alpha higher than that on the left edge of the

subperiod αkstart+1, it implies that αkstart+1 is not the highest within the subperiod. This

suggests that the alpha dynamic has at least one increasing pattern within the subperiod.

With the same logic, if the optimal strategy generates a CAPM alpha higher than that on

the right edge of the subperiod αkend+1, then αkend+1 is not the highest. This suggests that

the alpha dynamic has at least one decreasing pattern within the subperiod.

Figure 5 presents this intuition with examples. The subfigure at the top shows two

potential patterns of alphas when the optimal strategy generates a higher alpha than αkstart+1.

The subfigure shows that there is at least one increasing pattern within the subperiod.

And the subfigure at the bottom shows two potential patterns of alphas when the optimal

strategy generates a higher alpha than αkend+1. The subfigure shows that there is at least
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one decreasing pattern within the subperiod.

Once again, the method is to determine whether a pattern is predictable within a subpe-

riod. If the pattern is unpredictable, the optimal strategy will not generate a higher alpha

than the alphas at the start or end of a subperiod. In other words, the pattern identified by

this test is unlikely to be generated from random variation in firm risks.

Specifically, I examine five subperiods in event time, [1,13], [13,37], [37,61], [61,85], and

[85,109].29 Since I examine five subperiods and compare two differences in CAPM alphas

in each subperiod, there are ten hypotheses in total. To deal with multiple hypothesis

testing, I adjust the p values by the Benjamini-Hochberg method to ensure that the expected

proportion of false discovery rate is no greater than 5%. The Benjamini-Hochberg method

is also used by Harvey et al. (2016) and Keloharju et al. (2021).

Figure 4 gives an example. The pattern is similar to that in Figure 2a. There is a

decreasing pattern in the first subperiod [1,13]. Additionally, the method can identify an

increasing pattern in the third subperiod [37,61], as well as both an increasing and decreasing

pattern in the fourth subperiod [61,85]. Therefore, a ripple pattern can be identified based

on my definition.

In Table 5, I present the pattern of some well-known anomalies within the nine years

following portfolio sorting. The table shows that the ripple pattern appears in accruals

(Accruals), idiosyncratic volatility (IdioRisk), momentum (Mom12m), and net share is-

suance (SharIss1Y ) in the full sample period. Characteristic-sorted portfolios based on

book-to-market show a strictly increasing pattern in the first twelve months after sorting.

This is consistent with the increasing resolution of mispricing discussed in Section 2.1.3.

The increasing pattern is also consistent with the finding in Giglio, Kelly, and Kozak (2023)

when they estimate portfolios’ term structure. They have, however, not formally tested the

pattern or studied anomaly explanations.

29In the first subperiod, k can be chosen from the set of 0, 3, 6, 9, 12. For the rest of the subperiods, k
is chosen from the smallest possible value to the largest possible value with a step of 6. For example, in the
second subperiod, k is chosen from the set of 12, 18, 24, 30, 36.
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In Table 6, I show all the anomalies that show the ripple pattern in different sample

periods. Many anomalies exhibit a ripple of the alpha dynamic. The total number of

anomalies that show this pattern in the full-sample, before-sample, in-sample, and post-

sample subperiods are 79 (60%), 27 (41%), 69 (54%), and 41 (45%). Therefore, this test is

useful in identifying a large number of anomalies that are potentially due to mispricing. The

table also shows that other anomalies in the categories of idiosyncratic volatility, net share

issuance, and momentum exhibit the ripple pattern as well.

Further, many anomalies such as accruals (Accruals) and net share issuance (ShareIss1Y )

exhibit the ripple pattern in the in-sample period, but not in the post-sample period. A pos-

sible explanation could be that arbitrageurs correct mispricing following the publication of

anomalies (McLean & Pontiff, 2016).

5 Other implications: portfolio construction in asset

pricing

Besides explaining anomalies, studying the alpha dynamic can also shed light on optimization

in portfolio construction. This is because alpha means are investigated jointly when studying

alpha dynamics. The usual method in the literature that studies the alpha mean cannot

reveal which portfolio construction method is optimal. This is because those alpha means

are studied independently and one alpha mean may be higher than the other simply due to

random variation.

Due to the limitation of the alpha mean, researchers have the concern that original

authors may have data mined the results with the portfolio construction method they use

(e.g., Hasler, 2022). For example, using different holding periods in portfolio construction

is basically studying different subsets of months after sorting, and therefore different alpha

means. For an anomaly, if the used portfolio construction method that takes a number

of months skipped k and a holding period h is not the optimal method, this raises the
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data mining concern. Since k = 0 and h = 1 (H1) and k = 0 and h = 12 (H12) are the

most used portfolio construction methods, we would like to know whether they are optimal.

Section 4.2 shows that neither H1 nor H12 is optimal for all anomalies when after-cost alphas

are considered in any subperiod. This section further studies whether H1 or H12 is optimal

when on-paper alphas are considered.

Furthermore, alpha may not be the only metric of interest. Alpha is a mean and has

not considered risk. However, both researchers and investors might also be interested in

metrics that consider risk. In this section, I also study the information ratio (IR), which is

alpha divided by the volatility of the residual. It is important because the optimal factor

construction method should maximize the information ratio. This concept is mentioned in

many studies such as Barillas and Shanken (2017). The intuition is that the maximum

obtainable Sharpe ratio of the new model that includes the new factor is equal to the sum

of the maximum obtainable Sharpe ratio of the old model and the information ratio of the

new factor.

5.1 Optimization on the on-paper alpha

Optimization strategies are similar to that of the optimization test in Section 4.1.3. Instead

of searching for k from the set of {0, 12, ..., 60}, I search for k from the set of {0, 3, 6, 9, 12}

to compare with H1 and H12. Figure 3a demonstrates how calendar time t relates to k and

h. And Figure 3b presents the timeline for the estimation of k∗, formation of the portfolio,

and measurement of the returns.

The performance metrics are similar to those in Eq. 14 and the as in Eq. 15. The difference

is that all returns in the regression this time are on-paper returns. aop measures whether

the optimization strategy generates a higher on-paper alpha and aops measures whether the

optimization strategy can be completely explained by a benchmark strategy.

rops,t − ropb,t = aop + bmr
op
m,t + ϵops,t (17)
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rops,t = aops + bsr
op
b,t + bmr

op
m,t + ϵops,t (18)

Results are shown in Table 7. Results indicate that H12 is not optimal for many anoma-

lies. Out of 139 anomalies, only a few (9) anomalies outperform H1 based on a in the full

sample period. However, many more (33) anomalies outperform H1 based on as in the full

sample period. Although the number is small based on a, we can also refer to results in

the monotonicity test as additional evidence. If the pattern of the alpha dynamic in the

first twelve months after sorting is strictly increasing, this suggests that H1 is not optimal

based on Proposition 1 since alpha in the first month after sorting α1 is not a maximum.

