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Abstract 
Portfolio trading, a recent innovation in the corporate bond market, involves trading a basket 
of bonds as a single piece of risk with a single market-maker. Using a proprietary dataset of 
portfolio inquiries, we develop an algorithm to identify portfolio trades in TRACE. We 
estimate that portfolio trading has increased from 0% of total investment grade corporate bond 
volumes at the beginning of 2018 to over 7% in 2021. Portfolios are designed to generate 
liquidity in illiquid bonds, and the protocol is remarkably cost effective. We show that portfolio 
trading reduces execution costs by over 40%, with the largest benefits accruing to the least 
liquid bonds. We provide evidence that spill-overs from the ETF ecosystem allow market-
makers to offload the inventory of illiquid bonds which accumulates as a result of portfolio 
trading and to both price and hedge portfolio trades.  
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1. Introduction 
In this article we analyse portfolio trading, the latest innovation in the corporate bond 

market. In this new trading protocol, an investor bundles a set of individual corporate bonds 

into one basket and asks a market-maker or market-makers to quote the entire basket as a 

single piece of risk, instead of seeking quotes on each bond individually. The investor then 

executes the entire basket with the market-maker that provided the best price. This differs 

from the standard request-for-quote (RFQ) trades, which are executed on an individual bond 

basis.  

We make both methodological and analytical contributions towards a better 

understanding of portfolio trades. Our main methodological contribution is to build a 

comprehensive database of portfolio trades by applying a machine learning clustering 

algorithm to the Trade Reporting and Compliance Engine (TRACE) data. The algorithm is 

built using insights from a proprietary dataset of portfolio trade inquiries received by a large 

market-maker. Our data show that portfolio trading experienced rapid growth, from 0% of 

total corporate bond volumes in 2018 to 7% in 2021. We use the dataset of PTs identified by 

our algorithm to better understand this growth, in terms of both the motivation for using this 

new protocol and its effectiveness. First, we show that the main motivation for executing PTs 

is to generate liquidity in illiquid bonds, rather than market positioning or speed of execution. 

Second, we show that PTs are remarkably effective at generating liquidity; transacting via 

PTs reduces realized transaction costs by more than 40%, with the bulk of the gains accruing 

to the least liquid bonds. Finally, we attribute these reduced transaction costs to spill-overs 

from the ETF ecosystem, which provides both demand for less liquid bonds through the 

create and redeem (C/R) process and price transparency for diversified corporate bond risk.  

The link between the effectiveness of portfolio trading and the ETF ecosystem is the key 

insight of our paper. Several prior studies have investigated the direct effect of ETFs on the 
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risk, return, and liquidity of the underlying assets (e.g. Ben-David, Franzoni, and Moussawi 

(2018), Da and Shive (2018), Holden and Nam (2019) among others). Our main contribution 

to the literature is to show that the implications of ETFs can extend beyond their direct 

effects. For corporate bonds, synergies with the ETF ecosystem have enabled the 

development of an entirely new trading protocol, one so effective that it reduces transaction 

costs by 40%. Portfolio trading is wholly reliant on the existence of ETFs, despite the fact 

that the investors utilizing the protocol need not ever buy or sell an ETF directly. Improved 

corporate bond liquidity can have its own implications, such as for example lower yields. Our 

results suggest that understanding the overall effect of ETFs on the underlying markets 

requires an assessment of these indirect channels as well as the direct channels that have been 

the subject of the existing literature.  

Building a database of portfolio trades in TRACE is a challenging task because they are 

not currently flagged in the TRACE feed. The reporting requirements will change starting in 

May 2023, reflecting the growing importance of this new trade protocol.1 Therefore, a 

necessary first step in the analysis is to distinguish PTs from RFQ trades. To do so, we use a 

proprietary database of PT inquiries in investment grade (IG) corporate bonds received by a 

large market-maker. We then match them to the TRACE feed to find a verified set of PTs that 

actually traded. Because investors are conscious of revealing potentially sensitive information 

to many counterparties at a time, they typically send the inquiry to a few market-makers only. 

This implies that the matched inquiries are not a complete set of all portfolios that actually 

traded. To overcome this limitation, we use those verified PTs to develop a machine learning 

clustering algorithm, which can identify additional portfolio trades that are not already part of 

our inquiry database. Using this methodology, we build a fulsome dataset of portfolio trades 

                                                           
1 The reporting rule will change on the 15th May 2023, as described in FINRA’s Regulatory Notice 22-12. 
 

https://www.finra.org/rules-guidance/notices/22-12
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spanning more than 12,000 unique IG PTs and c.1 million bond-PT transactions. We perform 

a number of validation checks on this dataset to ensure that the algorithm identifies actual 

portfolio trades. 

Using this novel database, we show that portfolio trading has grown rapidly, from 

virtually no transactions in 2018 to 7% of the total transaction volumes in 2021. This rise 

mirrors the increase over time in the number of inquiries in our database and demonstrates 

why the activity level is high enough to justify the addition of a PT flag in the TRACE feed. 

By analysing and comparing the characteristics of the bonds included in portfolio trades 

and in standard RFQ trades, we conclude that the main motivation for executing via portfolio 

trades is to improve the ability to trade illiquid bonds. First, the portfolios traded tend to have 

lower liquidity than the trades done in the standard RFQ format. Second, this reduced 

liquidity is not uniform across the typical portfolio. Instead, portfolios combine some very 

illiquid bonds with other highly liquid bonds. We interpret this as an attempt to “crowd-

source” liquidity in illiquid bonds whereby the overall transaction cost is reduced by bundling 

them with more easily traded securities. Finally, even in portfolios that appear to target 

specific market segments (such as the long end of the credit curve) most of the portfolios 

heavily feature illiquid bonds.  

We find that portfolio trading significantly reduces transaction costs. We employ a 

rigorous panel regression specification, where we compare the difference in the realized 

transaction cost of portfolio trades and standard RFQs for the same bond on the same day. 

We control for trade-level and time-varying bond-level characteristics, and include both bond 

and day fixed effects. In aggregate, transacting via a portfolio trade reduces transaction costs 

by over 40% versus the standard RFQ protocol.  



5 
 

The reduction in transaction costs is not uniformly distributed across bonds. The greatest 

benefit accrues to the least liquid bonds, whereas the benefit is very limited for the most 

liquid bonds. All else equal, we find that portfolio trading is 30% more cost effective for 

illiquid than for liquid bonds. This result holds for a diverse set of liquidity measures such as 

transaction costs, trade volume, price impact, autocorrelation in returns and bond age.   

That PTs reduce transaction costs easily explains their popularity from the perspective of 

investors, but leaves unanswered the question of why PTs reduce transaction costs. Phrased 

differently, why are market-makers willing to execute them at such low transaction costs? We 

propose that spill-overs from the ETF ecosystem drive the reduction in PT transaction costs. 

