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Abstract

We study production responses to emission capping regulation on manufacturing firms. We
find that firms reduced their pollution as they transitioned from self-generated to exter-
nally sourced electricity, shifted toward producing less coal-intensive products, and increased
their abatement expenditures. Firms preserved profitability by increasing their production
of higher-margin products. However, firms in highly polluting industries produced fewer
products. In the aggregate, we document lower product variety, higher markups, an altered
firm-size distribution, and lower business formation. Our findings highlight both the mecha-
nisms behind how mandated pollution reduction can be effective and its costs, suggesting a
loss in agglomeration externalities.
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Policymakers are directing national efforts toward combating climate change, with regula-

tions that target firm emissions (IPCC, 2023; World Economic Forum, 2023). At the same time,

they care how emissions reductions are achieved, seeking firms to reduce their energy use by

making abatement investments and changing their production processes. Yet these policymakers

face capacity constraints to enforce rules and limited information to effectively target emissions

reduction (Duflo, Greenstone, Pande, and Ryan, 2013, 2018).

While there is robust evidence on the effectiveness of environmental regulations in curbing

emissions, much remains unknown about their impact on production decisions and the eco-

nomic mechanisms behind firms’ trade-offs when balancing emission reduction with economic

impacts.1 Firms often respond by shifting emissions to less-regulated jurisdictions and within

their supply chains (Bartram, Hou, and Kim, 2022; Ben-David, Jang, Kleimeier, and Viehs, 2021;

Duchin, Gao, and Xu, 2022; Schiller, 2018). At the same time, there is mixed evidence on whether

such regulations reduce firm output and productivity and increase consumer costs (Bertrand,

Djankov, Hanna, and Mullainathan, 2007; Fowlie, 2010; Greenstone, List, and Syverson, 2012).

Alternatively, there is a view that these costs might be temporary and that the regulations could

eventually boost productivity.2 Beyond these firm-level outcomes, the primary challenge in em-

pirically assessing the impacts of environmental regulation centers on the opacity of responses

within firms, encompassing changes in operational strategies, product inputs and outputs, and

energy management.

In this paper, we combine detailed data on firm production and abatement expenditures

with variation from an environmental regulation in India. We study within-firm responses in

production decisions, on both the input and output sides, allowing us to uncover the economic

forces driving emissions reductions. We begin by showing that the regulation meaningfully de-

creased emissions, using hand-collected regulatory data and satellite emission readings. At the

firm level, we exploit detailed product-level data on inputs to show that firms operating in the

highest-polluting industries optimize their energy use and shift from in-house to external pro-

curement of electricity. Moreover, we find that the average firm makes substantial investments in

1See, for example, Greenstone (2002); Greenstone and Hanna (2014); He, Wang, and Zhang (2020) and cites therein.
2Proposed mechanisms for this include R&D spillovers, first-mover advantages (Harrison, Martin, and Nataraj,

2017; Jaffe and Palmer, 1997; Lanjouw and Mody, 1996; Porter and Linde, 1995), and encouraging firms to optimize
energy use and adopt green technologies (Fan, Zivin, Kou, Liu, and Wang, 2019; Newell, Jaffe, and Stavins, 1999; Wu,
Yu, Jiaxing, and Zhou, 2023).
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pollution abatement, on both extensive and intensive margins. On the output side, we find that

firms adjust by reallocating production toward their highest-margin products while maintaining

overall profitability. In terms of aggregate dynamics, we observe that firms in high-pollution

industries are significantly impacted as they transition to lower-emission products. Meanwhile,

firms in less polluting industries experience increased profit margins. Overall, there is a notice-

able decline in business dynamism, evidenced by reduced new firm entry and product variety.

Our setting is an emissions capping regulation targeting industrial clusters—co-located dy-

namic concentrations of related businesses—imposed by the Central Pollution Control Board

(CPCB) in India. In 2009, the CPCB introduced the Comprehensive Environmental Pollution

Index (CEPI) to quantify pollution levels of industrial clusters and their impact on local popu-

lations. They used this index to enforce emission reductions for firms located in these clusters

based on whether the cluster CEPI values exceeded pre-defined thresholds. We exploit the re-

sulting discontinuities in enforcement intensity, both within and across industrial clusters, in

a difference-in-discontinuities (DiRD) design. Combined with detailed firm- and product-level

data, this allows us to identify within-firm changes in production decisions on both the input and

output sides and to cleanly quantify the costs and benefits of such regulations.

The analyses proceed in four parts. First, we show that the regulation reduced aggregate

emissions in industrial clusters. To do so, we hand-collect data from follow-up monitoring stud-

ies conducted by the CPCB and find improvements in environmental impact, on average, among

industrial clusters with the highest enforcement intensity. We complement these analyses with

satellite readings on industrial emissions and document a significant and persistent reduction.

To rule out concerns regarding unobserved time-varying trends driving these results, we conduct

a placebo test on emissions from energy producers, which are subject to similar seasonality and

economic fluctuations but were not targeted by the regulation. Reassuringly, we do not find any

change, in terms of both economic magnitude and statistical significance, in these emissions.

Second, we use the granular product-level data to understand the drivers behind the ag-

gregate reduction in emissions. We leverage detailed product-level information on manufactur-

ing firms, unique to India, due to mandatory disclosure requirements (Bau and Matray, 2023;

De Loecker, Goldberg, Khandelwal, and Pavcnik, 2016). Specifically, on the input side, we map

product-level energy consumption to carbon emissions to estimate product-level emissions (Lyu-
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bich, Shapiro, and Walker, 2018). We find that firms respond to the regulation by decreasing

the amount of energy inputs per product and the estimated CO2 emissions per unit produced.

Furthermore, we find that, on average, firms shift away from coal use and from producing to pur-

chasing electricity. Notably, we find that firms increase their abatement expenditures, on average,

both on extensive and intensive margins. Additionally, we exploit cross-sectional differences in

government monitoring strictness by estimating the differential impact on high-pollution indus-

tries (Harrison, Martin, and Nataraj, 2017). Our analyses suggest that firms in high-polluting

industries within treated industrial clusters relative to others primarily change their input mix,

while firms in other industries increase their abatement expenditures.

Third, on the output side, we examine changes to product mix and product-level pricing.

On average, we find that firms do not change the quantity or the number of products produced.

However, there is a significant reduction in product variety driven by a lower probability of

adding a new product in a given year. These average treatment effects mask significant hetero-

geneity within cluster differences in firm response. Specifically, firms in high-polluting industries

increase the quantity of products produced but produce fewer products compared with other

firms in the same industrial cluster and product markets. Moreover, they shift their product

portfolio away from their highest-margin and coal-intensive products. By contrast, firms in other

industries shift toward highest-margin and coal-intensive products. Together, these results sug-

gest that firms in high-polluting industries within industrial clusters, relative to firms in other

industries, drive the average reduction in emissions.

Fourth, at the firm level, on average, these product-level changes result in an increase in

firm efficiency at converting inputs to revenue (revenue productivity) while preserving their

profitability. Additionally, firms do not pass on the increased costs through product price adjust-

ments. However, notably, we observe an increase in product margins and revenue productivity

among firms in other industries in addition to a concomitant decrease in raw material expen-

ditures. The reverse is true for firms in high-polluting industries within these clusters. These

results suggest a potential impact on the competitiveness of clusters, with the disproportionate

cost of the regulation borne by firms in the highest-polluting industries.

A natural question is whether and how these regulations impact industrial clusters in the

aggregate. Development strategies in emerging economies often emphasize and rely on indus-
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trial clusters to catalyze growth and innovation primarily through agglomeration externalities

(Juhász, Lane, Oehlsen, and Pérez, 2022). Given their importance, we examine changes to firm

entry into these clusters around the regulation. We document a decrease in entry across the firm

size distribution among both large and small firms. This effect is strongest in industrial clus-

ters with the greatest enforcement intensity. These findings suggest a dampening competitive

pressure within the cluster having lower potential agglomeration benefits. Thus, while we find

that regulated firms improve their efficiency by lowering their energy intensity in the production

process, it is unclear whether this compensates for the loss in business dynamism resulting from

lower firm entry.

Lastly, we examine other margins of adjustments through which firms may reduce emissions.

One potential margin is that firms could relocate their production outside the industrial cluster

or shift their emissions by expanding capacity elsewhere. We present two pieces of evidence

ruling out these possibilities. First, we do not find a change in the average probability of a

merger and acquisition for firms located in the industrial cluster and as a function of enforcement

intensity. Second, we do not find a change in the average probability of announcing a new plant

or abandoning the expansion of existing plants. Together, these results suggest a reduction in

emissions from production changes instead of firms shifting their emissions elsewhere.

Our results on opening up the ’brown box’ of how firms change their inputs and outputs are

important in designing effective environmental regulations for industrial clusters. A key insight

is that these regulations prompted a fixed-cost shift away from high-emission energy sources

alongside investments in efficiency improvements. This suggests that emissions reduction could

be more effectively targeted by mandating specific energy input use rather than imposing caps

on emissions followed by continuous monitoring. At the same time, it highlights the need for

coordinated policies on decarbonization. Even if the shift toward electricity does not necessarily

steer away from coal at present, it could pave the way for such a transition when it becomes

technically and economically viable to green the power grid, thereby facilitating a smoother

transition to cleaner fuels. Moreover, our results point to aggregate costs in terms of lower

business dynamism, potentially impairing competitiveness in the global economy.
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Related Literature. Our paper contributes to the literature that quantifies the impacts of envi-

ronmental regulation. We focus on an emissions capping regulation aimed at industrial clusters.

Prior research has focused on regulations that often take the form of either command-and-control

or cap-and-trade policies (Bartram, Hou, and Kim, 2022; Fowlie, 2010; Harrison, Hyman, Mar-

tin, and Nataraj, 2019; Ivanov, Kruttli, and Watugala, 2023). They are often localized, targeting

specific geographic regions, industries, and/or pollutants. A key insight from this body of work

is that firms in developed economies substitute their emissions within and across firms to other

regions with less stringent regulations, have spillover effects on unregulated firms, or pass it

along their supply chains (Aichele and Felbermayr, 2015; Ben-David, Jang, Kleimeier, and Viehs,

2021; Dai, Duan, Liang, and Ng, 2021a; Dai, Liang, and Ng, 2021b; Kim and Xu, 2021; Schiller,

2018). By contrast, we focus on regulations targeting firms in industrial clusters, common in both

advanced and developing economies, responsible for 15–20 percent of global carbon emissions.

Several papers have examined the firm-level impacts of environmental regulations (Berman

and Bui, 2001; Greenstone, List, and Syverson, 2012; Harrison, Hyman, Martin, and Nataraj,

2019; He, Wang, and Zhang, 2020; Kala and Gechter, 2023). There is mixed evidence on the

impact of these regulations on key outcomes such as productivity (Duflo, Greenstone, Pande,

and Ryan, 2013; Kala and Gechter, 2023; Kalmenovitz and Chen, 2021) and financial performance

(Fan, Zivin, Kou, Liu, and Wang, 2019; Lenox and Eesley, 2009; Naaraayanan, Sachdeva, and

Sharma, 2021; Servaes and Tamayo, 2013). Our evidence suggests that firms reorganize their

production processes by adjusting inputs and outputs to maintain profitability and increase pro-

ductivity. However, this conceals significant heterogeneity, whereby less-regulated and smaller

firms, on average, make abatement investments and display higher productivity. By contrast,

more-regulated and larger firms primarily respond by adjusting their energy inputs and product

portfolios away from coal. Without comprehensive data on production responses, understanding

margins of adjustment for emissions reduction and accurately tracing who bears the dispropor-

tionate costs of regulation would be empirically challenging.

More broadly, our study contributes to the literature on how firms impact the environment.3

3In contrast to a literature that analyzes the implications of investors, green preferences on asset prices (see,
for example, Berk and Van Binsbergen (2021); Bolton and Kacperczyk (2021); Broccardo, Hart, and Zingales (2022);
Chowdhry, Davies, and Waters (2018); De Angelis, Tankov, and Zerbib (2023); Heinkel, Kraus, and Zechner (2001);
Oehmke and Opp (2023); Pástor, Stambaugh, and Taylor (2021); Pedersen, Fitzgibbons, and Pomorski (2021); Zerbib
(2022).
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Extant research has highlighted the importance of the nature of ownership (Atta-Darkua, Gloss-

ner, Krueger, and Matos, 2023; Azar, Duro, Kadach, and Ormazabal, 2021; Berg, Ma, and Streitz,

2023; Dimson, Karakaş, and Li, 2015, 2021; Ilhan, Krueger, Sautner, and Starks, 2023; Krueger,

Sautner, and Starks, 2020; Naaraayanan, Sachdeva, and Sharma, 2021), disclosures (Bonetti, Leuz,

and Michelon, 2023; Jouvenot and Krueger, 2019; Tomar, 2023), financial institutions (De Haas,

2023; De Haas and Popov, 2023; Ivanov, Kruttli, and Watugala, 2023; Kacperczyk and Peydró,

2022), and self-commitments (Bolton and Kacperczyk, 2023; Comello, Reichelstein, and Reichel-

stein, 2021; Dahlmann, Branicki, and Brammer, 2019; Duchin, Gao, and Xu, 2022; Freiberg, Gre-

wal, and Serafeim, 2021). Our contribution lies in documenting how production responses to

environmental regulation shape the environmental profile of firms while highlighting economic

mechanisms behind firms’ trade-offs when balancing emission reduction with economic impacts.

Importantly, while our focus is on India due to the availability of granular data and quasi-

natural experimental variation, our results have implications for other contexts considering emis-

sions reductions in industrial clusters. For example, the World Economic Forum recently launched

a global initiative aiming to reduce heavy industry asset emissions in regional industrial zones

(World Economic Forum, 2023).4 Notably, these industrial clusters account for a large fraction of

global CO2 emissions, making them an attractive target for emission reductions worldwide. Our

study suggests that an alternative national strategy of regulating industrial clusters by capping

their emissions may be effective in aligning national efforts toward achieving net-zero targets but

that these regulations likely impede economic competitiveness.

1 Institutional Background

This paper focuses on a regulation in India targeting pollution from industrial clusters—dense

concentrations of firms associated with positive productivity and innovation spillovers. The Cen-

tral Pollution Control Board (CPCB), the principal national regulator, implemented a regulation

in 2009 to curb emissions and their health impacts. They developed a Comprehensive Environ-

mental Pollution Index (CEPI) that identified 88 prominent industrial clusters in consultation

with the Ministry of Environment, Forest and Climate Change (MoEF&CC). To arrive at the in-
4Nine leading industrial clusters in China, Indonesia, Japan, Spain, and the United States have joined the World

Economic Forum initiative, ”Transitioning Industrial Clusters towards Net Zero,” to help industries reduce emissions.
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dex values, they conducted a comprehensive environmental analysis and data-gathering effort in

these clusters through recognized environmental laboratories. Through the analysis, the CPCB

developed an index that takes a value between 0 and 100, to characterize the environmental qual-

ity at a given location. The CEPI combined proxies for (i) the amount and toxicity of pollutants,

(ii) the potential impact of that pollution on humans and ecosystems, and (iii) an assessment of

the quality of actions already taken by cluster firms to capture or adequately dispose of emis-

sions. Figure 1 describes the construction of the CEPI. See Central Pollution Control Board of

India (2009) for a complete discussion of the components and construction of the CEPI.

[PLACE FIGURE 1 HERE.]

The CPCB used these index values to enforce emission reductions for firms located in these

clusters based on whether the cluster CEPI values exceeded pre-defined thresholds. In our em-

pirical setting, we exploit the resulting discontinuities in enforcement intensity, both within and

across industrial clusters. Specifically, the CPCB classified those clusters with a CEPI at or above

60 and below 70 as “Severely Polluted Areas” (henceforth, CEPI[60,70) ). These became subject to

central monitoring. Specifically, regulators installed online continuous emission/effluent moni-

toring systems in these clusters and instituted in-person quarterly audits. Additionally, the CPCB

classified industrial clusters with a CEPI of at least 70 as “Critically Polluted Areas” (henceforth,

CEPI[70,100]). Firms within clusters with CEPI values of at least 70 were subject to the same

monitoring treatment as CEPI[60,70) clusters.

As part of the regulation, the CPCB also mandated firms to submit remedial action plans for

approval detailing the actions and timelines for emissions reduction.5 If a firm failed to comply

with the directives of the action plan, then it would lose its Environmental Clearance and Consent

to Operate permits that allow firms to function within the formal economy.6 Moreover, Consent

to Establish permits could not be issued to new operations if they do not fully comply with the

cluster regulations and action plans. Of the 88 industrial clusters subject to the regulation in

2009, 43 industrial clusters in 17 states had a CEPI value of 70 or above. A further 32 industrial
5The Supreme Courts have been the highest-reputation enforcers of environmental regulation in India since the

1980s; see Greenstone and Hanna (2014); Harrison et al. (2019) for a discussion on these.
6All firms, except for those in a few nonpolluting sectors, are required to apply for and receive approval from their

respective State-level Pollution Control Boards (SPCBs). New activities require a permit called Consent to Establish,
while new activities and renewals require one called Consent to Operate (Bhat, 2010; Fenske, Haseeb, and Kala, 2023;
Kapur and Khosla, 2019).
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clusters had a CEPI value between 60 and below 70. Online Appendix B provides additional

details and examples of CPCB monitoring efforts.

A prominent concern among policymakers and academics relates to the lax enforcement of

environmental regulations driven by concerns about limited institutional and governance capac-

ity (Duflo, Greenstone, Pande, and Ryan, 2013, 2018; Greenstone, Pande, Sudarshan, and Ryan,

2022). We present evidence that, in our setting, these have a limited role. First, we rely on CPCB

audits that updated the CEPI values twice in the following five years to assess the effectiveness

of the action plans.7 We hand-collected the results of this follow-up monitoring that recalculated

the CEPI for the CEPI[70,100] clusters (according to the 2009 ranking) in 2011 and 2013. Our analy-

ses demonstrate that the CEPI regulation effectively reduced emissions at industrial clusters. The

top panel of Figure 2 reproduces the original 2009 CEPI distribution. The vertical line represents

the cutoff at 70. The bottom panel reports the distributions of the recalculated CEPI values for

the 2009 CEPI[70,100] clusters in 2011 and 2013. The distributions shifted to the left in both follow-

up assessments, with significant improvement continuing between 2011 and 2013. This evidence

accords with the CPCB’s narrative of the regulation as part of an ongoing process of long-term

emissions reduction investment. We also observe that while the average cluster improved, a siz-

able number of clusters continued to have CEPI values above the cutoff in 2013, indicating the

difficulties of mandating pollution below a certain threshold.

[PLACE FIGURE 2 HERE.]

We present a second piece of evidence on the effectiveness of the 2009 CEPI regulation in

Section 4, where we document a significant reduction in cluster-level air emissions using satel-

lite readings. In Section 5, we show that firms alter their production decisions to reduce their

product-level CO2 emissions. Finally, we utilize an additional source of variation in pre-existing

enforcement intensity of environmental regulation while conditioning on the cluster-level treat-

ment assignment. Specifically, we rely on MoEF&CC designated industries as “highly polluting”

(HPI). Firms in these industries were subject to stricter monitoring standards in 2003.8 For ex-

ample, monitoring stations were more likely to be placed near HPI plants and HPI firms in
7Treated clusters were monitored continuously and audited quarterly, but the more extensive full re-analysis of

the CEPI value took place at intervals of two years.
8The specific industries include aluminum, copper, iron and steel, and zinc smelting. Also included are the

production of chlor-alkali, cement, dyes, fertilizer, pesticides, petrochemicals, pharmaceuticals, sugar, and pulp and
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CEPI[70,100] clusters and were likely subject to firm-specific abatement investment mandates un-

der the Supreme Court action plans (Harrison, Martin, and Nataraj, 2017). These specifications

control for potential differences in enforcement across clusters while providing additional evi-

dence on which firms win and lose from the regulation.

2 Data and Summary Statistics

2.1 Data

Policy Data. We hand-collected data on the 2009 regulation from policy documents published

by the CPCB. These include cluster-level CEPI values and their corresponding component values

broken down by medium (air, water, and land). Additionally, we collected data from two follow-

up rounds of monitoring by the CPCB in 2011 and 2013 in clusters with a 2009 CEPI value at

or above 70. This data also includes information on the institutional details, monitoring, and

enforcement mechanisms of the regulation. See Online Appendix B for more details.

Industrial Clusters. We hand-collected the location of the near-universe of industrial clusters

in 2009 from the CPCB. We compile a dataset of more than 2,000 clusters by name and location.