The book-to-market characteristic is one of the examples that have an increasing pattern of

alpha dynamic in the first twelve months after sorting.

5.2 Optimization on the information ratio

Results from on-paper alphas suggest that many anomalies cannot be fully explained by

traditional portfolio construction methods H12. However, H12 is the traditional method

used for constructing factors (e.g., Fama & French, 1993; Hou et al., 2015). In this section,

I examine whether H12 is optimal for the size and book-to-market factors in FF3 based on

the IR. For book-to-market, I investigate both the version that uses the market equity in

December of the prior year (BMdec) and the version that uses the latest market equity

(BM).

Even when the alpha dynamic is non-constant, the IR dynamic can be constant. If alphas

are due to omitted risk premium, then alphas can be non-constant due to different exposures

to an omitted risk factor. However, IR will be constant since the exposure appears in both

the numerator and denominator of IR. Therefore, if the IR dynamic is non-constant, either

because alpha is due to mispricing or because old and new alphas reflect risk compensation

to different omitted factors.
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I estimate IR relative to the CAPM. And I conduct a similar optimization strategy as

before. The difference is that, in the optimization strategy, I start by searching for k from

{0, 3, 6, 9, 12} and h = 1 to maximize IR instead of alphas. Then I compare the IR of the

optimization strategy with that of H12.

Results are shown in Table 8. For both size and BM , there is a significant increase in IR

compared to H12. When considering the optimization strategy, the IR almost triples in the

full sample period. For example, the IR for the optimization strategy is 0.118 for size and

0.077 for BM . In contrast, these values for H12 are 0.042 and 0.0.027, respectively.

Furthermore, holding periods h may also impact the IR. Since the overlapping portfolio

approach is used, a longer holding period means holding multiple portfolios each month.

This leads to a diversification effect among the portfolios. To investigate the effect of h,

I conduct optimization strategies that search for h only or search for both k and h. The

results in Table 8 indicate that these strategies do not outperform the strategy that searches

for k only.

Overall, results suggest other dynamics such as the IR dynamic is also useful and the

current factor construction method may not be optimal and can be improved.

6 Conclusion

To explain anomalies, prior studies focus on the average of alphas within a subset of months

after the portfolio sorting period (the alpha mean). This paper’s contribution is to investigate

whether studying how alphas evolve over time after sorting (the alpha dynamic) helps better

understand anomalies.

Results indicate that alpha dynamics have a significant impact on anomaly explanations.

First, alpha-mean tests have several problems, and relying solely on alpha-mean tests may

miss many anomalies. Alpha-dynamic tests alleviate these problems and help better deter-

mine the existence of non-zero alphas. Furthermore, determining the holding period based on
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both alpha dynamics and trading costs significantly improves after-cost profitability. There-

fore, this method might be more appropriate to evaluate after-cost profitability. Moreover,

for a large proportion of anomalies, alpha dynamic patterns are consistent with existing be-

havioral models rather than rational models. The findings of this study suggest that we have

more real anomalies than we had thought, that there are more anomalies that are profitable

when trading costs are considered, and that a large proportion of these anomalies might be

at least partly due to mispricing.

Overall, results have important implications for academics seeking to understand anoma-

lies, firm managers estimating discount rates, and investors considering asset allocations

and trading strategies. Therefore, to better understand anomalies, we should study both

the alpha mean and the alpha dynamic. For future research, alpha dynamics can also be

applied to other frequencies beyond monthly frequency. Moreover, alpha are not the only

measure of interest. For example, factor construction matters when there is a dynamic in

the information ratio.
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(a) The alpha dynamic when alphas do not exist

(b) An example of non-constant alpha dynamic

Figure 1: Patterns of alpha dynamics

This figure shows the patterns of alpha dynamics. The y axis represents true alphas. x axis represents the

number of months after the portfolio sorting period. The true alpha represents the population mean. Figure

(a) shows how alphas after sorting evolve under the null hypothesis that alphas do not exist. And Figure

(b) shows an example of how true alphas after sorting evolve under a non-constant alpha dynamic.



(a) The alpha dynamic of Barberis (2018)

(b) The alpha dynamic of Duffie (2010)



(c) The alpha dynamic of Hendershott, Menkveld, Praz, and Seasholes (2022)

Figure 2: Dynamics of alphas in Barberis (2018), Duffie (2010), and Hendershott,
Menkveld, Praz, and Seasholes (2022)

The figures show the patterns of alpha dynamics implied by the models of Barberis (2018), Duffie (2010), and

Hendershott, Menkveld, Praz, and Seasholes (2022). The y axis represents true alphas. x axis represents the

number of periods after the initial shocking dates when mispricing arises. Alphas equal changes of mispricing

over time.



(a) Relationship between t, k, and h

(b) Timeline for estimation, portfolio formation, and measurement of returns

Figure 3: Timelines

Figure 3a shows the relationship between calendar time t, the number of months skipped after sorting k

and holding period h. Figure 3b shows the timeline for estimation, portfolio formation, and measurement of

returns. When searching only for the optimal k∗, h = 1. Additionally, when searching for the optimal h∗, I

measure returns from t+ 1 and t+ h∗ using the overlapping portfolio approach. All optimization strategies

in the paper use this timeline.



Figure 4: Examining the ripple pattern in the alpha dynamic

The figure provides an example to illustrate how I identify the ripple pattern in the alpha dynamic. The y

axis represents monthly alphas, while the x axis represents the number of months after the sorting date. I

examine five consecutive, unconnected subperiods after sorting: [1,13], [13,37], [37,61], [61,85], and [85,109].

Within each subperiod, I analyze whether there is an increasing pattern, a decreasing pattern, or both in the

alpha dynamic. A ripple pattern occurs when the alpha dynamic exhibits both increasing and decreasing

patterns over the nine years (109 months) following sorting.



(a) Examples of alpha dynamics when the optimization strategy generates a higher alpha than
that at the start of a subperiod

(b) Examples of alpha dynamics when the optimization strategy generates a higher alpha than
that at the end of a subperiod

Figure 5: Potential patterns within a subperiod

The figures show the potential patterns of alpha dynamics within a subperiod of months after portfolio sorting

by comparing the alpha of the optimization strategy with those at the start and end of the subperiod. The

y axis represents true alphas. x axis represents the number of months after the sorting date. The top figure

shows examples of patterns of alpha dynamics within the subperiod [kstart+1, kend+1] when the optimization

strategy generates a higher alpha than αkstart+1. The bottom figure shows examples of patterns of alpha

dynamics within the subperiod [kstart+1, kend+1] when the optimization strategy generates a higher alpha

than αkend+1.



Table 1: A summary of the contributions of alpha dynamics to anomaly explanations

Explanations New Information from Alpha Dynamics

Existence of Alphas The alpha dynamic can detect non-zero alphas when the alpha

mean may not.

