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Abstract

We document key properties of crypto monetary policies based on more than

2,000 tokens: (1) Money growth rates decline with age and stabilize at 0.1% per

month on average, with younger cohorts converging faster to the long-run growth

rate; (2) Long-run money growth rates and convergence speeds are positively corre-

lated in the cross-section; (3) Tokens held heavily by retail investors have relatively

low long-run money growth rates and convergence speeds. We present a dynamic

model to determine the optimal token issuance and fee policies for issuers. Com-

mitting to low future money growth and fees increases profits, and the degree of

commitment matters for the existence of equilibria. A Ramsey issuer who maxi-

mizes profits, after the initial period, makes choices that maximize the utility value

of all tokens. We present a model with probabilistic commitment and show that

issuers with high commitment choose low long-run money growth rates and fee ra-

tios, and they reduce them slowly.

Keywords: Cryptocurrencies, money growth rates, fees, commitment.

JEL codes: E52, G32.

∗Wharton School of the University of Pennsylvania and NBER. Address: 3620 Locust Walk, Philadel-
phia, PA 19104. Email: jermann@wharton.upenn.edu.

†Guanghua School of Management, Peking University. Address: No.5 Yiheyuan Road, Haidian Dis-
trict, Beijing 100871, China. Email: xiang@gsm.pku.edu.cn.

1



1 Introduction

Blockchain technology, with Bitcoin as its first implementation, has spurred a wave of

issuance of cryptocurrencies or tokens. According to the CoinMarketCap, there are more

than 9,000 tokens outstanding as of September 2023 with a total market capitalization

of about $1 trillion. Tokens are associated with a wide variety of projects, and like fiat

money, are issued in exchange of economic resources from those who expect to use a

token. Tokens provide utility and rights associated with projects, and their valuation

depends critically on the monetary policy of a token and the closely related policy for

charging user fees. The design of these policies is paramount for project founders.

The first contribution of this paper is empirical. We provide a first summary of key

features of the monetary policies of existing cryptocurrencies. Based on the histories of

circulating supplies of more than 2,000 tokens that are active on February 2, 2023, we

establish three main facts. First, the average money growth rate declines with age and

stabilizes at about 0.1% per month. For more recent cohorts of tokens, average money

growth rates exhibit a faster convergence to their respective long-run levels. Second, we

estimate the long-run money growth rate and the speed of convergence to it for each

token. There is significant heterogeneity in the cross-section, with tokens varying in their

long-run money growth rates and convergence speeds. We find these two metrics to

be positively associated with each other. Third, tokens held heavily by retail investors,

measured by the proportion of wallet addresses holding less than 0.1% of the token’s total

circulating supply, exhibit on average both relatively low long-run money growth rates

and a low convergence speeds.

The second contribution of the paper is theoretical. We derive the policies that

are optimal from an issuer’s perspective by building on classical monetary theory. Our

theoretical results are helpful for interpreting the empirical patterns that we document,

and they provide guidance for the upgrade of existing tokens and the design of new ones.

In our analysis, the beliefs about future issuance and fee rates of a token are crucial

in users’ valuation, which in turn affects the seigniorage and fees that can be collected.

Therefore, whether the issuer is able to commit to future policies takes center stage.

A blockchain can be viewed as a commitment technology. The Bitcoin network op-

erates with a money supply rule that is essentially deterministic. From this perspective,

Bitcoin offers perfect commitment. However, there is a non-zero, albeit small, probability

of a future fork of Bitcoin that would operate under a different money issuance policy

and that could displace the current version of Bitcoin. Ethereum has gone through sev-

eral versions with different policies for issuance and fees. Many blockchains have more
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discretionary policies. For instance, MakerDAO’s whitepaper allows for discretionary is-

suance of tokens in some circumstances, an option that was used after losses on their

DAI stablecoin in March 2020. ApeCoin launched in 2022 has a total supply of 1 billion

tokens which are unlocked over a 4 year period to different groups, including 62% to

the “Ecosystem Fund” which through its governance organization has the discretion to

allocate these funds. Our analysis covers this broad spectrum of commitment between

rules and discretion.

We present a dynamic model where issuers optimally determine the supply of tokens

and fee rates to maximize their profits from a project with varying degrees of commitment.

Tokens provide utility to the users, like money-in-utility, which is affected by an exogenous

and stochastically-growing productivity level. The velocity of a token is determined

through the trade-off between the transaction utility and some effort cost to users. Fees

are assessed on transactions. By issuing new tokens and charging a higher fee, issuers

can extract more profits but dilute the value of legacy tokens.

We first analyze the polar cases: zero and perfect commitment, represented as a

Markov-perfect equilibrium and a Ramsey equilibrium, respectively. Without any com-

mitment, there is no equilibrium with a positive token price if the issuer cannot charge

fees. Fees create the credibility for tokens to be issued at a positive price because users

will then expect a Markov-perfect issuer to optimally restrict token issuance in the future

to collect fees on legacy token holders. However, perfect commitment is too powerful such

that there is no upper limit to the value that can be created under the Ramsey policy,

and there is no equilibrium both with and without fees. When we introduce a project

maintenance cost that is convex in its size, interior equilibria exist with and without

commitment. We show analytically that at steady state the project value is higher, and

under a small maintenance cost the optimal money growth rate and fee charge are lower

for the Ramsey issuer, reflecting the use of commitment to sustain the token value.

We show that a Ramsey issuer who maximizes profits, after the initial period, makes

choices that maximize the utility value of all tokens. In other words, maximizing profits

for the issuer is equivalent to maximizing the total value of a project. This highlights

the fact that the commitment of the issuer determines how legacy token holders are

treated. The result shows that studying the problem of a profit maximizing issuer with

commitment can be a useful benchmark even for so-called public blockchains like Bitcoin

or Ethereum that can be viewed as aiming to maximize their value to a broad set of

stakeholders and not just to maximize profits for their founders.

As the degree of commitment matters in a significant way for optimal policies, we

extend our model to probabilistic commitment, reflecting the fact that issuers typically
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stick to a pre-announced monetary policy rule for a period of time but can face possible

disruptions at some point. We first consider a scenario where an issuer commits prob-

abilistically to a constant money growth rate. In particular, the issuer determines the

current-period money growth rate upon a reoptimization shock and sticks to it in future

periods until the arrival of another reoptimization shock. With the commitment proba-

bility equal to 0, the model is identical to the Markov-perfect case (no-commitment). If

this probability equals 1, tokens are expected to grow at a constant rate forever. While

issuers can have some commitment to token issuance, we assume they are free to change

fees at any time. Despite the richness of the economic mechanisms, we can analytically

solve for steady state values. The model predicts both the money growth rate and the

fee income relative to market capitalization of a project (fee ratio) to be decreasing in

the commitment probability.

We then consider a more general scenario where the issuer is able to commit probabilis-

tically to a richer path of money growth rates. We allow the issuer upon a reoptimization

shock to choose a geometric transition path for money growth rates, characterized by

a current-period money growth rate, a long-run money growth rate, and a convergence

speed. A path is executed as announced until another reoptimization shock arrives. The

issuer faces an issuance cost in the reoptimization period that captures the informational

problem at the launch or a major upgrade of a project.1 First, we find gradually declining

money growth rates to be optimal. Committing to low long-run money growth boosts

the token price, which allows a relatively large issuance of tokens in the short run. How-

ever, the issuer finds it optimal to spread out the short-run issuance to multiple periods

to avoid the initial issuance cost. As a result, the optimal issuance plan is consistent

with the average behavior of money growths that we document empirically. Moreover,

we find that an increase in the commitment probability reduces both the long-run money

growth rate and the convergence speed. This is because with more commitment power,

the issuer’s commitment to low long-run money growth becomes more effective, and this

provides the incentive to adopt a lower long-run growth rate and facilitates the use of

promises to support the collection of short-run profits. It seems reasonable to assume

that big stakeholders have the incentive or the power to change monetary policies for

their own interests, implying low commitment. This can explain why high retail ower-

ship is associated with a low long-run money growth and a low convergence speed in the

1Appendix B shows analytically that an issuer without such an issuance cost makes choices that
do not imply an interior equilibrium, even with a restriction to choose an immediate convergence to
the long-run money growth rate. In other words, being able to commit probabilistically to an abrupt
transition path for money growth rates is already very powerful.
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data. Finally, we investigate the optimal fee policies of issuers, and find an increase in

commitment probability to imply a slower convergence to a lower long-run fee ratio as

well.

Lastly, we show that the low long-run money growth rates typically observed suggest

that typical crypto issuers have a high commitment probability to their monetary policies.

To justify a long-run money growth rate of less than 5% per year requires the commitment

probability to be about 0.9 even for quite extreme parameter choices.

Our paper contributes to the nascent literature on the economics of cryptocurrencies.

To the best of our knowledge this is the first study to summarize empirically the main

features of crypto monetary policy based on a large sample of tokens. This is also the

first study to explicitly derive optimal policies jointly for issuance and fees, and our setup

with probabilistic commitment is novel. Our model shares some elements with Cong, Li,

and Wang (2022) who derive optimal token issuance in a Markov equilibrium and analyze

its impact on financing investment. They also consider investment efficiency with exoge-

nously specified rules for issuance and fees. D’Avernas, Maurin, and Vandeweyer (2022)

study the problem of a monopolist platform that can earn seigniorage revenues by issuing

a stablecoin. They study cases with full commitment and partial commitment. In their

model, the stablecoin provides utility only if its price equals exactly the pegged value and

they have a stationary equilibrium with full commitment. In their partial commitment

case, there is no commitment to the stablecoin issuance policy but full commitment to

other policy choices. In our partial commitment case, commitment to token issuance is

probabilistic. Gryglewicz, Mayer, and Morellec (2021) study token financed investment

where tokens are equity-like but without a monetary utility. Guennewig (2022) presents

a model economy where firms issue private currencies that generate seigniorage and in-

formation about consumers to study competition among firms and the consequences for

monetary policy. Other studies analyzing optimal financing through tokens are Catalini

and Gans (2018), Garratt and Van Oordt (2021), and Li and Mann (2018). Fanti, Ko-

gan, and Viswanath (2019) develop a model for valuing tokens in proof-of-stake payment

systems based on given processes for fee income and money creation. Other aspects of

the design of blockchains are analyzed by Hinzen, John, and Saleh (2019) and Mei and

Sockin (2022).

Our characterization of the Ramsey issuer has some connections to the large literature

on optimal (fiat) monetary policy. Paths implied by the issuer’s first-order conditions are

consistent with the Friedman rule, see for instance Cole and Kocherlakota (1998) and

Ireland (2003). However, in our model there is no equilibrium with such paths.

The paper proceeds as follows. Section 2 documents the main features of crypto

4



monetary policy. Section 3 presents our model, together with the characterizations of

the polar cases with and without commitment. Section 4 introduces the framework with

probabilistic commitment and studies its properties. Section 5 concludes.

2 Facts

This section documents properties of the circulating money supplies of cryptocurrencies

from the CoinMarketCap database. Stablecoins and wrapped tokens are excluded as

their issuance is subject to very specific constraints. Tokens that are no longer active as

of February 2, 2023, the time we retrieve the data, are also excluded. Monthly money

supplies are computed as the averages of the daily reported values. Our final sample

for analysis includes 2,140 tokens with more than 12 months of growth rates of money

supplies prior to December 31, 2022.

Figure 1: Average money growth rates by age and cohort. Notes: This figure averages monthly
money growth rates across tokens by age and cohort. Tokens are divided into 4 cohorts by their
starting year in the CoinMarketCap dataset: 2014 and earlier, 2015, 2016-2017, and 2018-2019.
For each cohort-age, top and bottom 10% of outliers are winsorized.