These spill-overs come from two features of ETFs. First, ETFs routinely transact in bonds via 

the create and redeem process, generating activity in bonds that they own. Second, corporate 

bond ETFs are extremely liquid (both in absolute terms and relative to the underlying bonds 

(Meli and Todorova, (2022)), and trade actively in the secondary market. PTs benefit to an 

equal degree from both of these features. First, ETFs provide an outlet to offload the 

inventory of bonds accumulated from portfolio trades via the C/R process. This is particularly 

important for the illiquid bonds included in a PT, which might otherwise be difficult or costly 

to trade, and for which the benefits of transacting via a PT are particularly strong. Second, 

ETFs provide a useful real-time tool to transparently price diversified baskets of corporate 

bonds and an efficient hedging tool for market-makers when purchasing or selling bonds via 

PTs. A diversified basket of corporate bonds can be hedged using an ETF, whereas hedging a 

single name position with an offsetting position in an ETF incurs substantial basis risk. 

We find strong empirical evidence to support both channels. There is a high degree of 

overlap between portfolio trades and ETFs; on average 60% of the line items included in PTs 

are also owned by the largest IG ETFs, whereas these ETFs only own about 30% of the bonds 

in the broad IG corporate bond index. In panel regressions, we explore the transaction costs 
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of trades that are “right way” vis-à-vis the ETFs, meaning that investors are selling bonds 

when ETFs are net creating shares, and vice-versa. The “right way” effect is 60% higher for 

PTs than for comparable RFQ trades. Moreover, the cost reductions are the highest for the 

least liquid bonds, which highlights the importance of aligning PTs with the direction of the 

ETF C/R flows for illiquid bonds. The economic intuition behind this result is that market-

makers put better prices on illiquid bonds included in PTs that can be packaged with other 

debt and offloaded via the C/R process in a timely manner. 

In principle, the ETF C/R channel could apply equally to both PTs and RFQs, yet we 

find that being “right way” is more important for PTs. Using intra-day pricing data, we show 

that ETFs provide benefits of price transparency, price discovery and risk hedging, which 

only apply when the bonds are traded in portfolio form, and not individually. PT execution 

costs are strongly positively correlated to ETF deviations from NAV. For example, investors 

selling bonds in PTs incur transaction costs that are c.0.6 basis points lower when the ETF is 

trading 1 basis point above NAV (and c.0.6 basis points higher transaction costs when the 

ETF trades 1 basis point below NAV). In contrast, the transaction costs for trades in the same 

bonds, on the same day, but traded in RFQs, have no statistically significant correlation with 

the ETF deviations from NAV, and instead depend entirely on bond characteristics.  

Relationship to prior literature 

Our analysis contributes to several areas of the existing literature. First, we contribute to 

the literature that studies how the supply of and demand for corporate bond liquidity has 

evolved since the global financial crisis (GFC). Several papers have shown that corporate 

bond liquidity has deteriorated in the aftermath of the GFC (e.g. Dick-Nielsen, Feldhütter, 

and Lando (2012); (Friewald, Jankowitsch, & Subrahmanyam (2012); (Bessembinder, 

Jacobsen, Maxwell, & Venkataraman, (2018)). Against this backdrop, a large body of work 

has investigated how the supply of liquidity provided by market-makers has changed with 
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market conditions, regulations and trading protocols (e.g. Goldstein and Hotchkiss (2020), 

Goldberg and Nozawa (2020) and Carapella and Monnet (2020) among others). For example, 

as market-makers became less willing to hold inventory, more trades were done on an 

agented basis (meaning market-makers line up the other side of the trade before executing), 

which involves a trade-off between transaction costs and immediacy and certainty of 

execution. Other research has instead focused on how investors adapt to lower liquidity. 

Jiang, Li, and Wang (2021) demonstrate that open-end corporate bond funds dynamically 

manage liquidity to meet investor redemptions; Meli and Todorova (2022) show that high 

yield mutual funds use ETFs to manage liquidity, which results in an aggregate decline in 

high yield bond liquidity as investors substitute trading in ETFs for trading in the underlying 

bonds.  

Our analysis documents the next stage in the development of new trading protocols and 

the management of liquidity needs, as investors take advantage of new developments in the 

market to innovate further on trading protocols and mitigate the effect of reduced liquidity. In 

this paper, we propose that the rise of corporate bond ETFs naturally generates demand for 

transactions in bonds that are owned by the ETFs. The majority of ETF bonds are liquid and 

trade frequently. However, liquidity is typically highest immediately after issuance, and tends 

to decline steeply as bonds age. ETFs have demand to transact in these older, less liquid 

bonds in order to limit deviations from their benchmarks that arise as their AUM changes. 

We show that portfolio trading effectively piggy backs on this demand to provide liquidity in 

illiquid bonds.  

Another area of the literature that we contribute to relates to the implications of ETFs for 

the underlying financial markets. For equity ETFs, the literature shows that ETFs have a 

positive effect on volatility (Ben-David, Franzoni, and Moussawi (2018)), return co-

movement (Da and Shive (2018)) and liquidity co-movement (Agarwal et al. (2018)). For 
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bond ETFs, several studies show that ETFs lead to better liquidity (e.g. Holden and Nam 

(2019), Ye (2019), Marta (2020), Meli and Todorova (2022)) and better price discovery 

(Choi, Kronlund and Oh (2022)), but could weaken bond price informativeness (Rhodes and 

Mason (2022)) and increase bond fragility (Dannhauser and Hoseinzade (2022)).  

The main insight of our analysis is that ETFs are not just an innovation unto themselves, 

but that they can be the source of further innovations and spill-over effects. Our work 

complements two ongoing studies that examine spill-overs from corporate bond ETFs. Shim 

and Todorov (2021) document that ETF C/R baskets are fractional and discuss implications 

for ETF premiums and discounts. Koont et al. (2022) show that basket inclusion generates 

additional trading activity, which improves the liquidity of the bonds in the ETF baskets. Our 

paper proposes a novel channel through which ETFs can impact corporate bond liquidity. We 

show that investors and market-makers have taken advantage of the real-time price 

transparency that secondary trading in ETFs provides and the need to execute transactions in 

specific underlying bonds driven by the create and redeem process to create a new trading 

protocol. Our analysis shows that portfolio trading is an incredibly cost effective way to 

generate liquidity in illiquid bonds.  

2. Data and Variables Definitions 

2.1 Portfolio Trade vs. RFQ Protocol 

In the standard RFQ protocol, an investor requests a quote on a bond from one or several 

market-makers, and typically transacts (if at all) with the market-maker that provided the best 

price. Investors at times make RFQs for a large number of bonds at once.2 The responses are 

evaluated on a bond-by-bond basis; the investor executes each line item individually with the 

                                                           
2 These lists are known as “BWICs” (bids wanted in competition) or “OWICs” (offers wanted in competition).  
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market-maker that provided the best quote for that bond, with no expectation that the 

transactions will be pooled or bundled.  

In a portfolio trade investors ask market-makers to price an entire portfolio as a single 

piece of risk. If the investor agrees to the price, the portfolio trade is then executed in its 

entirety with a single market-maker. Like with an RFQ, an investor can request a quote on a 

portfolio from one or several market-makers. Although a single price is agreed to for the 

entire portfolio, each individual line item is still subject to the TRACE (Trade Reporting and 

Compliance Engine) reporting rules. The prices of the individual line items reported to 

TRACE (weighted by their respective notionals) must sum to the quoted price of the 

portfolio. There are several reasons why both investors and market-makers ensure that the 

prices reported to TRACE are accurate at the bond level (i.e., that the portfolio price is 

correctly apportioned across the individual line items). For example, investors have best 

execution requirements that apply at the bond, and not at the portfolio, level. An investor who 

bought a portfolio where some bonds were priced too richly would attract scrutiny, regardless 

of whether other bonds in the portfolio were priced cheaply. Similarly, market-makers are 

subject to fair dealing requirements. A dealer that reported a bond purchase to TRACE at an 

artificially low price could be accused of excessive mark-up if it then sold the bond at the 

correct price to a different investor. Therefore, the transaction costs of PTs can, in principle, 

be compared to those of RFQs at the bond level. That said, PTs are not currently flagged in 

TRACE, which presents a practical challenge to any such comparison to RFQs.   