After-cost Profitability Holding periods should be determined by jointly considering the

alpha dynamic and trading costs.

Mispricing versus Rational

Expectations

Existing behavioral models can exhibit a ”ripple” pattern of the

alpha dynamic. Such a pattern is not implied in any existing

rational models. Therefore, it can be used to distinguish between

existing behavioral models and rational models. If there is a

ripple pattern, it is likely due at least in part to mispricing.



Table 2: alpha-dynamic tests on the existence of non-zero alphas

This table presents the number of anomalies that pass alpha-dynamic tests under the 5% significance level.

Alphas are relative to the CAPM. Within a sample period and with a holding period of one month, I label

those that fail the t test with a cutoff of 1.96 as suspicious anomalies. Among the remaining anomalies, I label

those that fail the t test with a cutoff of 3.0 as HLZ suspicious anomalies, while the rest as robust anomalies.

Panel A shows the results for all anomalies. Panel B shows the results for suspicious anomalies. Panel C

shows the results for HLZ suspicious anomalies. And Panel D shows the results for robust anomalies (72

anomalies). Mono shows the results from the monotonicity test. Opt shows the results from the optimization

test. Total presents the number of anomalies that either passes the monotonicity test or the optimization

test. The last two columns (”#” and ”%”) compare the results of alpha-dynamic tests with those of t tests.

”#” shows the number of anomalies within a category and ”%” shows the percentage of anomalies passing

alpha-dynamic tests within a category.

Panel A: all anomalies

Period Mono Opt Total

Full-sample 77 75 102

Before-sample 28 23 39

In-sample 68 72 93

Post-sample 52 45 75

Panel B: suspicious anomalies

Period Mono Opt Total # %

Full-sample 13 8 19 92 21%

Before-sample 14 8 17 137 12%

In-sample 16 19 28 105 27%

Post-sample 23 18 37 150 25%

Panel C: HLZ suspicious anomalies

Period Mono Opt Total # %

Full-sample 15 15 24 41 59%

Before-sample 7 9 14 32 44%

In-sample 7 7 12 35 34%

Post-sample 21 18 27 43 63%

Panel D: robust anomalies

Period Mono Opt Total # %

Full-sample 49 52 59 72 82%

Before-sample 7 6 8 16 50%

In-sample 45 46 53 65 82%

Post-sample 8 9 11 12 92%



Table 3: alpha-dynamic tests with different benchmark models

This table presents the total number of anomalies that pass alpha-dynamic tests relative to different asset

pricing models. Columns 2 to 6 separately examine the alphas relative to the CAPM, Fama and French (1993,

FF3) three-factor model, a four-factor model including the factors in the FF3 and momentum (FF3+MOM),

Fama and French (2015, FF5) five-factor model, and Hou, Xue, and Zhang (2015, HXZ) model. Within a

sample period and with a holding period of one month, I label those that fail the t test with a cutoff of 1.96

as suspicious anomalies. Among the remaining anomalies, I label those that fail the t test with a cutoff of 3.0

as HLZ suspicious anomalies, while the rest as robust anomalies. Panel A shows for results for all anomalies.

Panel B shows the results for suspicious anomalies. Panel C shows the results for HLZ suspicious anomalies.

And Panel D shows the results for robust anomalies.

Panel A: all anomalies

Period CAPM FF3 FF3+MOM FF5 HXZ

Full-sample 102 96 85 77 65

Before-sample 39 40 32 23 14

In-sample 93 90 80 66 60

Post-sample 75 67 68 54 51

Panel B: suspicious anomalies

Full-sample 19 23 24 23 34

Before-sample 17 14 12 11 10

In-sample 28 29 29 23 32

Post-sample 37 31 33 34 36

Panel C: HLZ suspicious anomalies

Full-sample 24 14 22 19 17

Before-sample 14 15 11 8 3

In-sample 12 11 16 13 12

Post-sample 27 20 23 11 10

Panel D: robust anomalies

Full-sample 59 59 39 35 14

Before-sample 8 11 9 4 1

In-sample 53 50 35 30 16

Post-sample 11 16 12 9 5



Table 4: Impact of alpha dynamics on after-cost profitability

The table presents the number of anomalies for which the optimization strategy outperforms the benchmark

strategies and the magnitude of the improvement. I only consider anomalies that pass either the t test

or alpha-dynamic tests in each sample period. In total, I examine 132, 65, 128, and 92 anomalies in the

full-sample, before-sample, in-sample, and post-sample periods. In Panel A, the benchmark strategy always

takes a holding period of twelve months (H12). In Panel B, the benchmark strategy always takes a holding

period of one month (H1). In Panel C, the benchmark strategy determines the holding period based on the

turnover rate rule of Novy-Marx and Velikov (2016) (NV). And in Panel D, the benchmark strategy takes

the holding period that is used in the original paper (CV). The performance metrics are a and as. They are

defined in Equation 14 and 15. a > 0 implies that the optimization strategy generates a higher after-cost

alpha than a benchmark strategy. And as > 0 implies that the returns of the optimization strategy cannot

be completely explained by a benchmark strategy and the market factor. a and as are expressed in monthly

percentages.