As industrial clusters are a dense agglomeration of SMEs, we map them to the most granular

regional unit available across different datasets. Specifically, we standardize the cluster names,

extract their geolocation from Google API, and match them to PIN codes and cities.9 We ag-

gregate CEPI to the city level by assigning each city the maximum index value among all the

industrial clusters within it. We can match 61 of the 88 industrial clusters for which the CPCB

released data on the CEPI. Overall, the firms in our matched sample represent a significant share

of economic activity, producing over 70% of output between 2005 and 2015.

paper, as well as tanneries, distilleries, oil refineries, and thermal power plants. IAA1 presents differences in firm and
product characteristics, split by HPI and non-HPI industries. In the year before the CEPI regulation, we do not see a
statistically significant discontinuity across several characteristics, except for the proportion of coal used as an input.

9For our primary analyses, the city is the most granular regional unit. However, we match the location of industrial
clusters to the more granular PIN code level in the business registration dataset. In India, a PIN code, which stands
for Postal Index Number code, is a numerical code used by the postal system to facilitate the sorting and delivery of
mail. PIN codes are employed to specify precise locations for mail delivery. On average, a single post office serves an
area of approximately 21 square kilometers and a population of around 10,000.
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Emissions Datasets. To measure cluster-level changes in air emissions, we rely on the Emis-

sion Database for Global Atmospheric Research (EDGAR). EDGAR is a comprehensive global

database that documents human-caused emissions of greenhouse gases and other pollutants. We

use the highest resolution data available: emissions measured in 0.1° × 0.1° grids at a monthly

frequency. This data presents several advantages for assessing emissions impact. First, EDGAR’s

figures are derived independently, using consistent international statistics and an established

IPCC methodology.10 Second, the data provide emissions data for various distinct emissions

separately. We use emissions data for nitrous oxide (NOx), particulate matter less than 2.5 µm in

diameter (PM2.5), and particulate matter less than 10 µm in diameter (PM10). Finally, the data

are adjusted to separate emissions from industrial activities from other sources such as fires.

This separation allows us to focus exclusively on emissions from industrial sources, including

industry. These features of the EDGAR dataset make it well suited for studying changes in

emissions, a substantial limitation in prior research on environmental regulations in emerging

markets (Greenstone and Jack, 2015).

We link emissions from EDGAR to exact cluster locations, which involves two main steps.

Initially, we define the area around each plant as a circle with a 5-kilometer radius, creating

what we refer to as a ‘footprint.’ This concise footprint ensures that we attribute changes in air

emissions to firms operating within distinct industrial clusters. Then, we allocate the monthly

measurements from the grid to this footprint. If a footprint spans multiple grid cells, we calculate

the pollution using a weighted average based on the respective land area of those cells. See Online

Appendix C for more details.

We supplement these analyses with data on fine particulate matter (PM2.5) created by Van Donke-

laar, Martin, Spurr, and Burnett (2015). These data are constructed by combining aerosol optical

depth (AOD) data from several satellite sources and then calibrating the readings to pollution

monitor data using a geographically weighted regression (GWR). The data are available monthly

at the spatial resolution of 1km × 1km.

10See https://edgar.jrc.ec.europa.eu/ and Crippa, Guizzardi, Muntean, Schaaf, and Oreggioni (2019); Crippa, So-
lazzo, Huang, Guizzardi, Koffi, Muntean, Schieberle, Friedrich, and Janssens-Maenhout (2020); European Commis-
sion, Joint Research Centre (EC-JRC)/Netherlands Environmental Assessment Agency (PBL) (2020) for more informa-
tion.
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Firm Financials. We use firm- and product-level data from Prowess, a database maintained by

the Centre for Monitoring the Indian Economy (CMIE). Several prior studies on Indian firms

have used this dataset, including Bertrand, Mehta, and Mullainathan (2002); Gopalan, Nanda,

and Seru (2007); Lilienfeld-Toal, Mookherjee, and Visaria (2012); Gopalan, Mukherjee, and Singh

(2016); Naaraayanan and Nielsen (2021); and Naaraayanan and Wolfenzon (2023). We extract

data from the latest vintage of Prowess, which is free from survivorship bias, as highlighted by

Siegel and Choudhury (2012).

The CMIE gathers data from balance sheets and income statements for approximately 37,000

publicly listed and private firms. The covered firms account for more than 70% of the industrial

output, 75% of corporate taxes, and over 95% of excise taxes collected by the government of

India and are representative of large and medium-sized firms in India (Bau and Matray, 2023).11

Moreover, in addition to headline firm financial statements, the data also captures firm abatement

expenditures, a proxy to measure one of the key levers that the CEPI regulation used to combat

cluster emissions. Therefore, the data is particularly useful for examining how firms adjust over

time in response to environmental regulations.

Product-level Inputs and Outputs. To shed light on within-firm decisions, we use detailed

product-level data made available due to the disclosure requirements set out in the Companies

Act of 1956, and subsequently the Companies Act of 2013. On the output side, the dataset cap-

tures total product sales and total quantity sold at the firm-product level, allowing us to compute

unit prices and quantities. In addition, it provides information on capacities, production, and

sales from company annual reports (see Goldberg, Khandelwal, Pavcnik, and Topalova (2010)

and Bau and Matray (2023) for more details).12 There are 1,700 distinct products in our final

dataset, where the definition of a product is Prowess’s internal product classification, which in

turn relies on the National Industrial Classification (NIC). We construct a panel of product-level

11It is worth considering how alternative datasets compare to Prowess. Most prominently, prior research on India
has used the Annual Survey of Industries (ASI) to examine impact of reforms on the manufacturing sector. Most
notably, Prowess is a firm-level panel dataset whereas ASI is a establishment-level dataset which surveys a repeated
cross-section of 30,000 establishments per year (Martin, 2011; Sivadasan, 2009) Moreover, ASI is limited in terms of
panel coverage, making it particularly ill suited for studying within-firm responses to environmental regulations.

12The Companies Act does not mandate or specify the units for reporting, leading to a lack of standardization both
across and within firms over time. Therefore, we standardize units within and across firms and drop observations in
instances there is insufficient information to reconcile changes in unit types within a firm-product over time.
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output and prices, with unit-level prices for each product defined as the total unit sales over total

unit quantity.

On the input side, Prowess captures product-wise energy consumption reported in company

annual reports.13 The data are at the firm-product-year-energy-source level and are expressed in

energy input units per reported production unit. We transform energy input into CO2 output by

making assumptions about each energy source’s energy content and CO2 output. We calculate

tonnes of CO2 emitted per reported production unit for each firm-product-year-energy-source

and collapse to the firm-product-year level across energy sources (see Online Appendix D). To

our knowledge, no other data source offers comparable granularity and scope to understand the

intersection of firm production and energy consumption.

Plant Announcements. We use data on new and abandoned plant announcements from the

CapEx database maintained by CMIE. This dataset contains information on all new and aban-

doned plants announced in India since 1990. Specifically, it provides information on the project

announcement date, location, ownership, cost, and industry classification. CMIE obtains the data

from multiple sources, including annual reports, news articles, and government press releases.

The database is updated daily and contains information on the entire project life cycle whenever

information is available. Typically, projects costing more than INR 100 million (approximately

USD 2 million) are included in the database (Alok and Ayyagari, 2020; Naaraayanan and Wolfen-

zon, 2023).

Other Data Sources. We use the near-universe of firm registrations from the Ministry of Cor-

porate Affairs (MCA), allowing us to track business formation across all formal firms in the

economy. Furthermore, we use data from the 2001 Population Census to examine whether ob-

servables differ significantly in treated and control clusters around the CEPI value treatment

13Sub-section (1), clause (e) of section 217 within the Companies Act of 1956 stipulates that all companies are
obligated to report their total energy consumption in a specified format. Nevertheless, there is no legal requirement for
companies to disclose their product-specific energy consumption per production unit. Consequently, one limitation
of the analysis on changes in product-level energy consumption is that firms can decide whether to disclose this
information. Not all firms choose to do so. In Online Appendix D we explore the representativeness of this data.
Importantly, we observe in our data that when a firm initiates the reporting of product-level energy inputs, it typically
does so consistently throughout the entire period. Moreover, we find that there is a reduction in the probability
of filing energy inputs at all in the post-regulation period but no discontinuity in this probability at the treatment
thresholds.
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thresholds and to test the assumption that the CEPI thresholds are economically meaningful to

firms because of the 2009 regulation and not because they correspond to other policy or econom-

ically relevant thresholds. Finally, we convert the data into real values using the capital deflator

series from the Ministry of Statistics and Programme Implementation (MOSPI).

2.2 Final Sample and Summary Statistics

Our primary focus is understanding the impact of regulation targeting pollution from industrial

clusters, which feature dense agglomeration of manufacturing firms. Our estimation sample,

therefore, comprises manufacturing firms located in the 66 clusters for which we have a CEPI

value. We focus on a five-year window around the 2009 regulation. Moreover, as we aim to shed

light on within firm response to the regulation, we focus on multiproduct firms, allowing us to

better understand different margins of adjustment. These firms represent over 95% of the output

during the sample period.14

Table 1 presents the descriptive statistics for the sample of manufacturing firms from 2005

to 2015. Included firms are multiproduct manufacturing firms in industrial clusters assigned a

2009 CEPI score. Panel A reports summary statistics at the firm-year level. The average (median)

firm has 3.5 (0.6) million INR in total assets and 3.3 (0.8) million INR in total sales. The sample

firms are, on average, moderately indebted, with average (median) leverage ratios (bank borrow-

ing scaled by total assets) of 0.27 (0.25). The average (median) company exports, deriving 16.3%

(1.6%) of its total sales from exports of goods. The average (median) firm produces 3 (2) distinct

products a year.15 The average (median) firm is also moderately profitable, reporting 11% (10%)

of the value of year-before sales in new earnings before interest, taxes, depreciation, and amorti-

zation. Focusing on the listed firms in our sample, the average (median) market-to-book ratio is

0.88 (0.41).

[PLACE TABLE 1 HERE.]

Panel B of Table 1 describes the product-year-level panel dataset. Our dataset has 1,178

unique products, and a single firm can produce multiple types of products. The overall picture
14This focus on multiproduct firms is consistent with prior studies (De Loecker, 2011; De Loecker, Goldberg,

Khandelwal, and Pavcnik, 2016; Eckel and Neary, 2010).
15Note that we drop firms that produce one product throughout the sample but not firms that switch between

being single- and multiproduct producers, so that we preserve variation from the extensive margin.
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is of significant heterogeneity in operations. Product profit margins—defined as (unit price - unit

cost) / unit price—tell us that the average (median) firm-product earns 0.01 (0.14) INR per unit

produced. This granular evidence is consistent with the firm-level profitability distribution. Fi-

nally, the distribution of product sales, cost, and price are all highly skewed, as is the distribution

of unit-level CO2 emissions, calculated for those firms that report product-level energy inputs.

Overall, the panel of manufacturing firms involves a broad cross-section of firms and is consistent

with industrial clusters composed of a few large firms and many medium-sized ones.

3 Empirical Methodology

3.1 Difference-in-Discontinuities (DiRD)

Our analysis exploits the cross-sectional variation in environmental regulatory costs following

the institutional details of how the regulation was implemented. As described in Section 1, firms

in clusters just to the left of the CEPI value of 60 faced no sanctions, while those in clusters with

CEPI just to the right of 60 were subject to heightened emissions monitoring. Finally, those firms

located in clusters just to the right of the second CEPI treatment threshold at 70 were mandated

to take more targeted steps by Court–administered action plans.

Therefore, at each cutoff, there is a discontinuous jump in treatment intensity. In the empirical

specification, for identification, we exploit the resultant discontinuities and the time variation

around the regulation implementation with a difference-in-discontinuities (DiRD) design. The

DiRD design allows us to difference out the effect of any potential pre-existing discontinuity at

the treatment cutoffs, and, by focusing on the variation at the threshold, it further allows us to

circumvent concerns often associated with the difference-in-differences approach, where control

firms might not serve as an appropriate counterfactual for treated firms. Specifically, we estimate:

Ykijcst = β1Postt × CEPI[70,100]
c + β2Postt × CEPI[60,70)

c +

+β3CEPIc + β4Postt + γi + κjst + ϵkijcst (1)

where k, i, j, c, s, and t represent a product, firm, industry, city, state, and year, respectively.

Our running variable, CEPIc, is the pollution index value, defined at the city level as described
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in Section 2. We assign firms to industrial clusters based on their headquarters city as of the

2009 regulation.16 Specifically, CEPI[70,100] takes the value 1 if the city has a maximum industrial

cluster CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value 1 if the city

has a maximum industrial cluster CEPI value greater than or equal to 60 and below 70, and zero

otherwise. The omitted category includes firms whose city has a maximum industrial cluster

CEPI value below 60. Including both CEPI[70,100]
c and CEPI[60,70)

c group indicators captures the

greater intensity of treatment for firms located in cities where the maximum CEPI score is greater

than or equal to 70.In our dataset, there are 33 cities with a maximum CEPI value greater than

or equal to 70 in 2009 and an additional 20 cities with a maximum 2009 CEPI value greater than

or equal to 60 and below 70.

The variable Postt is an indicator variable taking the value 1 for all years after and includ-

ing 2009, the year in which the CEPI regulation was implemented. Finally, the granularity of

the data allows us to address concerns about location-specific and industry-specific effects that

may differentially affect firms’ production and emission decisions using the empirical specifica-

tion. Specifically, we include firm fixed effects (γi) to control for unobserved time-invariant firm

characteristics.17 We include state-by-industry-year fixed effects (κjst) to control for time-varying

industry shocks within the same state. The stringency of these fixed effects allow us to rule

out several location- and industry-specific concerns such as technical innovation and regulation,

which vary considerably over states and industries. We cluster standard errors at the cluster

level, the level at which we define treatment (Abadie, Athey, Imbens, and Wooldridge, 2017;

Bertrand, Duflo, and Mullainathan, 2004; Roberts and Whited, 2013).

The coefficient β1 quantifies the effect of being located in a cluster with a CEPI value of at

least 70 on the outcome Yijcst relative to the effect of being located in a cluster to the left of the

cutoff with a CEPI value below 60, in addition to any effect of being assigned to treatment (Post×
16As mentioned in Section 2.1, we map hand-collected information on names and location to the most granular

location observed in our dataset, firm headquarter city. Specifically, we aggregate CEPI values to the city level by
assigning each city the maximum index value among all the industrial clusters within it. This procedure represents
our most refined approach for treatment assignment. However, it may result in the misclassification of some firms
by labeling them as ’treated’ when they are actually ‘control,’ and vice versa. However, such misclassification likely
biases our estimates against finding any effect by narrowing the estimated difference between outcomes in the two
treatment groups. Moreover, we provide evidence below that the identification assumptions are satisfied, which likely
mitigates other sources of bias.

17Note that the main effect of CEPIc, which is invariant within a firm, drops out with the inclusion of the firm fixed
effects, while the main effect of Postt drops out with the inclusion of state-by-industry-year fixed effects.
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CEPI[60,70)). The coefficient β2 quantifies the regulation’s effect on firms located in clusters with

CEPI values between 60 and below 70 relative to firms located in clusters with values below 60.

Thus, the total treatment effect for a firm with a CEPI value at or above 70 is β̂1 + β̂2. Note

that a significant advantage of decomposing the treatment effect into two groups—firms with

CEPI values of at least 70 and those with values between 60 and below 70—is that it allows us

to shed additional insight on whether the treatment effects predominantly relate to the extensive

margin of treatment (crossing the 60 CEPI threshold) or to the intensity of treatment, which incurs

additional regulation and consequences (crossing the 70 CEPI threshold). Moreover, leveraging

quasi-random variation around these two thresholds expands the scope of the estimated local

average treatment effects and enhances the generalizability of our findings.

3.2 Identification Assumptions

The primary identification assumptions of DiRD are pre-trends evolve in parallel and that po-

tential outcomes are smooth around the cutoffs. While the parallel trends assumption is funda-

mentally untestable, we present several pieces of evidence in support of it. Moreover, the latter

assumption requires that firms do not perfectly manipulate the policy thresholds used to assign

treatment and control groups and that the thresholds are not economically important for reasons

other than treatment assignment (Grembi, Nannicini, and Troiano, 2016).

Across several tests, we provide evidence supporting these assumptions. Specifically, we

graphically show similar trends for treatment- and control-group firms across key outcomes in

the pre-regulation period. Furthermore, we present evidence of no manipulation of the CEPI

value by industrial clusters, no discontinuity in firm-, product-, and cluster-level characteristics

at the CEPI thresholds before the regulation.

First, we begin by testing the assumption that industrial clusters could not influence their

position around the thresholds at 60 and 70 by manipulating their CEPI values, our running

variable. This is a crucial identification assumption because it underpins our ability to assume

that firms whose industrial clusters have pollution rankings on opposite sides of the cutoffs are

otherwise comparable. We test for ranking manipulation around the cutoffs at the industrial-

cluster level in 2009.
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As a summary test, we combine the CEPI thresholds of 60 and 70 into one variable through

a normalized measure of CEPI value, which we create by subtracting the closest threshold from

each cluster’s CEPI value.18 Specifically, we fit the distribution of the ranking variable on either

side of the pooled cutoffs and then test whether those distributions differ statistically (McCrary,

2008). Figure 3 reports the results for the pooled sample.

[PLACE FIGURE 3 HERE.]

We do not find evidence of bunching around the cutoffs, and the p-value from a two-sided

test is 0.58. Thus, we fail to reject the null hypothesis of no manipulation of the CEPI ranking.

A remaining concern is that omitted variables affect the composition of industrial clusters. We

assuage these concerns in Section 7.3, where we document no evidence of changes in mergers

and acquisitions activity, leading firms to exit the industrial clusters in response to the stringent

environmental regulations.

Second, in Figure 4, we present the geographical variation in the industrial clusters selected

by the CPCB for the environmental assessment relative to the location of all industrial clusters as

of 2009 (gray dots). We find that the industrial clusters targeted by the CPCB are representative of

clusters in general, with above- and below-cutoff clusters coming from geographically proximate

regions within each state.

[PLACE FIGURE 4 HERE.]

Next, we test the identifying assumption that there are no discontinuous jumps in our key

outcomes and firm- and product-level characteristics at these thresholds in the pre-regulation

year.19 The intuition is that if we observe discontinuities around the thresholds even before the

CPCB evaluation, then it is likely that some other policy differentially affected firms at these

cutoffs, making it hard to isolate the effect of the environmental regulation from these other

policies.

[PLACE FIGURE 5 HERE.]
18We have limited observations in the cluster to the left of the CEPI threshold at 60. As a result, we do not have

enough power to examine the two cutoffs separately. Hence, to be consistent, we present results with normalized
thresholds throughout these tests.

19This is analogous to the regression discontinuity assumption that potential outcomes are smooth around the
cutoffs.
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Figure 5 presents the scatter plots of means of several firm-level covariates, defined as of

2008, by different bins (each of size 1) around the pooled threshold. We normalize the thresholds

to zero by subtracting off their respective threshold values from the CEPI value of the industrial

cluster. We find no evidence of discontinuities in baseline covariates. The characteristics we

examine include total assets, total sales, leverage, exporting intensity, investment, wage bill, and

market capitalization (for listed firms). Panel A of Table 2 demonstrates that none of these

characteristics are statistically different across the cutoffs even in a regression setting.

[PLACE TABLE 2 HERE.]

Similarly, Figure 6 tests for discontinuities at the pooled thresholds for product-level covari-

ates defined as of 2008. Again, we see no significant discontinuous jumps in the product char-

acteristics. Panel B of Table 2 reports the associated average differences of products of firms in

industrial clusters with CEPI values below versus above the threshold and the coefficient and as-

sociated p-value of the regression discontinuity specification at the threshold between CEPI[60,70)

and CEPI[70,100] cluster status. There is no significant jump, both statistically and economically.

[PLACE FIGURE 6 HERE.]

Lastly, in Online Appendix Table IAA2, we examine whether there are discontinuous jumps

in cluster-level covariates defined as of 2008 and taken from the Population Census and Harari

(2020). As before, we see no evidence of significant ex ante discontinuities in various proxies for

economic activity—both demand and supply for goods—and determinants of pollution extent

and impact.