We first compute average monthly growth rates as a function of age. Tokens are

grouped into cohorts by their starting year in our sample: 2014 and earlier (69 tokens),

2015 (40 tokens), 2016-2017 (244 tokens), and 2018-2019 (654 tokens). For each cohort-

age, the influence of outliers is removed with 10% winsorization. As shown in Figure 1,
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average monthly money growth rates are typically declining with age and stabilizing at

about 0.1%. Younger cohorts have lower growth rates for a given age relative to the older

cohorts, which implies a faster convergence to a long-run growth level.

There is a significant heterogeneity behind these averages. Based on the plots for the

averages, we consider a representation for the money growth rate of a token that features

geometrically declining rates:

gt = λg + (1− λ) gt−1, (1)

where λ and g measure the convergence speed and the long-run growth rate, respectively.

In addition to approximately capturing average growth rates, this recursive representation

is tractable in our dynamic model later.2 For each token, we estimate λ and g by least

squares. We drop the first month to make our estimates insensitive to the early sample,

where circulating supply can be more difficult to measure.

Figure 2: Long-run money growth g and convergence speed λ in the cross section. Notes: This
figure shows the distribution of estimated g and λ in our sample of tokens. Outliers (see text)
are eliminated in the figure.

Histograms of the λ and g are presented in Figure 2. To enhance the informativeness

of the plots, outliers are excluded. Specifically, for long-run growth rates g, 71 growth

rates above 0.2 (that is 20% per month) are excluded, and so are 6 observations with

2The alternative of including a trend function of age would be less amenable for a theoretical analysis.
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growth rates below −5%. For convergence speed λ, 13 and 8 observations above and

below the extremes in the plot are excluded, respectively. As the top panel shows, there

are many tokens with long-run growth rates close to 0, and there is a long tail of positive

growth rates. The bottom panel shows some concentration of tokens around λ = 1, with

a long left tail going down to 0. There are 349 tokens for which λ = 1, and all of them

have estimated average growth rates of 0. That is, there is a group of tokens which

after some initial issuance have had constant money supplies. Generally, these tokens are

small and belong to more recent cohorts, with a median market capitalization of about

$300,000 and a median age of 23 months.3

Figure 3: Relationship between long-run money growth g and convergence speed λ. Notes:
We scatter plot estimated g and λ for all tokens with g ∈ (0.95, 1.2) and λ ∈ (0, 1). Red line
represents the linear fit of the relationship between g and λ with a 95% confidence interval.

Figure 3 plots estimated long-run growth rates g against convergence speeds λ for

tokens with g ∈ (0.95, 1.2) and λ ∈ (0, 1). The scatter plot displays a positive relation

between the two, which is emphasized by the regression line in red. The slope coefficient

is estimated at 0.03 with a more than 99% statistical significance. This implies that

among the group of tokens with some economically significant transition period, slow

convergence is associated with lower long-run money supply growth.

To explore potential factors behind the positive association in Figure 3, we exploit

the holding distribution data from IntoTheBlock, which shows how the circulating supply

3In our full sample, the median market capitalization is about $1,300,000 and the median age is 37
months.

7



of a token is distributed over three groups of investors: whale (addresses holding over

1% of the circulating supply), investor (between 0.1% and 1%), and retail (below 0.1%).

We show that tokens with a high level of retail holding have both a low long-run money

growth rate g and a low convergence speed λ. We include tokens with a total market

capitalization larger than $10,000 and end up having 259 of them with λ ∈ (0, 1) and

g ∈ (0.95, 1.2). We sort all tokens by their levels of retail holding into 4 equal groups,

and report by groups the mean and standard error of the mean (SEM) of λ and g.

Figure 4: Retail holdings and monetary policy. Notes: We sort tokens with g ∈ (0.95, 1.2) and
λ ∈ (0, 1) by their levels of retail holding into 4 equal groups and plot the mean (∗ and □) and
the standard error of means (error bars) of g and λ for each group.

Figure 4 presents the results. In particular, we find that the group with the highest

level of retail holding has a particularly low λ and a low g. Formal t-tests confirm

that the g (λ) of the high group is different from that of the low group or groups 1–3

combined with a more than 99% (95%) statistical significance. It is worth noting that

this result is not a simple representation of our results in Figure 1. In particular, while

tokens with a higher retail holding on average have a longer history, the correlation is

not perfect. Formally, we regress g and λ on retail holding rate while controlling for

age4 and whale holding, and find for both a negative relationship with a 5% statistical

significance. Since big stakeholders have either the incentive or in some cases the ability,

e.g., for governance tokens, to change monetary policies for their own interests, one might

4Estimates are quite similar if we replace the logarithm of age with fixed effects of Figure 1’s 5 cohorts.
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consider the holding by dispersed retail investors as a reasonable proxy for commitment

power. Our model developed below suggests a possible economic interpretation of this

finding—that is, issuers that have a high ability to make credible promises optimally

select slow convergence speed and low money supply growth in the long run.

3 Model

Now we develop a dynamic model in which a crypto issuer chooses monetary policy and

user fees optimally taking into account the responses of token users. Users choose money

holdings and velocity taking as given the processes for token prices and fees. In this

environment, equilibrium outcomes depend on the issuer’s ability to commit to future

policies. In this section, we consider two polar cases: a Markov-perfect issuer without

commitment and a Ramsey issuer who can commit to arbitrary future policies.

3.1 Setup

Users are assumed to receive utility from their token holdings. The utility depends on

the value of the tokens and the velocity with which they are used. Users start the period

with token holdings from the previous period Mt and choose the current velocity ωt and

money holdings for next period. Their problem is

max
Ct+j ,Mt+j+1,ωt+j

Et

∞∑
j=0

βj

[
Ct+j +

Aα
t+j

1− α
(pt+jMt+jωt+j)

1−α

]
,

with consumption Ct given by:

Ct + ptMt+1 = ptMt − ωtFt − At
η

2
ω2
t .

Users take as given the token price pt and the fee charge per transaction, or the fee rate,

Ft. Specification of fee costs scale with the velocity to capture the standard practice that

fees are assessed on transactions as opposed to transaction amounts. Increasing velocity

incurs a quadratic cost scaled by η > 0. This cost reflects the effort and resources needed

to manage tokens more intensively. Productivity is specified as At+1 = Atγ exp(zt+1)

where γ ≥ 1 and zt+1 = ρzt + ϵt+1 with ϵt+1 i.i.d. normally distributed. The effort cost

for velocity is scaled by productivity to allow for balanced growth. Parameters α ∈ (0, 1)

and β govern the shape of money-in-utility and time preferences, respectively. We assume

that βγ < 1 to keep discounted utility finite.
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From the first-order condition, the optimal velocity decision is given by

(ptMt)
1−α

(
ωt

At

)−α

− ηAtωt = Ft. (2)

The left-hand side (LHS) of Equation (2) is decreasing in ωt, which implies that a higher

fee rate reduces velocity. Meanwhile, higher real balances, ptMt, also imply a higher

velocity because of an increase in the marginal benefit of velocity.

The optimal token demand generates the pricing schedule for tokens, which reflects

the dynamic nature of the problem. In particular, the first-order condition with respect

to Mt+1 is given by

pt = βEt

[
pt+1 + (pt+1ωt+1)

1−α

(
Mt+1

At+1

)−α
]
, (3)

where the current price depends on the price and velocity next period. The importance

of the issuer’s ability to commit is apparent through the role of these future values that

depend on future policies.

The token issuer chooses how many new tokens to issue and the fee rate to maximize

the value of the project for itself. Throughout the paper, we analyze cases where the

amount of outstanding tokens is always strictly positive, i.e., Mt > 0, ∀t ≥ 0. We

consider two cases here—one with commitment (Ramsey) and one without (Markov-

perfect). A Ramsey issuer commits to state-contingent monetary and fee policies at time

0, even if they are no longer optimal ex post. The problem is given by

[Ramsey] : max
{Mt+1,Ft,pt,ωt}∞t=0

E0

∞∑
t=0

βt [pt(Mt+1 −Mt) + ωtFt] ,

subject to an initial M0, constraints (2) and (3) for all t ≥ 0.

A Markov-perfect issuer optimizes token supply and fee rate period by period, with

the problem given in a recursive form as

[Markov-perfect] : V (M,A, z) = max
M ′,F

p(M ′ −M) + ωF + βEz′|zV (M ′, A′, z′), (4)

where constraints (2) and (3) imply that

p = βEz′|z

[
p′ + (p′ω′)

1−α

(
M ′

A′

)−α ]
,
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and

(pM)1−α
(ω
A

)−α

− ηAω = F,

with A′ = A exp (z′). Price and velocity are functions of choices M ′ and F that are taken

as given by the issuer, that is p = p(M ′, A, z) and ω = ω(p, F,M,A).

The Markov-perfect issuer takes as given the optimal behavior of its future self, that

is, M ′′ = hM(M ′, A′, z′) and F ′ = hF (M
′, A′, z′) with hM(.) and hF (.) being optimally

policies that solve (4). These future decisions affect token price p′ and velocity ω′ tomor-

row, and in turn the token price p today. This is the key distinction from the Ramsey

case where the issuer can choose optimal policies once and for all, and can guarantee

(commit) that they are executed as such.

3.2 Optimal policies without commitment

Our model allows for growth in productivity, i.e., γ ≥ 1, and several equilibrium variables

can grow without bound. We scale variables by productivity so that model solutions can

be represented by variables that can be stationary, which greatly simplifies the analysis.

Specifically, define three key variables of interest—(scaled) real balances b, money growth

x and fee rate f—as follows

b ≡ p
M

A−1

, x ≡ M ′/A

M/A−1

, f ≡ F

A
.

Consistent with classical monetary theory, the money supply valued in terms of the

numeraire, pM , can be labelled as real balances. From the crypto perspective this would

be labelled as the market capitalization. We will use both terms interchangeably.

The problem of the Markov-perfect issuer can be reformulated as5

v(z) = max
x,ω

b(x, z)

[
x− 1

γ exp(z)

]
+ ωf(x, z, ω) + βγEz′|z exp(z

′)v(z′)

where real balance is

b(x, z) =
1

x
βEz′|z

{
b(hx(z

′), z′) + [b(hx(z
′), z′)hω(z

′)]
1−α

[γ exp(z′)]
α
}
, (5)

5Appendix D provides a proof of the linearity with respect to productivity.
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and fee rate is

f(x, z, ω) =

[
b(x, z)

γ exp(z)

]1−α

ω−α − ηω, (6)

with x′ = hx(z
′) and ω′ = hω(z

′) being policy functions of the future Markov-perfect

issuer that the current one takes as given. In this reformulated problem, real balances

b have replaced the money supply and the token price and this shows that the Markov-

perfect issuer does not face any pre-determined state variable. Even though the money

supply M is pre-determined, the issuer can determine a token price p (and thus real

balances pM) freely so that the effect of history can be erased.

Each period, the issuer chooses (scaled) money growth x and velocity ω. Given these

two choices, real balances b and fee rate f are pinned down endogenously by users’ first-

order conditions. Plug (6) into the objective and then take the derivative with respect to

ω, the optimal policy for velocity satisfies

(1− α)

[
b

γ exp(z)

]1−α

ω−α−1 − 2η = 0. (7)

The optimal velocity choice balances between the marginal benefit from facilitating the

transaction of users and the marginal cost from managing token usage. The fee rate is

set to achieve such an optimal velocity, that is, Equation (6) will determine the fee rate

once optimal ω is pinned down.