2.2 Portfolio Trade Inquiry 

To identify PTs, our first step is to collect two proprietary datasets of investment grade 

(IG) investor portfolio inquiries received by the Barclays corporate bond trading desk. 

The primary data set we use covers the period 1st October 2018- 31st December 2021. 

Our sample contains all inquiries received by the trading desk, regardless of whether or not 
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Barclays executed the trade. The inquiry dataset spans c. 3,000 investor inquiries that contain 

c.22,000 unique investment grade bonds (each bond identified by a CUSIP). For each inquiry 

we obtain the date when it was received (but not the exact time stamp), and the CUSIP, 

notional, and direction (buy or sell) for each line item in the portfolio. Panel A of Table I 

gives an example of such a typical inquiry.3  

The number of portfolio trade inquiries in the dataset grew significantly over the sample 

period, from virtually zero in 2018 to more than 2,000 inquiries and $175 billion in volume in 

2021 (Figure 1). While we believe that Barclays has a large enough market share such that 

the sample of inquiries we receive is representative in terms of line items, volumes, and 

execution times, the inquiry dataset is not a full accounting of all PT inquiry in the market. 

No single market-maker has access to the complete set of inquiries because institutional 

investors balance the potential for price improvement from submitting their prospective 

portfolio trade to many counterparties against the risk of revealing market-moving 

information. This motivates the need to construct a more comprehensive database of portfolio 

trades. Hence, in Section 3, we use the proprietary inquiries database to develop an algorithm 

which can identify portfolio trades which are not included in our inquiry data. 

The secondary dataset of PT inquiries covers the period September 1st 2022 – 26th 

January 2023. Although considerably smaller in size, the advantage of this sample compared 

to the primary dataset is that the it also includes intraday pricing information (which is the 

lacking in the earlier dataset): the exact time stamp (rather than just the date) of the inquiry, 

along with the Bloomberg bid/offer bond quotes for each line item at that time. We pair this 

                                                           
3 The dataset also contains a flag if the portfolio is “custom” or “in-competition”. We discard the custom 

portfolios, which make up about 10% of the sample, because they are designed by the market maker to achieve a 
particular investment objective for the investor (e.g., the investor wants to buy $150 million BBB-rated, 12+ 
maturity debt). Since it is possible that the line items in these custom inquiries are influenced by the market-
maker’s existing inventory and risk appetite, they might not be representative of the market.  
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with data on the deviations from NAV of LQD, the largest IG ETF, at the exact times of the 

inquiry. Panel B of Table I gives a sample of this data; we use this intra-day data when 

assessing the linkages of PTs to ETFs in Section 6.    

2.3 Bond Sample and Liquidity Measures 

Bond Sample 

We obtain transaction-level corporate bond trading data from the standard version of 

TRACE, which caps trade sizes at $5 million for IG bonds, for the period 1st October 2018- 

31st December 2021.4 We follow the approach by Dick-Nielsen ( (2009), (2014)) to remove 

double counting, corrections, reversals and cancellations from TRACE. We then augment the 

cleaned daily TRACE data with bond-level characteristics from Bloomberg (spread, maturity, 

time since issuance, numeric rating, amount outstanding, issue size, sector classifications and 

call types), computed at the beginning of each month. The Bloomberg data covers dollar-

denominated bonds belonging to major bond indices (e.g. Bloomberg Investment Grade 

Corporate Bond Index). We drop bonds with incomplete or missing data. The resulting bond 

data contains records for 97% of the line items in the portfolio inquiry dataset.  

Liquidity Measures 

We compute five liquidity metrics at the bond-month level: Liquidity Cost Score (LCS), 

bond age, Trade Efficiency Score (TES), Price Impact, and Roll’s measure. LCS is a 

commercially available measure of transaction cost computed using quotes from the Barclays 

trading desk. It follows the methodology by Konstantinovsky, Yuen Ng, and Phelps (2016). 

LCS measures the transaction cost for an institutional-size round-lot trade, expressed as a 

percentage of the bond’s price (hence higher LCS signifies lower liquidity). We also use 

                                                           
4 The enhanced TRACE data disseminates uncapped trade sizes, but is only available to us with a 6-month 
delay. This is why we prefer to work with the standard data file, which is available immediately. Since 
individual line items in a portfolio trade rarely exceed the cap, working with the standard TRACE data instead 
of the enhanced version does not have a material impact on our analysis. 



12 
 

bond age as a proxy for liquidity, the intuition being that bonds are most liquid shortly after 

issuance, and as bonds age, their liquidity tends to decrease. 

The other measures are computed using transaction data from TRACE.5 TES blends 

transaction costs and trading volume into a single relative trade score, reflecting both the cost 

and the flow. To calculate TES, we assign each bond to a monthly LCS quintile and a 

monthly trading volume decile. Then, the sum of these quantiles (ranging from 2 to 15) is 

mapped to a TES ranking from 1 to 10, where a lower TES corresponds to better liquidity. 

We define Amihud’s (2002) daily measure of price impact as the volume-weighted absolute 

daily return. Then, to convert to a monthly frequency, we use the median value of the daily 

price impact in that month. Finally, in the spirit of Roll (1984), we compute the first-order 

auto covariance using all transaction level price changes within a given month.  

There are advantages and disadvantages of both quotes-based and trade-based liquidity 

measures (Schestag, Schuster, & Uhrig-Homburg (2016)). The advantage of quotes-based 

measures is that they are not limited to realized transactions only. The concern, however, the 

quotes from a single market-maker on an individual bond could reflect the inventory and risk 

appetite of that particular market-maker. This could introduce noise but not bias, as any 

positioning or risk tolerance will average out over time and across bonds. The advantage of 

liquidity measures computed from TRACE data is that they include all trades and are not 

likely to be influenced by a single market-maker’s inventory position. On the other hand, the 

typical concern about TRACE-based liquidity measures is that they are computed from 

realized transactions only, which may present a distorted picture of liquidity. For example, 

trading by “appointment”, in which a market-maker only executes a trade after both sides 

have been identified, incurs lower transaction costs than pure principle based trading, in 

                                                           
5 For other liquidity measures refer to work by (e.g. Puh (2009), Feldhütter (2012), Dick-Nielsen, Feldhütter, 
and Lando (2012), Corwin and Schultz (2012)), and frequency of trading (also known as zeros) (Lesmond, 
Ogden, and Trzcinka (1999)). 
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exchange for reduced immediacy and certainty of execution, implying that the realized 

transaction costs are below the true transaction costs. Combining quotes-based and 

transaction-based measures helps overcome these concerns and paints a more holistic picture 

of liquidity in the corporate bond market. 