The preponderance of evidence thus suggests that the treatment thresholds do not proxy

for pre-existing differences in policies that affected firms in the same way as the environmental

regulation. Furthermore, they alleviate concerns that firms in the control group are not a valid

counterfactual for treated firms, thereby allowing us to cleanly identify the effect of environmen-

tal regulations.
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4 Changes in Cluster-Level Air Emissions

At the industrial cluster level, our primary outcome of interest is emissions from industrial ac-

tivities within the clusters. As discussed in Section 2, we extract emissions data, measured in

milligrams per month within a spatial resolution of 0.1°x 0.1°, from the EDGAR dataset. We

build a monthly panel of emissions from industrial activity split by the type of pollutant at

the cluster-address level and estimate the following event study difference-in-differences (DiD)

specification:

Emissionspcst = ∑
k∈{−4,−2}

βkDk × CEPI[60,100]
c + ∑

k∈{0,6}
βkDk × CEPI[60,100]

c +

CEPIc + γcp + γpst + ϵpcst (2)

where p is pollutant, c is cluster, s is state, and t is year-month. Figure 7 plots the estimated

coefficients (βk) normalized to the fiscal year of 2008 and their corresponding 95% confidence

intervals, comparing the evolution of emissions in treated clusters relative to others. The vertical

gray dotted line indicates the regulation year of 2009. Standard errors are clustered the address

level.

[PLACE FIGURE 7 HERE.]

As evident from Panel (a) of Figure 7, there are no differential pre-trends in the average emis-

sions from industrial activities between treated and control clusters, suggesting that targeting by

regulators did not, on average, coincide with the differential improvement in air quality.20 These

parallel pre-trends support the DiRD identification assumption that outcomes of the treated and

control groups would have evolved similarly in the absence of treatment, locally around the

thresholds. Moreover, in the post-regulation period, there is an immediate and persistent de-

crease in the average emissions levels within treated clusters. In Panel (b) of Figure 7, we find

a significant decrease in PM2.5 emissions. Note that the relatively large decrease suggests that

post-regulation emission levels in treated clusters, which had higher levels to begin with in the

pre-regulation period, become similar to emission levels in clusters with a CEPI value below 60.

20For this analysis, we pooled the emissions data across several pollutants: NOx (nitrogen oxides), PM2.5, and
PM10.
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[PLACE TABLE 3 HERE.]

Table 3 presents these results in a regression framework. Model (1) combines all pollutants

into a single regression and accounts for their differential impact by including high-dimensional

fixed effects. These fixed effects interact cluster and state × year-month fixed effects with the

specific pollutant type. Consistent with Figure 7, we find a statistically significant decrease in

relative emission levels for treated clusters compared with industrial clusters having a CEPI

value below 60. In terms of economic magnitude, relative to the pre-regulation mean in the

control group, this change represents a 62.1% decrease in the CEPI[70,100] clusters and a 31.3%

decrease in the CEPI[60,70) clusters. The average treatment effect pooling across the two clusters

is statistically significant, with a p-value of 0.033. Separating the results by different pollutants,

we find a similar decrease across hazardous air pollutants.

Lastly, in Online Appendix Table IAA3, we supplement these analyses using satellite data on

measurements of fine particulate matter (PM2.5) at a granular level (Van Donkelaar, Martin, Spurr,

and Burnett, 2015). These data are constructed by combining aerosol optical depth (AOD) data

from several satellite sources and then calibrating to pollution monitor data using a geographi-

cally weighted regression (GWR). The data are available monthly at the 1km × 1km resolution.

As before, we build a monthly panel and find a statistically significant decrease in relative emis-

sion levels for treated industrial clusters in a five-kilometer and 500-meter radius around the

center of each cluster. In terms of economic magnitude, relative to the pre-regulation mean in the

control group, this change represents a 4.0% decrease, significant at the 95% confidence level.21

Taken together, our results suggest that firms in industrial clusters evaluated by the CPCB

in 2009 lowered their emissions, with a larger increase in emissions reduction observed among

firms in industrial clusters with higher treatment intensity. This finding is consistent with the

CPCB’s assertion that clusters with a CEPI value at or above 70 responded to the Supreme Court

Action Plans, which mandated emissions abatement investments.
21The differences in economic magnitude relative to the results presented in Table 3 are likely an artifact of the low

correlation between PM2.5 readings across the two datasets (ρ = -0.06). These differences could arise from variations
in calibration methods, in addition to differences in spatial resolution, and the level of industrial activity captured.
We believe that, given the low correlation, both data sources provide orthogonal measurements that help establish a
robust reduction in emission levels in response to the CPCB regulation.
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5 Product-Level Outcomes

Treated clusters significantly lowered their emissions in response to the stringent regulation im-

posed by the CPCB. Next, we analyze our granular product-level data to understand the drivers

behind the aggregate reduction in emissions and document the operational response of manufac-

turers. We focus on the input side in Section 5.1. We analyze product-level energy consumption

and estimated carbon emissions. In Section 5.2, we analyze the output side, including the exten-

sive and intensive margins of the production response, product portfolio mix, and pricing and

profitability impacts of the regulation.

5.1 Energy Inputs

In this subsection, we focus on the sample of manufacturing firms that reported energy inputs

at the product level. We confirm that their estimated CO2 emissions at the product level also

decrease. We find that firms reduce emissions by changing their energy inputs i.e., shifting output

toward lower-emission products and purchasing rather than producing electricity. We exploit

cross-sectional differences in CPCB monitoring of firms in high-polluting industries versus others

within clusters to show that results are stronger for firms in high-polluting industries within

treated industrial clusters relative to others.

First, Panel A of Table 4 reports changes in firm-level energy inputs around the environmental

regulation. In Model (1), the outcome is the natural logarithm transformation of INR value of

product-level energy inputs. We see that the average treated firm reduces the amount spent on

energy, controlling for the quantity of the product they produced in the same year. The estimates

are economically meaningful with the average treated firm in a cluster with CEPI value between

60 and below 70 reducing its energy inputs by approximately 63% on an annual basis, and while

the average firm in a cluster with a 2009 CEPI value of at least 70 reducing its energy inputs

by 84%. Relative to the 2008 average energy expenditure of 8.906 million INR per product, this

represents a reduction of about 7.5 million INR on the average product of firms located in clusters

with a CEPI value of at least 70, equivalent to a reduction of about 172,867 in 2008 U.S. dollars.

[PLACE TABLE 4 HERE.]
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Coal is the primary energy input in our data and a key source of industrial cluster air emis-

sions. In Model (2) of Panel A of Table 4, we test for the use of coal by firms in treated relative to

control clusters. We find a considerable decrease of 29% in the use of coal in firms in CEPI[60,70)

clusters and a relatively 30% larger average effect in CEPI[70,100]. For firms in clusters with a

2009 CEPI value of at least 70, this represents a drop from 17% of inputs to 10% of inputs for the

average product, relative to the 2008 control use of coal as an input per product.

Treated firms, on average, reduced energy use per product relative to control firms. One

mechanism for this reduction was reducing dependence on coal as an energy input. Model (3) of

Panel A of Table 4 indicates that another is shifting emissions outside the cluster. We see a shift

from producing electricity to purchasing it. Specifically, the average treated company increases

the proportion of energy that they purchase from the electrical grid by 19.6 percentage points

(for firms in CEPI[60,70)) to 29.6 percentage points (for firms in CEPI[70,100]).

In the data, the majority of firms use electricity. In 2008, the average control firm purchased

46% of the electricity used to make the typical product and produced the remaining 64% by

burning coal, diesel, oil and gas, or biomass, in that order of frequency. The treatment magnitude

for the highest-treatment group (CEPI[70,100] cluster firms) is a shift from purchasing 46% of

electricity used to produce the average product to purchasing 75.6%.

We observe reduced emissions in all clusters, but it is unclear whether all firms are reduc-

ing emissions. A notable feature of the CEPI regulation is that it targets clusters rather than

individual firms, opening up the possibility that firms in the same industrial cluster receive dif-

ferent treatments. To get at this margin, we exploit an intra-cluster source of treatment variation

from the institutional detail that treatment affected firms in “highly polluting industries” more

intensely than firms in other industries located in the same cluster. To do so, we estimate the

following empirical specification:

Ykijcst = β1Postt × CEPI[70,100]
c + β2Postt × CEPI[60,70)

c +

β3Postt × CEPI[70,100]
c × High-Pollutingj +

β4Postt × CEPI[60,70)
c × High-Pollutingj +

β5CEPIc + β6Postt + β7High-Pollutingj + γi + κjst + ϵkijcst (3)
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In other words, we interact treatment indicators CEPI[70,100]
c and CEPI[60,70)

c in Equation 3

with High-Pollutingj. High-Pollutingj is equal to 1 if the firm’s main industry in 2008 was one

of the 17 industries considered highly polluting industries by the CPCB, and zero otherwise.22

Panel B of Table 4 reports the results of estimating Equation 3 on the input data. The relative

magnitudes of the coefficient estimates suggest that treated firms in high-pollution industries

drive the shift toward lower energy input and from purchasing to producing electricity that we

document in Panel A. To assuage concerns that firms in HPI industries differ from firms in non-

HPI industries, in Online Appendix Table IAA1 we test and find no differential discontinuity in

either firm or product characteristics across HPI versus non-HPI industries.

Next, Table 5 tests whether product-level CO2 emissions decrease with the energy input

changes. We transform energy input into CO2 output by making assumptions about each energy

source’s energy content and CO2 output.23 We then calculate tonnes of CO2 emitted per reported

production unit for each firm-product-year-energy-source and collapse to the firm-product-year

level across energy sources. The outcome for Model (1) is the natural logarithm of the total CO2

emissions of each product-year. The outcome for Model (2) is the natural logarithm of the per-

unit CO2 emissions, calculated as the ratio of total annual CO2 emissions and total production

units for the product year. Emissions fall sharply relative to treated firms, and more for the

treated in clusters with CEPI at least 70 than for the average treated firm. These findings are

consistent with the cluster-level emissions evidence in Section 4.

[PLACE TABLE 5 HERE.]

Specifically, Model (1) in Panel A of Table 5 reports that product CO2 emissions decrease by

approximately 86.6% for the average firm in the highest-treatment group from clusters with a

CEPI value of at least 70. The decrease is approximately 66% for treated firms in clusters with

2009 CEPI between 60 and below 70. Interpreted relative to the 2008 control mean of 162,230

tonnes of CO2 per product-year, this is a reduction of between 107 and 141 thousand tonnes of

CO2. Model (2) of Table 5 tells a similar story, but this time considering tons of CO2 per reported

production unit (e.g., tonnes of CO2 per tonnes of widgets produced). Here we see a 58.7 to 79.2

22See Section 1 for further details about this classification and how it interacts with treatment intensity.
23See Section 2.1 and Online Appendix D.
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percentage-point reduction in emissions per unit for firms in CEPI[60,70)
c and CEPI[70,100]

c clusters,

respectively. Finally, Model (3) of Table 5 reports that the average firm shifted its product portfolio

away from its highest-coal-input product in 2008. While the average control firm weighted its

highest-coal-input product at 0.78 in 2008, the average treated firm in a cluster with a CEPI

value of at least 70 reduced that weight by 44.8 percentage points to 0.43. The reduction is

also statistically significant, indicated by the reported p-value against the null hypothesis that

β1 + β2 = 0.

Panel B of Table 5 runs the triple DiRD specification by interacting the treatment group

indicators with an indicator for being in a highly polluting industry. The estimates’ direction

and relative magnitude support the view that firms in highly polluting industries within treated

clusters are the population adjusting their product energy inputs and CO2 emissions. In Model

(3), where the outcome is the weight of the firm’s highest-coal-input product in 2008, we find

that HPI firms in the highest-treatment clusters respond significantly more than firms in the same

cluster in non-HPI industries. The difference is significant at the 95% confidence level.

5.2 Outputs

Next, we examine changes in firm output at the product level. Ex ante, it is unclear whether we

should observe any treatment effect, given that the manufacturers in our sample are primarily

upstream in their supply chains and have long-term production relationships with the firms they

supply. On the other hand, changes in energy inputs suggests that firms are re-optimizing their

production decisions, and hence are likely to change outputs as well. We test between these

explanations and report the results in Table 6.

Model (1) in Panel A of Table 6 reports that there is no differential response, on average,

between the production on the intensive margin of firms in treated and control clusters, as prox-

ied for by the natural logarithm of the product-level production quantity. Model (2) shows no

evidence of any differential extensive margin response, proxied for by the natural logarithm of

the number of product lines at the firm level.

[PLACE TABLE 6 HERE.]

However, Panel B of Table 6 reveals that the average effect presented in Panel A masks het-
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erogeneity within the treatment groups. In particular, treated firms in highly polluting industries

increase their production (Model (1)) and decrease the number of products they produce (Model

(2)). Specifically, firms in highly polluting industries in the clusters subject to Supreme Court

action plans (2009 CEPI of at least 70) increase production in the average product by 45% fol-

lowing the environmental regulation, significant at the 99% confidence level. Further, Model (2)

suggests that the average treated firm in a highly polluting industry is also more likely to reduce

its product variety relative to control firms and treated firms in the same cluster operating in

non-HPI industries.

In Models (3) and (4) of Table 6, we test for the effect of the regulation on product variety

in the following years. In aggregate, as reported in Panel A, treated firms are significantly less

likely to introduce new products. The reduction is about a 17.4 percentage point decrease in the

probability that a firm in the highest-treatment clusters with CEPI above 70 will introduce a new

product in the five years following the regulation in 2009. The probability of dropping a product

is positive but insignificant in the aggregate.

In Panel B, we see that the reduction in the probability of introducing a new product is

driven by all treatment firms, with no differential effect for those in highly polluting industries.

However, firms in highly polluting industries are approximately 12.8 percentage points less likely

to add a product in the years following the regulation relative to control firms, significant at

the 95% confidence level. Overall, the evidence points to decreased product variety in treated

clusters, especially among firms in highly polluting industries, who appear to double down on

their existing products.

To see the divergence between the production and HPI and non-HPI firms more clearly, we

investigate the dynamics of their portfolio decisions. First, Figure 8 plots the effect over time on

the weight of the treated firm’s highest-margin product in 2008, relative to control firms, both

overall (Panel (a)) and separately for firms in HPI and non-HPI sectors. Specifically, Panel (a) of

this figure plots β̂k from the regression:

Wijcst = ∑
k∈{−4,−2}

βkDk × CEPI[60,100]
c + ∑

k∈{0,6}
βkDk × CEPI[60,100]

c +

CEPIc + γi + γjst + ϵijcst (4)
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Note that the treatment indicator is pooled across the two treatment thresholds (the graphical

counterpart to the tests of β1 + β2 = 0 in the regression tables). We normalize coefficients to one

period before the regulation.

[PLACE FIGURE 8 HERE.]

The figure demonstrates that the shift toward the highest-margin product begins at the reg-

ulation and increases over time.24 Panel (b) splits the coefficient into the effect on firms in

high-pollution industries (gray diamonds) and firms in other industries (black dots). Now, we

observe a stark divergence between the shift toward high-margin products in non-HPI firms and

the shift away from the highest-margin product among HPI firms in the same cluster that the

aggregate coefficients had masked. The difference widens over time, suggesting that the regula-

tion’s impact on production decisions is long-lasting, especially for the highest-treatment group

(the HPI sectors), while less-treated firms (the non-HPI sectors) adjust production decisions that

increase profitability over time.

By contrast, Figure 9 plots the portfolio weight on the firm’s highest-emission product in

2008. Panel (a) displays that firms shift away from their dirtiest product, on average, relative to

control firms. Panel (b) of Figure 9 demonstrates, as before, a stark divergence between firms

in HPI and other industries. Namely, only firms in highly polluting industries shift production

away from their highest-emission product, while firms in other industries increase their weight

on their dirtiest product. This divergence in the behavior of HPI and non-HPI firms masked in

the aggregate model further underlies the importance of observing detailed production decisions

to accurately estimate the effects of emissions regulation and determine winners and losers.

[PLACE FIGURE 9 HERE.]

6 Abatement Expenditures

The environmental regulation employed two main policy levers to address heightened emis-

sions at industrial clusters. The first was enhancing emissions monitoring and the second was

24The weight on the highest-margin product is marginally significantly less than zero three years before the regu-
lation in 2006, but there is no clear trend in the coefficients, and the pooled pre-period does not differ from zero, with
quite precise error bounds.
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to mandate emissions abatement investments, specifically in the most critically polluted clus-

ters, those with CEPI values at or above the 70 threshold. Cluster-specific action plans describe

the abatement to be undertaken, some investments are mandated at the cluster level and some

are to be undertaken by specific plants. To ascertain whether firms in the targeted industrial

clusters implemented abatement investments, we rely on expenditures towards pollution control

equipment, as captured in financial statements. This is the best available proxy to measure firm

exposure to regulation-imposed investment mandates because it captures the firm’s expenditures

as it is contributes to a cluster-wide investment.

Table 7 examines changes in abatement expenditures around the environmental regulations.

We find that firms increase their abatement expenditures, on average, both on the extensive and

the intensive margin. Specifically, Model (1) in Panel A reports the extensive margin response.

The outcome 1Abatement is an indicator that takes the value 1 if the firm’s abatement expenditure as

a fraction of total assets is non-zero, and 0 otherwise. We see that only firms in the clusters with

a CEPI value of at least 70 significantly increase their likelihood of making abatement investment

relative to the abatement investment rate of firms in control clusters. The interpretation relative

to the 2008 level of abatement among firms in control clusters is a 7.7 percentage point increase

in the probability of making any abatement investment from 4.8% to 12.5%, or a 160% relative

increase from baseline following the reform.

[PLACE TABLE 7 HERE.]

At the extensive margin, we see in Model (2) that abatement expenditures increase signifi-

cantly among all firms in treated clusters relative to firms in control clusters. The outcome is

abatement investments as a proportion of total firm assets. The effect is relatively stronger in

clusters with a 2009 CEPI of at least 70, which is as expected since these clusters are those facing

mandated abatement investments. Specifically, firms in clusters with CEPI value of at least 70

increase their abatement expenses as a ratio of their total assets by 7.7 percentage points relative

to control firms. This is a very large effect; at baseline, control firms spent 1.4% of the value

of their assets on abatement expenses. Thus, in relative terms, the regulation caused an almost

600% increase in abatement expenses.

We now turn to Panel B of Table 7, where we interact the intensive and extensive margin
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models with an indicator for the firm’s primary industry being classified as highly polluting.

From the estimates in Model (1), we see that the increase in abatement activity on the extensive

margin is driven entirely by firms in clusters with a CEPI value of at least 70, who are subject

to mandatory abatement investments proposed under the cluster-specific action plans. How-

ever, while the interaction with HPI status in these clusters is positive, there is no statistically

significant differential impact between firms in HPI and non-HPI sectors.

Turning to Model (2) of Panel B in Table 7, we find that all treated firms increased their

abatement expenditures however firms in HPI sectors increased by a lower margin. In particular,

while the average non-HPI firm in a cluster with a CEPI value of at least 70 increases their

abatement expenditures relative to their total assets by approximately 9.6 percentage points, the

average HPI firm in the same cluster increases by 2.5 percentage points. Both increases are

significant at the 99% confidence level and both are a large relative increase to the 2008 control

mean of 1.4% of assets represented by emissions abatement investments.

In summary, the empirical evidence suggests that (1) abatement expenditures increase on the

intensive and extensive margins; (2) there is a relative increase in existing abatement expenditures

in clusters subjected to enhanced monitoring as well; and (3) abatement expenditures were not

allocated based on HPI status.25

7 Cluster Dynamism and Aggregate Impacts

In the last part of the paper, we move beyond within-firm exploration and aim to quantify the ag-

gregate impact of environmental regulations. Most existing empirical evidence finds that emis-

sions regulation harms growth, albeit with differing estimates on costs. However, a burgeoning

viewpoint posits that costs are short-lived and should not argue against using rigorous emissions

standards as a policy tool since, in the long term, firms will optimize their energy inputs and

adopt green technology, simultaneously reducing emissions and increasing productivity (Linn,

2008; Lu and Pless, 2022; Newell, Jaffe, and Stavins, 1999; Wu, Yu, Jiaxing, and Zhou, 2023).