The first-order condition for money growth x is given by

1− (1− α)

[
b

γ exp(z)

]−α

ω1−α = 0. (8)

This reflects the following trade-off. The first term in (8) captures the marginal benefit,

that is, raising money growth x helps the issuer collect a larger seigniorage. Even though

the price of tokens falls, the issuer still receives a net gain because part of the price drop

will be borne by existing users, i.e., − 1
γ exp(z)

∂b(x,z)
∂x

> 0. The second term in (8) captures

the marginal cost. New money issued can only be put into use in the future, and the

amount of fee income this period depends on the current real balances. It is not optimal

for the issuer to expropriate the existing token holders too aggressively because the price

drop reduces the real balances and thus the fees that can be collected this period.

According to condition (7), when the issuer chooses an aggressive money growth that

drives down real balance, it is optimal to reduce velocity at the same time. However,
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condition (8) implies that the reduced velocity in turn weakens the marginal cost of

money growth, and this is because the same decrease in real balances under a lower

velocity implies a smaller decrease in transaction amount and thus utility. When α >
1
3
, the optimal reduction in velocity produces a mild effect and guarantees the overall

marginal cost of money growth to be increasing. The trade-off for money growth is then

well behaved.6 In that case, Proposition 1 characterizes the steady state of the optimal

Markov-perfect policies, that is, with current and future shock realizations set to z = 0.

Real balances, fee rates, and money growth rates are constant after being scaled by

productivity. History does not matter. No matter what M0 the issuer starts with, the

system jumps right to the stationary point.

Proposition 1 For α > 1
3
there exists interior optimal policies for the Markov-perfect

issuer which imply a growth-adjusted steady state where

M ′

M
= γβ

2− α

1− α
,

p′

p
=

1

β

1− α

2− α
,

ωF

pM
=

1

2

1 + α

1− α
,

pM

A−1

= γ (1− α)
2

3α−1 (2η)
α−1
3α−1 .

Proof. See Appendix A.1.

In the steady state, real balances pM are growing at the productivity growth rate γ.

Money growth and price growth rates therefore satisfy M ′

M
p′

p
= γ. The discount factor β

is typically close to 1 so that β 2−α
1−α

>> 1, that is, the money supply is growing and the

price is declining. Users accept this price decline because they value the utility of the

project. As we see in more detail below, the absence of commitment leads to a highly

inflationary token.

The following corollary shows formally that incorporating fees is crucial to get an

interior optimum for the Markov-perfect issuer. As mentioned earlier, the intention to

collect more fees restricts the issuer’s money printing. Without it, the optimal monetary

policy is to print an infinite amount of money each period, which drives real balances to

zero.

6Technically, while the second derivatives with respect to money growth x and velocity ω are always
negative, the determinant of the Hessian matrix is positive if and only if α > 1

3 .
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Corollary 2 Without fees and endogenous velocity, i.e., ω ≡ 1 and F ≡ 0, a Markov-

perfect issuer would like to increase money supply as much as possible.

Proof. The first-order derivative with respect to x becomes− 1
γ exp(z)

∂b(x,z)
∂x

= 1
γ exp(z)

b(x,z)
x

>

0.

3.3 Optimal policies with commitment

The Lagrangian for the Ramsey issuer expressed in productivity-scaled terms is given by

max
{xt,ft,ωt,bt,µt,ζt}∞t=0

E0

∞∑
t=0

(γβ)t exp

(
t∑

k=0

zk

){
bt

[
xt −

1

γ exp(zt)

]
+ ωtft

+ µt

{[
bt

γ exp(zt)

]1−α

ω−α
t − ηωt − ft

}

+ ζt

{
β

xt

Et

[
bt+1 + (bt+1ωt+1)

1−α (γ exp(zt+1))
α]− bt

}}
,

where µt and ζt are Lagrange multipliers of the fee and pricing constraints at time t,

respectively.

Consider first velocity and fees. After some straightforward algebra, the equilibrium

condition for ωt for t ≥ 1 is given by

γβ exp(zt)

{
(1− α)

[
bt

γ exp(zt)

]1−α

ω−α
t − 2ηωt

}
+ βEt−1(1− α)b1−α

t ω−α
t (γ exp(zt))

α = 0. (9)

The term in curly brackets also shows up in Equation (7) for the Markov-perfect issuer,

that is, optimal velocity trades off between the value of transactions and the cost of cash

management. However, a Ramsey issuer takes into account that velocity ωt will have a

dynamic effect on the real balance at t − 1 because the token price takes into account

future transaction value. In particular, choosing a larger ωt increases real balance at t−1,

which is captured by the last term.

Differentiate the Lagrangian with respect to bt, and then substitute out ζt using the
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first-order condition with respect to xt. For t ≥ 1, we have

(1− α)

[
bt

γ exp(zt)

]−α

ω1−α
t − 1 + Et−1

{
1 + (1− α)

[
bt

γ exp(zt)

]−α

ω1−α
t

}
. (10)

Again, the first two terms echo what we have seen for the Markov-perfect issuer in (8),

and the third term reflects Ramsey issuer’s commitment. When picking real balance (and

money growth) today, a Ramsey issuer takes into account that it will affect real balances

faced by its past self. A larger real balance (a low money growth) today imply a larger

real balance yesterday.

Importantly, the third term makes (10) strictly positive under constant zt, which

means that a Ramsey issuer can increase real balances for t ≥ 1 without limit. This

implies that there is no interior optimum and no equilibrium because the issuer could

create infinite value. In particular, the Ramsey issuer can support a large real balance

today by committing to a large real balance in the future. In contrast, the Markov-perfect

issuer in the future will have the incentive to collect seigniorage and fees by hurting the

value of tokens outstanding today, which therefore limits the real balance, or the market

capitalization of the project, that can be achieved today. In other words, our result

suggests the powerful effect of perfect commitment for a crypto project.

Proposition 3 The optimal policies for the Ramsey issuer do not imply a finite growth-

adjusted real balance.

Proof. Equation (9) implies that ωt =
(

1−α
η

) 1
1+α
[

bt
γ exp(zt)

] 1−α
1+α

. Plugging it into Equation

(10) yields (1− α)
2

1+α η
α−1
1+α

[
bt

γ exp(zt)

] 1−3α
1+α

, which is strictly positive for positive bt.

For paths implied by the first-order conditions that lead to infinite growth-adjusted

real balances, the token return eventually equals the real interest rate, i.e., the pricing

equation (3) implies that Et
pt+1

pt
→ 1

β
as pt+1Mt+1

At
→ ∞. This is consistent with the Fried-

man rule, see for instance Cole and Kocherlakota (1998) and Ireland (2003). However, in

our model there are no equilibria with such paths.

While the proposition highlights the absence of an interior optimum for the Ramsey

issuer, there is another dimension to the challenges to solving this Ramsey problem. We

briefly digress here to illustrate this point. One of the challenges of solving the Ramsey

model compared to the Markov-perfect case is that the Ramsey model is essentially short

one equation. Consider an example where money supplies are exogenously constrained. In
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this case, the Ramsey setup does not have a unique equilibrium price, while the Markov-

perfect model does. A Markov-perfect equilibrium has the requirement that equilibrium

prices depend only on the state variables and this effectively adds an equation so that

the price level can be determined.

Specifically, assume that money supply Mt is constrained to grow at the productivity

growth rate γ, so that Mt = γtM0 for t ≥ 1. This is in line with solving for a deterministic

steady state. In the model without fees and endogenous velocity, the price equations in

this case, with A0 = 1, imply pt
pt+1

= β
[(

1
pt+1M0

)α
+ 1
]
. There are no other usable

equations to solve for the Ramsey equilibrium; the first-order conditions for the prices

each include a multiplier. Therefore, the price path in the Ramsey model cannot be

determined unless there is an additional constraint (or boundary condition). The Markov-

perfect equilibrium has an additional constraint. Namely, prices can only depend on the

current state, which here implies that prices are constant. Therefore, the price equation

in the Markov-perfect case can be solved for the unique price level pt+1 satisfying 1 =

β
[(

γ
pt+1M0

)α
+ 1
]
. In the next section, the issuer’s objective is modified so that the

optimal policy for the Ramsey case implies stationary real balances (in productivity-

adjusted terms) and this provides the boundary condition for the price equations.

3.4 Project maintenance costs

For an interior solution of the Ramsey problem, we now introduce a project maintenance

cost that is increasing and convex in the project size. Maintaining a blockchain brings

about a series of costs (transaction validations, code updates, etc). Security risks and

regulatory exposures are no doubt increasing more than proportionally in size. We model

this as a quadratic cost in real balances, which is subtracted from seigniorage and fee

income.7 While admittedly reduced-form, this allows us to get an explicit characterization

of the role of commitment. It is assumed that the issuer’s cash flow becomes

pt(Mt+1 −Mt) + ωtFt −
ξ

2
At

(
ptMt

At

− b̄

)2

, (11)

with parameters ξ > 0 and b̄ > 0; the maintenance cost scales with productivity At to

allow for balanced growth.

For the Markov-perfect issuer, the equilibrium condition that pins down growth-

7Alternatively, one could consider a satiation level for the money-in-utility function.
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adjusted real balances bt is given by

ξ

[
b

γ exp(z)
− b̄

]
+ 1− 2

α−1
1+α (1− α)

2
1+αη

α−1
1+α

[
b

γ exp(z)

] 1−3α
1+α

= 0, (12)

in which we have plugged in the optimal choice for velocity. For the Ramsey issuer, we

have correspondingly for t ≥ 1

ξ

[
bt

γ exp(zt)
− b̄

]
− 2(1− α)

2
1+αη

α−1
1+α

[
bt

γ exp(zt)

] 1−3α
1+α

= 0. (13)

It is straightforward to see that for any given bt, the LHS of (12) is larger than that of

(13). For α > 1
3
, the left hand side of both equations are increasing in bt. Therefore,

we know a Ramsey issuer will end up producing a larger bt than a Markov-perfect issuer

for t ≥ 1. This is consistent with our previous results without maintenance costs where

real balances were shown to be unboundedly large for a Ramsey issuer but finite for a

Markov-perfect issuer. The convex maintenance cost eventually limits equilibrium real

balances even for the Ramsey case.

The ratio of total fee income to total market capitalization, the fee ratio for short, for

a Markov-perfect issuer is given by

ωF

pM
= 2

−2
1+α (1 + α)

1

1− α

(
1− α

η

) 2
1+α
[

b

γ exp(z)

] 1−3α
1+α

,

and for Ramsey at t ≥ 1 is given by

ωtFt

ptMt

= α
1

1− α

(
1− α

η

) 2
1+α
[

bt
γ exp(zt)

] 1−3α
1+α

.

For α ∈
(
1
3
, 1
)
, we know that 2

−2
1+α (1 + α) > α. Therefore, a larger real balance bt for

t ≥ 1 created by a Ramsey issuer also imply a lower fee ratio then.

Regarding money growth in the Markov-perfect case, we can plug the optimal velocity

into the real balance constraint of (5) and have

x = βEz′|z

{
b′

b

{
1 + 2

α−1
1+α

(
1− α

η

) 1−α
1+α
[

b′

γ exp(z′)

] 1−3α
1+α

}}
.
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Similarly, for the Ramsey case at t ≥ 1 we have

xt = βEt

{
bt+1

bt

{
1 +

(
1− α

η

) 1−α
1+α
[

bt+1

γ exp(zt+1)

] 1−3α
1+α

}}
.

Consider a steady state with a sufficiently small maintenance cost, i.e., ξ → 0. In this case,

a Ramsey issuer eventually creates a very large real balance, as suggested by Equation

(13). With α ∈
(
1
3
, 1
)
, we have 2

α−1
1+α < 1, and such a very large real balance implies a

lower steady state money growth x for the Ramsey issuer compared to the Markov-perfect

issuer. Note that for a large enough ξ this conclusion is reversed, but this case seems

empirically less relevant.