2.3 Daily ETF C/R Baskets 

We construct daily ETF C/R baskets for LQD, the largest IG ETF. Following the 

methodology by Shim and Todorov (2021) and Koont et al. (2022), we impute LQD’s 

realized creation and redemption baskets from daily changes in holdings on days with C/R 

activity. Daily ETF holdings are publicly available and can be downloaded from the iShares 

website.6 We identify create (redeem) days as those days on which there was a positive 

(negative) change in the number of LQD shares. We then use daily changes in the number of 

bonds held to infer the composition of the average LQD basket on each day. 

It is possible that there are redeem baskets on days with net creations and create baskets 

on days with net redemptions, and that different authorized particpants (APs) negotiate 

different baskets with an ETF on the same day. Therefore, our imputed baskets are best 

interpreted as the average net basket for LQD on each given day. As Koont et al. (2022) 

discuss, this methodology would mis-characterize trades executed by ETFs directly in the 

secondary market. However, such trades are uncommon because, differently to in-kind C/R 

transactions, they incur tax liabilities for investors. We have verified the average (monthly) 

correlation between actual LQD flows reported by Bloomberg and the flows implied by our 

methodology is close to 0.80 (Figure A2. 1). 

                                                           
6 https://www.ishares.com/us/products/239566/ishares-iboxx-investment-grade-corporate-bond-etf 

https://www.ishares.com/us/products/239566/ishares-iboxx-investment-grade-corporate-bond-etf
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3. Constructing a Database of Portfolio Trades 

Our first contribution is a methodological one; we use our proprietary dataset of portfolio 

inquiries to develop a machine learning algorithm to identify a fulsome set of portfolio trades 

in the TRACE database. The dataset we construct includes more than 12,000 unique IG PTs 

and c. 1 million bond-PT transactions.   

3.1 Methodology 

In developing our methodology, we seek to balance classification error against the ability 

to find as many portfolio trades as possible. We proceed in four steps (Figure 2). 7  

In the first step, we match the portfolio inquiries to TRACE to identify which inquiries 

actually traded. Generally, we either don’t find the inquiry in TRACE at all or we find it in 

full or very nearly so. For example, we find 68% of the inquiries in full. This “take-it-or-

leave-it” nature of portfolio trades works to our advantage because it allows us to obtain a 

clean set of traded inquiries, without worrying that the line items we have not been able to 

match (for whatever reason) could introduce a large degree of noise in our model. We then 

analyse the matched inquiries and construct the blueprint of the typical portfolio trade in 

TRACE in terms of the distribution of execution time stamps, number of line items, volumes, 

average trade sizes etc. 

We find that the trades associated with an individual portfolio trade appear like spikes or 

clusters in the TRACE data, with the same or very similar execution time stamps. Hence, in 

the second step, we run a machine learning clustering algorithm on the TRACE data. This 

clustering algorithm classifies the TRACE trades into two types of trades: clusters of 

“candidate” portfolio trades executed within a window of a few seconds, and all other (non-

                                                           
7 The Data Appendix contains more details on each of these steps. The Python code we used to identify portfolio 
trades is available upon request. Although we restrict our analysis to the IG market only, the code is designed in 
a way that allows researchers to construct a HY portfolio trades database as well.  
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portfolio) trades. The time we allow to elapse between the line items in each candidate 

portfolio trade is a conservative estimate of the patterns we see in the matched inquiry 

database. 

Third, we re-cluster portfolio trades in order to group together “legs” of the same 

portfolio trade. This is motivated by the fact that in some cases portfolio trades are reported 

in TRACE in blocks, separated by a few minutes. This is most common for the different legs 

of long-short portfolios; for example, the long leg may be reported at 11:45:10 and the short 

leg at 11:46:50. If we increased the clustering window in Step 2 the model will correctly 

identify that both legs belong to the same portfolio, but at the cost of identifying many false 

positives, which are trades that simply happened to be executed between the times of 

11:45:10 and 11:46:50. It is worth noting that if we were only interested in an aggregate 

estimate of the PT volumes, re-clustering is not necessary (the estimate of total size of PTs is 

not affected if $100 million of PT volumes were generated by one or two different portfolio 

trades). However, analysis of the linkages between PTs and ETFs requires knowing more 

precisely the composition of each portfolio.  

Finally, we apply a series of filters to the data to convert the candidate portfolio clusters 

into actual portfolio trades. The two most restrictive filters are the exclusion of candidate 

portfolio trades with fewer than 25 line items and of candidate portfolio trades executed 

around popular delayed spotting times.  

Although c.10% of our inquiries have fewer than 25 line items, we believe many of these 

are not strictly speaking PTs and are not representative of how PTs are actually priced.8 This 

                                                           
8 For example, if an investor mistakenly requests a price for a list of 10 bonds via the PT protocol instead of the 
RFQ protocol, we would capture the list in the inquiries database, and potentially see the line items subsequently 
printed in TRACE. However, in reality, this was executed in an RFQ. Alternatively, when investors first use the 
PT protocol, they typically request PT quotes for a smaller basket of bonds; as they get more comfortable with 
the process, they increase the size of the PT basket. However, the execution quality am investor would get for a 
small PT with a limited number of CUSIPS would be very different from the execution of a larger PT. 
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filter is also in part informed by FINRA’s definition of portfolio trades, according to which a 

portfolio trade involves at least 10 unique corporate bonds.9 We use a stricter definition and 

apply additional requirements for the minimum trade volume and average trade side in order 

to ensure that we capture institutional-size transactions and limit classification error.  

IG bond volumes in TRACE exhibit sharp daily spikes around known times, which 

represent delayed treasury spotting.10 Transactions in IG corporate bonds are often made by 

counterparties agreeing on a spread to a benchmark Treasury. The actual dollar price of the 

trade is computed at a later point in time using the previously agreed upon spread. For 

example, the counterparties agree to a spread at 13:30, but the price is calculated and reported 

to TRACE at 15:00. Delayed spotting allows investors and market makers to concentrate (and 

net) their Treasury hedging, instead of having to do multiple hedges throughout the day. 

While we know from our inquiries that some portfolio trades are reported around spotting 

times, the sheer amount of trades that are concentrated around these times makes it 

impossible to accurately separate portfolio trades from delayed spot RFQ trades. To ensure 

that our comparison between PTs and RFQs is always meaningful, we also drop RFQ trades 

executed around spotting times from our regression sample.11  

3.2 Summary Statistics and Algorithm Validation 

The resulting portfolio trades database that we construct contains 12,107 unique IG 

portfolio trades and c. 1 million bond-portfolio observations, totalling $696 billion of 

executed bond volumes (Panel A, Table II).  

                                                           
9 FINRA’s Regulatory Notice 22-12 
10 We estimate that in 2021 between 7% - 12% of IG trade volume was printed in TRACE in the 5-minute 
interval around popular spotting times (i.e. 15:00, 15:30, 16:00). 
11 We do not drop trades that occur in common spotting times from the denominator when we compute the 
proportion of volumes that occurs in PT form. Therefore, our estimates of the proportion of TRACE volumes 
that occur in PT form are necessarily conservative.  

https://www.finra.org/rules-guidance/notices/22-12
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Panel B in Table II shows how the portfolio trades identified by our algorithm have 

evolved over time. Portfolio trading activity has increased sharply, both in terms of the 

number of portfolio trades as well as the total dollar volume. We identified 1,950 unique PTs 

in 2018 and 2.5 times more in 2021 alone (4,914). Portfolio trading volume increased from 

$81 billion in 2018 to $311 billion in 2021. In percentage terms, the proportion of total 

trading volume that occurred in the form of PTs in 2021 was close to 7%, off a base of c.1% 

in 2018. This rapid growth demonstrates that the protocol has been quickly adopted by a large 

number of market participants, and justifies the requirement to add a PT flag to TRACE 

trades starting in May 2023.  