In this section, our analyses aims to speak to this debate by examining the impact of the CEPI

regulation on firm productivity, pricing, and aggregate cluster firm dynamics.
25We cannot, unfortunately, observe the bargaining process between firms on the cluster-specific action plans and

the concomitant distribution of allocation of regulatory costs among firms within the industrial clusters.
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7.1 Productivity and Profitability

We begin by studying the effect of the CEPI regulation on firms’ total factor productivity (TFP),

or the efficiency with which firms turn inputs into outputs. We construct our primary measure

for TFP following Levinsohn and Petrin (2003). When we estimate the production function, we

measure output using the total sales value, including income earned by the firm from selling

industrial goods and their raw materials, by-products, stores, and waste.26

Model (1) in Panel A of Table 8 reports that productivity increases following the regulation

for treated firms, significant at the 95% confidence level. The effect is not affected by treatment

intensity. Indeed, in Panel B, where we interact with an indicator for HPI industry membership,

we find that firms in the less polluting industries drive the effect while there is no significant

change in the TFP of treated firms in HPI sectors. Thus, while the headline result would seem

to support the hypothesis that emissions regulation increases productivity, subsample analyses

show that firms that do not shift production to lower emissions have a higher average relative

efficiency in converting inputs to revenue after the regulation, not those that respond to the

regulation by cutting emissions and energy input. We report the 2008 average productivity for

the control group to aid the interpretation of the coefficients. For every INR of input—measured

as capital, labor, and material inputs, as described above—the average control firm generated

approximately 3 INR of revenue. After the 2009 regulation, HPI firms in treated clusters increased

their productivity by approximately 25.5%, on average, earning about 0.76 INR more in revenue

per INR of input than control firms in 2008.

[PLACE TABLE 8 HERE.]

Consistent with this, Model (2) of Panels A and B in Table 8 reveal that the average firm

preserves headline profitability despite the increased regulation, where profitability is measured

by firm earnings before interest, taxes, depreciation, and amortization as a fraction of contempo-

26Other inputs in our estimations include: (i) a proxy for capital using gross fixed assets, including tangible assets,
such as land, building, plant, and machinery, and intangible assets, such as goodwill, software, etc., (ii) labor is
compensation to employees that includes all cash and payments in kind made by a company to its employees, (iii)
material inputs are the sum of intermediate inputs, proxied for by the combined value of raw materials, power, and
fuel consumption, (iv) raw materials, which we define as the sum of expenses on raw materials, stores, spares, and
tools firms use in production, and (v) energy inputs are proxied for as power and fuel, including the firms’ expenses
on power, fuel, and water. We follow best practices by controlling for firm size and deflating all numbers using
industry deflators to reflect real values.
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raneous total assets. Though the relative difference is not statistically significant, the sign of the

coefficients points to firms in non-HPI industries as those able to preserve profits following the

regulation. Model (3) in Panel B reports that raw materials costs, which include energy inputs,

are lower on average for non-HPI treated firms (significant at the 90% confidence level), whereas

they are relatively higher, on average, for HPI firms (significant at the 99% confidence level).

Finally, Panel A of Model (4) asserts that the average treated firm shifts significantly toward

the product that had commanded the highest profit margin among the firm’s portfolio in 2008.

Specifically, firms in treated clusters with 2009 CEPI value between 60 and below 70 increased

their weight on their highest-margin product by 12 percentage points relative to the weight con-

trol firms put on their highest-margin products. Firms in clusters with a CEPI value of at least 70

increase that weight by 244̇ percentage points. Relative to an already relatively high weight on the

most profitable product for the average control firm in 2008 of 0.73, firms in the highest-treatment

group weighted their highest-margin product after the regulation by over 0.9.

Model (4) of Panel B demonstrates that a sizable relative portfolio shift among firms in non-

HPI sectors toward their highest-margin product drives the aggregate shift in Panel A. Recall that

firms in HPI sectors were instead the only group to shift away from their high-coal-use products.

Thus, Table 8 demonstrates that among treated firms, those in HPI and non-HPI sectors made

diverging production decisions in response to the environmental regulation.

The results in Table 8 are consistent with declining profitability of HPI firms following the

regulation relative to non-HPI firms. To further test this, we turn to product-level profit margins

in Table 9, which zooms in on the product-level pricing decisions of the average treated firm

(Panel A) and the relative decisions of treated firms in HPI and non-HPI sectors (Panel B).

The average net result of the product portfolio changes is higher product margins (Model

1). Consistent with the results from Table 8, this effect is driven by firms in non-HPI sectors,

particularly those in the highest-treatment enforcement industrial clusters. While statistically

insignificant, Models (2) and (3) of Table 9 demonstrate similar patterns, with only treated firms

in HPI sectors in industrial clusters with a CEPI value of at least 70 facing increased marginal

costs and the need to increase prices.

[PLACE TABLE 9 HERE.]
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Finally, in Online Appendix Table IAE13, we follow De Loecker, Goldberg, Khandelwal, and

Pavcnik (2016) to construct quantity productivity (TFPQ), measuring the efficiency of turning

inputs into outputs. Examining quantity and revenue productivity together provides insight into

what aspect of value creation is affected by the regulation while minimizing the disadvantages

of each measure.27 We see that, unlike revenue productivity, the efficiency of converting inputs

to revenue, there is no significant relative difference in quantity productivity for treated and

control firms. If anything, the sign of the (insignificant) effect is negative. While we are only

able to calculate quantity TFP for a subset of treated firms, the overall conclusion is similar to

the picture suggested by Tables 8 and 9 that it is primarily the productivity of firms in non-HPI

sectors that is affected by the emissions regulation, with no evidence of productivity benefits.28

The weight of the evidence suggests that the CEPI emissions regulation did not increase av-

erage firm productivity. Instead, firms in highly polluting industries that complied with the reg-

ulation and changed their production decisions to lower emissions became less productive and

profitable, further supporting the assertion that HPI firms are the ones that respond by changing

energy inputs—only this group experienced a significant increase in raw material expenditures.

Conversely, non-HPI firms within the same cluster that received relatively less treatment in-

creased product margins and their efficiency in translating inputs into revenue, preserving their

overall profitability even after the regulation. These results point to a potential impact on the

competitiveness and dynamism of clusters that is a function of their composition, a hypothesis

we turn to in the next section.

7.2 Firm Entry

In this subsection, we consider aggregate effects at the cluster level. A key motivation for organiz-

ing manufacturing activity as part of an industrial cluster is to boost firm productivity through

economies of scale and positive spillovers. We focus on firm entry as a summary measure of

27Atkin, Khandelwal, and Osman (2019) find that TFPQ performs poorly at measuring quantity productivity,
shows excessive dispersion across firms, and correlates negatively with quality productivity. They attribute this to the
difficulty of adjusting for product specifications and quality to make apples-to-apples comparisons. They find that
TFPR does better than TFPQ at capturing broad firm capabilities. However, TFPR suffers from an inability to separate
effects from changes in productivity, markups, the firm product mix, and product quality. See Online Appendix E for
more details about the assumptions and methods we use and for evidence that the assumptions hold in our setting.

28In Online Appendix Table IAA5, we also see that treated firms are not making more investments or increasing
their R&D. Thus, we do not find any evidence of a technology adoption channel underlying the theoretical channel
from emissions capping to enhanced productivity.
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the agglomeration benefits since it reflects the net benefits and costs of agglomeration in a given

cluster that are unobservable and observable in our dataset.

Table 10 reports the results from our DiRD design on firm entry, run at the cluster level. The

sample for Panel A is all firms from the formal firm registry from the MCA, not just the relatively

larger firms present in the Prowess dataset. We interpret these results as the effect of entry of

the average, small firm into a cluster. As in the cluster-level emissions tests, the control group

comprises clusters for which the CPCB constructed a CEPI value in 2009 but whose values are

below the lowest treatment threshold at a CEPI value of 60.

[PLACE TABLE 10 HERE.]

The regulation decreases firm entry, driven by the effect in CEPI[70,100] clusters. Model (1)

presents a linear probability model on the incidence of new firm creation. We see an approxi-

mately 2.7% drop in new firm registrations in clusters with a CEPI of at least 70, significant at

the 90% confidence level. The effect for clusters with a CEPI between 60 and below 70 is half

that effect, though it is not statistically significant after controlling for the differential effect on

the highest-treatment clusters.

Model (2) of Table 10 demonstrates the effect on the natural logarithm of the number of firms

in CEPI[70,100] versus control areas. We again see a reduction. The magnitude is about a 8%

reduction in new firms in control clusters in 2008 for firms in CEPI[70,100] clusters relative to

control clusters within the bandwidth. Model (3) runs the same test except that the outcome is

the inverse hyperbolic sine function (i.e., asinh(x) = ln(x + sqrt(x ∗ x + 1))), which, unlike the

natural logarithm, is well-defined at zero, while Model (4) presents a model with the levels of

the number of firms in each cluster as the outcome and estimates a poisson model instead of

ordinary least squares (Cohn, Liu, and Wardlaw, 2022; Silva and Tenreyro, 2006). Results are

consistent with those of Models (1) and (2). The implication is that the regulation’s costs were

sufficiently large to deter business formation and new firm entry.

In Panel B of Table 10, we repeat the exercise using only firms in the Prowess database, which

are typically large compared to the average firm in the economy. These are also the firms in our

regression sample. The interpretation of this panel is the effect on the average large firm. We

also see in this subsample that (1) firm entry significantly decreases; (2) clusters with a CEPI of
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at least 70 again drive the effect; and (3) the magnitude is economically meaningful relative to

the ex ante pattern in control firms.

In summary, we document a decrease in firm entry across the firm size distribution. This

effect is strongest in industrial clusters with the greatest enforcement intensity. These findings

suggest a dampening competitive pressure within the cluster, with lowered potential agglomer-

ation benefits. These results are most consistent with the part of the literature that contends that

emissions regulation can lower emissions but at a cost to economic dynamism.29

7.3 Other Margins of Adjustment

We consider alternative margins of adjustment for lower emissions among firms in treated clus-

ters. Firms may relocate or expand their operations to regions with less stringent environmental

regulations to reduce their production costs, particularly those related to environmental com-

pliance (Copeland and Taylor, 1994, 2004). Prior work has documented that localized policies

shift emissions within and across geographies (Bartram, Hou, and Kim, 2022; Ben-David, Jang,

Kleimeier, and Viehs, 2021).

We examine two margins of adjustment by firms, beyond altering their production decisions.

First, we focus on changes in merger and acquisition activity around the regulation. Specifically,

we examine whether firms in the targeted industrial cluster are more likely to be acquired or

merged with firms outside the cluster. In Online Appendix Table IAA6, we show that, on average,

firms in treated clusters are unlikely to be a target or to be acquired in merger and acquisition

around the regulation, with the probabilities being similar across treated and control clusters.

Second, instead of entirely relocating their operations through mergers and acquisitions,

firms may relocate their production activities by building new plants and expanding capacity

elsewhere. We explore this possibility in Online Appendix Table IAA7. Specifically, our findings

indicate that, on average, firms are unlikely to announce new plant constructions or to abandon

the expansion of existing plants.

29A full, general equilibrium analysis is beyond the scope of this paper, limited as we are by less information on
the direct costs of the regulation and the counterweight from health benefits from lower emissions. We do find that
costs and benefits of the regulation (1) occur over different horizons, with costs accumulating in the more medium-
and long-term in the data; and (2) there are winners and losers, so accounting for heterogeneity is key in any welfare
analysis.
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8 Discussion

Our results open up the ’brown box’ of how firms change their inputs and outputs in response

to environmental regulations. We find that these regulations lowered emissions by prompting a

shift away from high-emission energy sources alongside investments in abatement. However, in

the aggregate, these regulations lowered business dynamism, potentially impairing competitive-

ness. Our results point to the mechanisms that policymakers could target to balance these costs

against lower emissions.

First, it is firms subject to higher monitoring intensity who change their energy inputs. Alter-

native emissions targeting could mandate specific energy input use rather than imposing caps on

emissions followed by continuous monitoring. By contrast, it was firms subject to relatively more

diffuse monitoring that make abatement investments. This suggests that command-and-control

mechanisms may not be the most effective means to cost-effectively incentivize investment and

technology adoption.

Second, another dimension that constrained regulators should consider when allocating their

monitoring efforts is where in the supply chain they are focusing regulation. Our sample is

concentrated upstream in the supply chain, and this is perhaps the primary reason we find firms

internalizing rather than passing on costs to their customers and suppliers.

More broadly, our results speak to the importance of disclosure of emissions at different

stages of production. Our study informs policymakers about how to effectively target and mon-

itor firms using these data. Policymakers are already considering such disclosure requirements

around the world. For example, Gary Gensler, the chair of the United States Securities and Ex-

change Commission, has called for more detailed emissions disclosures including indirect and

supply chain emissions (Gensler, 2023). At the same time in the European Union, the Corpo-

rate Sustainability Reporting directive requires all public firms to report their greenhouse gas

emissions, including from Scope 3 (European Commission, 2021). Our results suggest that these

disclosures will enhance the effectiveness of environmental regulations and play an important

role in national efforts to combat climate change.

Finally, our results highlight the need for coordinated policies on decarbonization. Arguably,

the shift toward purchasing rather than producing electricity that we document does not nec-
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essarily steer away from coal at present. However, incentivizing firms to use electricity could

facilitate a smoother transition to cleaner fuels as it becomes technically and economically viable

to green the power grid.

9 Conclusion

Policymakers are increasingly setting emission targets for industrial clusters while considering

the impact on firm productivity and global competitiveness. However, evidence on such regu-

lation’s effectiveness and cost is mixed. In particular, research on climate regulation’s effect on

within-firm adaptation is limited. Estimating emission cap impacts is challenging due to opaque

within-firm responses, including operational, product, and energy adjustments.

This paper explores within-firm production responses, inputs, and outputs to emissions re-

duction, using novel product-level data combined with a environmental regulation in India in

a difference-in-discontinuities (DiRD) specification. We show that this regulation significantly

decreased emissions, as seen in regulatory data and satellite readings. Our detailed analysis

of product-level firm data reveals that on the input side, firms optimize energy use and shift

from producing to buying electricity, investing significantly in emissions abatement. On the out-

put side, there’s a shift from high-coal, high-emission products to higher-margin ones, with no

evidence of operations moving outside the cluster, unlike in developed economies.

Our analysis within industrial clusters shows that high-pollution industries primarily drive

operational changes and bear the brunt of emissions reduction, leading to decreased productiv-

ity. By contrast, other sectors see productivity and profitability gains. This indicates a trade-off

between emissions reduction and productivity. Comparing firms within the same cluster allows

control over many unobservables and alternative narratives. Overall, while there are both win-

ners and losers, the aggregate impact suggests a trade-off at the industrial cluster level, marked

by reduced economic dynamism, fewer new firm entries, and less product variety.
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A = A1 × A2
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tration score (B1)

Human im-
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EPI = A + B + C + D

FIGURE 1: THE COMPREHENSIVE ENVIRONMENTAL POLLUTION INDEX (CEPI)

This figure presents the components of the Comprehensive Environmental Pollution Index (CEPI), which classifies
industrial clusters into Critically Polluted Areas (CPA) and Severely Polluted Areas (SPA).
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FIGURE 2: EVOLUTION OF THE RANKING VARIABLE

This figure illustrates the evolution of the CEPI. Panel A presents the ranking distribution of 88 industrial clusters
with CEPI values computed by CPCB in 2009. The vertical line marks treatment thresholds at CEPI = 60 and CEPI =
70. Panel B displays the CEPI distribution in 2011 (solid line) and 2013 (dashed line) government studies, focusing on
the subset of clusters initially classified with CEPI values > 70 in 2009.
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FIGURE 3: TESTING FOR MANIPULATION OF THE RANKING VARIABLE

This figure tests for manipulation of the industrial cluster pollution ranking variable, around the pooled thresholds at
the CEPI values of 60 and 70. The p-value is from a two-sided test with the null hypothesis that the distributions of
the rankings do not differ across the cutoff (Abadie and Cattaneo, 2018; McCrary, 2008).
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FIGURE 4: GEOGRAPHIC VARIATION OF INDUSTRIAL CLUSTERS

This figure presents the geographic variation of all industrial clusters as of the year 2009. Small gray dots illustrate
the location of all industrial clusters. Larger black circles correspond to clusters with CEPI values at or above the 70
threshold, triangles correspond to clusters with index values between the 60 and 70 thresholds and squares correspond
to clusters with index values below the 60 threshold.
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FIGURE 5: FIRM CHARACTERISTICS PRIOR TO THE INTRODUCTION OF THE CEPI

This figure presents regression discontinuity estimates of baseline firm characteristics from 2008, a year before CEPI regulation was introduced. It graphs the
average firm characteristic in CEPI bins near the cutoff, pooling data across the CEPI thresholds of 60 and 70, marked as zero in the figures. A linear fit is generated
separately for each side of 0, with the 95% confidence intervals displayed.
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FIGURE 6: BASELINE PRODUCT CHARACTERISTICS PRIOR TO THE INTRODUCTION OF CEPI

This figure presents the average firm-product characteristics from 2008, the year preceding the CEPI regulation, plotted in CEPI bins near the cutoff. The data
combines information across the CEPI thresholds of 60 and 70 (represented as zero in the figures). A linear fit is generated separately for each side of 0, with the
95% confidence intervals displayed.
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(a) All Pollutants

(b) Pollutant: Particulate Matter < 2.5µ

FIGURE 7: CHANGES TO CLUSTER-LEVEL INDUSTRIAL AIR EMISSIONS

This figure presents the dynamic coefficients from the difference-in-differences model in Equation 2. Panel A incor-
porates all emissions, while Panel B focuses on fine particulate matter less than 2.5 microns. Error bars represent 95%
confidence intervals. Coefficients are relative to the year before CEPI regulation in 2009, marked by a dotted vertical
line and normalized to zero. The analysis includes the 88 industrial clusters targeted by CPCB in 2009, excluding
clusters with a CEPI below 60. Data source: Emissions Database for Global Atmospheric Research (Crippa et al., 2019,
2020; European Commission, Joint Research Centre (EC-JRC)/Netherlands Environmental Assessment Agency (PBL),
2020).
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(a) All Firms

(b) Split by High Polluting vs. Other Industries

FIGURE 8: CHANGES TO PRODUCT PORTFOLIO BY PROFITABILITY

This figure presents the dynamic coefficients from the difference-in-differences model in Equation 4. The dependent
variable is the weight of the highest margin product as of 2008. Panel A includes all industries, while Panel B separates
between firms in High-Polluting and other industries. Error bars represent 95% confidence intervals. Coefficients are
relative to the year before CEPI regulation in 2009, marked by a dotted vertical line and normalized to zero. The
sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including
clusters with a CEPI value below 60. Data source: CMIE Prowess.

49



(a) All Industries

(b) Split by High Polluting vs. Other Industries

FIGURE 9: CHANGES TO PRODUCT-LEVEL EMISSIONS

This figure presents the dynamic coefficients from the difference-in-differences model in Equation 4. The dependent
variable is the weight of the highest emission product as of 2008. Panel A includes on all industries, while Panel B
separates between High-Polluting and other industries. Error bars represent 95% confidence intervals. Coefficients
are relative to the year before CEPI regulation in 2009, marked by a dotted vertical line and normalized to zero. The
sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including
clusters with a CEPI value below 60.
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TABLE 1: SUMMARY STATISTICS

This table presents descriptive statistics for the firms and products in our baseline sample. Panel A summarizes the
firm-year panel dataset. Assets and Sales is in thousands of INR. Leverage is the sum of short- and long-term debt
obligations scaled by contemporaneously reported Assets. Exporting intensity are firm earnings from exports of goods
plus services scaled by contemporaneous total sales. Ln(Productivity) is the natural log of firm productivity, which is
calculated following Levinsohn and Petrin (2003) and controls for firm size. Profitability is Earnings Before Interest,
Taxes, Depreciation, and Amortization as a ratio of the prior year sales. Investments/Assets is gross fixed assets scaled
by lagged total assets. Raw Materials/Sales is the value of raw material inputs scaled by total net sales. Wages/Sales is
total wages scaled by total net sales. Market-to-book is reported for listed firms and is the total number of listed shares
multiplied by the share price at the end of the fiscal year, scaled by total assets. Panel B summarizes the firm-product-
year dataset. Ln(Product Sales) and Ln(Unit Cost) is the per-product production sales and cost, respectively. Ln(Unit
Price) is the natural logarithm of the per-unit price, where the unit is unique within but not across firms. Margin is
(unit price - unit cost)/unit price. Ln(Per Unit CO2 Emissions) are the author-calculated CO2 emissions per reported
unit of production. All variables are defined in Appendix Table IAA8.

Panel A: Firm characteristics

Obs Mean Std. dev. Min. Median Max.