At t = 0, the Ramsey issuer is not bound by past commitments similar to the Markov-

perfect issuer. We can show that real balances at t = 0 are identical for the two. For a

small enough ξ, a Ramsey issuer chooses a much larger b1, which implies a larger money

growth x0. In other words, a Ramsey issuer emits a lot more money at t = 0, and

produces a larger initial profit.

Proposition 4 summarizes the behavior of Markov-perfect and Ramsey issuers with a

project maintenance cost. Overall, when the project maintenance cost is small, Ramsey

issues a large amount of tokens in the first period, but restricts the issuance in the long

run. For fee charges, the Ramsey issuer behaves generally in a more conservative way.

Proposition 4 Suppose there exists a project maintenance cost as in (11). For α >
1
3
, both Markov-perfect and Ramsey issuers have interior optimal policies that imply a

growth-adjusted steady state. Compared to a Markov-perfect issuer, a Ramsey issuer

observes,

• in the steady state, larger growth-adjusted real balances ptMt

At−1
and a lower fee ratio

ωtFt

ptMt
, which for a small enough ξ imply a lower money growth rate Mt+1

Mt
;

• at t = 0, identical token price p0 and fee ratio ω0F0

p0M0
, which for a small enough ξ

imply a higher money growth rate M1

M0
.

Proof. See Appendix A.2.

For the case without fees and endogenous velocity, the characterization does not

depend on cost parameter ξ and is clearcut.
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Corollary 5 Without fees and endogenous velocity, ∀ξ ∈ R+, a Ramsey issuer facing a

project maintenance cost as in (11) chooses a lower (higher) money growth Mt+1

Mt
(M1

M0
) in

steady state (at t = 0) compared to a Markov-perfect issuer.

Proof. See Appendix A.3.

We next show that a Ramsey issuer’s choices maximize not only profits, but after the

initial period also the utility value of the project. Recall that the utility users get from

outstanding tokens is given by Aα

1−α
(pMω)1−α − η

2
Aω2, or in the productivity-adjusted

notation L(b, ω) = A
1−α

[
bω

γ exp(z)

]1−α

− η
2
Aω2. Define utility value as

∂L(b, ω)

∂b
b+

∂L(b, ω)

∂ω
ω = 2A

[
bω

γ exp (z)

]1−α

− ηAω2. (14)

This represents the marginal valuation of the utility that users get from using tokens.

Proposition 6 Allocations that maximize the present discounted utility values in (14)

net of maintenance costs, for t ≥ 1, lead to the same real balances and velocities as a

Ramsey issuer, with identical implied money growth and fee rates.

Proof. See Appendix A.4

A profit-maximizing issuer with commitment (Ramsey) would like to protect the

value of legacy tokens. Without commitment (Markov-perfect) that is not possible. The

result shows that with commitment, after the initial period, profit maximization for the

issuer implies value maximization for all token holders. So-called public blockchains like

Bitcoin or Ethereum can be viewed as aiming to maximize their value to a broad set of

stakeholders and not just to maximize profits for their founders. Therefore, our study of

the problem of a profit maximizing issuer with commitment can be a useful benchmark

for the design choices of even these blockchains.

In the initial period, the productivity-adjusted real balance is lower under the Ramsey

issuer than that under choices that maximize total value (see Appendix A.4). At that

point, the Ramsey issuer is not bound by a prior commitment and has an incentive to

lower the value of outstanding tokens held by users, i.e., M0.
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4 Probabilistic commitment

A blockchain is a commitment to a set of computer codes, and as such, the no-commitment

Markov-perfect case is not a priori a very realistic representation. On the other end of the

spectrum, the perfect commitment implied by Ramsey may be also somewhat extreme.

For instance, the Bitcoin protocol encodes a commitment to an issuance schedule which

limits the money supply to never exceed 21 million units, and the majority of Bitcoin

stakeholders profess a very strong commitment to this issuance schedule. However, there

always exists the possibility of a future fork with a different issuance schedule that would

attract a majority of Bitcoin users and that would effectively become the dominant chain.

Particularly, as it is not at all clear that the fee income—which would eventually become

the only source of funds—would be significant enough to incentivize miners in a way to

secure the Bitcoin blockchain.

As we have shown previously that the modelling of commitment matters for optimal

policies and project values in a first-order way, we build a framework that describes

reasonably the commitment technology typical issuers have in reality. Our model that

allows for partial commitment to token issuance represented by a commitment probability

that takes values between 0 and 1. Section 4.1 presents a baseline setup in which the

issuer gets an opportunity each period with a given probability to reoptimize the money

growth rate. Otherwise, it has to follow the money growth rate in the previous period.

In other words, the issuer commits probabilistically to a constant money growth. Section

4.2 presents a generalized setup in which the issuer is able to commit probabilistically to a

richer path of money growth rates. In particular, the issuer who receives the opportunity

to reoptimize picks a geometric transition path for money growth rates, which is governed

by a money growth rate for the short run (today), a money growth rate for the long run,

and a transition speed between the two. Without any reoptimization shocks, its future

self has to follow the transition path. This generalized setup echoes our empirical analysis

in Section 2. In Appendix B, we present an intermediate case between the two.

4.1 Baseline setup and optimal policies

Assume that with probability q ∈ [0, 1] the issuer delivers the money growth rate an-

nounced in the previous period, and with probability 1− q the issuer gets to reoptimize

and select a money growth rate for today without regard to past promises. With the

ability to select a new money growth rate, we assume that the issuer promises to repeat

the same money growth rate in the future. Under these assumptions, when q = 0, the
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model reduces to the Markov-perfect issuer studied earlier and the issuer reoptimizes

every period. When q = 1, the issuer commits fully to a constant money growth rate.

The latter case is more restricted than the Ramsey issuer we considered before who had

the ability to commit to time- and state-contingent plans. However, this more restricted

specification captures the fact that for many projects money growth rates are typically

very stable and announced far into the future. This restricted policy can help correct the

counterfactual property of the Ramsey case considered before where money growth rates

would respond to any contemporaneous shocks.

We formulate the problem in a recursive way and directly start with the growth-

adjusted setting. Define (unscaled) money growth as g ≡ M ′

M
. The problem for the issuer

in an optimization state is given by

v(z) = max
g,ω

b(g, z)
g − 1

γ exp(z)
+ ωf(g, ω, z) + βγEz′|z exp(z

′) [(1− q)v (z′) + qvn(g, z′)] ,

(15)

and in a no-optimization state (with superscript n)

vn(g−1, z) = max
ωn

b(g−1, z)
g−1 − 1

γ exp(z)
+ ωnf(g−1, ω

n, z) (16)

+ βγEz′|z exp(z
′) [(1− q)v (z′) + qvn(g−1, z

′)] ,

so that in a no-optimization state, money growth g−1 is inherited from the past. The fee

equation is given by

f(g, ω, z) =

[
b(g, z)

γ exp(z)

]1−α

ω−α − ηω.

Implicit in this setup is the assumption that fee rates are selected every period without

precommitment. In many blockchains, fee rates are indeed fluctuating at high frequencies

with more discretion involved. The equation for real balances can be written as

b(g, z) = β
γ exp(z)

g
Ez′|z

{
(1− q)

{
b (hg(z

′), z′) + [b (hg(z
′), z′)hω (z

′)]
1−α

[γ exp (z′)]
α
}

+ q
{
b (g, z′) + [b (g, z′)hn

ω (g, z
′)]

1−α
[γ exp (z′)]

α
}}

, (17)

where hg(z) and hω (z) are the policy functions for g and ω in (15); hn
ω (g−1, z) is the

policy function for ωn in (16). A term like hn
ω (g−1, z) does not show up in the problem

of a Markov-perfect issuer studied before, see Equation (5). With its dependence on

the previously chosen money growth g−1 there is now a dynamic dependence that is
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indicative of the emergence of so-called generalized Euler equations (Klein, Krusell and

Rios-Rull, 2008). Such generalized Euler equations are challenging to solve for with

local methods because first-order conditions contain derivatives of yet unknown policy

functions. Nonetheless, in the case considered here, the static nature of ωn permits us to

substitute out ∂hn
ω(g,z

′)
∂g

and allows analytical characterizations.

Proposition 7 characterizes optimal policies in the steady state as a function of com-

mitment probability q. With a higher q, a partially committed issuer’s ability to reopti-

mize the money supply gets more restricted and this leads to lower money growth in the

steady state. Specifically, an issuer benefits from being able to commit to a low money

growth in the future as it boosts the price of new tokens issued today. When q is large,

it is more likely that future money growth rates correspond to the level chosen today.

As a result, the incentive to commit to a low money growth in the future is reflected

directly by a low money growth today. In other words, when commitment technology

becomes more effective, issuers assess it more. Meanwhile, fees relative to total market

capitalization also decline with q. An issuer with commitment would like to commit to

a high velocity and thus low fees next period. The issuer here cannot directly commit to

future fees. However, future fees depend on future money growth rates and through this

channel fees decline with the commitment probability q.

Proposition 7 For q ∈ [0, 1] and α > 1
3
, optimal policies for the probabilistic-commitment

issuer imply a growth-adjusted steady state where

M ′

M
= γβ

1− α + h(q)

1− α
,

p′

p
=

1

β

1− α

1− α + h(q)
,

ωF

pM
=

1

2

1 + α

1− α
h(q),

pM

A−1

= γ (1− α)
2

3α−1 (2η)
α−1
3α−1 [h(q)]

1+α
1−3α ,

with h(q) = (1−γβq)(α+1)
2γβq+α+1

. Money growth, M ′

M
, and fee ratio, ωF

pM
, decrease in q.

Proof. See Appendix A.5.

With q = 0, we retrieve the Markov-perfect steady state characterized in Proposition

1. With q = 1, the optimal choices are bounded and thus in sharp contrast to the Ramsey

case. The Ramsey issuer unrestricted by a maintenance cost can produce unlimitedly

22



large current real balances that would need to be supported by growing (productivity

adjusted) real balances, which would be driven by declining money growth rates. Such

paths are not compatible with constant money growth rates and this restricted choice set

produces interior outcomes.

Corollary 8 Without fees and endogenous velocity, for q ∈ (0, 1], optimal policies for

the probabilistic-commitment issuer imply a growth-adjusted steady state with a money

growth rate M ′

M
that is higher than the case with fees and endogenous velocity.

For q = 1, steady state money growth is bound from below by γβ (with fees) and 1

(without fees) and converges to these lower bounds for γβ → 1 and α → 1/3 (with fees)

and γβ → 1 or α → 0 (without fees).

Proof. See Appendix A.6.

Corollary 8 shows that steady-state money growth without endogenous velocity is

higher than that with endogenous velocity, which is consistent with the role of endogenous

velocity as a mechanism in restricting the money supply. Unlike the Markov-perfect

case, the probabilistic commitment model admits interior solutions even without fees.

Essentially, this is due to the fact that the partial commitment restricts money growth.

We also characterize the lower bounds for steady-state money growth rates and answer

the question whether negative (net) money growth rates, or deflation, would ever be

optimal for the long run. Consider first a model without fee income. From the issuer’s

objective function it is clear that negative money growth implies negative seigniorage

for the issuer, and this would not be an optimal long-run outcome. Consistent with

this, Corollary 8 implies a lower bound of 1 for the (gross) growth rate of money, and

the optimal money growth rate converges to it as γβ converge to 1. However, with fees,

negative money growth in steady state cannot be ruled out because negative seigniorage

could be compensated by a high fee income.