Panel A: Benchmark is H12

a as

Period N Mean STD 25% 50% 75% N Mean STD 25% 50% 75%

Full-sample 31 0.25 0.19 0.12 0.20 0.28 26 0.27 0.2 0.12 0.19 0.29

Before-sample 6 0.44 0.18 0.30 0.38 0.60 5 0.50 0.22 0.32 0.44 0.66

In-sample 30 0.36 0.26 0.19 0.26 0.47 28 0.37 0.27 0.20 0.28 0.43

Post-sample 12 0.42 0.28 0.22 0.34 0.56 10 0.45 0.28 0.27 0.32 0.72

Panel B: Benchmark is H1

a as

Period N Mean STD 25% 50% 75% N Mean STD 25% 50% 75%

Full-sample 16 0.36 0.25 0.22 0.24 0.44 34 0.27 0.19 0.13 0.23 0.43

Before-sample 4 0.59 0.41 0.29 0.49 0.79 9 0.37 0.34 0.10 0.37 0.45

In-sample 19 0.39 0.22 0.24 0.37 0.50 29 0.40 0.29 0.15 0.28 0.63

Post-sample 6 0.47 0.41 0.15 0.31 0.75 8 0.34 0.11 0.27 0.33 0.41

Panel C: Benchmark is NV

a as

Period N Mean STD 25% 50% 75% N Mean STD 25% 50% 75%

Full-sample 26 0.30 0.21 0.16 0.23 0.32 37 0.30 0.17 0.18 0.27 0.40

Before-sample 7 0.51 0.33 0.28 0.32 0.66 9 0.51 0.28 0.32 0.41 0.75

In-sample 27 0.34 0.20 0.18 0.30 0.46 31 0.41 0.28 0.20 0.30 0.55

Post-sample 7 0.46 0.37 0.24 0.34 0.62 10 0.32 0.12 0.26 0.31 0.39



Table 4: Impact of alpha dynamics on after-cost profitability

Panel D: Benchmark is CV

a as

Period N Mean STD 25% 50% 75% N Mean STD 25% 50% 75%

Full-sample 21 0.28 0.20 0.16 0.23 0.30 30 0.26 0.13 0.16 0.26 0.30

Before-sample 5 0.36 0.17 0.26 0.31 0.32 6 0.40 0.21 0.29 0.36 0.44

In-sample 23 0.31 0.18 0.17 0.27 0.42 29 0.34 0.22 0.19 0.28 0.45

Post-sample 8 0.44 0.39 0.12 0.29 0.71 7 0.35 0.18 0.27 0.34 0.45



Table 5: Alpha dynamic patterns of well-known anomalies

This table presents the patterns of alphas of a few well-known anomalies in the first nine years of months

after portfolio sorting, accruals, idiosyncratic volatility, momentum, net share issuance, and book-to-market.

Start and End are the start and end number of months away from the portfolio sorting period. For example,

the first row examines the alpha dynamic pattern within the first twelve months after the portfolio sorting

period. increasing, decreasing, and both are statistically significant patterns under a 5% significance level.

increase means there is at least an increasing pattern within the subperiod. decrease means there is at

least a decreasing pattern within the subperiod. And both means there are both increasing and decreasing

patterns within the subperiod. none means there is no statistically significant pattern within the subperiod.

Start End Accruals Idio Vol Mom12m Net Share Issuance B/M

1 13 decrease decrease decrease none increase

13 37 decrease both both decrease none

37 61 both both both both none

61 85 both both both both none

85 109 decrease both both both none



Table 6: Anomalies that exhibit the ripple pattern in alpha dynamics.

This table presents the anomalies that exhibit a statistically significant ripple pattern in alpha dynamics

under a 5% false discovery rate. I consider the anomalies that pass either the t test or alpha-dynamic tests

in each sample period. In total, I examine 132, 65, 128, and 92 anomalies in the full-sample, before-sample,

in-sample, and post-sample periods. The ripple pattern is a pattern that features both increasing and

decreasing patterns in the whole alpha dynamic. Detailed descriptions of anomaly acronyms can be found

in Appendix A.

Period Total Number Acronym

Full-sample 79

’AM’ ’AbnormalAccruals’ ’Accruals’ ’AnalystRevision’ ’AnnouncementReturn’

’AssetGrowth’ ’CBOperProf’ ’CF’ ’ChAssetTurnover’ ’ChEQ’ ’ChInv’

’ChInvIA’ ’ChNWC’ ’CompEquIss’ ’Coskewness’

’CustomerMomentum’ ’DelCOA’ ’DelEqu’ ’DelFINL’ ’DelNetFin’

’EntMult’ ’EquityDuration’ ’FEPS’ ’FirmAgeMom’

’ForecastDispersion’ ’GP’ ’GrSaleToGrInv’ ’High52’ ’IO ShortInterest’

’IdioRisk’ ’IdioVol3F’ ’IdioVolAHT’ ’Illiquidity’ ’IndMom’

’IndRetBig’ ’IntMom’ ’InvGrowth’ ’InvestPPEInv’ ’Leverage’ ’MaxRet’

’Mom12m’ ’Mom12mOffSeason’ ’Mom6m’ ’Mom6mJunk’ ’MomOffSeason06YrPlus’

’MomRev’ ’MomSeason06YrPlus’ ’MomSeason11YrPlus’ ’MomVol’ ’NOA’

’NetDebtFinance’ ’NetEquityFinance’ ’NetPayoutYield’ ’OPLeverage’

’OScore’ ’OperProf’ ’OperProfRD’ ’OrgCap’ ’PS’ ’RD’ ’REV6’

’RIO Volatility’ ’ResidualMomentum’ ’SP’ ’ShareIss1Y’

’Size’ ’SmileSlope’ ’VolMkt’ ’VolSD’ ’XFIN’ ’betaVIX’ ’dNoa’ ’grcapx’

’grcapx3y’ ’roaq’ ’sfe’ ’std turn’ ’zerotrade’ ’zerotradeAlt1’

’zerotradeAlt12’

Before-sample 27

’ChInv’ ’ChNWC’ ’CompEquIss’ ’DelCOA’ ’FirmAgeMom’ ’GrSaleToGrInv’

’High52’ ’IdioRisk’ ’IdioVol3F’ ’IndMom’ ’IndRetBig’ ’InvestPPEInv’

’MaxRet’ ’Mom12m’ ’Mom12mOffSeason’ ’Mom6m’ ’MomOffSeason06YrPlus’

’MomSeason’ ’MomSeasonShort’ ’MomVol’ ’NetEquityFinance’

’ShareIss1Y’ ’VolMkt’ ’VolSD’ ’std turn’ ’zerotrade’

In-sample 69

’AM’ ’AbnormalAccruals’ ’Accruals’ ’AnnouncementReturn’ ’AssetGrowth’

’BMdec’ ’CBOperProf’ ’ChAssetTurnover’ ’ChEQ’ ’ChInv’

’CompositeDebtIssuance’ ’DelCOA’ ’DelEqu’ ’DelFINL’ ’DelNetFin’

’EntMult’ ’EquityDuration’ ’FEPS’ ’FirmAgeMom’ ’GP’

’GrSaleToGrInv’ ’High52’ ’IdioRisk’ ’IdioVol3F’ ’IdioVolAHT’

’IndRetBig’ ’IntMom’ ’InvGrowth’ ’InvestPPEInv’ ’MaxRet’

’Mom12m’ ’Mom12mOffSeason’ ’Mom6m’ ’Mom6mJunk’

’MomOffSeason’ ’MomRev’ ’MomSeason11YrPlus’ ’MomSeason16YrPlus’

’MomSeasonShort’ ’MomVol’ ’NOA’ ’NetEquityFinance’ ’NetPayoutYield’

’OPLeverage’ ’OperProf’ ’OperProfRD’ ’OrgCap’ ’ProbInformedTrading’

’REV6’ ’RIO MB’ ’RIO Volatility’ ’ResidualMomentum’

’ShareIss1Y’ ’ShareIss5Y’ ’Size’ ’VolMkt’ ’VolSD’ ’XFIN’

’betaVIX’ ’dNoa’ ’roaq’ ’sfe’ ’std turn’ ’tang’ ’zerotrade’

’zerotradeAlt1’ ’zerotradeAlt12’



Period Total Number Acronym

Post-sample 41

’AnalystRevision’ ’AnnouncementReturn’ ’ChInv’ ’ChInvIA’