Despite the large number of filters, we have put in place, the concern remains that due to 

its enormous size, TRACE contains many standard RFQ trades that are clustered by chance 

in ways that cause us to mischaracterize them as portfolio trades. However, were that to be 

the case, we should find a consistent flow of PTs in the TRACE data. Instead, the growth of 

the PT market as identified by our algorithm closely conforms to the growth in the volume of 

investor inquires, providing a validation check for our machine learning approach.  

In Table III we check how well the algorithm identifies the portfolios in our Barclays 

inquiries database. For any given inquiry, the true positives rate is calculated as the number 

of line items the algorithm identified divided by the total number of line items in that inquiry. 

The false positives rate is calculated as the number of incorrectly identified line items divided 

by the total number of line items the algorithm found. With a median true positives rate of 

97% and a false positives rate of 2.9% we are confident that the algorithm is successful at 

identifying actual portfolio trades in TRACE. 

In Table IV, we compute portfolio-level summary statistics along two dimensions: 

portfolio construction characteristics (Panel A, number of line items, volume, line item 

weights and sectors) and volume-weighted bond characteristics (Panel B, liquidity measured 
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by LCS, maturity and bond age). We include statistics for both the full set of portfolios 

identified by our algorithm and the set of actual investor portfolio inquiries. The empirical 

distribution of the portfolio trades identified by the algorithm closely matches the distribution 

of investor inquiries in each of these key aspects, which suggests our algorithm is not 

mischaracterizing groups of RFQ trades as PTs. The average portfolio trade contains c.100 

line items and $70 million worth of notional, approximately equally-split between the bonds 

in that portfolio. Portfolio trades are well-diversified and, on average span bonds from 12 

different sectors. The average portfolio trade costs 0.83% to transact and is comprised of 

bonds with remaining maturity of about 10 years, issued 2.5 years ago.12 

Finally, we perform our analysis of transaction costs using both the full dataset of PTs 

and the narrower set of PTs from the inquiry database, and find similar results, which is again 

supportive of our algorithm. We prefer the analysis using the full database of portfolio trades 

we construct using this algorithm because the larger sample size allows us to employ a more 

rigorous econometric specification and to explore in greater detail the cross-sectional 

heterogeneity in the data.  

4. Crowd-sourcing Liquidity via Portfolio Trades 

Next, we compare PTs identified by our algorithm to RFQs (defined as those trades not 

identified as PTs) on volume-weighted liquidity (LCS), maturity, and bond age (for RFQs see 

the last row “TRACE ex PT” of Table IV). Along maturity and age, PTs are quite similar to 

RFQs. The main difference between them appears to be liquidity: the bonds traded in 

portfolio trades are substantially less liquid than the trades done using RFQs. The average 

LCS of the line items in PTs is 0.84% compared to 0.69% for RFQs (higher LCS implies 

                                                           
12 As a further robustness check, in Figure 3 we also overlay the percentage distribution of portfolio 

volumes by sector for the set of portfolio trades identified by the ML algorithm and the set of investor inquiries, 
and find no material differences in the sectoral distribution of volumes. 
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lower liquidity). Further, the distribution of portfolio LCS reveals that this is not driven by a 

few very illiquid portfolio trades. More than 50% of the portfolios, both by count and by 

volume, are less liquid than the average bonds traded in RFQs. 

In Figure 4 we expand on this result by showing how the aggregate distribution of IG 

portfolio volumes varies by LCS quintile. As a reference point, we also overlay on the same 

chart the distribution of volumes for bonds in the Bloomberg US IG Corporate Bond Index 

(BBG IG). The BBG IG Index contains about seven thousand bonds from a diverse set of 

issuers and measures the performance of the investment grade, fixed-rate, taxable US 

corporate bond market. The index is not skewed towards liquid bonds and is widely 

considered to be representative of the IG corporate bond market. Figure 4 shows that PT 

volumes are shifted towards the less liquid quintiles. Compared to the BBG IG Index, there is 

6% less portfolio volume in the first two most liquid quintiles, the majority of which then sits 

in the 4th LCS quintile.  

Further, we find that investors construct these illiquid portfolios is a way that “crowd-

sources” liquidity for the illiquid CUSIPs. To demonstrate this, for each portfolio we 

compute the percentage of portfolio volume contained in the two most liquid quintiles of LCS 

and in Figure 5 plot the portfolio-level distribution of this percentage separately for liquid 

and illiquid portfolios. Liquid (Illiquid) PTs have lower (higher) trade volume-weighted LCS 

than the trade volume-weighted LCS of the bonds in the BBG IG Index. The boxplot shows 

that even amongst the illiquid PTs, very few PTs contain only illiquid bonds (the median 

percentage of liquid bonds in illiquid PTs is 37%). In other words, these portfolios appear to 

be designed such that the more liquid bonds cross-subsidize the less liquid bonds, resulting in 

an overall portfolio LCS that is closer to the index than if these illiquid bonds were traded 

individually. 
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We have also considered other possible portfolio construction strategies, including 

maturity, sector, and rating (Table A3.1). We compute either maturity, sector or rating-based 

Herfindahl scores (HHI), summing the squared percentages of trade volume for each 

individual portfolio, and compare these scores to the respective HHI score of the Bloomberg 

IG Corporate Bond Index. We classify portfolio trades into a maturity/sector/rating strategy if 

the HHI of the portfolio is at least 50% higher than the HHI of the Index. Among these other 

dimensions, a maturity-type strategy is the most common (35% of portfolios) and is typically 

focused on longer-dated bonds. However, 80% of these maturity-type portfolios can also be 

classified as illiquid. Even for portfolios tailored to a specific part of the market, liquidity 

remains a motivating factor.  

5. Transaction Costs 
5.1 Econometric Model and Identification 
Our analysis of transaction costs uses data from 2021. Our motivation for using the most 

recent data only is that we want to study portfolio trading in a more mature stage of its 

development. Both the number and total volume of PTs in 2021 nearly equal the aggregate 

PT activity for all other years combined. We believe that the earlier data reflected instances 

when both investors and market-makers were getting familiar with the tool, and may not be 

representative of current PTs. 

Following the literature (e.g. Bessembinder (2003); Collin-Dufresne, Junge, & Trolle 

(2020); Hagströmer (2021)), we measure transaction costs of trade i in bond j on day t by the 

effective half-spread (EHS): 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝐷𝐷𝑖𝑖,𝑗𝑗,𝑡𝑡(𝑃𝑃𝑖𝑖,𝑗𝑗,𝑡𝑡 − 𝑀𝑀𝑗𝑗,𝑡𝑡) 

where 𝐷𝐷𝑖𝑖,𝑗𝑗,𝑡𝑡 is an indicator variable that equals one for customer buy trades and negative one 

for customer sell trades, 𝑃𝑃𝑖𝑖,𝑗𝑗,𝑡𝑡 is the price at which the trade is executed and 𝑀𝑀𝑗𝑗,𝑡𝑡 is the end-of-

day mid-price as quoted by Bloomberg. EHS is an indication of how far traded prices are 
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from the mid-price; values closer to the mid-price indicate lower transaction costs realized by 

investors.  