Lastly, Proposition 7 and Corollary 8 allow us to do some back-of-envelope calculations

of the commitment power that typical token issuers have using long-run money growth

rates in the data.8 According to Proposition 7 for the case with fees, in addition to the

commitment probability q, optimal steady-state money growth rates only depend on the

growth adjusted discount factor, γβ, and the utility curvature, α. Figure 5 plots optimal

money growth rates as a function of q for ranges of values for γβ and α covering those

that one could possibly consider empirically relevant, in particular for γβ ∈ {0.95, 0.999}
8As we generalize our model in Section 4.2 by allowing issuers to pick a transition path, our key

message—typical issuers have high commitment—carries through.
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Figure 5: Back-of-envelope calculation of commitment probability q in the baseline setup.
Notes: We compute the steady-state money growth rate in the baseline setup with prob-
abilistic commitment, i.e., Proposition 7: g = γβ 1−α+h(q)

1−α with h(q) = (1−γβq)(α+1)
2γβq+α+1 , with

γβ ∈ {0.95, 0.999} and α ∈ {0.334, 0.9}.

and α ∈ {0.334, 0.9}. With β representing the dollar discount rate and γ the productivity

growth rate of the project, empirically reasonable values for γβ are no doubt higher than

0.95. For the curvature parameter, α = .334 is the lowest possible value consistent with a

well-defined interior choice. Whether such low values are empirically reasonable remains

open. In any case, even for the most extreme parameter choices, justifying an annual

money growth rate of 5% or less requires a commitment probability of over 0.88. For

less extreme parameter values, producing money growth rates of 5% or less requires a

commitment probability above 0.9 and possibly very close to 1. According to Corollary

8, without fees, the same q leads to a higher steady-state money growth rate. This

means that the observed low long-run growth rates for tokens that do not charge fees is

consistent with even more commitment power.

4.2 Optimal transition

In principle, an issuer can design a more sophisticated money issuance policy than simply

a constant growth rate at the offering stage. For instance, Bitcoin halves its money supply

roughly every four years, implying a declining money growth rates. In fact, as we have

shown in Section 2, money growth rate declines in age on average. Motivated by these
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facts, we generalize our model with probabilistic commitment to allow the issuer to choose

a transition path for money growth rates. In particular, in an optimization state, the

issuer is able to pick a money growth rate for today g×s, a money growth rate for the long

run g, and a rate λ ∈ [0, 1] that describes the speed at which money growth converges

to its long run level. In other words, s represents the initial distance from reaching the

long-run money growth rate. Without any reoptimizing shocks, the money growth rate

t ≥ 1 periods after the last (re)optimization is:

gt = λg + (1− λ)gt−1

with g0 = gs. Such a formulation is consistent with our empirical specification in (1).

Section 4.2.1 describes the setup. Section 4.2.2 analyzes optimal policies. Given the

richness of this model, we can no longer analytically characterize the optimal policies and

thus resort to numerical solutions.9

4.2.1 Generalized setup

Shown in Appendix B, an issuer who can only pick a money growth rate for today g × s

and one for the long run g when receiving a reoptimization opportunity already does not

admit inner choices in s. In other words, relative to the baseline setup in Section 4.1, the

additional flexibility to pick a transition for money growths, even if it has to be abrupt,

is already too powerful—in particular, the issuer can raise today’s money growth gs to

be extremely large while still sustaining token prices by reducing long-run money growth

g to be very close to βγq. The issuer we consider in this generalized setup has even more

flexibility, i.e., to be able to pick any convergence speed λ ∈ [0, 1], and therefore, we

introduce a short-run issuance cost to get an interior solution. In particular, we assume

that the issuer faces a short-run issuance cost in the optimization state, i.e., − ζ
2
(s− 1)2.

One motivation for this is that asymmetric information, for instance about how much

commitment power the issuer has, prevents users from buying a large quantity of tokens,

which is severe at the early stage of the project or at the time when there is an update

of monetary policy.

The issuer’s problem in an optimization state is given by:

v(z) = max
g,s,λ,ω

b(g, s, λ, z)
gs− 1

γ exp(z)
+ ωf(g, s, λ, ω, z)− ζ

2
(s− 1)2 (18)

+ βγEz′|z exp(z
′) [(1− q)v(z′) + qvn (g, (1− λ)s+ λ, λ, z′)] ,

9Our intermediate case in Appendix B allows some analytical characterizations of optimal policies.
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where value in no-optimization state is:

vn(g, h, λ, z) = max
ωn

b(g, h, λ, z)
gh− 1

γ exp(z)
+ ωnf(g, h, λ, ωn, z)

+ βγEz′|z exp(z
′) [(1− q)v(z′) + qvn (g, (1− λ)h+ λ, λ, z′)] ,

in which h ∈ (1, s] describes the distance from reaching the long-run money growth rate.

Given today the issuer is in a no-optimization state with a money growth rate of gh and

a project value of vn(g, h, λ, z), tomorrow’s money growth rate in a no-optimization state

is gh(1− λ) + gλ and the value is vn (g, (1− λ)h+ λ, λ, z′).

Fee is:

f(g, h, λ, ω, z) =

[
b(g, h, λ, z)

γ exp(z)

]1−α

ω−α − ηω,

and real balance is:

b(g, h, λ, z) = β
γ exp(z)

gh
×

Ez′|z

{
(1− q)

{
b (hg(z

′), hs(z
′), hλ(z

′), z′) (19)

+ [b (hg(z
′), hs(z

′), hλ(z
′), z′)hω (z

′)]
1−α

[γ exp (z′)]
α
}

+ q
{
b (g, (1− λ)h+ λ, λ, z′)

+ [b (g, (1− λ)h+ λ, λ, z′)hn
ω (g, (1− λ)h+ λ, λ, z′)]

1−α
[γ exp (z′)]

α
}}

where hg(z), hs(z), hλ(z), and hω (z) are policy functions for g, s, λ, and ω in the

optimization state, as in (18).

4.2.2 Optimal policies

As our focus is on the average transition path, we numerically solve our model by fixing

z = 0. Notice that as we lower down the long-run growth rate g, the growth-adjusted

long-run real balance increases. An interior solution implies that the problem has an

endogenous lower bound for the choice of g. When h = 1, the real balance equation
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(after fixing z = 0 and substituting out the optimal velocity choice) is:

b(g, 1, λ)

{
g

γβ (1− q)
− q

1− q

{(
1− α

2η

) 1−α
1+α
[
b (g, 1, λ)

γ

] 1−3α
1+α

+ 1

}}

=

{(
1− α

2η

) 1−α
1+α
[
b (hg, hs, hλ)

γ

] 1−3α
1+α

+ 1

}
b (hg, hs, hλ) .

Clearly, if g < βγq, the LHS will always be negative, and thus the equation will never

hold for finite b(g, 1, λ) and b (hg, hs, hλ). In general, given b (hg, hs, hλ), a low enough g

will not permit any positive and finite value of b (g, 1, λ) that solves the above equation.

This means that the choice set for g is bounded from below. We set an exogenous lower

bound for g to 0.98 when solving the model, recognizing that, in reality, extremely few

tokens are estimated to exhibit a large long-run deflation (See Figures 2 and 3).

We choose β = 0.95 and γ = 1.05, and present results under two combinations of the

other parameters—one where α = 0.85, ζ = 90 and η = 0.01 and the other where α = 0.7,

ζ = 800 and η = 0.1—that lead to quite different long-run fee ratios. We also study cases

without fees and endogenous velocity. In the parameter region that we experiment with,

we always have βγq < 0.98.

Figure 6 presents our results, with upper (lower) panel presenting our model with

(without) fees and endogenous velocity. We have two main findings. First, we find that it

is optimal for the issuer to adopt a high short-run money growth rate and smoothly transit

to a low long-run money growth rate. This is consistent with the empirical property of

average money growths revealed by Figure 1. The (probabilistic) commitment to a low

long-run money growth rate allows the issuer to sustain token prices, and this allows the

issuer to issue a large quantity of tokens and extract more profits in the short run, when

they are not discounted as much. Moreover, the optimal strategy of the issuer in our

model is to not concentrate the short-run issuance in the first period only but to spread

it out across several periods, i.e., to choose a λ < 1. Such an arrangement economizes

the issuance cost at the launch or a major update of the project.10

Second, as the commitment probability q increases, the long-run growth rate g and

the transition speed λ reduce at the same time. As q increases, the committed transition

path is less likely to be reoptimized by future issuers, and a more effective commitment

technology encourages issuers to assess it more. First, similar to our baseline probabilistic-

commitment setup in Section 4.1, issuer’s willingness to commit to a low money growth

10In Appendix C, we solve our model with extremely small issuance costs ζ. We find situations where
issuers consider a quick transition optimal.
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Figure 6: Optimal monetary policies and commitment probability q. Notes: We fix β = 0.95
and γ = 1.05. The upper (lower) panel presents our model with (without) fees and endogenous
velocity. We solve the model by setting the lower bound for g to 0.98. For figures of optimal
λ and s in the upper panel, we plot the region where the corresponding optimal g does not hit
the lower bound.

rate in the future is reflected into a low g. Moreover, as token prices can be now sustained

more effectively through a low g, the issuer finds it possible to issue relatively even more

in the short run without having to worry about a too rapid decrease in short-run profits.

This ends up encouraging a higher s and a lower λ. Overall our results suggest that, with

high commitment, the issuer adopts a monetary policy in which money growth rates

converge slowly to a low long-run level. Recall our empirical finding in Figure 4. One

might consider a project with tokens held heavily by a few big players to have very low

commitment because they have either the incentive or for governance tokens the ability

to change monetary policies. In this case, our result provides a plausible explanation of

why a high level of retail holding is associated with a low long-run money growth and a

low convergence speed in the data.

Figure 7 simulates 3,000 tokens with the presence of optimization shocks and computes

28



Figure 7: Simulated paths for money growth rates and fee ratios. Notes: We fix β = 0.95, γ =
1.05, α = 0.85, ζ = 90, η = 0.01 and solve the model with q = 0.92 and q = 0.88. Starting from
an optimization state, we simulate 3,000 tokens for 20 periods, and compute average money
growth rates and fee ratios across firms.

the path for the average money growth rate and fee ratio.11 First, it shows that under a

high q the low long-run growth rate g plays a dominant role relative to the forward-shift

of issuance to the early stage, i.e., a high s and a low λ. This makes money growth

rates always lower. While we do not tabulate a separate table here, this is also the case

as we solve the model without fees (recall lower panel of Figure 6). Second, a higher q

also leads to fee ratios that are always lower. In particular, we find that the fee rate per

transaction, f , is higher when q becomes higher. However, the improved commitment

significantly enhances the value of the project, and ultimately brings down the overall

ratio of fees to market capitalization, ωF
pM

. Meanwhile, the convergence of fee ratio to its

long-run level is also slower under a higher q.

Lastly, our previous result in Section 4.1 that the low long-run growth rates in the

data imply high commitment power carries through into this setting with transition. For

instance, Figure 6 shows that the optimal long-run growth rate g spikes up quickly as

11Results are similar as we vary parameters.
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commitment probability q drops below 0.9. Therefore, one shall be cautious to build

models of cryptocurrencies or blockchains by assuming that the issuers or founders have

no commitment.

5 Conclusions

The polcies for token issuance and fees are of first-order importance for crypto projects.