(1) (2) (3) (4) (5) (6)

Assets (000 INR) 11,452 3,524 8,864 6.70 621 52,664
Sales (000 INR) 11,452 3,282 7,274 3.90 755 40,262
Leverage 10,307 0.27 0.20 0.00 0.25 1.13
Exporting Intensity 11,452 16.30 26.09 0.00 1.64 97.84
Ln(Revenue Productivity) 11,452 3.07 1.86 1.02 2.54 8.63
Number Product Lines 11,452 2.84 2.02 1.00 2.00 22.00
Profitability 11,452 0.11 0.08 -0.09 0.10 0.30
Investments/Assets 10,394 0.67 0.41 0.03 0.61 2.42
Raw Materials/Sales 11,451 0.58 0.22 0.03 0.60 1.01
Wages/Sales 11,451 0.05 0.05 0.00 0.04 0.30
Market-to-book 1,949 0.88 1.23 0.02 0.41 6.86

Panel B: Firm-product characteristics

Obs Mean Std. dev. Min. Median Max.

(1) (2) (3) (4) (5) (6)

Ln(Product Sales) 30,143 4.44 2.78 -2.30 4.76 9.63
Ln(Unit Cost) 15,589 -4.97 3.86 -15.35 -3.85 3.44
Ln(Unit Price) 16,329 -4.92 3.87 -15.24 -3.73 3.37
Margin (%) 15,589 0.01 0.70 -5.67 0.14 0.64
Ln(Per Unit CO2 Emissions) 1,163 -2.35 2.80 -9.83 -1.85 2.42
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TABLE 2: COVARIATE BALANCE

This table presents tests for differences in firm and product characteristics before the 2009 reform for the regression
sample. Panel A reports balance at the firm level while Panel B reports balance at the firm-product level. In both
panels, Column 1 present the unconditional mean for the whole sample while Columns 2 and 3 present the uncondi-
tional means for cities below the treatment threshold and cities above the treatment threshold, respectively. Column 4
presents the difference in means between cities below the treatment threshold and cities above the treatment thresh-
old. Column 5 shows the regression discontinuity estimate of the effect of being above the treatment threshold on the
baseline variable. The model is estimated within a bandwidth of 10 units of the CEPI around the treatment thresholds
at 60 and 70, and accounts for difference across states and within industries. Finally, Column 6 is the p-value for this
estimate, using bias-corrected, heteroskedasticity-robust standard errors of Calonico, Cattaneo, and Farrell (2020). All
variables are defined in Appendix Table IAA8.

Panel A: Firm characteristics

All Below Above Difference RD Estimate p-value

(1) (2) (3) (4) (5) (6)

Assets (000 INR) 2,443 1,916 2,526 -610 -1,342 0.63
Sales (000 INR) 2,418 1,853 2,519 -665 -348 0.90
Leverage 0.27 0.29 0.27 0.02 -0.041 0.39
Exporting Intensity 0.25 0.23 0.25 -0.022 0.095 0.17
Ln(Revenue Productivity) 3.3 3.3 3.3 -0.0028 -0.18 0.72
Number of Products 2.9 2.9 2.9 -0.035 0.35 0.35
Profitability 0.11 0.11 0.12 -0.0064 0.023 0.16
Investments/Assets 0.70 0.77 0.69 0.083 -0.16 0.14
Raw Materials/Sales 0.57 0.60 0.57 0.037 0.0006 0.99
Wages/Sales 0.064 0.059 0.065 -0.0055 0.029 0.15
Market-to-book 1.1 0.95 1.1 -0.14 0.81 0.35

Panel B: Firm-product characteristics

All Below Above Difference RD Estimate p-value

(1) (2) (3) (4) (5) (6)

Ln(Product Sales) 4.1 3.8 4.1 -0.30 -0.48 0.47
Ln(Unit Cost) -5.0 -4.7 -5.0 0.33 -0.37 0.52
Ln(Unit Price) -5.0 -4.7 -5.0 0.36 -0.26 0.59
Margin(%) -2.3 -1.5 -2.5 1.00 -4.5 0.57
Ln(Unit CO2 Emissions) -2.5 -2.2 -2.5 0.36 -0.85 0.27
Coal’s Proportion of Inputs 0.65 0.66 0.65 0.01 0.35 0.09
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TABLE 3: CHANGES IN CLUSTER INDUSTRIAL EMISSIONS BY POLLUTANT

This table reports the impact of CEPI reform on industrial emissions using data from the Emission Database for Global
Atmospheric Research (EDGAR). The unit of analysis is at the cluster-year-month level. The dependent variable is the
measurement of emissions from the database within a 5-kilometer radius circle around the centroid of the industrial
cluster. In column 1, we focus on all pollutants, whereas we break them down in columns 2 through 4: PM2.5
(column 2), PM10 (column 3), and NOx (column 4). Post is an indicator variable taking the value 1 for all years,
including 2009, the year in which reform was implemented, and after. CEPI[70,100] takes the value 1 if the industrial
cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value 1 if the industrial cluster has a
CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial
clusters targeted by the CPCB in 2009, with the omitted category including clusters with a CEPI value below 60. All
specifications include cluster-address fixed effects and State × year-month fixed effects. The table also reports the
p-value from the joint test of the coefficients and the mean of the dependent variable in levels in the pre-reform year
of 2008. The standard errors are clustered at the cluster-address level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗

denote significance at the 1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data
source: The Emissions Database for Global Atmospheric Research (EDGAR).

Dependent variable: Emissions (milligrams per month)

Pollutant(s): All PM2.5 PM10 NOx

(1) (2) (3) (4)

Post ×CEPI[70,100] (β1) -7.109∗∗ -3.489∗ -7.669 -10.169∗

(3.225) (1.813) (4.748) (5.937)

Post ×CEPI[60,70) (β2) -7.232∗∗ -3.686∗ -7.113 -10.898∗

(3.597) (2.054) (5.653) (6.536)

p-value [β1 + β2 = 0] 0.033 0.058 0.145 0.092
2008 Dependent Variable Mean (Control) 23.09 16.86 38.95 13.45
Fixed effects:

Cluster × Pollutant Yes Yes Yes Yes
State × year-month × Pollutant Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
Adjusted-R2 0.932 0.949 0.946 0.836
Observations 54,648 18,216 18,216 18,216
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TABLE 4: IMPACT ON FIRM INPUTS

This table reports the changes in firm inputs around the 2009 CEPI emissions regulation. The unit of analysis is
firm-product-year. The dependent variable in column 1 is the natural logarithm of the input energy value. Column 2
is an indicator if coal is used as an input at the firm level. Column 3 it is the proportion of electricity purchased (as
opposed to produced) for each product. Post is an indicator variable taking the value 1 for all years, including 2009,
the year in which reform was implemented, and after. CEPI[70,100] takes the value 1 if the industrial cluster has a CEPI
value at or above 70, and zero otherwise. CEPI[60,70) takes the value 1 if the industrial cluster has a CEPI value greater
than or equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial clusters targeted by
the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. All specifications include
firm and State × two-digit industry × year fixed effects. The table also reports the p-value from the joint test of the
coefficients and the mean of the dependent variable in levels in the pre-reform year 2008. The standard errors are
clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10%
level, respectively. All variables are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Panel A: All Industries

Dependent variable Ln(Value Energy 1Coal Use Proportion Purchased
Input) Electricity

(1) (2) (3)

Post ×CEPI[70,100] (β1) -0.818∗∗ -0.301∗∗∗ 0.100∗∗

(0.294) (0.092) (0.036)

Post ×CEPI[60,70) (β2) -1.006∗∗∗ -0.289∗ 0.196∗∗∗

(0.219) (0.150) (0.059)

Ln(Production Quantity) -0.208 0.033 -0.034
(0.300) (0.027) (0.036)

p-value [β1 + β2 = 0] 0.000 0.019 0.001
2008 Dependent Variable Mean (Control) 8.906M 0.17 0.46
Fixed effects:

Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Bandwidth Yes Yes Yes
R2 0.795 0.496 0.786
Observations 901 565 901

54



Panel B: Industries Split by High-Polluting vs. Others

Dependent variable Ln(Value Energy 1Coal Use Proportion Purchased
Input) Electricity

(1) (2) (3)

Post ×CEPI[70,100] (β1) -0.464 -0.476∗∗∗ 0.023
(0.464) (0.143) (0.065)

Post ×CEPI[60,70) (β2) -0.539 -0.341 0.173
(0.338) (0.208) (0.119)

Post ×CEPI[70,100] × High-Polluting (β3) -0.600 0.371 0.157∗

(0.673) (0.238) (0.079)

Post ×CEPI[60,70) × High-Polluting (β4) -1.100 -0.327 0.002
(0.712) (0.321) (0.147)

Ln(Production Quantity) -0.200 0.027 -0.036
(0.292) (0.025) (0.036)

p-value [β1 + β2 = 0] 0.201 0.024 0.201
p-value [β3 + β4 = 0] 0.141 0.928 0.381
2008 Dependent Variable Mean (Control) 8.906M 0.17 0.46
Fixed effects:

Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Bandwidth Yes Yes Yes
R2 0.796 0.506 0.787
Observations 901 565 901
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TABLE 5: IMPACT ON EMISSIONS

This table reports the changes in firm inputs around the 2009 CEPI emissions regulation. The unit of analysis is
firm-product-year. Panel A reports the average effect across all industries, whereas Panel B reports treatment effects
split by High-Polluting vs. Other industries. Across both panels, the dependent variables are Product-level emissions
(column 1), Product-level emissions scaled by production quantity (column 2), and firm-level weight of the product
that uses the highest proportion of coal in its energy input mix in the firm’s overall product portfolio, measured in
percentage points (column 3). Post is an indicator variable taking the value 1 for all years, including 2009, the year in
which reform was implemented, and after. CEPI[70,100] takes the value 1 if the industrial cluster has a CEPI value at
or above 70, and zero otherwise. CEPI[60,70) takes the value 1 if the industrial cluster has a CEPI value greater than
or equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial clusters targeted by
the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. All specifications include
firm and State × two-digit industry × year fixed effects. The table also reports the p-value from the joint test of the
coefficients and the mean of the dependent variable in levels in the pre-reform year 2008. The standard errors are
clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10%
level, respectively. All variables are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Panel A: All Industries

Dependent variable: Ln(Product CO2 Ln(Per Unit CO2 Highest Coal
Emissions) Emissions) Product Weight2008

(1) (2) (3)

Post ×CEPI[70,100] (β1) -0.944∗∗ -0.687∗∗ -0.139
(0.346) (0.270) (0.114)

Post ×CEPI[60,70) (β2) -1.083∗∗∗ -0.885∗∗∗ -0.309∗∗

(0.283) (0.306) (0.123)

Ln(Production Quantity) 0.801∗∗

(0.334)

p-value [β1 + β2 = 0] 0.001 0.003 0.054
2008 Dependent Variable Mean (Control) 162,229.6 2.788 0.780
Fixed effects:

Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Bandwidth Yes Yes Yes
R2 0.893 0.774 0.855
Observations 901 901 705
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Panel B: Industries Split by High Polluting vs. Others

Dependent variable: Ln(Product CO2 Ln(Per Unit CO2 Highest Coal
Emissions) Emissions) Product Weight2008

(1) (2) (3)

Post ×CEPI[70,100] (β1) -0.515 -0.273 -0.007
(0.526) (0.646) (0.102)

Post ×CEPI[60,70) (β2) -0.591 -0.369 -0.060
(0.391) (0.469) (0.090)

Post ×CEPI[70,100] × High-Polluting (β3) -0.750 -0.725 -0.175∗

(0.638) (0.877) (0.083)

Post ×CEPI[60,70) × High-Polluting (β4) -1.112 -1.196 -0.531∗

(0.779) (0.945) (0.262)

Ln(Production Quantity) 0.811∗∗

(0.325)

p-value [β1 + β2 = 0] 0.219 0.555 0.734
p-value [β3 + β4 = 0] 0.118 0.226 0.033
2008 Dependent Variable Mean (Control) 162,229.6 2.788 0.780
Fixed effects:

Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Bandwidth Yes Yes Yes
R2 0.893 0.775 0.862
Observations 901 901 705
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TABLE 6: IMPACT ON PRODUCT PORTFOLIO

This table reports the changes to firm-level product portfolios around the 2009 CEPI emissions regulation. The unit of
analysis is firm-year. Panel A reports the average effect across all industries, whereas Panel B reports treatment effects
split by High-Polluting vs. Other industries. Across both panels, the dependent variable in column 1 (column 2) is
the natural logarithm of the total quantity produced for each product (total number of products produced by a firm)
in a year. The dependent variable in column 3 is an indicator for whether the firm added a product in a year, while
in column 4 it is an indicator for whether the firm dropped a product in that year. Post is an indicator variable taking
the value 1 for all years, including 2009, the year in which reform was implemented, and after. CEPI[70,100] takes the
value 1 if the industrial cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value 1 if
the industrial cluster has a CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample is
restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including clusters with
a CEPI value below 60. The table also reports the p-value from the joint test of the coefficients and the mean of the
dependent variable in levels in the pre-reform year 2008. All specifications include firm and State × two-digit industry
× year fixed effects. The standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗,
∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8.
Data source: CMIE Prowess.

Panel A: All Industries

Dependent variable: Ln(Product-level Ln(No. of 1Add Product 1Remove Product
Production Products)

(1) (2) (3) (4)

Post ×CEPI[70,100] (β1) 0.030 0.007 -0.057∗ 0.023
(0.130) (0.072) (0.034) (0.030)

Post ×CEPI[60,70) (β2) -0.110 0.013 -0.117∗∗∗ 0.003
(0.182) (0.078) (0.041) (0.036)

p-value [β1 + β2 = 0] 0.760 0.888 0.011 0.689
2008 Dependent Variable Mean (Control) 35,914.871 2.714 0.214 0.190
Fixed effects:

Firm Yes Yes Yes Yes
State × industry × year Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
R2 0.582 0.746 0.263 0.242
Observations 15,521 10,752 10,752 10,752
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Panel B: Industries Split by High-Polluting vs. Others

Dependent variable: Ln(Product-level Ln(No. of 1Add Product 1Remove Product
Production Products)

(1) (2) (3) (4)

Post ×CEPI[70,100] (β1) -0.008 0.015 -0.051 0.013
(0.137) (0.073) (0.034) (0.032)

Post ×CEPI[60,70) (β2) -0.331 0.003 -0.141∗∗∗ -0.028
(0.235) (0.076) (0.041) (0.042)

Post ×CEPI[70,100] × High-Polluting (β3) 0.090 -0.036∗ -0.030 0.036∗

(0.105) (0.019) (0.025) (0.019)

Post ×CEPI[60,70) × High-Polluting (β4) 0.621∗∗∗ 0.025 0.073 0.107∗∗

(0.222) (0.083) (0.052) (0.050)

p-value [β1 + β2 = 0] 0.266 0.899 0.006 0.835
p-value [β3 + β4 = 0] 0.009 0.904 0.471 0.012
2008 Dependent Variable Mean (Control) 35,914.871 2.714 0.214 0.190
Fixed effects:

Firm Yes Yes Yes Yes
State × industry × year Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
R2 0.583 0.746 0.263 0.243
Observations 15,521 10,752 10,752 10,752
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TABLE 7: IMPACT ON ABATEMENT EXPENDITURES

This table reports the changes in firm-level abatement expenditures around the 2009 CEPI emissions regulation.
The unit of analysis is firm-year. Panel A reports the average effect across all industries, whereas Panel B reports
treatment effects split by High-Polluting vs. Other industries. Across both panels, the dependent variable in column 1
is an indicator variable if the firm report environment and pollution control related expenses in that year, while in
column 2 it is the intensive margin, defined as the ratio of expenses and total assets winsorized at 1% tails. Post is
an indicator variable taking the value 1 for all years, including 2009, the year in which reform was implemented,
and after. CEPI[70,100] takes the value 1 if the industrial cluster has a CEPI value at or above 70, and zero otherwise.
CEPI[60,70) takes the value 1 if the industrial cluster has a CEPI value greater than or equal to 60 and below 70, and
zero otherwise. The sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted
category including clusters with a CEPI value below 60. The table also reports the p-value from the joint test of the
coefficients and the mean of the dependent variable in levels in the pre-reform year 2008. For ease of interpretation,
we multiply the coefficients by 100 in column 2. All specifications include firm and State × two-digit industry × year
fixed effects. The standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote
significance at the 1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data source:
CMIE Prowess.

Panel A: All Industries

Dependent variable: 1Abatment Abatement/Assets

(1) (2)

Post ×CEPI[70,100] (β1) 0.077∗∗ 0.038∗∗

(0.029) (0.016)

Post ×CEPI[60,70) (β2) 0.048 0.039∗

(0.031) (0.020)

p-value [β1 + β2 = 0] 0.039 0.027
2008 Dependent Variable Mean (Control) 0.048 0.014
Fixed effects:

Firm Yes Yes
State × industry × year Yes Yes

Bandwidth Yes Yes
R2 0.725 0.753
Observations 10,752 10,752
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Panel B: Industries Split by High Polluting vs. Others

Dependent variable: 1Abatment Abatement/Assets

(1) (2)

Post ×CEPI[70,100] (β1) 0.071∗∗ 0.044∗∗

(0.031) (0.017)

Post ×CEPI[60,70) (β2) 0.046 0.052∗∗∗

(0.029) (0.019)

Post ×CEPI[70,100] × High-Polluting (β3) 0.026 -0.025∗∗∗

(0.019) (0.007)

Post ×CEPI[60,70) × High-Polluting (β4) 0.011 -0.046∗∗

(0.029) (0.020)

p-value [β1 + β2 = 0] 0.055 0.005
p-value [β3 + β4 = 0] 0.352 0.004
2008 Dependent Variable Mean (Control) 0.048 0.014
Fixed effects:

Firm Yes Yes
State × industry × year Yes Yes

Bandwidth Yes Yes
R2 0.725 0.754
Observations 10,752 10,752
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TABLE 8: IMPACT ON REVENUE PRODUCTIVITY AND PROFITABILITY

This table reports the changes in firm profitability and revenue productivity around the 2009 CEPI emissions regula-
tion. The unit of analysis is firm-year. Panel A reports the average effect across all industries, whereas Panel B reports
treatment effects split by High-Polluting vs. Other industries. Across both panels, the dependent variable in column 1
is the natural logarithm of total factor productivity estimated following Levinsohn and Petrin (2003) that controls for
firm size. The dependent variable in column 2 is firm profitability, defined as the ratio of firm earnings before interest,
taxes, depreciation, and amortization (EBITDA) and sales winsorized at 1% tails, in column 3 it is the ratio of raw
material expenses to firm-level net sales, and in column 4 it is the weight of the highest-margin product in the firm’s
overall product portfolio, measured in percentage points. Post is an indicator variable taking the value 1 for all years,
including 2009, the year in which reform was implemented, and after. CEPI[70,100] takes the value 1 if the industrial
cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value 1 if the industrial cluster has a
CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial
clusters targeted by the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. The
table also reports the p-value from the joint test of the coefficients and the mean of the dependent variable in levels
in the pre-reform year 2008. All specifications include firm and State × two-digit industry × year fixed effects. The
standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the
1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Panel A: All Industries

Dependent variable: Ln(TFP) EBITDA/ Raw Material Highest Margin
Sales Expense Product Weight2008

(1) (2) (3) (4)

Post ×CEPI[70,100] (β1) 0.127∗∗∗ 0.008 -0.034 0.124∗∗∗

(0.039) (0.014) (0.027) (0.046)

Post ×CEPI[60,70) (β2) 0.100 0.004 -0.033 0.120∗∗

(0.075) (0.015) (0.030) (0.050)

p-value [β1 + β2 = 0] 0.025 0.688 0.213 0.213
2008 Dependent Variable Mean (Control) 2.767 0.100 0.54 0.734
Fixed effects:

Firm Yes Yes Yes Yes
State × industry × year Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
R2 0.851 0.638 0.641 0.880
Observations 10,752 10,752 10,752 7,995
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Panel B: Industries Split by High Polluting vs. Others

Dependent variable: Ln(Revenue EBITDA/ Raw Material Highest Margin
Productivity) Sales Expense Product Weight2008

(1) (2) (3) (4)

Post ×CEPI[70,100] (β1) 0.146∗∗∗ 0.009 -0.039 0.129∗∗∗

(0.043) (0.015) (0.027) (0.047)

Post ×CEPI[60,70) (β2) 0.131∗ 0.008 -0.061∗∗ 0.166∗∗∗

(0.074) (0.015) (0.030) (0.053)

Post ×CEPI[70,100] × High-Polluting (β3) -0.076 -0.004 0.017 -0.015
(0.054) (0.007) (0.013) (0.017)

Post ×CEPI[60,70) × High-Polluting (β4) -0.114 -0.016 0.095∗∗∗ -0.122∗∗

(0.161) (0.011) (0.032) (0.058)

p-value [β1 + β2 = 0] 0.008 0.550 0.066 0.066
p-value [β3 + β4 = 0] 0.279 0.168 0.001 0.035
2008 Dependent Variable Mean (Control) 2.767 0.100 0.54 0.734
Fixed effects:

Firm Yes Yes Yes Yes
State × industry × year Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
R2 0.851 0.639 0.641 0.880
Observations 10,752 10,752 10,752 7,995
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TABLE 9: IMPACT ON PRODUCT PROFITABILITY

This table reports the changes in product-level profitability around the 2009 CEPI emissions regulation. The unit
of analysis is firm-product-year. Panel A reports the average effect across all industries, whereas Panel B reports
treatment effects split by High-Polluting vs. Other industries. Across both panels, the dependent variable in column 1
is the product-level profit margin computed as the difference between price and cost per unit as a fraction of price
per unit, winsorized at 1% tails. The dependent variable in column 2 is the natural logarithm of product unit price
computed as the ratio of total product sales to the total product quantity sold, while in column 3 it is the natural
logarithm of product unit cost computed as the ratio of product cost of goods sold to the total product quantity sold.
Post is an indicator variable taking the value 1 for all years, including 2009, the year in which reform was implemented,
and after. CEPI[70,100] takes the value 1 if the industrial cluster has a CEPI value at or above 70, and zero otherwise.
CEPI[60,70) takes the value 1 if the industrial cluster has a CEPI value greater than or equal to 60 and below 70, and
zero otherwise. The sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted
category including clusters with a CEPI value below 60. The table also reports the p-value from the joint test of the
coefficients and the mean of the dependent variable in levels in the pre-reform year 2008. All specifications include
firm and State × two-digit industry × year fixed effects. The standard errors are clustered at the city level and are
robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables are
defined in Appendix Table IAA8. Data source: CMIE Prowess.