To compare transaction costs for portfolio trades and non-portfolio trades, we estimate 

the following panel-data regression model at the transaction-level: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗,𝑡𝑡 =  𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝛤𝛤𝑍𝑍𝑗𝑗,𝑡𝑡 + 𝛿𝛿𝐵𝐵𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝜆𝜆𝑗𝑗 + 𝛿𝛿𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑡𝑡  (Model 1) 

where  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 is a dummy variable equal to one when transaction i in bond j on 

date t is part of a portfolio trade. In our baseline analysis, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 is defined on 

the sample of PTs identified by our clustering algorithm.  𝑍𝑍𝑗𝑗,𝑡𝑡 is a vector of time-varying bond 

characteristics (maturity and numeric rating (higher is worse)) and 𝐵𝐵𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡  is a 

dummy variable which equals one if the notional traded in transaction i was greater than $5 

million.13 The specification also includes bond fixed effects (𝜆𝜆𝑗𝑗) and date fixed effects (𝛿𝛿𝑡𝑡). 

The inclusion of bond fixed effects controls for bond-level variables which do not vary over 

time, such as issue size, coupon, sector classification, whether a bond is callable, etc. The 

inclusion of date fixed effects controls for market-wide forces such as volatility, interest rates, 

the direction of the market (i.e., whether investors are net buyers or net sellers on a given day), 

which could systematically affect transaction costs on a given day. Finally, we cluster standard 

errors both at the bond and at the date level. 

If portfolio trading is cost-effective, we would expect 𝛽𝛽1 < 0: transaction costs are lower 

when a bond trades in portfolio trade compared to when the same bond trades in the standard 

RFQ protocol that day.14 On any given trading date, there are three categories of bonds that 

                                                           
13 We use a dummy instead of a continuous measure of quantity traded because we use the standard version of 
TRACE, where volumes for IG bonds greater than $5 million are capped.  
14 Using quotes data on S&P 500 stocks, Hagströmer (2021) shows that the level of the effective bid-ask spread 
measured relative to the mid-price could overstate the true bid-ask spread. The paper derives conditions under 
which EHS is not biased and proposes new estimators. While it is possible that Hagströmer’s result also applies 
to the universe of corporate bonds, it does not compromise the validity of our results since our main interest is 
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appear in TRACE – (1) bonds which only trade in RFQ; (2) bonds which only trade in PTs; 

and (3) bonds which trade in both protocols (Figure 6). Identification of 𝛽𝛽1 in Model 1 comes 

from the sample of those bonds which have trades in both protocols. On average, approximately 

21% of bond-date observations in our sample fall into this category, which is a meaningful 

portion and supports the empirical validity of our results. This statistic is fairly stable over time, 

with a minimum of 17% and a maximum of 25% (Table V).  

5.2 Portfolio Trades Reduce Transaction Costs 

We find that PTs are substantially more cost-effective than the standard RFQ protocol 

(𝛽𝛽1 < 0) (column (1) Table VI). All else equal, the average transaction cost of a line item in a 

portfolio trade is 7.4 cents cheaper than the same trade in RFQ form. Given an average EHS 

of 16.5 cents for RFQs, the effect translates into a 44.6% reduction in transaction costs. 

In column (2) of Table VII, we re-estimate Model 1 but define 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 

using the sample of PT inquiries. Both the magnitude of the coefficients and their statistical 

significance remain unchanged. This is an important robustness check, which re-emphasizes 

that our algorithm identifies actual PTs.  

We perform two other robustness checks, using both definitions of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡. 

First, we include bond-date fixed effects instead of two-way bond and date fixed effects and 

find very similar results (columns (1) and (3) in Table A3.2). Second, we drop the fixed 

effects and saturate the model with a comprehensive set of bond-level and date-level controls 

(columns (2) and (4) in Table A3.2). The magnitude of the estimates from these regressions 

tends to be slightly higher than our baseline. While it is relatively easy to control for time-

varying features of bonds (e.g. maturity, rating etc.), modelling time-invariant features (which 

would be captured by the bond fixed effects) tends to be more difficult due to the complex 

                                                           
the estimate of the difference in execution costs between portfolio and non-portfolio trades, and not the level. By 
taking the difference in EHS, any bias will cancel out.   
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structure of these securities. For these reasons, we prefer the model with two-way fixed 

effects, which produces more conservative estimates. 

5.3 The Cost Benefits Are Strongest for Illiquid Bonds 

To examine how the benefit of PTs varies across bonds, we augment Model 1 by adding 

a bond-level illiquidity term and its interaction with the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 dummy: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗,𝑡𝑡 =  𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝛽𝛽2𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑗𝑗,𝑡𝑡 + 𝛽𝛽3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 × 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑗𝑗,𝑡𝑡  +

𝛤𝛤𝑍𝑍𝑗𝑗,𝑡𝑡 + 𝛿𝛿𝐵𝐵𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝜆𝜆𝑗𝑗 + 𝛿𝛿𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑡𝑡 (Model 2) 

where 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑗𝑗,𝑡𝑡 is measured as one of: LCS, TES, Bond Age, Price impact or Roll’s measure for 

bond j on date t. If portfolio trading reduces transaction cost to a greater extent for illiquid 

bonds, we would find both 𝛽𝛽1 < 0 and 𝛽𝛽3 < 0. 

In this specification, we compare two differences: first, the difference in transaction costs 

when a bond is traded in a portfolio and when it is traded individually, and, second, the 

difference in transaction costs of an illiquid bond and a liquid bond. Hence, estimating 𝛽𝛽3 relies 

on an additional source of variation compared to our baseline specification. We not only exploit 

variation in the transaction cost of a bond depending on the trade protocol, but also use cross-

sectional variation in the liquidity profiles of the bonds we observe on any given day.15 Figure 

6 demonstrates that the former holds. The distribution of portfolio volumes by LCS quintiles 

in Figure 4 demonstrates the latter; portfolio trading is not exclusively confined to the very 

liquid or the very illiquid bonds only, but occurs across the entire spectrum of liquidity. 

Table VII contains the results of Model 2. Illiquid bonds incur higher transaction costs, 

irrespective of which protocol they are traded in (𝛽𝛽2 > 0). More importantly, the reduction in 

transaction costs for portfolio trades is higher for illiquid bonds (𝛽𝛽1 < 0  and 𝛽𝛽3 < 0 ). 

                                                           
15 This specification requires that we limit our analysis to the definition of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 based on our 
algorithm because of the larger number of PTs identified.  
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Moreover, the magnitude of  𝛽𝛽1 is substantially lower than the baseline estimate in column (1) 

of Table VI, which shows that the benefits of portfolio trading are concentrated in illiquid 

bonds. We obtain statistically significant and qualitatively similar results regardless of the 

measure of illiquidity we employ.  

To evaluate the economic magnitude of the effect, take for example two bonds: a liquid 

bond with low LCS = 0.5% and an illiquid bond with high LCS = 1%. Using the regression 

estimates in column (1) of Table VII, we obtain that the reduction in transaction costs if traded 

in a portfolio for the liquid bond would be 6.89 cents (-4.61-4.55*0.5%); the reduction for the 

illiquid bond is nearly 50% greater at 9.16 cents (-4.61-4.55*1%).  