’CompEquIss’ ’Coskewness’ ’EarningsForecastDisparity’

’EquityDuration’ ’FEPS’ ’FirmAgeMom’ ’ForecastDispersion’ ’High52’

’IO ShortInterest’ ’IdioRisk’ ’IdioVolAHT’ ’IndRetBig’

’MaxRet’ ’Mom12m’ ’Mom12mOffSeason’ ’Mom6m’ ’MomOffSeason06YrPlus’

’MomSeason11YrPlus’ ’MomVol’

’NetEquityFinance’ ’NetPayoutYield’ ’OperProf’

’OperProfRD’ ’PS’ ’RD’ ’REV6’ ’SP’ ’Size’

’SmileSlope’ ’Tax’ ’VolMkt’ ’VolSD’ ’XFIN’ ’grcapx3y’ ’roaq’ ’std turn’



Table 7: Optimization on the on-paper alphas

This table presents the results for the number of anomalies for which the optimization strategy outperforms

the benchmark strategies. The benchmark strategies are those that always take a twelve-month holding

period (H12) or always take a one-month holding period (H1). I only consider anomalies that pass either

the t test or alpha-dynamic tests in each sample period. In total, I examine 132, 65, 128, and 92 anomalies

in the full-sample, before-sample, in-sample, and post-sample periods. The performance metrics are aop and

aops as in Equation 17 and 18. aop examines whether the optimization strategy generates a higher on-paper

alpha than a benchmark strategy. And aops examines whether the returns of the optimization strategy can

be completely explained by a benchmark strategy.

Benchmark strategy

H12 H1

Period aop > 0 aops > 0 aop > 0 aops > 0

Full-sample 45 46 9 33

Before-sample 15 16 4 15

In-sample 49 48 11 34

Post-sample 20 15 5 15



Table 8: Optimization on the information ratio

This table compares the results between the optimization strategy and the benchmark strategy that takes

k = 0 and h = 12 (H12) based on the information ratio (IR). k is the number of skipped months and h is the

holding period. I consider Size and Book-to-market factors. BM uses the latest market equity to construct

the book-to-market. And BMdec uses the market equity in December of the prior year to construct book-

to-market. k is searched from {0, 3, 6, 9, 12} and h is searched from {1, 3, 6, 9, 12} to maximize IR over time.

k∗ searches for k only and restricts h = 1. h∗ searches for h only and restricts k = 0. And k∗h∗ searches for

both k and h. T is the sample length.

Panel A: Size

Period T k∗ h∗ k∗h∗ H12

Full-sample 1070 0.118 0.118 0.118 0.042

In-sample 514 0.075 0.075 0.075 0.038

Post-sample 556 0.101 0.101 0.101 0.027

Panel B: BM

Full-sample 618 0.077 0.028 0.075 0.027

Before-sample 53 0.002 -0.009 0.003 -0.007

In-sample 132 0.112 0.086 0.112 0.086

Post-sample 433 0.025 -0.018 0.023 -0.017

Panel C: BMdec

Full-sample 739 0.069 0.064 0.064 0.065

Before-sample 48 0.045 0.039 0.032 0.052

In-sample 330 0.103 0.091 0.099 0.093

Post-sample 361 -0.019 -0.016 -0.019 -0.019



A Appendix: Descriptions of anomalies

Acronym Authors Year Description

AbnormalAccruals Xie 2001 Abnormal Accruals

AbnormalAccrualsPercent Hafzalla, Lundholm, Van Winkle 2011 Percent Abnormal Accruals

AccrualQuality Francis, LaFond, Olsson, Schipper 2005 Accrual Quality

AccrualQualityJune Francis, LaFond, Olsson, Schipper 2005 Accrual Quality in June

Accruals Sloan 1996 Accruals

Activism2 Cremers and Nair 2005 Active shareholders

AdExp Chan, Lakonishok and Sougiannis 2001 Advertising Expense

AMq Fama and French 1992 Total assets to market (quarterly)

AnalystValue Frankel and Lee 1998 Analyst Value

AnnouncementReturn Chan, Jegadeesh and Lakonishok 1996 Earnings announcement return

AOP Frankel and Lee 1998 Analyst Optimism

AssetGrowth Cooper, Gulen and Schill 2008 Asset growth

AssetLiquidityMarket Ortiz-Molina and Phillips 2014 Asset liquidity over market

AssetLiquidityMarketQuart Ortiz-Molina and Phillips 2014 Asset liquidity over market (qtrly)

AssetTurnover Soliman 2008 Asset Turnover

Beta Fama and MacBeth 1973 CAPM beta

BetaBDLeverage Adrian, Etula and Muir 2014 Broker-Dealer Leverage Beta

betaCC Acharya and Pedersen 2005 Illiquidity-illiquidity beta (beta2i)

betaCR Acharya and Pedersen 2005 Illiquidity-market return beta (beta4i)

BetaDimson Dimson 1979 Dimson Beta

BetaFP Frazzini and Pedersen 2014 Frazzini-Pedersen Beta

betaNet Acharya and Pedersen 2005 Net liquidity beta (betanet,p)

betaRR Acharya and Pedersen 2005 Return-market return illiquidity beta

BetaTailRisk Kelly and Jiang 2014 Tail risk beta

BidAskTAQ Hou and Loh 2016 Bid-ask spread (TAQ)

BM Rosenberg, Reid, and Lanstein 1985 Book to market using most recent ME

BMdec Fama and French 1992 Book to market using December ME

BMq Rosenberg, Reid, and Lanstein 1985 Book to market (quarterly)

BookLeverageQuarterly Fama and French 1992 Book leverage (quarterly)

BrandCapital Belo, Lin and Vitorino 2014 Brand capital to assets

CapTurnover Haugen and Baker 1996 Capital turnover

CapTurnover q Haugen and Baker 1996 Capital turnover (quarterly)

Cash Palazzo 2012 Cash to assets

cashdebt Ou and Penman 1989 CF to debt

CBOperProf Ball et al. 2016 Cash-based operating profitability

CBOperProfLagAT q Ball et al. 2016 Cash-based oper prof lagged assets qtrly

CF Lakonishok, Shleifer, Vishny 1994 Cash flow to market

CFq Lakonishok, Shleifer, Vishny 1994 Cash flow to market quarterly

ChangeInRecommendation Jegadeesh et al. 2004 Change in recommendation



ChAssetTurnover Soliman 2008 Change in Asset Turnover

ChEQ Lockwood and Prombutr 2010 Growth in book equity

ChInv Thomas and Zhang 2002 Inventory Growth

ChInvIA Abarbanell and Bushee 1998 Change in capital inv (ind adj)