Panel A: All Industries

Dependent variable: Product Margins Ln(Unit Price) Ln(Unit Cost)

(1) (2) (3)

Post ×CEPI[70,100] (β1) 0.147∗∗∗ -0.129 -0.221
(0.054) (0.220) (0.197)

Post ×CEPI[60,70) (β2) 0.037 -0.059 -0.016
(0.081) (0.225) (0.194)

p-value [β1 + β2 = 0] 0.123 0.670 0.532
2008 Dependent Variable Mean (Control) 0.002 0.722 0.892
Fixed effects:

Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Bandwidth Yes Yes Yes
R2 0.722 0.592 0.599
Observations 15,225 15,984 15,225
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Panel B: Industries Split by High Polluting vs. Others

Dependent variable: Product Margins Ln(Unit Price) Ln(Unit Cost)

(1) (2) (3)

Post ×CEPI[70,100] (β1) 0.157∗∗∗ -0.160 -0.255
(0.052) (0.220) (0.200)

Post ×CEPI[60,70) (β2) 0.018 -0.055 0.024
(0.096) (0.218) (0.193)

Post ×CEPI[70,100] × High-Polluting (β3) -0.042 0.112 0.137
(0.032) (0.082) (0.123)

Post ×CEPI[60,70) × High-Polluting (β4) 0.043 0.003 -0.084
(0.078) (0.185) (0.207)

p-value [β1 + β2 = 0] 0.167 0.615 0.540
p-value [β3 + β4 = 0] 0.988 0.591 0.842
2008 Dependent Variable Mean (Control) 0.002 0.722 0.892
Fixed effects:

Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Bandwidth Yes Yes Yes
R2 0.722 0.592 0.599
Observations 15,225 15,984 15,225
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TABLE 10: CHANGES IN CLUSTER-LEVEL FIRM ENTRY

This table reports changes in cluster-level firm entry around the 2009 CEPI emissions regulation. The unit of analysis
is cluster-industry-year. Panel A reports changes in firm entry using the universe of business registration from the
Ministry of Corporate Affairs, while Panel B reports changes in firm entry from CMIE Prowess. Across both panels,
the dependent variable in column 1 is an indicator for whether atleast one manufacturing firm incorporates in the
cluster in a given industry in the year. The dependent variable in column 2 is 1 plus the natural logarithm of the
number of newly registered manufacturing firms in that year, while in column 3 it is the inverse hyperbolic sine of
the number of newly registered manufacturing firms in that year. Column 4 uses the raw number of newly registered
manufacturing firms in each cluster in a specific industry in that year. Post is an indicator variable taking the value 1
for all years including 2009 the year in which reform was implemented and after. CEPI[70,100] takes the value 1 if the
industrial cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value 1 if the industrial
cluster has a CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample is restricted to the
88 industrial clusters targeted by the CPCB in 2009 with the omitted category including clusters with a CEPI value
below 60. The table also reports the p-value from the joint test of the coefficients and the mean of the dependent
variable in levels in the pre-reform year 2008. In both panels, columns 1 through 3 are estimated using Ordinary Least
Squares (OLS), while column 4 is estimated using Pseudo-Poisson Maximum Likelihood (PPML). All specifications
include cluster, two-digit Industry × year, and State × year fixed effects. The standard errors are clustered at the city
level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All
variables are defined in Appendix Table IAA8. Data source: Ministry of Corporate Affairs and CMIE Prowess.

Panel A: All firms from business registry

Dependent variable: 1New Firm Ln(No. of firms) asinh(No. of firms) No. of firms

(1) (2) (3) (4)

Post ×CEPI[70,100] (β1) -0.018∗ -0.016∗ -0.020∗ -0.185∗

(0.010) (0.009) (0.012) (0.104)

Post ×CEPI[60,70) (β2) -0.009 -0.011 -0.014 -0.105
(0.011) (0.010) (0.013) (0.132)

p-value [β1 + β2 = 0] 0.158 0.135 0.138 0.163
2008 Dependent Variable Mean (Control) 0.080 0.202 0.202 0.202
Fixed effects:

Firm Yes Yes Yes Yes
State × industry × year Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
R2 0.449 0.570 0.570
Observations 33,534 33,534 33,534 19,958
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Panel B: Large firms in CMIE Prowess

Dependent variable: 1New Firm Ln(No. of firms) asinh(No. of firms) No. of firms

(1) (2) (3) (4)

Post ×CEPI[70,100] (β1) -0.041∗ -0.035∗ -0.045∗ -0.795∗∗

(0.021) (0.018) (0.023) (0.370)

Post ×CEPI[60,70) (β2) -0.003 0.001 0.001 -0.289
(0.017) (0.016) (0.021) (0.440)

p-value [β1 + β2 = 0] 0.229 0.231 0.230 0.149
2008 Dependent Variable Mean (Control) 0.011 0.011 0.011 0.011
Fixed effects:

Firm Yes Yes Yes Yes
State × industry × year Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
R2 0.411 0.439 0.440
Observations 4,416 4,416 4,416 678
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Appendix A Additional figures and tables

TABLE IAA1: SUMMARY BY HIGHLY POLLUTING INDUSTRY STATUS

This table presents summary statistics separately for firms in Highly Polluting Industries (HPI), as defined by the
CPCB. Panel A reports balance at the firm level while Panel B reports balance at the firm-product level. In both
panels, Column 1 presents the unconditional mean for the entire sample, while Columns 2 and 3 report the uncon-
ditional means for firms not in HPI and in HPI, respectively. Column 4 presents the difference in means between
firms in non-HPI and HPI industries. Additionally, Column 5 shows the coefficient on the effect of being above the
treatment threshold and in an HPI industry. The model is estimated within a bandwidth of 10 units of the CEPI
around the treatment thresholds at 60 and 70. Finally, Column 6 is the p-value for this estimate, using bias-corrected,
heteroskedasticity-robust standard errors of Calonico, Cattaneo, and Farrell (2020). All variables are defined in Ap-
pendix Table IAA8.

Panel A: Firm characteristics

All Not HPI HPI Difference Above ×
HPI

Estimate

p-value

(1) (2) (3) (4) (5) (6)

Assets (000 INR) 3,334 2,919 4,550 -1,631 -201 0.90
Sales (000 INR) 3,108 2,694 4,321 -1,626 -177 0.88
Leverage 0.27 0.26 0.28 -0.016 0.0014 0.96
Exporting Intensity 16 18 11 7.20 1.80 0.58
Ln(Revenue Productivity) 3.10 3.10 3.00 0.18 0.21 0.39
Number of Products 2.80 2.70 3.30 -0.63 -0.15 0.73
Profitability 0.11 0.11 0.098 0.013 -0.0027 0.79
Investments/Assets 0.67 0.67 0.66 0.0079 0.035 0.50
Raw Materials/Sales 0.58 0.56 0.63 -0.07 -0.036 0.23
Wages/Sales 0.053 0.06 0.035 0.025 0.0081 0.21
Market-to-book 22,092 18,302 32,952 -14,650 37,244 0.083

Panel B: Firm-product characteristics

All Not HPI HPI Difference Above ×
HPI

Estimate

p-value

(1) (2) (3) (4) (5) (6)

Ln(Product Sales) 4.1 4.1 4.3 -0.29 0.11 0.79
Ln(Unit Cost) -5.20 -5.60 -4.20 -1.40 -1.00 0.11
Ln(Unit Price) -5.10 -5.50 -4.10 -1.50 -0.93 0.12
Margin (%) -1.60 -3.50 3.50 -7.00 0.60 0.95
Ln(Per Unit CO2 Emissions) -2.20 -2.30 -2.00 -0.34 -1.30 0.44
Coal’s Proportion of Inputs 0.60 0.69 0.49 0.21 -0.24 0.27
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TABLE IAA2: CLUSTER-LEVEL COVARIATE BALANCE

This table presents mean values for baseline city characteristics, as recorded in Population Census. Column 1 presents
the unconditional mean while column 2 (column 3) presents mean for clusters below (above) the treatment threshold.
Column 4 presents the difference in means between cities below the treatment threshold and cities above the treat-
ment threshold. Additionally, column 5 shows the regression discontinuity estimate, following the main estimating
equation, of the effect of being above the treatment threshold on the baseline variable and column 6 is the p-value for
this estimate, using heteroskedasticity robust standard errors. Data sources: Population Census and Harari (2020).

All Below Above Difference Estimate p-value

(1) (2) (3) (4) (5) (6)

City roads, km, 1981 337.206 268.936 391.822 -122.886 -297.226 0.486

Log(population), 2001 13.330 13.015 13.572 -0.556 0.403 0.693

Population density (000 per Sq. km), 2001 8.632 9.387 7.993 1.394 -1.081 0.802

Average rent (per Sq. m.), 2008 953.696 907.779 990.430 -82.651 356.072 0.422

Proximity index, 2008 0.071 0.003 0.116 -0.113 -0.004 0.970

Nearest waterway (km), 2008 13.901 17.660 10.948 6.713 -16.694 0.182

Potential yields (tons/ha), 2008 1.440 1.485 1.406 0.079 0.111 0.123

Diameter from center (km), 2008 4.863 3.866 5.706 -1.840 2.223 0.514

Area footprint (Sq. km.), 2008 187.831 114.277 250.069 -135.792 184.250 0.485
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TABLE IAA3: IMPACTS ON FINE PARTICULATE MATTER (PM2.5)

This table reports the impact of CEPI reform on fine particulate matter using data from Van Donkelaar, Martin, Spurr,
and Burnett (2015). The unit of analysis is at the cluster-yearmonth level. The dependent variable is the measurement
of fine particulate matter (PM2.5) in µm3In column 1, we focus on measurements within a 5 kilometer radius circle
around the centroid of the industrial cluster while in column 2, we focus on measurements within a 500 meter radius
circle. Post is an indicator variable taking the value of 1 for all years including 2009 the year in which reform was
implemented and after. CEPI[70,100] takes the value of one if the industrial cluster has a CEPI value at or above 70,
and zero otherwise. CEPI[60,70) takes the value of one if the industrial cluster has a CEPI value greater than or equal
to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial clusters targeted by the CPCB
in 2009 with the omitted category including clusters with a CEPI value below 60. All specifications include cluster-
address fixed effects and State × year-month fixed effects. The table also reports the p-value from the joint test of the
coefficients and the mean of the dependent variable in levels in the pre-reform year of 2008. The standard errors are
clustered at the cluster-address level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%,
and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data source: Van Donkelaar, Martin,
Spurr, and Burnett (2015).

Dependent variable: Fine PM2.5 (µ g/m3)

Radii of circle: 5 kilometers 500 meters
(1) (2)

Post ×CEPI[70,100] (β1) -2.311∗∗∗ -1.893∗∗

(0.775) (0.743)

Post ×CEPI[60,70) (β2) -1.018 -0.560
(0.756) (0.673)

p-value [β1 + β2 = 0] 0.025 0.069
2008 Dependent Variable Mean (Control) 84.0 84.0
Fixed effects:

Cluster Yes Yes
State × year-month Yes Yes

Bandwidth Yes Yes
R2 0.963 0.959
Observations 17,952 18,216
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TABLE IAA4: CHANGES IN CLUSTER ENERGY EMISSIONS BY POLLUTANT

This table reports the impact of CEPI reform on the power generation sector using data from EDGAR. The unit of
analysis is at the cluster-year-month level. The dependent variable is the measurement of emissions from the database
within a 5 kilometer radius circle around the centroid of the industrial cluster. In column 1, we focus on all pollutants
whereas we break them down: PM2.5 (column 2), PM10 (column 3) and NOx (column 4). Post is an indicator variable
taking the value of 1 for all years including 2009 the year in which reform was implemented and after. CEPI[70,100]

takes the value of one if the industrial cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes
the value of one if the industrial cluster has a CEPI value greater than or equal to 60 and below 70, and zero otherwise.
The sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including
clusters with a CEPI value below 60. All specifications include cluster-address fixed effects and State × year month
fixed effects. The table also reports the p-value from the joint test of the coefficients and the mean of the dependent
variable in levels in the pre-reform year of 2008. The standard errors are clustered at the cluster-address level and are
robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables are
defined in Appendix Table IAA8. Data source: The Emissions Database for Global Atmospheric Research (EDGAR).

Dependent variable: Pollution Measurement

Pollutant(s): All PM2.5 PM10 NOx

(1) (2) (3) (4)

Post ×CEPI[70,100] (β1) -0.169 -0.181 -0.184 -0.143
(0.755) (0.304) (0.549) (1.520)

Post ×CEPI[60,70) (β2) -0.229 -0.112 -0.170 -0.405
(0.715) (0.274) (0.542) (1.415)

p-value [β1 + β2 = 0] 0.770 0.582 0.719 0.843
2008 Dependent Variable Mean (Control) 8.18 1.78 3.34 19.43
Fixed effects:

Cluster × Pollutant Yes Yes Yes Yes
State × year-month × Pollutant Yes Yes Yes Yes

Bandwidth Yes Yes Yes Yes
Adjusted-R2 0.756 0.795 0.823 0.734
Observations 29,808 9,936 9,936 9,936
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TABLE IAA5: CHANGES IN FIRM-LEVEL FACTORS OF PRODUCTION

This table reports the changes in factors of production around the 2009 CEPI emissions regulation. The unit of analysis
is firm-year. Panel A reports the average effect across all industries whereas Panel B reports treatment effects split
by High-Polluting vs. Other industries. Across both panels, the dependent variable in column 1 is the total wage
bill as a fraction of net sales while in column 2 it is the ratio of raw material expenses to firm-level net sales. In
column 3, the dependent variable is investment, defined as the ratio of gross fixed assets to total assets. Post is an
indicator variable taking the value of 1 for all years including 2009 the year in which reform was implemented and
after. CEPI[70,100] takes the value of one if the industrial cluster has a CEPI value at or above 70, and zero otherwise.
CEPI[60,70) takes the value of one if the industrial cluster has a CEPI value greater than or equal to 60 and below
70, and zero otherwise. The sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the
omitted category including clusters with a CEPI value below 60. The table also reports the p-value from the joint test
of the coefficients and the mean of the dependent variable in levels in the pre-reform year 2008. All specifications
include firm and State × two-digit industry × year fixed effects. The standard errors are clustered at the city level and
are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables
are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Panel A: All Industries

Dependent variable: Wage Bill Raw Material Exp. Investment

(1) (2) (3)

Post ×CEPI[70,100] (β1) -0.002 -0.035 0.020
(0.003) (0.027) (0.024)

Post ×CEPI[60,70) (β2) -0.005 -0.030 0.019
(0.005) (0.029) (0.031)

p-value [β1 + β2 = 0] 0.326 0.222 0.429
2008 Dependent Variable Mean (Control) 0.05 0.54 0.89
Fixed effects:

Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Bandwidth Yes Yes Yes
R2 0.806 0.793 0.826
Observations 10,752 10,752 9,643
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TABLE IAA6: SHIFTING PRODUCTION: NO IMPACT ON MERGERS AND
ACQUISITIONS

This table reports changes in mergers and acquiisitions around the 2009 CEPI emissions regulation. The unit of
analysis is firm-year. The dependent variable in column 1 is an indicator for whether the firm in a given cluster was
a target in a merger and acquisition in that year while in column 2 it is an indicator for whether the firm in a given
cluster was acquired in a merger and acquisition in that year. Post is an indicator variable taking the value of 1 for
all years including 2009 the year in which reform was implemented and after. CEPI[70,100] takes the value of one
if the industrial cluster has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value of one if
the industrial cluster has a CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample is
restricted to the 88 industrial clusters targeted by the CPCB in 2009 with the omitted category including clusters with
a CEPI value below 60. The table also reports the p-value from the joint test of the coefficients and the mean of the
dependent variable in levels in the pre-reform year 2008. All specifications include firm and State × two-digit Industry
× year fixed effects. The standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗,
∗ denote significance at the 1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8.
Data source: CMIE Prowess.

Dependent variable: 1Target 1Acquired

(1) (2)

Post ×CEPI[70,100] (β1) 0.009 0.005
(0.009) (0.007)

Post ×CEPI[60,70) (β2) 0.018 -0.000
(0.012) (0.008)

p-value [β1 + β2 = 0] 0.165 0.757
2008 Dependent Variable Mean (Control) 0.000 0.000
Fixed effects:

Firm Yes Yes
State × industry × year Yes Yes

Bandwidth Yes Yes
R2 0.193 0.148
Observations 10,752 10,752
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TABLE IAA7: SHIFTING PRODUCTION:NO IMPACT ON PLANT ANNOUNCEMENTS

This table reports changes in the probabilities of plant announcements around the 2009 CEPI emissions regulation.
The unit of analysis is firm-year. The dependent variable in column 1 is an indicator for whether the firm announced a
new plant in the year while in column 2 it is an indicator for whether the firm announced that it is abandoning a new
plant that it had announced in the past years. Post is an indicator variable taking the value of 1 for all years including
2009 the year in which reform was implemented and after. CEPI[70,100] takes the value of one if the industrial cluster
has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value of one if the industrial cluster has a
CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial
clusters targeted by the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. The
table also reports the p-value from the joint test of the coefficients and the mean of the dependent variable in levels
in the pre-reform year 2008. All specifications include firm and State × two-digit industry × year fixed effects. The
standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the
1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data sources: CMIE Prowess
and CapEx.

Dependent variable: 1New Plant 1Abandon Plant

(1) (2)

Post ×CEPI[70,100] (β1) -0.010 -0.004
(0.011) (0.010)

Post ×CEPI[60,70) (β2) 0.008 0.003
(0.013) (0.011)

p-value [β1 + β2 = 0] 0.925 0.990
2008 Dependent Variable Mean (Control) 0.0 0.0
Fixed effects:

Firm Yes Yes
State × industry × year Yes Yes

Bandwidth Yes Yes
R2 0.350 0.284
Observations 10,752 10,752
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TABLE IAA8: VARIABLE DEFINITIONS

This table presents definitions to variables used in the paper. EDGAR refers to the ’Emissions Database for Global Atmospheric Research’ data, available at
https://edgar.jrc.ec.europa.eu/dataset_htap_v3. PROWESS refers to the ’Performance and Ownership with Excellence’ available at https://prowessdx.cmie.com/.
CBCB refers to the ’Central Pollution Control Board’, with supporting data available at https://cpcb.nic.in/. Note, all normalized variables at the firm-level are
winsorized at the 1% tails, except for leverage, productivity, and profitability which are winsorized at the 5% tails. All product-level variables are winsorized at
the 1% tails except for emissions, which is winsorized at the 2.5% tails.