This paper examines this issue along two dimensions. First, empirically, we provide

the first summary of the main features of existing tokens’ monetary policies based on

a large cross-section of data. Second, theoretically, we propose a dynamic model that

accounts for a joint optimization of money issuance and fee charges by crypto issuers with

varying degrees of commitment. We highlight the importance of issuers’ commitment for

the optimal policies and the maximal market capitalization that can be achieved. Our

results are helpful not only for interpreting the stylized facts that we document but also

for guiding the design of monetary and fee policies for future projects and the update of

existing ones.

This paper has focused on studying deterministic and average properties as they are

first-order and offer analytical tractability. Nonetheless, our model allows for the study of

stochastic properties of optimal policies with straightforward numerical methods. Even

though typical outstanding crypto projects adopt monetary rules and in some cases fee

rules that are largely deterministic, it can well be the case that policies depending on time-

varying economic conditions, e.g., the level of interest rates or the economic productivity,

can better create value. As new projects become more and more sophisticated, analysis

in this direction is helpful to provide guidance for their design. We consider these in

ongoing work.
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Appendix

A Proofs

A.1 Proposition 1

Equilibrium conditions for Markov-perfect issuer in the scaled model are:

b

xγ exp(z)

{
1− (1− α)

[
b

γ exp(z)

]−α

ω1−α

}
= 0 (20)

(1− α)

[
b

γ exp(z)

]1−α

ω−α − 2η = 0, (21)

b =
1

x
βEz′|z

[
b′ + (b′ω′)

1−α
(γ exp(z′))

α

]
f =

[
b

γ exp(z)

]1−α

ω−α − ηω.

In the steady state, some straightforward algebra yields:

bMP
ss = γ (1− α)

2
3α−1 (2η)

α−1
3α−1 ,

ωMP
ss = (1− α)

1
3α−1 (2η)

−α
3α−1 ,

xMP
ss = β

2− α

1− α
,

fMP
ss = (1 + α) (1− α)

2−3α
3α−1 η

2α−1
3α−12

−α
3α−1 ,

all of which are positive and finite for α ∈ (0, 1). In the steady state, we know M ′

M
= γxMP

ss ;
p′

p
= 1

xMP
ss

; ωF
pM

= γ fMP
ss

bMP
ss

ωMP
ss .

To show that our steady state is indeed an inner optimum, we need to check the

Hessian matrix. The second derivative of the objective function with respect to x is:

−
(

bMP
ss

xMP
ss γ

)2
α(1 − α)

[
bMP
ss

γ

]−α−1 (
ωMP
ss

)1−α
< 0. The second derivative of the objective

function with respect to ω is −(1−α)(1+α)
(

bMP
ss

γ

)1−α

(ωMP
ss )−α−1 < 0. Cross derivative

is −(1−α)2
(

bMP
ss

γ

)−α
1
γ

(
ωMP
ss

)−α bMP
ss

xMP
ss

. Therefore, the determinant of the Hessian matrix

is (1− α)2(3α− 1)
(

bMP
ss

γ

)−2α (
bMP
ss

xMP
ss γ

)2
(ωMP

ss )−2α, which is positive if α > 1
3
.
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A.2 Proposition 4

It is straightforward to show that the problem can be scaled into:

v(z) = max
x,ω

b(x, z)

[
x− 1

γ exp(z)

]
− ξ

2

[
b(x, z)

γ exp(z)
− b̄

]2
+ ω

{[
b(x, z)

γ exp(z)

]1−α

ω−α − ηω

}
+ βγEz′|z exp(z

′)V (z′)

subject to

b(x, z) =
1

x
βEz′|z

{
b(hx(z

′), z′) + [b(hx(z
′), z′)hω(z

′)]
1−α

(γ exp(z′))
α

}
.

Equilibrium conditions are given by{
1

γ exp(z)
+ ξ

[
b(x, z)

γ exp(z)
− b̄

]
1

γ exp(z)
− (1− α)

[
b(x, z)

γ exp(z)

]−α

ω1−α 1

γ exp(z)

}
b(x, z)

x
= 0,

(1− α)

[
b(x, z)

γ exp(z)

]1−α

ω−α − 2ηω = 0,

b(x, z) =
1

x
βEz′|z

[
b(hx(z

′), z′) + [b(hx(z
′), z′)hω(z

′)]1−α (γ exp(z′))
α]

,

f =

[
b(x, z)

γ exp(z)

]1−α

ω−α − ηω,

which imply a steady state where

1 + ξ

(
b

γ
− b̄

)
− (1− α)

(
1− α

2η

) 1−α
1+α
(
b

γ

) 1−3α
1+α

= 0, (22)

x = β

[
1 +

(
1− α

2η

) 1−α
1+α
(
b

γ

) 1−3α
1+α

]
, (23)

ωF

pM
= η

1 + α

1− α

(
1− α

2η

) 2
1+α
(
b

γ

) 1−3α
1+α

. (24)
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Now let’s move to the Ramsey problem. The Lagrangian is given by:

max
{b,ω}∞t=0

E0

∞∑
t=0

(γβ)t exp

(
t∑

k=0

zk

){
βEt

[
bt+1 + (bt+1ωt+1)

1−α (γ exp(zt+1))
α]

− bt
γ exp(zt)

− ξ

2

[
bt

γ exp(zt)
− b̄

]2
+ ωt

{[
bt

γ exp(zt)

]1−α

ω−α
t − ηωt

}}
,

in which we have substituted the constraint into the objective function.

First-order conditions with respect to {bt, ωt} for t ≥ 1 are given by:

β

{
−1− ξ

[
bt

γ exp(zt)
− b̄

]
+ (1− α)

(
bt

γ exp(zt)

)−α

ω1−α
t

}

+ βEt−1

{
1 + (1− α)ω1−α

t

[
bt

γ exp(zt)

]−α
}

= 0,

γβ exp(zt)

{
(1− α)

[
bt

γ exp(zt)

]1−α

ω−α
t − 2ηωt

}
+ βEt−1

[
(1− α) b1−α

t ω−α
t (γ exp(zt))

α] = 0,

which imply a steady state where

− ξ

(
b

γ
− b̄

)
+ 2(1− α)

(
1− α

η

) 1−α
1+α
(
b

γ

) 1−3α
1+α

= 0, (25)

x = β

[
1 +

(
1− α

η

) 1−α
1+α
(
b

γ

) 1−3α
1+α

]
, (26)

ωF

pM
= η

α

1− α

(
1− α

η

) 2
1+α
(
b

γ

) 1−3α
1+α

. (27)

For any b, the LHS of (22) is larger than the negative of the LHS of (25). Since both

of them are increasing in b if α > 1
3
, the b that solves (22) shall be smaller than that to

(25). Furthermore, because (1 + α)2−
2

1+α > α, we know the LHS of (27) is smaller than

that of (24) for α > 1
3
. Finally, as ξ → 0, (25) implies that steady state b under Ramsey

goes to infinity. However, that under Markov-perfect, implied by (25), stays finite. In

that case, (23) and (26) suggest that the steady-state x under Ramsey goes to β, which

will ultimately fall below steady-state x under Markov-perfect. For both Markov-perfect

and Ramsey cases, tedious algebra checking the Hessian matrix shows that the critical

point implied by first-order conditions is indeed local maximum when α > 1
3
.
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For t = 0, a Markov-perfect issuer’s equilibrium conditions are the same as those for

t ≥ 1 whereas for Ramsey they become

− 1− ξ

[
b0

γ exp(z0)
− b̄

]
+ (1− α)

[
b0

γ exp(z0)

]−α

ω1−α
0 = 0,

(1− α)

[
b0

γ exp(z0)

]1−α

ω−α
0 − 2ηω0 = 0,

which coincides with Markov-perfect case. This means that Ramsey and Markov-perfect

issuers choose the same real balance b0 and velocity ω0, which implies the same fee ratio
ω0F0

p0M0
. Money growth for the Markov-perfect issuer is given by

x0 = βE

{
b1
b0

{
1 + 2

α−1
1+α

(
1− α

η

) 1−α
1+α
[

b1
γ exp(z1)

] 1−3α
1+α

}}
.

Similarly, we have for the Ramsey issuer

x0 = βE

{
b1
b0

{
1 +

(
1− α

η

) 1−α
1+α
[

b1
γ exp(z1)

] 1−3α
1+α

}}
.

For α > 1
3
and ξ → 0, b1 under Ramsey goes to infinity whereas that under Markov-

perfect stays finite. This means that x0 under Ramsey goes to infinity whereas that

under Markov-perfect stays finite.

A.3 Proposition 5

It is straightforward to show that the Markov-perfect problem can be scaled into:

v(z) =max
x

b(x, z)

[
x− 1

γ exp(z)

]
− ξ

2

[
b(x, z)

γ exp(z)
− b̄

]2
+ βγEz′|z exp(z

′)V (z′)

subject to

b(x, z) =
1

x
βEz′|z

{
b(hx(z

′), z′) + b(hx(z
′), z′)1−α (γ exp(z′))

α}
.
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Equilibrium conditions are given by{
1

γ exp(z)
+ ξ

[
b(x, z)

γ exp(z)
− b̄

]
1

γ exp(z)

}
b(x, z)

x
= 0,

b(x, z) =
1

x
βEz′|z

{
b(hx(z

′), z′) + b(hx(z
′), z′)1−α (γ exp(z′))

α}
,

which imply a steady state where

b = γ

(
b̄− 1

ξ

)
,

and

x = β

[
1 +

(
b̄− 1

ξ

)−α
]
.

The Lagrangian for the Ramsey’s problem is given by:

max
{b}∞t=0

E0

∞∑
t=0

(γβ)t exp

(
t∑

k=0

zk

){
− ξ

2

[
bt

γ exp(zt)
− b̄

]2
+ βEt

[
bt+1 + b1−α

t+1 (γ exp(zt+1))
α]− bt

γ exp(zt)

}
,

in which we have substituted the constraint into the objective function.

First-order condition with respect to bt for t ≥ 1 is given by:

−ξ

[
bt

γ exp(zt)
− b̄

]
+ Et−1(1− α)

[
bt

γ exp(zt)

]−α

= 0,

which implies a steady state where

−ξ

(
b

γ
− b̄

)
+ (1− α)

(
b

γ

)−α

= 0.

Since the LHS is decreasing in b and is positive when b = γ
(
b̄− 1

ξ

)
, we know that a

solution exists and is larger than γ
(
b̄− 1

ξ

)
. In other words, the steady-state growth-

adjusted real balance under Ramsey is larger than that under Markov-perfect. Both

issuers face the same constraint between x and b in the steady state, which implies that

x decreases in b. As a result, Ramsey adopts a smaller xt and
Mt+1

Mt
relative to Markov-

perfect.
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For t = 0, Ramsey and Markov-perfect issuers’ equilibrium conditions coincide with

each other. This means that Ramsey and Markov-perfect issuers choose the same real

balances b0, which implies a higher x0 for the former.

A.4 Proposition 6

Take the definition of utility value in (14). It is immediate to see that maximizing the

lifetime utility value net of maintenance costs implies a period-by-period static problem

of maximizing the following:

2

[
btωt

γ exp (zt)

]1−α

− ηω2
t −

ξ

2

[
bt

γ exp (zt)
− b̄

]2
.

For each t ≥ 0, the first-order condition with respect to ωt is given by:

(1− α)

[
bt

γ exp(zt)

]1−α

ω−α
t − ηωt = 0,

which is identical to Ramsey issuer’s first-order condition with respect to ωt for t ≥ 1. The

first-order condition for real balances bt after substituting out the first-order condition

for velocity is given by:

2 (1− α)
2

1+α η
α−1
1+α

[
bt

γ exp (zt)

] 1−3α
1+α

− ξ

[
bt

γ exp (zt)
− b̄

]
= 0, (28)

which is identical to Ramsey issuer’s first-order condition with respect to bt for t ≥ 1.