ChNAnalyst Scherbina 2008 Decline in Analyst Coverage

ChNCOA Soliman 2008 Change in Noncurrent Operating Assets

ChNCOL Soliman 2008 Change in Noncurrent Operating Liab

ChNNCOA Soliman 2008 Change in Net Noncurrent Op Assets

ChPM Soliman 2008 Change in Profit Margin

ConsNegRet Watkins 2003 Consistently negative return

ConsRecomm Barber et al. 2002 Consensus Recommendation

ConvDebt Valta 2016 Convertible debt indicator

Coskewness Harvey and Siddique 2000 Coskewness

CredRatDG Dichev and Piotroski 2001 Credit Rating Downgrade

currat Ou and Penman 1989 Current Ratio

CustomerMomentum Cohen and Frazzini 2008 Customer momentum

DelayAcct Callen, Khan and Lu 2013 Accounting component of price delay

DelayNonAcct Callen, Khan and Lu 2013 Non-accounting component of price delay

DelBreadth Chen, Hong and Stein 2002 Breadth of ownership

DelSTI Richardson et al. 2005 Change in short-term investment

depr Holthausen and Larcker 1992 Depreciation to PPE

DivInit Michaely, Thaler and Womack 1995 Dividend Initiation

DivOmit Michaely, Thaler and Womack 1995 Dividend Omission

DivSeason Hartzmark and Salomon 2013 Dividend seasonality

DivYield Naranjo, Nimalendran, Ryngaert 1998 Dividend yield for small stocks

DivYieldAnn Naranjo, Nimalendran, Ryngaert 1998 Last year’s dividends over price

DivYieldST Litzenberger and Ramaswamy 1979 Predicted div yield next month

dNoa Hirshleifer, Hou, Teoh, Zhang 2004 change in net operating assets

DolVol Brennan, Chordia, Subra 1998 Past trading volume

EarningsConsistency Alwathainani 2009 Earnings consistency

EarningsForecastDisparity Da and Warachka 2011 Long-vs-short EPS forecasts

EarningsPredictability Francis, LaFond, Olsson, Schipper 2004 Earnings Predictability

EarningsSmoothness Francis, LaFond, Olsson, Schipper 2004 Earnings Smoothness

EarningsSurprise Foster, Olsen and Shevlin 1984 Earnings Surprise

EarningsValueRelevance Francis, LaFond, Olsson, Schipper 2004 Value relevance of earnings

EarnSupBig Hou 2007 Earnings surprise of big firms

EBM Penman, Richardson and Tuna 2007 Enterprise component of BM

EBM q Penman, Richardson and Tuna 2007 Enterprise component of BM

EP Basu 1977 Earnings-to-Price Ratio

EPq Basu 1977 Earnings-to-Price Ratio

ExchSwitch Dharan and Ikenberry 1995 Exchange Switch

FEPS Cen, Wei, and Zhang 2006 Analyst earnings per share

fgr5yrLag La Porta 1996 Long-term EPS forecast



FirmAge Barry and Brown 1984 Firm age based on CRSP

FR Franzoni and Marin 2006 Pension Funding Status

FRbook Franzoni and Marin 2006 Pension Funding Status

Frontier Nguyen and Swanson 2009 Efficient frontier index

Governance Gompers, Ishii and Metrick 2003 Governance Index

GP Novy-Marx 2013 gross profits / total assets

GPlag Novy-Marx 2013 gross profits / total assets

GrAdExp Lou 2014 Growth in advertising expenses

GrSaleToGrOverhead Abarbanell and Bushee 1998 Sales growth over overhead growth

GrSaleToGrReceivables Abarbanell and Bushee 1998 Change in sales vs change in receiv

Herf Hou and Robinson 2006 Industry concentration (sales)

HerfAsset Hou and Robinson 2006 Industry concentration (assets)

HerfBE Hou and Robinson 2006 Industry concentration (equity)

High52 George and Hwang 2004 52 week high

IdioVol3F Ang et al. 2006 Idiosyncratic risk (3 factor)

IdioVolAHT Ali, Hwang, and Trombley 2003 Idiosyncratic risk (AHT)

Illiquidity Amihud 2002 Amihud’s illiquidity

IndIPO Ritter 1991 Initial Public Offerings

IndMom Grinblatt and Moskowitz 1999 Industry Momentum

IndRetBig Hou 2007 Industry return of big firms

IntanCFP Daniel and Titman 2006 Intangible return using CFtoP

IntanEP Daniel and Titman 2006 Intangible return using EP

IntanSP Daniel and Titman 2006 Intangible return using Sale2P

IntrinsicValue Frankel and Lee 1998 Intrinsic or historical value

invest Chen and Zhang 2010 Capex and Inventory Change

Investment Titman, Wei and Xie 2004 Investment to revenue

IO ShortInterest Asquith Pathak and Ritter 2005 Inst own among high short interest

KZ Lamont, Polk and Saa-Requejo 2001 Kaplan Zingales index

LaborforceEfficiency Abarbanell and Bushee 1998 Laborforce efficiency

Leverage q Bhandari 1988 Market leverage quarterly

MaxRet Bali, Cakici, and Whitelaw 2010 Maximum return over month

MeanRankRevGrowth Lakonishok, Shleifer, Vishny 1994 Revenue Growth Rank

Mom12m Jegadeesh and Titman 1993 Momentum (12 month)