Variable Description Data Source

Panel A: Pollution
All Pollution Summation of pollution measures for a given area EDGAR
PM2.5 Particulate Matter with a diameter of 2.5 micrometers or less, measured in Mg/month EDGAR
PM10 Particulate Matter with a diameter of 10 micrometers or less, measured in Mg/month EDGAR
NOx Nitrous oxides, measured in Mg/month EDGAR
PM2.5 Fine Particulate Matter with a diameter of 2.5 micrometers or less, measured in Mg/month Van Donkelaar et al. (2015)

Panel B: Firm Characteristics
Assets (million INR) Total assets of firm operations in INR PROWESS
Sales (million INR) Total revenue from goods and services sold in missions of INR PROWESS
Leverage The sum of short- and long-term debt obligations scaled by contemporaneously reported Total Assets. PROWESS
Exporting intensity Firm earnings from exports of goods plus services scaled by contemporaneous total sales PROWESS
Ln(Productivity) The natural log of firm productivity, calculated following Levinsohn and Petrin (2003) and controls for firm size PROWESS
Profitability Earnings Before Interest, Taxes, Depreciation, and Amortization as a ratio of the prior year sales PROWESS
Investments/Assets Gross fixed assets as a ratio of the prior year total assets PROWESS
Raw Materials/Sales Raw material inputs scaled by contemporaneously reported net sales PROWESS
Wages/Sales Total wages scaled by contemporaneously reported net sales PROWESS
Market-to-book The total number of listed shares multiplied by the share price at the end of the fiscal year, scaled by contemporaneously reported

total assets. Reported for listed firms
PROWESS

Number of Products Number of unique products for a given firm in a given year PROWESS
1File Energy Inputs Indicator for whether the firm reports inputs PROWESS
1New Plant Indicator for whether the firm announced a new plant in the year CapEx
1Abandon Plant Indicator for whether the firm announced that it abandoned the plant in the year CapEx

Panel C: Product Characteristics
Ln(Product Sales) The natural logarithm of the per-product sales PROWESS
Ln(Product COGS) The natural logarithm of the per-product cost of goods sold (COGS) PROWESS
Unit Price The natural logarithm of the per-unit price, where unit is unique within but not across firm PROWESS
Margin Is measured as (unit price - unit cost)/unit price PROWESS
Ln(Per Unit CO2 Emissions) Author-calculated CO2 emissions per reported unit of production PROWESS
TFPQ Natural logarithm of quantity-based total factor productivity estimated following De Loecker, Goldberg, Khandelwal, and Pavcnik

(2016)
PROWESS

TFPR Natural logarithm of total factor productivity estimated following Levinsohn and Petrin (2003) that controls for firm size PROWESS

Panel D: Cluster Characteristics

CEPI[70,100] CEPI equal or greater than 70, and less or equal to 100 PROWESS and CPCB
CEPI[60,70) CEPI equal or greater than 60, and less than 70 PROWESS and CPCB
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Appendix B Additional background on the regulation

By 2009, India was an acknowledged industrial powerhouse. However, significant environmental degradation accom-
panied impressive growth. This pollution concentrated in industrial clusters, which shared infrastructure, administra-
tive structures, and proximity to major population centers made desirable locations for manufacturing and industrial
production. District and state authorities have regulated industrial cluster emissions since environmental regulation
began in the 1980s. However, enforcement has been uneven, emissions measurements and regulatory thresholds were
not standardized, and firms were often allowed to self-monitor, rather than be subjected to independent auditors.
Moreover, the government lacked even basic information on industrial environmental impact for most locations.

Against this background, the Central Pollution Control Board (CPCB) of the Ministry of Environment, Forest
and Climate Change conducted a comprehensive environmental assessment of industrial clusters. The aims were
to enhance, standardize and centralize pollution monitoring. The first step was to design a measure of pollution:
The Comprehensive Environmental Pollution Index (CEPI hereafter). Figure 1 describes its construction. The CEPI
combines proxies for (1) the amount and toxicity of pollutants, (2) the potential impact of that pollution on humans and
ecosystems, and (3) an assessment of the quality of actions already taken by cluster firms to capture or adequately
dispose of emissions. We include a complete discussion of each component and its construction as of the 2009
regulation in Central Pollution Control Board of India (2009).

Of the over two thousand industrial clusters in 2009, the CPCB reported CEPI scores for the 88 worst-polluting
clusters. The CPCB classified those clusters with a CEPI above 60 as Severely Polluted Areas (SPA). These became
subject to central monitoring at the national level rather than the relatively weak local control. Moreover, the CPCB
classified industrial clusters with a CEPI of at least 70 as Critically Polluted Areas (CPA), which were additionally
mandated to submit a remedial action plan for approval detailing the actions and timelines at the cluster and firm
levels.

If a firm within a Critically Polluted Area failed to comply with the directives of the action plan, then they would
lose their Environmental Clearance and Consent to Operate permits that allow firms to function within the formal
economy. Moreover, Consent to Establish permits could not be issued to new operations if they do not fully comply
with the cluster regulations and action plans.

Consider the example of the action plan for the CPA Patancheru-Bollaram Cluster in Andhra Pradesh (Pollution
Control Board of Andhra Pradesh (2010)), which contains the operations of 106 establishments and whose CEPI, at
70.07, was just over the cutoff between being classified as a Severely or Critically Polluted Area. The Action Plan
specifies a lengthy list of specific actions and deadlines agreed to by the firms of the cluster. For example, the cluster
agreed to build a common effluent treatment plant, a treatment storage and disposal facility, and alternative drainage
systems so no firm would outlet emissions into significant water bodies. In addition, firms operating in specific high-
polluting industries would no longer be allowed to expand, and new firms in these industries could not be established
in the cluster. The plan also listed self-policing mechanisms the cluster agreed to in order to prevent illegal dumping.
In addition, the cluster agreed to pay compensation to local farmers affected by pollution and to supply drinking
water to affected villages. The action plan then details a long list of agreed investments and recorded progress for
each of the 106 individual establishments in the cluster.

The CPCB also installed continuous remote pollution sensors for air, water, and land pollution, video cameras
(including night cameras) on the premises of factories at the point of their process emissions, and instigated tri-annual
CPCB audits (January-February, May-June, and September-October) and quarterly audits from district and state level
monitoring committees. These reports were released to the public annually via the CPCB website. Each report specifies
the longitude and latitude of the air and water sampling locations, the laboratories used to carry out sampling and
analyze the samples, and the date of the sampling. Then for each of air, groundwater and surface water samples the
report specifies a particular pollutant (e.g., lead) or parameter (e.g., color (Hazen units)), the measurements of that
pollutant and the test method used. Finally, the report includes photographs of the measurements. To give readers
an idea, Figure IAB1 provides an example of the monitoring documentation for the Patancheru-Bollaram Cluster in
Andhra Pradesh. Panel (a) reports the locations of water sampling locations superimposed over a map of the cluster.
Panel (b) reproduces a few of the sampling documentation photographs of air, surface and groundwater sampling in
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the Patancheru-Bollaram Cluster.

 

 

 

 

(a) Water sampling locations
 

Ambient Air Monitoring Station.                                  Surface Water Sampling Point. Isukavagu 
Sujana Metals Unit-IV

 

 

 

 

 

      Ground Water Sample Point. Bollaram Village       Ground Water Sample Point. Krishnareddypet                                            

(b) Sampling documentation photos

FIGURE IAB1: PANTANCHERU-BOLLARAM CLUSTER POLLUTION MONITORING

This figure illustrates monitoring around the Pantancheru-Bollaram cluster. Panel (a) illustrates water sampling
locations with the blue dots signifying water collection sites. Panel (b) documents sampling at these sites. Source:
CPCB annual reports, “Sampling and Analysis of Ambient Air Quality and Water Quality in Industrial/Cluster
Areas.”

Finally, we complement the analysis presented in Figure 3 testing for manipulation of the original, 2009 CEPI with
complementary McCrary (2008) density tests for the re-calculated CEPI values in 2011 and 2013. Note that in 2011
and 2013 only the CEPI values for those firms that had been ranked CPA in 2009 were published, so we are testing
for manipulation in these updated scores among the 2009 CPA sub-population. In summary, in India, as elsewhere,
holding firms accountable for their environmental impact was difficult with unreliable data and weak enforcement.
Accordingly, the CPCB centralized control and broadened its scrutiny of emissions. It automated monitoring to the
extent possible, increased auditor independence, and instigated overlapping monitoring regimes. Moreover, the CPCB
increased engagement specific cutoffs defined escalating severity of regulatory scrutiny.
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FIGURE IAB2: TEST FOR MANIPULATION OF THE CEPI IN 2011 AND 2013

This figure studies potential manipulation of CEPI. Panel (a) reports the fitted distribution of the 2011 CEPI update
around the cutoff at 70 (normalized to zero) for clusters with a 2009 CEPI of at least 70 (Critically Polluted Areas).
Panel (b) reports the fitted distribution of the 2013 CEPI update around the (updated) cutoff at 60 (normalized to zero)
for the same sample. Source: CPCB.
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Following the success of the regulation, the CPCB and Central government devised a color-coding system to
classify pollution levels for industrial clusters based on a numerical pollution score that varies between 21 and 100.
Under this system, industries are categorized based on their pollution potential into a color-coded system, which
subsequently dictates the regulatory obligations of the firms within these industries. This system classifies firms
into three categories: Green, Orange, and Red. Firms falling under the ’Green’ category are identified as the least
polluting, thus bearing the lowest regulatory burden. Conversely, ’Red’ firms are recognized as the most polluting
entities, subjected to the most stringent regulatory requirements. Those in the ’Orange’ category fall in between,
indicating a moderate level of pollution and corresponding regulatory obligations. Lastly, firms with low scores are
classified as ’White.’
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Appendix C Measuring cluster-level pollution

The appendix provides a comprehensive overview of the methodology employed to compile the pollution data panel
for each industrial site. We first discuss the Emission Database for Global Atmospheric Research (EDGAR) data,
followed dataset by Van Donkelaar, Hammer, Bindle, Brauer, Brook, Garay, Hsu, Kalashnikova, Kahn, Lee, et al.
(2021) (henceforth, Van Donkellaar). Finally, we detail the steps undertaken to construct the data panel.

C.1 Emission Database or Global Atmospheric Research (EDGAR)

Our primary pollution data comes from the Emission Database or Global Atmospheric Research (EDGAR), with par-
ticular emphasis on the Hemispheric Transport of Air Pollution (HTAPv3) mosaic. This mosaic is designed to enhance
the temporal range, sectoral breakdown, and geographical coverage of existing official data.30 We use pollution data
for nitrous oxide (NOx), particles less than 2.5 µm in diameter (PM2.5), and particles less than 10 µm in diameter
(PM10), are available, and each is processed distinctly. The monthly data with the highest resolution (0.1°x 0.1°) is
downloaded. Upon reading this raster file, we keep only the industrial pollution layer, given its relevance to our
study.

C.2 Fine Particulate Matter (PM2.5) from Van Donkelaar et al. (2021)

We also use data from Van Donkelaar et al. (2021), as it offers monthly high-resolution (0.01° x 0.01° grid) estimates of
ground-level fine particulate matter (PM2.5). These pollution estimates are calculated by merging aerosol optical depth
(AOD) data from NASA’s MODIS, MISR, and SeaWiFS instruments with outputs from the GEOS-Chem chemical
transport model. The dataset is refined through calibration with global ground-based observations via geographically
weighted regression (GWR).

C.3 Measurement Procedure

The process of measuring pollution data at the industrial cluster level is broken down into four steps.

1. Extract the cluster location from the PDF titled “Assessment of the Need from Common Effluent Treatment
Plants.”

2. Geocode each identified location and construct corresponding circles around industrial areas/estate locations.

3. Using the location and pollution data from the previous step, we compute the weighted overlap between the
designated circular region and the pollution raster layer.

(1) Extraction of Industrial Clusters: We use the document “Assessment of the Need from Common Effluent Treat-
ment Plants,” which is published by the CPCB under the Ministry of Environmental & Forest, Govt. of India. Starting
from page 22 in Annexure II, it presents a list of industrial areas and estates of new locations categorized by state.
Using this document, we extract these addresses into Excel using PDF converters. Given the document’s inconsisten-
cies, research assistants meticulously review the output by hand to guarantee accurate extraction.

(2) Geocoding and Shape Construction: Next, we pinpoint the latitude and longitude of industrial clusters.
We send each address to the Google Maps API, and retrieve their geocodes. This helps exclude duplicate locations,
proposals that weren’t realized, and entries with incomplete information. After this step, we are left with 2914 lo-
cations. Using this refined list, a geometry, specifically a circle with a 500m radius, is constructed around each location.

(3) Weight Pollution Data: The final step involves calculating the pollution at each industrial location. For
this purpose, we utilize raster files from EDGAR and Van Donkelaar, as discussed above, to assess pollution levels
surrounding these sites.

30See https://edgar.jrc.ec.europa.eu/dataset_htap_v3 for more information.
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A critical aspect to consider is that the vicinity of an industrial location can span multiple grid cells. To account
for this, we calculate a weighted average of the pollution values. This involves determining the proportion of the
industrial area’s footprint overlapping each grid cell, which then serves as the weight for that cell. By summing these
weighted values across the industrial area, we obtain a comprehensive dataset detailing pollution levels by industrial
area, month, and pollutant type.

FIGURE IAC3: SAMPLE FROM THE ASSESSMENT OF THE NEED FROM COMMON
EFFLUENT TREATMENT PLANTS

This figure presents an excerpt from the Assessment of the Need from Common Effluent Treatment Plants document.
It presents the first 5 observations from page 22.

FIGURE IAC4: VADODARA, GUJARAT

This figure presents a shape drawn for a given industrial area/estate using a 500m radius.
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FIGURE IAC5: EXAMPLE OF INTERSECTION

This figure illustrates pollution calculations from December 2012, depicted as a circle divided into two segments: the
top segment represents 27%, and the bottom segment represents 73%, indicating the proportional weight calculations
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Appendix D Product-Level CO2 Emissions

This appendix describes how we clean the product-level energy inputs from the Prowess database and transform them
into product-level CO2 emissions. The Prowess product-wise energy consumption data are from company disclosures
in their annual reports. Clause (e) of sub-section (1) of section 217 of the Companies Act of 1956 mandates that
every company disclose total energy consumption in a prescribed format. However, there is no legal obligation to
disclose the product-level energy consumption per unit of production. Thus, a limitation of this data is that firms
choose whether or not to disclose it, and not every firm chooses to do so. However, once a firm starts reporting
product-level energy inputs, however, it tends to continue to do so throughout the entire period. Note that this
changes the interpretation of our results to be most directly applicable to these types of firms but is unlikely to
violate the identification assumption that there is no discontinuity in the probability of reporting product-level energy
assumption at CEPI treatment thresholds. Figure IAD6 provides evidence supporting this identification assumption.

TABLE IAD9: PROBABILITY OF FILING ENERGY INPUTS

This table reports the effect of the 2009 CEPI emissions regulation on the probability of reporting product-level energy inputs in
firm annual reports. The unit of analysis is firm-product-year. Model (1) is on all firms in the Prowess database. Models (2) and (3)
are on the regression dataset comprising manufacturing firms in clusters with CEPI within a bandwidth of 10 pollution index units
around the cutoffs at 70 and 60. Post is an indicator variable taking the value of 1 for all years including 2009 the year in which
reform was implemented and after. CEPI[70,100] takes the value of one if the industrial cluster has a CEPI value at or above 70, and
zero otherwise. CEPI[60,70) takes the value of one if the industrial cluster has a CEPI value greater than or equal to 60 and below 70,
and zero otherwise. In specifications (2) and (3), the sample is restricted to the 88 industrial clusters targeted by the CPCB in 2009
with the omitted category including clusters with a CEPI value below 60 and includes firm and State × two-digit Industry × year
fixed effects. The standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at
the 1%, 5%, and 10% level, respectively. All variables are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Dependent variable: 1File Energy Inputs

Sample: All Regression

(1) (2) (3)

Post -0.007∗∗∗

(0.001)

Post ×CEPI[60,100] -0.010
(0.010)

Post ×CEPI[70,100] -0.011
(0.010)

Post ×CEPI[60,70) -0.008
(0.013)

Fixed effects:
Firm Yes Yes Yes
State × industry × year No Yes Yes

Bandwidth Yes Yes Yes
R2 0.408 0.417 0.417
Observations 119,943 32,299 32,299
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FIGURE IAD6: DISCONTINUITY IN THE PROBABILITY OF FILING PRODUCT ENERGY
INPUTS AT BASELINE

This figure presents the average probability that a firm reports product-level energy inputs in its annual statement in 2008 around the

CEPI treatment thresholds. We pool across a 10 CEPI-index value window around the two thresholds at CEPI 60 and 70, normalized

in the figure to zero. A linear fit is generated separately for each side of 0, with the 95% confidence intervals displayed.

To our knowledge, this dataset offers unique access product-level energy inputs for such a large cross-section of
firms. We exploit this unique data to bring new insight into how emission-capping regulations impact production
decisions along the input dimension.

The data are at the firm-product-year-energy source level and are expressed in energy input units per reported
production unit. For example, A.B.G. Cement Ltd. reported using 70.28 kWh of purchased electricity, 0.14 tonnes
of coal, and 3.3 KWh of firm-produced electricity from a diesel generator per tonne of cement produced in 2014.
Since regulators do not mandate a particular reporting standard, there exists variation in reporting units in the raw
data. Therefore, we first separate the energy and production units and then standardize them. For example, we
transform all production units reported in “lakh liters” into “liters” by using the fact that one lakh liter is 100,000
liters. Ultimately, we express all energy inputs in kcal per production unit. This conversion allows us to test for shifts
in energy use across energy sources as a proportion of the total energy input in kcal.

Second, we transform energy input into CO2 output. This exercise requires assumptions about each energy
source’s energy content and CO2 output. We use the conversion factors and unit assumptions from the Central
Electricity Authority (CEA) of India for 2008 (Central Electricity Authority, 2008), the year before the regulation.
This choice fixes the energy technology just before the regulation. We assume that in the five-year window around
the regulation, there are no drastic changes to technology that would change the CO2 emissions of each fuel type
significantly. Importantly, they are unlikely to change discontinuously around the thresholds set by CPCB.

Specifically, we use the CEA’s assumptions on gross calorific value and CO2 emission factors per fuel source
that this regulator mandated that electricity plants use to quantify their CO2 emissions in 2008 (Central Electricity
Authority, 2008). We supplement this source from the 2008 Commercial Energy Balance Tables and Conversion Factors
from the Energy and Resources Institute (Energy and Resources Institute, 2008). The latter gives us fuel-specific
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conversions between, e.g., mass units and volume units for the type of fuel used in Indian manufacturing firms. Table
IAD10 reproduces the calculation inputs. Note that energy input from hydro, solar or wind sources are assumed to
have zero CO2 emissions.

TABLE IAD10: PRODUCT-LEVEL ENERGY INPUTS TO CO2 EMISSIONS

This table reports the assumptions we used when transforming product-level energy inputs into product CO2 emissions. Note that
we assume that CO2 emissions from burning bio-waste are based on the idea of a closed carbon cycle —the carbon dioxide emitted
when bio-waste is burned is offset by the carbon dioxide absorbed during the growth of the plants that produced the waste so that
the amount of CO2 released is approximately equal to the amount of CO2 absorbed. Data source: Central Electricity Authority CO2
Baseline Database 2008 (Central Electricity Authority, 2008) and the Commercial Energy Balance Tables and Conversion Factors from
the Energy and Resources Institute (Energy and Resources Institute, 2008).

Fuel Gross Calorific Density Fuel CO2
Value (kcal/kg) (t/kls) Emission Factor

Electricity from Fuel
Fuel (tCO2/mWh) (gCO2/MJ)

Coal 3,755 0.95 1.04 90.6

Diesel 10,350 0.83 0.78 69.1

Oil 9,850 0.95 0.66 71.9

Gas 11,300 0.86 0.55 49.4

Lignite 3,000 0.83 1.28 100.5

Naptha 10,750 0.70 0.61 66.0

Bio∗ 3,625 N/A 0.00 0.0

Hydro N/A N/A 0.00 0.0

Solar N/A N/A 0.00 0.0

Wind N/A N/A 0.00 0.0

Nuclear N/A N/A 0.00 0.0

Finally, we calculate tonnes of CO2 emitted per reported production unit for each firm-product-year-energy
source. Once all energy sources have the same units on the energy input side (kcal/production unit) and the CO2

emissions side (tonnes of CO2/production unit), we collapse the data to the firm-product-year level across energy
sources.