At t = 0, the first-order condition for b0 for the Ramsey issuer is given by

2
α−1
1+α (1− α)

2
1+α η

α−1
1+α

[
b0

γ exp (z0)

] 1−3α
1+α

− 1− ξ

[
b0

γ exp (z0)
− b̄

]
= 0. (29)

Clearly, for a given bt, the LHS of (28) is larger than the LHS of (29), and for α > 1/3

the LHS of both equations are declining in bt. This implies that b0 is smaller for the

Ramsey issuer than for the total value maximizing case.

A.5 Proposition 7

In an optimization state of the scaled model, the optimal velocity decisions that pin down

issuer’s choice for fees—ω in an optimization state and ωn in a no-optimization state—are

37



given by:

(1− α)

[
b(g, z)

γ exp(z)

]1−α

ω−α − 2ηω = 0, (30)

(1− α)

[
b(g−1, z)

γ exp(z)

]1−α

(ωn)−α − 2ηωn = 0. (31)

The optimal decision for g in an optimization state is given by:

∂b(g, z)

∂g

g − 1

γ exp(z)
+

b(g, z)

γ exp(z)
+ (1− α)

[
ω

γ exp(z)

]1−α

b (g, z)−α ∂b (g, z)

∂g
(32)

+ βγEz′|z exp(z
′)q

∂vn(z′, g)

∂g
= 0.

Derivative of the pricing schedule is given by:

∂b(g, z)

∂g
=− b(g, z)

g
+

βγ exp(z)

g
qEz′|z

{
∂b(g, z′)

∂g

+ (1− α)

[
b (g, z′)hn

ω (g, z
′)

γ exp(z′)

]−α [
∂b (g, z′)

∂g
hn
ω (g, z

′) + b (g, z′)
hn
ω (g, z

′)

∂g

]}
,

where

hn
ω (g, z

′)

∂g
=

1− α

1 + α

(
1− α

2η

) 1
1+α
[
b (g, z′)

γ exp(z′)

]−2α
1+α 1

γ exp(z′)

∂b (g, z′)

∂g
.

Lastly, the derivative of the no-optimization value equation gives

∂vn(g−1, z)

∂g−1

=
∂b(g−1, z)

∂g−1

g−1 − 1

γ exp(z)
+

b(g−1, z)

γ exp(z){
(1− α)

[
ωn

γ exp(z)

]1−α

b (g−1, z)
−α ∂b (g−1, z)

∂g−1

}
+ βγEz′|z exp(z

′)q
∂vn(g−1, z

′)

∂g−1

.
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In steady state, g−1 = g and thus ωn = ω. Some tedious algebra yields:

gPC
ss = βγ

[
1 +

1

1− α

(1− γβq) (α + 1)

2γβq + α + 1

]
,

bPC
ss = γ (2η)

α−1
3α−1 (1− α)

2
3α−1

[
(1− γβq) (α + 1)

2γβq + α + 1

] 1+α
1−3α

,

ωPC
ss = (1− α)

1
3α−1 (2η)

−α
3α−1

[
(1− γβq) (α + 1)

2γβq + α + 1

] 1−α
1−3α

,

fPC
ss = (1 + α) (1− α)

2−3α
3α−1 (2)

−α
3α−1 η

2α−1
3α−1

[
(1− γβq) (α + 1)

2γβq + α + 1

] 1−α
1−3α

.

In the steady state, we know PM
A−1

= bPC
ss ; M ′

M
= gPC

ss ; p′

p
= γ

gPC
ss

; ωF
pM

= γ fPC
ss

bPC
ss

ωPC
ss . Finally,

tedious algebra shows that the critical point implied by first-order conditions is indeed

local maximum when α > 1
3
.

A.6 Corollary 8

In the case without fees, i.e., ω ≡ 1 and F ≡ 0, the set of equilibrium conditions evolves

into the following. First, the optimal decision for g in the optimization state is given by:

b(g, z)
1

γ exp(z)
+

∂b(g, z)

∂g

g − 1

γ exp(z)
+ βγEz′|z exp(z

′)q
∂vn(z′, g)

∂g
= 0

Pricing equation is

b(g, z) =
γ exp(z)

g
βEz′|z

{
(1− q)

{
b(hg(z

′), z′) + b(hg(z
′), z′)1−α

[
1

γ exp(z′)

]−α}

+ q

{
b(g, z′) + b(g, z′)1−α

[
1

γ exp(z′)

]−α}}
,

and its derivative is given by:

∂b(g, z)

∂g
= −b(g, z)

g
+

γ exp(z)

g
βqEz′|z

{
∂b(g, z′)

∂g
+ (1− α)

[
b(g, z′)

γ exp(z′)

]−α
∂b(g, z′)

∂g

}
.

Lastly, derivative of the no-optimization value equation gives

∂vn(g−1, z)

∂g−1

= b(g−1, z)
1

γ exp(z)
+

∂b(g−1, z)

∂g−1

g−1 − 1

γ exp(z)
+ βγEz′|z exp(z

′)q
∂vn(g−1, z

′)

∂g−1

.
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In steady state, g−1 = g and thus ωn = ω. Some tedious algebra yields:

gPC2
ss = βγ

[
1− βγq

(1− α) βγq
+ 1

]
,

bPC2
ss = γ

[
1− βγq

(1− α) βγq

]− 1
α

In the steady state, we know PM
A−1

= bPC2
ss ; M ′

M
= gPC2

ss ; p′

p
= γ

gPC2
ss

. We have:

gPC2
ss > gPC

ss

because α < 1 and βγq < 1.

We can now establish the second half of the corollary. Fix q = 1. For the case

without fees, we have in steady state M ′

M
= γβ + 1−γβ

1−α
> 1. Given α ∈ (0, 1), as γβ → 1,

M ′

M
converges to γβ and thus 1. Given βγ, M ′

M
→ 1 as α → 0. For the case with fees

(Proposition 7), we have in steady state M ′

M
= γβ+γβ (1− γβ)

(
1− 2γβ

2γβ+α+1

)
1

1−α
, which

is increasing in α. For α > 1
3
, M ′

M
is bounded from below by 5γβ

3γβ+2
> γβ. M ′

M
converges to

5γβ
3γβ+2

as α → 1
3
, and furthermore to βγ as γβ → 1.

B Abrupt transition with probabilistic commitment

In this appendix we consider an intermediate case between the two models in Sections

4.1 and 4.2. In particular, we consider a probabilistic-commitment issuer who in an

optimization state picks the money growth rate for today, g × s, and the money growth

rate for tomorrow, g, expecting its future self beyond tomorrow to follow without any

arrival of reoptimization shocks. In other words, the issuer can pick a transition path for

money growth rates, which, however, has to be in an abrupt form. We first show that

an inner equilibrium does not exist in this setup. We then introduce into the setup an

initial issuance cost, which bounds the problem and allows an analytical characterization

of the impact of commitment probability.

B.1 Setup and optimal policies

In an optimization state, the issuer picks the money growth rate for today, g × s, and

for (beyond) tomorrow, g. We again assume that fee rates are determined optimally ex

post. In a growth-adjusted formulation, we index functions for today using superscript
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0, and issuer’s problem in an optimization state is given by:

v(z) = max
g,s,ω

b0(g, s, z)
gs− 1

γ exp(z)
+ωf 0(g, s, ω, z)+βγEz′|z exp(z

′) [(1− q)v (z′) + qvn(g, z′)] ,

(33)

and in a no-optimization state is given by:

vn(g−1, z) = max
ωn

b(g−1, z)
g−1 − 1

γ exp(z)
+ ωnf(g−1, ω

n, z) (34)

+βγEz′|z exp(z
′) [(1− q)v (z′) + qvn(g−1, z

′)] .

The fee equations for the long run and for today are given respectively by

f(g, ω, z) =

[
b(g, z)

γ exp(z)

]1−α

ω−α − ηω,

and

f 0(g, s, ω, z) =

[
b0(g, s, z)

γ exp(z)

]1−α

ω−α − ηω.

The equation for real balance in the long run can be written as

b(g, z) = β
γ exp(z)

g
× (35)

Ez′|z

{
(1− q)

{[
b0 (hg(z

′), hs(z
′), z′)hω (z

′)
]1−α

[γ exp (z′)]
α
+ b0 (hg(z

′), hs(z
′), z′)

}
+ q

{
[b (g, z′)hn

ω (g, z
′)]

1−α
[γ exp (z′)]

−α
+ b (g, z′)

}}
,

where hg(z), hs(z) and hω (z) are the policy functions for g, s and ω in (33); hn
ω (g−1, z)

is the policy function for ωn in (34). In the optimization state, current real balance is

different from that in the long run only because the money growth rate today is different

from that tomorrow and beyond, i.e., gs for today and g for the long run. Moving one

period forward, both cases will either evolve to an optimization state with probability

1− q or maintain a growth rate of g. This means that:

b0(g, s, z) =
b(g, z)

s
. (36)

While Section 3.3 shows that giving issuers full commitment rules out the existence

of an interior solution, Proposition 9 shows that even with probabilistic commitment, an
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inner solution might well not exist. In particular, in the optimization state, the issuer

would like to choose a money growth rate for today as large as possible. By committing

to a long-run growth rate close enough to βγq, the price of tokens today will not fall

quickly enough to zero, which leads to a significant profit today.

Proposition 9 Fix z = 0. A probabilistic-commitment issuer who is able to pick money

growth rates today (gs) and tomorrow (g) would like to increase the former as much as

possible while keep the latter as close to βγq as possible.

Proof. Fix z = 0. Define l =
(

1−α
2η

) 1−α
1+α

. Plug two fee equations and (36) into (33), and

then substitute out ω using the first-order condition. We have:

v = max
g,s

b(g)

sγ
(gs− 1) +

1 + α

2

[
b(g)

sγ

] 2(1−α)
1+α

l + βγ [(1− q)v + qvn(g)] ,

where

vn(g−1) =
b(g−1)

γ
(g−1 − 1) +

1 + α

2

[
b(g−1)

sγ

] 2(1−α)
1+α

l + βγ [(1− q)v + qvn(g−1)] ,

and

b(g) =
γ

g
β

{
(1− q)

{
l

[
b (hg)

γhs

] 1−3α
1+α

+ 1

}
b (hg)

hs

+ q

{
l

[
b (g)

γ

] 1−3α
1+α

+ 1

}
b (g)

}
.

First-order condition with respect to s can be written as:

b

γs
= [(1− α) l]

1+α
3α−1 . (37)

Plug it into the first-order derivative with respect to g, and the latter can be simplified

into:

1

γ

(
b+ g

∂b

∂g

)
+ βγq

∂vn

∂g
, (38)

where the derivative of real balance is ∂b
∂g

= b

γβq

[
2 1−α
1+α

l( b
γ )

1−3α
1+α +1

]
−g

and the derivative of

value in no-optimization state is ∂vn

∂g
=

b
γ
+ 1

γ

[
g−1+(1−α)l( b

γ )
1−3α
1+α

]
∂b
∂g

1−βγq
.
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Some manipulations of (38) yield:

γβq
1−βγq

b
γ
3+α
1+α

(1− α) l
(

b
γ

) 1−3α
1+α

γβq 1−3α
1+α

l
(

b
γ

) 1−3α
1+α − γβ (1− q)

[
l
(

b
γs

) 1−3α
1+α

+ 1

]
1
s

.

For α > 1
3
, the above first-order derivative with respect to g is always negative. Now

inspecting the real balance equation, we have g = γβ (1− q) 2−α
1−α

1
γ
[(1− α) l]

1+α
3α−1 1

b
+

γβq

[
l
(

b
γ

) 1−3α
1+α

+ 1

]
. For α > 1

3
, the RHS is decreasing in b. As g → βγq, b → ∞. Given

(37), we know s → ∞.