Mom12mOffSeason Heston and Sadka 2008 Momentum without the seasonal part

Mom6mJunk Avramov et al 2007 Junk Stock Momentum

MomOffSeason Heston and Sadka 2008 Off season long-term reversal

MomOffSeason06YrPlus Heston and Sadka 2008 Off season reversal years 6 to 10

MomOffSeason11YrPlus Heston and Sadka 2008 Off season reversal years 11 to 15

MomOffSeason16YrPlus Heston and Sadka 2008 Off season reversal years 16 to 20

MomRev Chan and Ko 2006 Momentum and LT Reversal

MomSeason Heston and Sadka 2008 Return seasonality years 2 to 5

MomSeasonShort Heston and Sadka 2008 Return seasonality last year

MomVol Lee and Swaminathan 2000 Momentum in high volume stocks



MRreversal De Bondt and Thaler 1985 Medium-run reversal

nanalyst Elgers, Lo and Pfeiffer 2001 Number of analysts

NetDebtFinance Bradshaw, Richardson, Sloan 2006 Net debt financing

NetDebtPrice Penman, Richardson and Tuna 2007 Net debt to price

NetDebtPrice q Penman, Richardson and Tuna 2007 Net debt to price

NetEquityFinance Bradshaw, Richardson, Sloan 2006 Net equity financing

NetPayoutYield Boudoukh et al. 2007 Net Payout Yield

NetPayoutYield q Boudoukh et al. 2007 Net Payout Yield quarterly

NOA Hirshleifer et al. 2004 Net Operating Assets

NumEarnIncrease Loh and Warachka 2012 Earnings streak length

OperProf Fama and French 2006 operating profits / book equity

OperProfLag Fama and French 2006 operating profits / book equity

OperProfRDLagAT Ball et al. 2016 Oper prof R&D adj lagged assets

OPLeverage Novy-Marx 2010 Operating leverage

OptionVolume1 Johnson and So 2012 Option to stock volume

OrderBacklog Rajgopal, Shevlin, Venkatachalam 2003 Order backlog

OrgCap Eisfeldt and Papanikolaou 2013 Organizational capital

OScore Dichev 1998 O Score

PatentsRD Hirschleifer, Hsu and Li 2013 Patents to RD expenses

pchcurrat Ou and Penman 1989 Change in Current Ratio

pchdepr Holthausen and Larcker 1992 Change in depreciation to PPE

pchgm pchsale Abarbanell and Bushee 1998 Change in gross margin vs sales

pchquick Ou and Penman 1989 Change in quick ratio

PM Soliman 2008 Profit Margin

PM q Soliman 2008 Profit Margin

Price Blume and Husic 1972 Price

PriceDelayRsq Hou and Moskowitz 2005 Price delay r square

PriceDelaySlope Hou and Moskowitz 2005 Price delay coeff

PriceDelayTstat Hou and Moskowitz 2005 Price delay SE adjusted

ProbInformedTrading Easley, Hvidkjaer and O’Hara 2002 Probability of Informed Trading

PS Piotroski 2000 Piotroski F-score

PS q Piotroski 2000 Piotroski F-score

quick Ou and Penman 1989 Quick ratio

RD q Chan, Lakonishok and Sougiannis 2001 R&D over market cap quarterly

rd sale Chan, Lakonishok and Sougiannis 2001 R&D to sales

RDAbility Cohen, Diether and Malloy 2013 R&D ability

RDcap Li 2011 R&D capital-to-assets

RDIPO Gou, Lev and Shi 2006 IPO and no R&D spending

realestate Tuzel 2010 Real estate holdings

ResidualMomentum Blitz, Huij and Martens 2011 Momentum based on FF3 residuals

ResidualMomentum6m Blitz, Huij and Martens 2011 6 month residual momentum

retConglomerate Cohen and Lou 2012 Conglomerate return

RetNOA Soliman 2008 Return on Net Operating Assets



RetNOA q Soliman 2008 Return on Net Operating Assets

ReturnSkew Bali, Engle and Murray 2015 Return skewness

ReturnSkew3F Bali, Engle and Murray 2015 Idiosyncratic skewness (3F model)

ReturnSkewQF Bali, Engle and Murray 2015 Idiosyncratic skewness (Q model)

REV6 Chan, Jegadeesh and Lakonishok 1996 Earnings forecast revisions

RevenueSurprise Jegadeesh and Livnat 2006 Revenue Surprise

RIO Turnover Nagel 2005 Inst Own and Turnover

RIO Volatility Nagel 2005 Inst Own and Idio Vol

RoE Haugen and Baker 1996 net income / book equity

roic Brown and Rowe 2007 Return on invested capital

salerec Ou and Penman 1989 Sales to receivables

secured Valta 2016 Secured debt

securedind Valta 2016 Secured debt indicator

sfe Elgers, Lo and Pfeiffer 2001 Earnings Forecast to price

ShareIss1Y Pontiff and Woodgate 2008 Share issuance (1 year)

ShareIss5Y Daniel and Titman 2006 Share issuance (5 year)

ShareRepurchase Ikenberry, Lakonishok, Vermaelen 1995 Share repurchases

ShortInterest Dechow et al. 2001 Short Interest

sinAlgo Hong and Kacperczyk 2009 Sin Stock (selection criteria)

sinOrig Hong and Kacperczyk 2009 Sin Stock (original list)

Size Banz 1981 Size

skew1 Xing, Zhang and Zhao 2010 Volatility smirk near the money

Spinoff Cusatis, Miles and Woolridge 1993 Spinoffs

std turn Chordia, Subra, Anshuman 2001 Share turnover volatility

STreversal Jegadeesh 1989 Short term reversal

tang Hahn and Lee 2009 Tangibility

tang q Hahn and Lee 2009 Tangibility quarterly

Tax q Lev and Nissim 2004 Taxable income to income (qtrly)

UpRecomm Barber et al. 2002 Up Forecast

VarCF Haugen and Baker 1996 Cash-flow to price variance

VolMkt Haugen and Baker 1996 Volume to market equity

VolSD Chordia, Subra, Anshuman 2001 Volume Variance

WW Whited and Wu 2006 Whited-Wu index

WW Q Whited and Wu 2006 Whited-Wu index

zerotrade Liu 2006 Days with zero trades

zerotradeAlt1 Liu 2006 Days with zero trades

ZScore q Dichev 1998 Altman Z-Score quarterly



B Appendix: Sorting Dates and Shock Dates

The behavioral models described in Section 2.1.3 all assume a shock date when mispricing

initially arises and study how alphas or prices evolve after the shock date. In contrast, I

study how alphas evolve after the sorting dates, which correspond to the dates when firms

are sorted based on a specific characteristic. In this section, I discuss how sorting dates are

related to shock dates.

First, while the exact relationship between shock dates and sorting dates may not be

directly observed, these models can still imply a non-constant alpha dynamic after sorting

dates. It is because, in those models, the alpha dynamic is non-constant over any subset of

periods before mispricing is completely resolved as shown in Figure 2. If a characteristic is

associated with remaining mispricing at sorting dates (j = 0), then the alpha dynamic after

sorting αj can be non-constant according to these models.

Further, we may also be able to predict the pattern of the alpha dynamic based on the

models. That is, where does j = 0 fall in these models? First, in the models that explain

anomalies endogenously like Model 1 (Barberis, 2018), there is a clear linkage between shock

dates and sorting dates. Further, in exogenous models that do not explain anomalies, exoge-

nous investment opportunities (mispricing) appear on shock dates. For example, Model 2

(Duffie, 2010) and Model 3 (Hendershott et al., 2022) describe how prices evolve when some

rational traders do not trade on investment opportunities immediately. Since mispricing is

exogenous, we can interpret trading on the anomaly characteristics as investment oppor-

tunities and shock dates as sorting dates. That is, j = 0 should be the shock date. For

instance, if some traders do not adjust their characteristic-sorted portfolios based on firm

size immediately at the end of each month, alpha dynamics after sorting dates may display

a non-constant pattern based on Models 2 and 3.



C Appendix: Proofs

Proof of Proposition 1. αop
k,h = 1

h

∑k+h
j=k+1 αj ≤ 1

h
hαj∗ = αop

j∗−1,1.

Proof of Proposition 2. Since, foc = δ0(λh+1)e−λh+c−δ0
h2 , foc(h = 1) = δ0(λ+1)e−λ+c−δ0.

Then foc(h = 1) ≤ 0 ⇔ λ+1
eλ

≤ 1− c
δ0
.