Interestingly, Figure 6 shows that in about 5% of our bond-date observations, we observe 

only PT volumes (i.e., there were no RFQ trades). These bonds are typically illiquid, with an 

average LCS score of 0.95% compared to a sample bond average of 0.69%. While estimating 

the causal benefit to transaction costs for trades which we only observe in portfolios is wrought 

with difficulties (since the counterfactual is “missing”), the fact that such trades exist in 

TRACE is significant by itself. It suggests that the benefits of portfolio trading for illiquid 

bonds extend beyond the reduction in transaction costs. There may be situations when there is 

no economically viable alternative, because either market-makers are not willing to provide 

immediacy or the transaction cost is prohibitively high, but investors nonetheless have a 

demand to trade. Portfolio trading could increase the chance that the trade will actually be 

executed, and thus improve the certainty of execution in addition to the transaction cost. 

6. Relationship to the ETF Ecosystem 

The extent to which portfolio trading reduces execution costs, particularly for illiquid 

bonds, raises the important question why this new trading protocol works so well. One hint 

about the possible source of the effectiveness of PTs comes from the high degree of overlap 

between the line items in PTs and the bonds held by ETFs. In Figure 7 we plot the overlap 
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with the largest IG ETF, the iShares iBoxx Investment Grade ETF (ticker: LQD). On 

average, 60% of the bonds in IG portfolio trades are owned by LQD. To put this in 

perspective, LQD owns about 30% of the bonds in the Bloomberg IG Corporate Bond Index. 

Over 90% of the portfolios in our sample have an overlap in excess of 30%, which shows that 

portfolio trades are significantly more concentrated in ETF bonds. 

We identify two spill-overs from the ETF ecosystem that drive the reduced execution 

costs of PTs. First, market-makers leverage the ETF create and redeem process to offload the 

inventory of bonds which accumulates as a result of portfolio trading and/or to source bonds 

sold via PTs. Second, ETFs provide market-makers an intra-day pricing and hedging tool for 

transactions in diversified portfolios of corporate credit risk.  

6.1 Relationship to the ETF C/R Process 

One benefit of ETF ownership is that market-makers can use the ETF C/R process to 

either offload or source bonds. Bonds that are heavily owned by IG ETFs have a higher 

probability of being included in the daily ETF create or redeem baskets than bonds with low 

ETF ownership. Market-makers could deliver the bonds they bought from an investor to 

ETFs and create ETF shares, thus efficiently recycling the risk accumulated as a result of 

portfolio trading. Conversely, market-makers could redeem ETF shares and source bonds 

included in investor portfolios.  

IG ETFs own a substantial number of illiquid bonds, despite the fact that they are 

typically benchmarked against liquid bond indices. This is because the liquidity of IG bonds 

declines quickly after issuance. We estimate that between 10%-15% of the bonds held by 

LQD in a given month belong the lowest quintile of liquidity, creating a natural demand for 

them. IG ETFs need these illiquid bonds in order to closely track the performance of their 

underlying benchmark. However, illiquid bonds might be difficult or very expensive to trade 
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outside of portfolio trades, and hence, portfolio trades could provide a channel through which 

illiquid bonds can then be supplied to the ETFs. 

To demonstrate the link to the ETF ecosystem, we explore variation in execution costs 

depending on the direction of the portfolio trade (i.e. customer sell or customer buy), and the 

composition of the ETF C/R process on the day when the portfolio trade was executed. If the 

ETF C/R process plays a role in the transaction costs of portfolio trades, then we would 

expect that market-makers would put better prices on illiquid bonds that they believe can be 

packaged with other debt and offloaded in a timely manner via the C/R process.  

Focusing on bonds owned by LQD, we define a trade in an individual bond that an 

investor sells to a market-marker as “right way” for the LQD when the bond is part of the 

create basket that day, which would allow market-makers to deliver it to the LQD and create 

shares. Conversely, an investor buy trade is “right way” when the bond is part of the redeem 

basket that day, in which case the market-makers could redeem LQD shares and source the 

bond. We estimate the following transaction level regression: 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑗𝑗,𝑡𝑡 =  𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝛽𝛽2𝑅𝑅𝑃𝑃𝑅𝑅ℎ𝑃𝑃 𝑤𝑤𝑇𝑇𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛽𝛽3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 ×

𝑅𝑅𝑃𝑃𝑅𝑅ℎ𝑃𝑃 𝑤𝑤𝑇𝑇𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿  + 𝛤𝛤𝑍𝑍𝑗𝑗,𝑡𝑡 + 𝛿𝛿𝐵𝐵𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡 + 𝜆𝜆𝑗𝑗 + 𝛿𝛿𝑡𝑡 + 𝜖𝜖𝑖𝑖,𝑗𝑗,𝑡𝑡 (Model 3) 

In this model, the coefficient 𝛽𝛽2 measures how being “right way” for LQD alters execution 

costs on all trades and 𝛽𝛽3 gives the incremental impact of being right way for LQD for a trade 

that is executed in a PT. Following Koont et al. (2022), in order to reduce noise in the data, 

we do not impute C/R baskets on days when ETF portfolio changes are very small.16 

Table VIII presents the results of Model 3. Regardless of which protocol they are 

executed in, trades which are “right way” for LQD achieve on average better execution than 

                                                           
16 We restrict our sample to days when the daily percentage change in the number of ETF shares was below the 
25th percentile (i.e. significant redeems) or above the 75th percentile (significant creates).  
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trades that are “wrong way” ( 𝛽𝛽2 < 0 in column (1)). However, the effect is 60% stronger for 

“right way” trades executed in the PT protocol ( 𝛽𝛽3 < 0 in column (1)).  

We next split the universe of LQD bonds in three terciles (liquid, medium liquid and 

illiquid), and re-evaluate the model. The magnitude of the “right way” effect (𝛽𝛽2) is the 

lowest for the liquid tercile (column (2) in Table VIII): these bonds are relatively easy to 

trade and so are less reliant on ETF activity. Further, the incremental benefit of being right 

way in a PT versus an RFQ (𝛽𝛽3) is low (at only 2 bps of EHS) and statistically insignificant. 

In contrast, the benefit of being right way is strongest for the least liquid tercile (column (4) 

in Table VIII). These bonds are generally difficult to trade and thus benefit substantially 

from alignment with ETF trading activity. More importantly, the incremental benefit of being 

right way in a PT is high (a 10 bps reduction in EHS) and statistically significant.  

Recall from the prior section that the benefits of PTs are most concentrated in illiquid 

bonds. It is precisely for these illiquid bonds that the effectiveness of PTs is the most 

sensitive to alignment with the direction of ETF C/R activity: being right way results in 

substantially lower execution costs. Combining these two pieces of evidence, we conclude 

that PTs benefit from being aligned to C/R activity to a far greater extent than RFQs.  