B.2 Issuance costs

Given the unboundedness of the choice for s shown in Proposition 9, we introduce a

short-run issuance cost of − ζ
2
(s− 1)2. This enables us to get an interior solution and

then to characterize the impact of commitment probability q on optimal policies. This

cost is what we have in the main text.

Proposition 10 shows how commitment matters for optimal policies. As q increases,

the committed long-run money growth rate is less likely to be reoptimized. This means

that committing to a low long-run money growth can better sustain token prices today.

As the commitment technology becomes more effective, the issuer has a larger incentive

to access it in order to support a large issuance today. We show that this implies a larger

s. For cases where βγ → 1, we can in addition show that g → 1 as q → 1. This means

that there is no net money growth in the long run without any reoptimization shocks.

Such a highly conservative long-run money supply is able to support an infinitely large

money growth today.

Proposition 10 Fix z = 0. For α > 3
5
, a probabilistic-commitment issuer facing an

issuance cost of − ζ
2
(s− 1)2 and being able to pick money growth rates for today (gs)

and for the long run (g) chooses a larger s when commitment probability q increases. As

q → 1 and βγ → 1, s → ∞ and g → 1.

Proof.

Substituting out the optimal velocity choice using first-order conditions, issuer’s prob-
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lem in the optimization state is given by:

v = max
g,s

b(g)

s

gs− 1

γ
+

1 + α

2

[
b(g)

sγ

] 2(1−α)
1+α

l − ζ

2
(s− 1)2 + βγ [(1− q)v + qvn(g)] ,

where l =
(

1−α
2η

) 1−α
1+α

and value in no-optimization is:

vn(g) = b(g)
g − 1

γ
+

1 + α

2

[
b(g)

γ

] 2(1−α)
1+α

l + βγ [(1− q)v + qvn(g)] ,

and real balance in the long run

b(g) =
γ

g
β

{
(1− q)

{
l

[
b (hg)

hsγ

] 1−3α
1+α

+ 1

}
b (hg)

hs

+ q

{
l

[
b (g)

γ

] 1−3α
1+α

+ 1

}
b (g)

}
.

First-order condition with respect to s is given by:

b(g)

sγ
− (1− α)

[
b(g)

sγ

] 2(1−α)
1+α

l − ζ(s− 1)s = 0. (39)

First-order condition with respect to g is given by:

f(g, s) +
βγq

1− βγq
f(g, 1) = 0,

where f(g, s) = b(g)
γ
+b(g)

gs−1
sγ

+(1−α)[ b(g)sγ ]
1−3α
1+α 1

sγ
l

γβq

{
2−2α
1+α

l[ b(g)γ ]
1−3α
1+α +1

}
−g

. Some simplifications of it yield γβq
1−βγq

3+α
1+α

(1−

α)l
[
b(g)
γ

] 1−3α
1+α

+ (1− α)
[
b(g)
sγ

] 1−3α
1+α 1

s
l − 1

s
= 0, which, combined with (39), leads to:

b (g)

γ
=

[
ζs(s− 1)

γβq
1−βγq

3+α
1+α

(1− α)l

] 1+α
2−2α

. (40)

Here we know in an interior equilibrium s > 1. Plug it back to (39) and we have

[
t

(1− α)l

] 1+α
2−2α

(s− 1)
3α−1
2−2α s

5α−3
2−2α − s

2α−2
1+α t− ζ = 0 (41)

where t = ζ
γβq

1−βγq
3+α
1+α

. For α ∈ (3
5
, 1), the LHS is increasing in s. Now we would like to
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show that it is also increasing in t. Differentiate it with respect to t:

1 + α

2− 2α

[
1

(1− α)l

] 1+α
2−2α

t
3α−1
2−2α (s− 1)

3α−1
2−2α s

5α−3
2−2α − s

2α−2
1+α . (42)

We can now show that (42) is strictly positive at the optimum. By continuity, we then

know that starting from an inner optimum, a marginal increase in q (and thus a de-

crease in t) would imply a marginal increase in s. First-order condition implies that[
1

(1−α)l

] 1+α
2−2α

(s−1)
3α−1
2−2α s

5α−3
2−2α t

3α−1
2−2α = s

2α−2
1+α + ζ

t
and thus (42) evolves into 1+α

2−2α

(
s

2α−2
1+α + ζ

t

)
−

s
2α−2
1+α = 3α−1

2−2α
s

2α−2
1+α + 1+α

2−2α
ζ
t
, which is clearly positive for α > 3

5
.

As βγ → 1 and q → 1, t → 0, thus for first-order conditions to hold, we know s → ∞

and b → ∞. Rearrange (41) into
[

t
(1−α)l

] 1−3α
2−2α

=
{(

sζ + s
3α−1
1+α t

)
[(s− 1)s]

1−3α
2−2α

} 1−3α
1+α

,

which combined with (40) implies that for α > 3
5
:
(

b
sγ

) 1−3α
1+α

=
[

t
(1−α)l

(s− 1)s
] 1−3α

2−2α
s

3α−1
1+α =(

ζ + s
2α−2
1+α t

) 1−3α
1+α

[(s−1)s]
1−3α
1+α → 0. Therefore, the equation for real balance implies that:

g = γβ

{
(1− q)

[
l

(
b

sγ

) 1−3α
1+α

+ 1

]
1

s
+ q

[
l

(
b

γ

) 1−3α
1+α

+ 1

]}
→ 1.

C Tokens with a rapid transition

As we have shown in Figures 2 and 3, there exists a non-trivial number of tokens for whom

the money growth rate transits rapidly to the long-run level. In our model of Section

4.2, the initial issuance cost encourages issuers to spread out issuance in the short run.

Figure 8 solves our model with (upper panel) and without fees (lower panel) under small

issuance costs ζ, with other parameter values following what we use in the main text.

When ζ becomes sufficiently small, the optimal long-run money growth rate g hits the

lower bound we set, and in this case a further reduction in ζ leads to a drastic increase

in s and λ. The intuition is as follows. When the initial issuance cost is small, issuers

would like to issue more in the first period to quickly get profits. To support the price of

the tokens issued in the first period, issuers would like to commit to low money growth

rates in the future–in particular, they can choose either a low g or a high λ. When g is

bounded by below, it is natural to observe a high λ.
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Figure 8: Optimal monetary policies and issuance costs ζ. Notes: We fix β = 0.95, γ = 1.05,
α = 0.85, and q = 0.9. The upper panel presents our model with fees and endogenous velocity,
in which we set η = 0.01 and set the lower bound for g to 0.98. The lower panel presents our
model without fees and endogenous velocity, in which we set the lower bound for g to 1.

D Homogeneity

We work with the scaled version of our model in analyses. Here we establish the linearity

of our baseline model with probabilistic commitment in Section 4.1. The linearity of the

other models can be shown in a similar way. The problem for the issuer with probabilistic

commitment in a state where he is allowed to pick money supply freely is given by:

V (M,A, z) = max
M ′,ω

p(M ′,M,A, z)(M ′ −M) + ωF (ω, p(M ′,M,A, z),M,A)

+ βEz′|z [(1− q)V (M ′, A′, z′) + qV n(M ′, A′, z′,M)] (43)

46



while that in a state where an optimization is not allowed (with superscript n) is given

by:

V n(M,A, z,M−1) = max
ω

p (hn
M ,M,A, z) (hn

M −M) + ωF (ω, p (hn
M ,M,A, z) ,M,A)

+ βEz′|z [(1− q)V (hn
M , A′, z′) + qV n(hn

M , A′, z′,M)] , (44)

where money supply in the state of no optimization is hn
M = M2

M−1
. Fee equation is given

by:

F (ω, p,M,A) = (pM)1−α
(ω
A

)−α

− ηAω.

Pricing equation are given by:

p(M ′,M,A, z)

= βEz′|z

{
(1− q)

{
p(hM(M ′, A′, z′),M ′, A′, z′)

+ [p(hM(M ′, A′, z′),M ′, A′, z′)hω (M
′, A′, z′)]

1−α

(
M ′

A′

)−α}
+ q

{
pn(hn

M(M ′, z′,M),M ′, A′, z′)

+ [pn(hn
M(M ′, z′,M),M ′, A′, z′)hn

ω (M
′, A′, z′,M)]

1−α

(
M ′

A′

)−α}}
,

where hM(M,A, z) and hω(M,A, z) are policies in optimization state, given by (43);

hn
M(M,A, z,M−1) is policy for velocity in no-optimization state, given by (44).

Divide the left- and right-hand side (RHS) of (43) and (44) by A, and we get:

V (M,A, z)

A
= max

M ′,ω

p(M ′,M,A, z)M

A−1γ exp(z)

(
M ′

M
− 1

)
+ ωf(ω, p(M ′,M,A, z),M,A)

+ βγEz′|z exp(z
′)

[
(1− q)

V (M ′, A′, z′)

A′ + q
V n(M ′, A′, z′,M)

A′

]
, (45)

and

V n(M,A, z,M−1)

A
= max

ω

p (hn
M ,M,A, z)M

A−1γ exp(z)

(
hn
M

M
− 1

)
+ ωf(ω, p (hn

M ,M,A, z) ,M,A)

+ βγEz′|z exp(z
′)

[
(1− q)

V (hn
M , A′, z′)

A′ + q
V n(hn

M , A′, z′,M)

A′

]
, (46)
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where hn
M = M2

M−1
, and the fee equation is: f(ω, p,M,A) =

[
pM
A−1

1
γ exp(z)

]1−α

ω−α − ηω.

Pricing equation can be rewritten as:

p(M ′,M,A, z)M

A−1

(47)

=
M

M ′
A

A−1

βEz′|z

{
(1− q)

[
p(hM(M ′, A′, z′),M ′, A′, z′)M ′

A

+

[
p(hM(M ′, A′, z′),M ′, A′, z′)M ′

A
hω (M

′, A′, z′)

]1−α(
A

A′

)−α ]
+ q

[
pn(hn

M(M ′, z′,M),M ′, A′, z′)M ′

A

+

[
pn(hn

M(M ′, z′,M),M ′, A′, z′)M ′

A
hn
ω (M

′, A′, z′,M)

]1−α(
A

A′

)−α ]}
.

We conjecture that: (i) p(M ′,M,A,z)M
A−1

only depends on z and M ′

M
; (ii) V (M,A,z)

A
only

depends on z; and (iii) V n(M,A,z,M−1)
A

only depends on z and M
M−1

.

Define g = M ′

M
. Under conjecture (i), we know that ωf(ω, p (M ′,M,A, z) ,M,A)

depends only on ω, z, g. Combining with conjectures (ii) and (iii), we know that the

RHS of (45) depends on g, ω, z. As a result, we can verify conjecture (ii) and also

recognize that hg(M,A, z) ≡ hM (M,A,z)
M

and hω(M,A, z) only depends on z. In a similar

fashion, under conjecture (i), we know that ωf(ω, p (hn
M ,M,A, z) ,M,A) depends only

on ω, z,
hn
M

M
= M

M−1
= g−1. Moreover, combine it with conjectures (ii) and (iii), we know

that the RHS of (46) depends on g−1, ω, z. As a result, we can verify conjecture (iii) and

also recognize that hn
ω(M,A, z) only depends on g−1 and z. Lastly, because we know that

hn
ω(M,A, z) only depends on g−1 and z and hω(M,A, z) only depends on z, we can in

addition use conjecture (i) to establish that the RHS of (47) depends on g and z, which

verifies conjecture (i).
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