As δ0(λh + 1)e−λh decreases in h, foc < 0 when h > 1 if λ+1
eλ

≤ 1 − c
δ0
. Therefore,

after-cost alpha αac
k,h strictly decreases in h and h∗ = 1 when λ+1

eλ
≤ 1− c

δ0
.

Proof of Proposition 3. Take foc = 0:

λh∗ + 1

eλh∗ = 1− c

δ0
(19)

Since δ0(λh + 1)e−λh decreases in h, foc > 0 when h < h∗ and foc < 0 when h > h∗.

Therefore, h∗ maximizes αac
k,h and solves the problem.



D Appendix: Simulated performance under random

variation

In Section 4.2, I show that the benchmark strategy that always takes the number of months

skipped k = 0 and holding period h = 1 (H1) is outperformed by an optimization strategy

for many anomalies when after-cost alphas are compared.

One possible concern is whether the improvement in after-cost alphas can be obtained

with random variation. This section is to investigate this concern with simulations. The

null hypothesis is that H1 is optimal and no strategy can outperform it based on after-cost

alphas.

The null hypothesis is examined as follows. I conduct 2,000 simulations. In each simula-

tion, I first simulate a time series of after-cost market returns calibrated to the sample mean

and standard deviation of after-cost market returns over the sample period. The sample

period is between January 1936 and December 2021.

For each characteristic, I estimate ad, bd, and the residual volatility by regressing the ac-

tual returns of H1 on the actual after-cost market excess returns (not the simulated returns):

rb,t = ad + bdrm,t + ϵb,t (20)

I then generate a simulated time series of returns of the benchmark strategy rb,t for each

characteristic with simulated market returns. The date range of the simulated returns for a

characteristic match the actual returns of the characteristic-sorted portfolios.

Next, within each characteristic, I estimate as, bs, bm and the residual volatility from the

following regression:

rs,t = as + bsrb,t + bmrm,t + ϵs,t (21)

rs,t are after-cost returns of a strategy that restricts k = 0 and takes different h =

1, 3, 6, 9, 12 throughout the sample. Returns of each rs,t and rb,t have the same length.

After estimating b̂s, b̂m, and the volatility of ϵ̂s,t with the actual data, I create simulated

time series of returns for the strategies based on b̂s, b̂m, estimated residual volatility, and

simulated returns of rb,t and rm,t:

rs,t = b̂srb,t + b̂mrm,t + ϵ̂s,t (22)

That is, I demean the intercept, as. This is to generate a data-generating process that

neither strategy outperforms H1. In the meantime, the correlation structure as well as other



moments are preserved. Let us denote this data-generating process as DGPas.

In Section 4.2.2, I run another regression that examines whether a strategy generates a

higher alpha than a benchmark strategy:

rs,t − rb,t = a+ bmrm,t + ϵs,t (23)

If I use DGPas to generate simulated returns of the other strategies, a problem is that a

in Eq 23 may not be zero. As I have demeaned the intercept, as, rs,t− rb,t = a = (b̂s− 1)rb,t.

That is, a will not be zero with DGPas if b̂s − 1 ̸= 0 and the mean of rb,t is not zero. To

address this issue, I also simulate returns of the other strategies based on the following DGP,

which I denote as DGPa:

rs,t − rb,t = b̂mrm,t + ϵ̂s,t (24)

Here, b̂m and ϵ̂s,t is generated based on estimated bm and the volatility of ϵs,t in Eq. 23

with the actual data.

Then I use the same procedure as described in Section 4.2 to obtain the return series of

the optimization strategy with simulated returns.

When the optimization strategy uses the simulated returns from DGPas, I run regression

Eq. 21 to examine whether the optimization strategy outperforms H1. And when the opti-

mization strategy uses the simulated returns from DGPa, I run regression Eq. 23 to examine

whether the optimization strategy outperforms H1.

A strategy outperforms H1 if as or a is statistically significant and positive when the

cutoff of t-statistics ranges from 1.96 to 4.00. Then I obtain the counts of characteristics for

which the optimization strategy outperforms the benchmark strategy from the regressions

under different t-statistic cutoffs. The simulation is repeated 2,000 times so that I obtain a

distribution of the counts under different cutoffs.

Results are shown in Figure D1. The red vertical line is the number of characteristics

for which the optimization strategy outperforms H1 with the actual data. In subfigure (a),

a is the performance metric. And in subfigure (b), as is the performance metric. Under

t-statistic cutoffs of 1.96, 2.00, 2.50, 3.00, 3.50, and 4.00, the number of characteristics for

which the optimization strategy outperforms H1 is always beyond the maximum both when

as is considered and when a is considered. Therefore, the null hypothesis that H1 is optimal

can be rejected.



(a) Peformance metric is a

(b) Peformance metric is as

Figure D1: Simulated distributions for the number of strategies that outperforms the
benchmark strategy



E Appendix: Additional empirical evidence

Figure E1: Monthly stock effective spreads over time



Figure E2: Monthly portfolio rebalancing costs over time



Figure E3: Monthly portfolio turnover rate over time



Figure E4: Number of anomalies with the highest alpha at different k values

The figure plots the number of anomalies with the highest CAPM alpha at different k values under an

unconditional analysis. I study 205 published anomalies. k is the number of skipped months after a portfolio

sort. The holding period is one month. The y axis is the number of anomalies, while the x axis are the

k values. From top to bottom, I plot the distributions in the full-sample, before-sample, in-sample, and

post-sample periods.



Table E1: Does k have an impact on after-cost profitability?

This table presents the number of anomalies for which the optimization strategy outperforms the default

strategies. I compare results for two optimization strategies. The first searches for h only and the second

searches for both k and h. The benchmark strategies take either k = 0 and h = 12 (H12) or k = 0 and

h = 1 (H1) based on after-cost alphas. k is the number of skipped months and h is the holding period. I

only consider anomalies that pass either the t test or alpha-dynamic tests in each sample period. In total,

I examine 132, 65, 128, and 92 anomalies in the full-sample, before-sample, in-sample, and post-sample

periods. Panel A shows results when k is restricted to zero and only optimal h is searched for. Panel B

shows results when both optimal k and h are searched for. The performance metrics are a and as as in

Equation 14 and 15. a examines whether the optimization strategy generates a higher after-cost alpha than

a default strategy. And as examines whether the returns of the optimization strategy can be completely

explained by a default strategy and the market factor.

Panel A: searching for h only

Default Strategy

H12 H1

Period a as a as

Full-sample 30 26 16 33

Before-sample 6 5 4 8

In-sample 30 28 19 29

Post-sample 12 10 6 8

Panel B: searching for both k and h

Default Strategy

H12 H1

Period a as a as

Full-sample 24 24 15 29

Before-sample 3 5 4 9

In-sample 27 30 19 24

Post-sample 20 14 7 9
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