Using the unique firm and product codes, we merge with our regression dataset of manufacturing firms, which
contains the quantity produced of each product by each firm per reporting year. We next calculate the total CO2

emissions per firm-product-year. So, in the end, we have a dataset at the firm-year-product level for the fiscal years
2005 to 2015 that tells us the total energy input per product reporting unit, the total CO2 emissions and the CO2

emissions per product reporting unit, and the proportion of the total energy from each fuel source. These data are
summarized below for our regression sample in Table IAD11.
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TABLE IAD11: PRODUCT ENERGY INPUTS AND CO2 EMISSIONS

This table presents descriptive statistics of the product energy inputs and CO2 emissions for our baseline sample. Ln(Total product
energy input) is defined as the natural logarithm of total product-level energy inputs for the firm-year. Ln(Total product CO2) is defined
as the natural logarithm of total product-level CO2 emissions for the firm-year. CO2 per production unit is defined as the ratio of total
product in tonnes and the units the product is quoted in on the firm’s annual statement. Proportion purchased electricity is defined as
the ratio of the total product-level energy from purchased electricity and total product energy input.

Obs Mean Std. dev. Min Median Max.

(1) (2) (3) (4) (5) (6)

Ln(Total product energy input) 1,151 13.81 2.96 5.29 14.39 21.48
Ln(Total product CO2 emissions) 1,151 4.37 4.45 -6.54 4.50 14.79
Tons of CO2 per production unit 1,151 2.72 17.28 0.00 0.16 168.34
Proportion purchased electricity 1,151 0.56 0.47 0.00 0.99 1.00
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Appendix E Quantity Productivity estimation

Measuring productivity is challenging. In many settings, firms are capital constrained, subject to power blackouts
and other infrastructure constraints, regulations limit labor adjustment, firms, among others. The workhorse model,
Levinsohn and Petrin (2003) assumes that firms readily adjust their intermediate inputs when faced with a produc-
tivity shock. This methodology then calculates revenue-based total factor productivity (TFPR) that reflect changes in
productivity however these might also reflect changes in markups, the product mix, and product quality. However, it
is reasonable to expect all three to respond to the emissions regulation. On the other hand, if consumers value quality,
TFPR may be preferable to TFPQ-based measures since higher prices and revenues may capture the ability to produce
high quality (Atkin et al., 2019). Indeed, we confirm that in our data that input prices are an increasing function of
product quality.

To circumvent such issues, we adopt the approach proposed by De Loecker, Goldberg, Khandelwal, and Pavcnik
(2016), allowing us to flexibly control for quality differences to be consistent with a large class of demand models
and any degree of passthrough between input and output prices. Further, it allows us to recover firm-product-
year estimates of markups and marginal costs. Estimates are corrected for product quality, as proxied by input price
variation, and for sample selection. In this Appendix, we describe the construction of quantity total factor productivity
(TFPQ), following De Loecker, Goldberg, Khandelwal, and Pavcnik (2016). We control for input price variation across
firms using differences in output quality, which we model as an increasing function of output price, product market
share, and product dummies.31 using the methodology of De Loecker, Goldberg, Khandelwal, and Pavcnik (2016).

E.1 Estimation assumptions

Following De Loecker, Goldberg, Khandelwal, and Pavcnik (2016), our estimation of firm quantity productivity, and
firm-product-level marginal cost and markups rely on several key simplifying assumptions, as described below.

1. All producers of the same product use the same production technology, though productivity in producing the
product can differ;

2. Firms are equally productive at producing all its products;

3. Firms can only change output in the short term by adjusting material inputs, but not capital and labor, which
are sticky;

4. We model firms as minimizing short-turn costs, taking concurrent (time-t) quantity and input prices as given;

5. The production function coefficients are assumed to be constant over the sample period;

6. The number of products manufactured by firms increases with the firm’s productivity.

Assumption 2 is not likely to hold, but is standard in the literature because it allows estimates of markups for
multi-product firms. Assumption 3 allows us to ignore cross-elasticities, which we cannot estimate because we only
observe labor and capital at the firm-year level. Note that this does not impose that firms cannot substitute between
capital and labor in such a way that output remains constant. If assumption 3, that the only variable input is materials,
and assumption 4, that firms minimize costs, hold, then markups are computed as the deviation between the elasticity
of output with respect to inputs and that input’s share of total revenue. Assumption 4 also implies that input prices,
our main proxy for product quality, do not depend on input quantities. Note that this is unrealistic in the sense
that it rules out static sources of market power in input markets, i.e., monopsony power. As a result, this approach
understates the level of markups and is therefore most useful in explaining changes in markups. The intuition is that

31Intuitively, output prices are highly correlated with input prices since producers of more expensive products also
use more expensive inputs, on average (for example, Kugler and Verhoogen (2012)) Following De Loecker, Goldberg,
Khandelwal, and Pavcnik (2016), we also assume that input quality is correlated across the factors of production.
Intuitively, manufacturing high-quality products requires combining high-quality materials with labor and capital.
This assumption allows us to model input prices as a function of a single index of product quality at the firm-product
level.
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if market power is static or if contemporaneous changes in market power are not correlated with the 2009 emissions
regulation shock then the changes in markups will be estimated without bias. Assumption 5 is necessary because we
do not have enough data to estimate production functions for different time periods.

E.2 Addressing empirical bias

There are two main sources of bias in estimating TFPQ: (1) the unobserved allocation of inputs across products for
firms that produce more than one product and (2) the unobserved quality of products. To address the first, we
estimate the production function on single-product firms only. Of course, firms choose if they will produce one or
multiple products, introducing selection bias into our estimates. Assuming that the number of products manufactured
by firms is an increasing function of firm productivity (assumption 6 above) allows us to control for selection into
being a multi-product firm by estimating the probability that a firm continues to produce one product as a function
of the firm’s productivity forecast and the state variables (number of products, material inputs, and exogenous factors
like firm location). The assumption that multi-product firms use the same production technology as single-product
firms producing the same product (assumption 1 above) allows us to extrapolate our single-product estimates to our
subsample of multi-product firms.

The second bias, that we do not observe the quality of products, is a fundamental problem of productivity
estimation. In particular, TFPQ estimations are downward biased when the econometrician does not observe product
quality differences across firms.32 To overcome this, we proxy for output quality by input quality. We do not observe
input quality directly either because we do not observe how firms that produce multiple products allocate inputs
across those products. To partially address this, we estimate the production function using the subsample of single-
product firms.33 This approach is attractive because it controls for quality differences flexibly so as to be consistent
with a large class of demand models and with any degree of passthrough between input and output prices. The
approach also allows us to recover firm-product-year level estimates of markups and marginal costs.

The specific steps we take are to:

1. Estimate the production function parameters and recover the product-specific output elasticity with respect
to materials from a subsample of single-product firms. We model the production function using a translog
functional form;

2. Correct for selection bias from the non-random decision of how many products to produce by estimating the
productivity threshold beyond which firms move from producing one to multiple products and then controlling
for the probability that the firm will continue to be below the threshold in a given year as a function of firm
productivity and the state variables;

3. Proxy for the (unobserved in our data) product-level materials share of total revenue for each product of multi-
product firms using the estimated production function coefficients for single product firms and an input price
control function that expresses the product-specific allocation of material inputs to each product as a function
of the firm-product-year output price, market share, product and location fixed effects, and the firm’s export
status;

32TFPR includes prices, which means that it captures cross-sectional quality differences between firms within
narrowly-defined product categories. However, the TFPR measure also includes markups in prices have both demand
and supply determinants, biasing estimates of productivity changes and cross-sectional comparisons. The direction
and magnitude of this bias are highly dependent on the specific empirical setting.

33We confirm that input prices are an increasing function of product quality and therefore we can control for
input price variation across firms using differences in output quality across firms, which we model as an increasing
function of output price, product market share, and product dummies. Intuitively, output prices have been found to
be highly correlated with input prices since producers of more expensive products also use more expensive inputs,
on average (for example, Kugler and Verhoogen (2012)) We also assume that input quality is correlated across the
factors of production. Intuitively, manufacturing high-quality products requires combining high-quality materials
with high-quality labor and capital. This assumption allows us to model input prices as a function of a single index
of product quality at the firm-product level.
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4. Compute firm-product-year level markups and marginal costs, where the markup is the ratio of the output
elasticity of materials to the materials share of total revenue and marginal costs are the ratio of the products
price to its markup.

Table IAE12 reports basic summary statistics of the two-digit 1887 NIC industry codes for the Indian manufac-
turing sector for the period 2005 to 2015. There are 1,840 unique products, and 6,711 unique firms in our dataset, for
whom 2,854 are single-product firms. It is on this sub-sample that we estimate the production function coefficients
(assumed constant over the period).

TABLE IAE12: SUMMARY STATISTICS BY SECTOR

This table reports summary statistics for the average year in the sample. Column (1) reports the share of the output by sector in the
average year. Column (2) reports the number of products by sector in the average year. Columns (3) and (4) report the number of
firms and the number of single-product firms manufacturing products in the average year. Data source: CMIE Prowess.

Manufacturing sector Share of total
output

Unique
products

Unique firms Unique
single-product

firms
(1) (2) (3) (4)

10 Coal, peat, & lignite 0.6% 24 145 14

21 Food products 10.6% 180 973 457

22 Beverages & tobacco products 0.2% 12 43 16

23 Textiles & apparel 5.0% 144 634 261

27 Wood & wood products 0.3% 22 132 44

28 Paper & printing publishing 0.5% 28 78 11

29 Leather, fur & synthetic leather 1.9% 27 193 151

30 Chemicals (except petroleum & coal) 8.3% 250 813 395

31 Rubber, plastic, nuclear fuel, petroleum & coal 16.9% 285 757 306

32 Non-metallic mineral products 17.9% 65 516 211

33 Basic metal & alloys industries 9.6% 110 682 312

34 Metal products (not machinery & equipment) 4.4% 87 233 84

35 Machinery & equipment (not transport) 9.9% 373 723 276

37 Transport equipment & parts 10.6% 126 396 182

38 Other manufacturing industries 3.2% 97 393 134

100% 1,830 6,711 2,854

We perform several sanity checks on the data to see if it conforms with our economic intuition and evidence in
the literature. Figure IAE7 reports the correlation between demeaned markups and marginal costs and the natural
logarithm of product quantity produced.

The left panel of FigureIAE7 demonstrates that quantities and markups are positively related in our sample,
indicating that firms producing more output also enjoy higher markups due to their lower marginal costs. The right-
hand panel of Figure IAE7 plots marginal costs against production quantities. Our elasticity estimates show that
many firms are characterized by increasing returns to scale, an empirical pattern also noted in De Loecker et al.
(2016). Consistent with this, we see that there is an inverse relationship between a product’s marginal cost and the
quantity produced.

Next, we check the reasonableness of our extrapolation of the production function estimates of single-product
firms to multi-product firms. Figure IAE8 reports how our estimated firm-product-year markups (left panel) and
marginal costs (right panel) vary across products within multi-product firms. Specifically, we de-mean markups
and marginal costs using product-year and firm-year fixed effects in order to make these variables comparable across
products within firms. We then plot the de-meaned markups and marginal costs against the sales share of the product
within each firm.

In the left-hand panel of Figure IAE8, marginal costs rise as a firm moves away from the product with the
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FIGURE IAE7: MARGINAL COSTS, MARKUPS AND QUANTITIES

The left panel presents the correlation between the natural log of product markup and output quantity. The right
panel is between the natural log of product marginal cost and output quantity. Data are at the firm-product-year
level for the period 2005 to 2015. Data are winsorized at the 3rd and 97th percentiles. Markups, marginal costs, and
quantities are demeaned by product-year fixed effects to make them comparable across firms.
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lowest within-firm marginal cost (its “core” product). For the other products, marginal costs rise with a product’s
distance from the core competency. The right panel reports that firms set their highest markups on their core product,
and markups decline as they move away from that main product. Although we do not impose any assumptions
on the market structure and demand system in our estimation, these correlations are consistent with the theoretical
predictions from the multi-product firm literature (Eckel and Neary, 2010; Mayer, Melitz, and Ottaviano, 2014; Melitz
and Ottaviano, 2008) and the empirical findings of De Loecker, Goldberg, Khandelwal, and Pavcnik (2016) in the
Indian manufacturing sector.
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FIGURE IAE8: MARKUPS, COSTS AND PRODUCT SALES SHARE

Notes: The left panel presents the correlation between the natural log of product markup and sales share. The right panel is between

the natural log of product marginal cost and sales share. Data are at the firm-product-year level for the period 2005 to 2015. Data are

winsorized at the 3rd and 97th percentiles. Markups, marginal costs, and quantities are demeaned by product-year and firm-year

fixed effects to make them comparable across firms.

Having estimated the TFPQ measure and convinced ourselves our estimates are reasonable, we consider the
impact of the 2009 CEPI reform on quantity productivity (TFPQ). In Table 8 we found a significant increase in TFP,
driven by firms not operating in highly polluting industries. In other words, the average treated firm became more
productive at turning input into revenue. In Table 8, we see that there is no significant effect on the efficiency with
which treated firms turn input into outputs (Model 1). There is also no differential effect of the reform on the TFPQ
of firms in highly polluting firms and firms in other industries (Model 2).
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TABLE IAE13: CHANGES IN QUANTITY-BASED PRODUCTIVITY

This table reports the changes in firm profitability and revenue productivity around the 2009 CEPI emissions regula-
tion. The unit of analysis is firm-year. The dependent variable in column 1 is the natural logarithm of quantity-based
total factor productivity estimated following De Loecker, Goldberg, Khandelwal, and Pavcnik (2016). Column 2
focuses on the subsample of firms operating in High-Polluting Industries (HPI) while column 3 focuses on the sub-
sample that excludes HPI. Post is an indicator variable taking the value of 1 for all years including 2009 the year in
which reform was implemented and after. CEPI[70,100] takes the value of one if the industrial cluster has a CEPI value
at or above 70, and zero otherwise. CEPI[60,70) takes the value of one if the industrial cluster has a CEPI value greater
than or equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial clusters targeted
by the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. The table also reports
the p-value from the joint test of the coefficients and the mean of the dependent variable in levels in the pre-reform
year 2008. All specifications include firm and State × two-digit industry × year fixed effects. The standard errors are
clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the 1%, 5%, and 10%
level, respectively. All variables are defined in Appendix Table IAA8. Data source: CMIE Prowess.

Dependent variable: Log(Quantity-based Productivity)

(1) (2)

Post ×CEPI[70,100] (β1) -0.174 -0.118
(0.153) (0.164)

Post ×CEPI[60,70) (β2) -0.287 -0.190
(0.176) (0.302)

Post ×CEPI[70,100] × High-Polluting (β3) -0.184
(0.127)

Post ×CEPI[60,70) × High-Polluting (β4) -0.189
(0.376)

p-value [β1 + β2 = 0] 0.145 0.471
2008 Dependent Variable Mean (Control) 8.6 8.6
Fixed effects:

Firm Yes Yes
State × industry × year Yes Yes

Bandwidth Yes Yes
R2 0.824 0.825
Observations 1,898 1,898

Together with the results in Table 8, this evidence is suggestive that the main effect of the reform is on profitability,
not on operational efficiency. This must be caveated by recognizing the limitations of this analysis, mainly those
highlighted in Atkin, Khandelwal, and Osman (2019). Briefly, these authors find that TFPQ is a relatively poor
measure of quantity productivity because it shows excessive dispersion across firms and correlates negatively with
quality productivity, which they measure off of detailed product quality data in the rug manufacturing sector. The
authors attribute this to the difficulty of adjusting for product specifications and quality to make apples-to-apples
comparisons. Finally, they find that TFPR does better than TFPQ at capturing broad firm capabilities, even though
TFPR suffers from being unable to separate effects from changes in productivity, markups, the firm-product mix, and
product quality. For this reason, we use TFPR as our main measure of productivity.

However, the model also allows us to estimate product-level marginal cost and markup, which can help differen-
tiate these stories. If the treated primarily become better at producing revenue out of a given unit of input, we should
expect this to be reflected in pricing. In Online Appendix Table IAE14 we see results consistent with this. In Panel
A Model (1) we see that the sub-sample for which we can calculated TFPQ raise their prices significantly (at the 90%
confidence level). From Models (2) and (3) we see this is primarily the result of passing on increased marginal costs.
If anything, markups decrease, though the difference relative to control firm markups is not statistically significant.
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TABLE IAE14: IMPACT ON FIRM PRICING

This table reports the changes in firm pricing around the 2009 CEPI emissions regulation. The unit of analysis is
firm-product-year. The dependent variable in column 1 is the natural logarithm of the product price, in column 2 it is
the natural logarithm of product marginal cost, and in column 3 it is the natural logarithm of product markup. The
marginal cost and markup are computed following De Loecker et al. (2016) and account for unobserved input prices
(quality differences), unobserved allocation of inputs across products within multi-product firms, and the endogeneity
of the choice to produce multiple products. Post is an indicator variable taking the value of 1 for all years including
2009 the year in which reform was implemented and after. CEPI[70,100] takes the value of one if the industrial cluster
has a CEPI value at or above 70, and zero otherwise. CEPI[60,70) takes the value of one if the industrial cluster has a
CEPI value greater than or equal to 60 and below 70, and zero otherwise. The sample is restricted to the 88 industrial
clusters targeted by the CPCB in 2009 with the omitted category including clusters with a CEPI value below 60. All
specifications include firm and State × two-digit industry × year fixed effects. The table also reports the p-value from
the joint test of the coefficients and the mean of the dependent variable in levels in the pre-reform year 2008. The
standard errors are clustered at the city level and are robust to heteroscedasticity. ∗∗∗, ∗∗, ∗ denote significance at the
1%, 5%, and 10% level, respectively. Data are winsorized at the 1 and 99 percentiles. Data source: CMIE Prowess.

Panel A: All Industries

Dependent variable Ln(Price) Ln(Marginal Cost) Ln(Markup)

(1) (2) (3)

Post ×CEPI[70,100] (β1) 0.399∗ 0.783∗∗∗ -0.375∗

(0.198) (0.218) (0.203)

Post ×CEPI[60,70) (β2) 0.369∗∗ 0.717∗∗∗ -0.342
(0.177) (0.258) (0.252)

p-value [β1 + β2 = 0] 0.043 0.002 0.111
2008 Dependent Variable Mean (Control)
Fixed effects:

Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Bandwidth Yes Yes Yes
R2 0.662 0.595 0.322
Observations 8,198 8,198 8,198
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Panel B: Industries Split by High-Polluting vs. Others

Dependent variable Ln(Price) Ln(Marginal Cost) Ln(Markup)

(1) (2) (3)

Post ×CEPI[70,100] (β1) 0.379∗ 0.786∗∗∗ -0.393∗

(0.201) (0.228) (0.214)

Post ×CEPI[60,70) (β2) 0.545∗∗ 0.855∗∗ -0.306
(0.212) (0.324) (0.273)

Post ×CEPI[70,100] × High-Polluting (β3) 0.079 0.006 0.061
(0.068) (0.072) (0.069)

Post ×CEPI[60,70) × High-Polluting (β4) -0.492 -0.390 -0.098
(0.334) (0.342) (0.172)

Fixed effects:
Firm Yes Yes Yes
State × industry × year Yes Yes Yes

Bandwidth Yes Yes Yes
R2 0.663 0.595 0.322
Observations 8,198 8,198 8,198

In all cases, the average effect is increasing in the intensity of treatment, with an additional affect when a cluster’s
2009 CEPI score is at or above 70. Panel B of Online Appendix Table IAE14 tells us that the effect does not differ if the
treated firm is in a highly polluting industry. This is in contrast to the TFP results in Table 8 where the effect is driven
by treated firms operating in industries other than highly polluting ones. Overall, the evidence presented in this
appendix supports the hypothesis that firms are responding to the 2009 CEPI regulation by shifting to higher-margin
products where they can and passing on costs where they cannot. And there is some weak evidence that the produc-
tivity evidence we document is not coming from enhanced efficiency at converting inputs into outputs (TFPQ) but
instead from increased revenues generated per input as a result of the production changes. This evidence, however, is
only suggestive as we cannot control for quality differences among the products that are emphasized after the reform
and there is good reason to think that the highest-margin products are also the highest-quality ones, meaning this
bias is be meaningful in our setting and TFPR is a better proxy for firm total factor productivity (Atkin, Khandelwal,
and Osman, 2019).
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