As a robustness check, we have estimated another version of  Model 3, where we use the 

general direction of the ETF C/R process (i.e., net create or net redeem) rather than a bond-

level measure. We classify each day in our sample as a net create or net redeem day 

depending on whether LQD experienced net inflows or net outflows, omitting by 

construction days with zero flows. We define any investor sell (buy) trade as “right way” 

when the ETF is in create (redeem) mode. We estimate the model using both TRACE PTs 

(Table A3.3) and client inquiries17 (Table A3.4) and find that our results and conclusions 

                                                           
17 Using the inquiries database, the magnitudes of the effects are similar, but the coefficients are not statistically 
significant. Nonetheless, this is an encouraging result and one that is not surprising given the demanding 
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remain qualitatively unchanged: portfolio trades benefit more from being aligned with the 

ETF C/R process than do comparable RFQ trades. 

6.2 Relationship to the ETF Prices 

In principle, both PTs and RFQs could benefit from using the ETF C/R process to 

offload risk or source bonds. The negative and statistically significant coefficient on 

𝑅𝑅𝑃𝑃𝑅𝑅ℎ𝑃𝑃 𝑤𝑤𝑇𝑇𝑤𝑤i,j,t
LQD in Table VIII certainly corroborates this intuition: trades that are “right way” 

for the ETF generally incur lower transaction costs, particularly for illiquid bonds. Yet the 

importance of being “right way” is stronger for PTs. Therefore, an open question remains: 

why does packaging bonds into portfolios reduce transaction costs?  

We believe the answer is linked to another feature of ETFs: they trade actively in the 

secondary market. Intra-day trading provides both price transparency and hedging tools that 

are far more applicable to portfolios of corporate bonds than to individual bonds. Where the 

intra-day price of an ETF is clearly relevant for the price of a diversified portfolio of 

corporate bonds, particularly one with a high degree of overlap with an ETF, the pricing of a 

single security will reflect mostly idiosyncratic risks and security-specific supply and 

demand. Similarly, a diversified basket of corporate bonds can be hedged using an ETF, 

whereas hedging a single name position with an offsetting position in an ETF incurs 

substantial basis risk. 

If we are correct that the degree of transparency and hedging flexibility afforded to PTs 

by ETFs allows market-makers to reduce PT transaction costs, then the execution prices of 

PTs should mirror more closely the intra-day variation in the price of ETFs than do the 

execution prices of RFQs. To test this hypothesis, we turn to the secondary dataset of investor 

                                                           
econometric specification. The model requires that we observe the same bond in at least two portfolio trades per 
day: one that is “right way” for LQD and another that is “wrong way” for LQD. In the full dataset computed 
using our algorithm, approximately 7% of the bond-dates fulfil this criterion, whereas this applies to less than 
2% of the bond-dates in the investor inquiries database (further motivating our use of the full database). 
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portfolio inquiries. This sample is smaller but contains the exact time stamp of the inquiry, as 

well as the Bloomberg quoted bid/offer price for each line item at that time. We combine 

these bond quotes with the corresponding quote on LQD at that precise time and compute 

ETF deviations from NAV. For an illustrative example of the data, see Panel B of Table I.  

This data allows us to assess the intra-day execution of PTs, but not of RFQs. In order to 

compare the intra-day pricing of the two protocols, we do the following exercise. For each 

bond in a portfolio trade, we define the implied RFQ price as the average of all RFQ 

transactions (weighted by notional) recorded in TRACE for that bond, in the same direction 

as the PT, that were executed within four hours of the PT.18       

For each line item, we now have the realized PT price, an implied RFQ price, and the 

Bloomberg quoted price at the time of the inquiry. We then convert both the PT price and the 

implied RFQ price into a measure of deviation from the Bloomberg quote. Essentially, this is 

a real-time analogue of the EHS based on end-of-day quotes that we used earlier. More 

specifically, for each line item i in a given portfolio p, we measure the transactions costs, 

computed in basis points (bps) as: 

𝑃𝑃𝑇𝑇 𝐷𝐷𝑇𝑇𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖,𝑝𝑝 =

𝑃𝑃𝑖𝑖,𝑝𝑝 − 𝐵𝐵𝑃𝑃𝑇𝑇𝑖𝑖
𝐵𝐵𝑃𝑃𝑇𝑇𝑖𝑖

 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑖𝑖𝐷𝐷𝑇𝑇𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑇𝑇𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 𝑏𝑏𝑏𝑏𝑖𝑖

𝑂𝑂𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑖𝑖,𝑝𝑝
𝑂𝑂𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑖𝑖

 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑖𝑖𝐷𝐷𝑇𝑇𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑄𝑄𝑤𝑤 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 𝑏𝑏𝑏𝑏𝑖𝑖
 

where 𝑃𝑃𝑖𝑖,𝑝𝑝 is the traded price recorded in TRACE and 𝐵𝐵𝑃𝑃𝑇𝑇𝑖𝑖/𝑂𝑂𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑖𝑖 is the Bloomberg quote 

at the exact time of the day when the portfolio was received. Similarly, we compute the 

Implied RFQ transaction cost as:  

                                                           
18 Choosing a shorter window improves the estimated price of coincident RFQ trades but limits the sample of PT 
line items with a matched RFQ trade.  
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𝐼𝐼𝑓𝑓𝑏𝑏𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑄𝑄 𝐷𝐷𝑇𝑇𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖,𝑝𝑝 =

𝐼𝐼𝑓𝑓𝑏𝑏𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑃𝑃𝑖𝑖,𝑝𝑝 − 𝐵𝐵𝑃𝑃𝑇𝑇𝑖𝑖
𝐵𝐵𝑃𝑃𝑇𝑇𝑖𝑖

 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑖𝑖𝐷𝐷𝑇𝑇𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑇𝑇𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 𝑏𝑏𝑏𝑏𝑖𝑖

𝑂𝑂𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑖𝑖 − 𝐼𝐼𝑓𝑓𝑏𝑏𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑃𝑃𝑖𝑖,𝑝𝑝
𝑂𝑂𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃𝑖𝑖

 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑖𝑖𝐷𝐷𝑇𝑇𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑄𝑄𝑤𝑤 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 𝑏𝑏𝑏𝑏𝑖𝑖
 

where 𝐼𝐼𝑓𝑓𝑏𝑏𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑃𝑃𝑖𝑖,𝑝𝑝 is the implied RFQ price for that line item, in place of 𝑃𝑃𝑖𝑖,𝑝𝑝. Finally, to 

arrive at a portfolio-level measure of transaction costs, 𝑃𝑃𝑇𝑇 𝐷𝐷𝑇𝑇𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑝𝑝 or 

𝐼𝐼𝑓𝑓𝑏𝑏𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑄𝑄 𝐷𝐷𝑇𝑇𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑝𝑝, we average across the transaction costs of all line items in 

a given portfolio trade, using the portfolio trade notionals as weights. Higher 

𝐷𝐷𝑇𝑇𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑝𝑝 signify lower transaction costs – the higher prices are above the bid quote 

when investors buy and the lower prices are below the offer quote when investors sell, the 

better is the execution outcome for investors.  

We also build the corresponding measure of ETF deviations from NAV, conditioned on 

the direction of the portfolio trade, using the quoted ETF price at the exact time stamp of the 

portfolio inquiry: 

𝐸𝐸𝑇𝑇𝑅𝑅 𝐷𝐷𝑇𝑇𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 =  

𝐸𝐸𝑇𝑇𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑇𝑇 − 𝑁𝑁𝑁𝑁𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁

 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑖𝑖𝐷𝐷𝑇𝑇𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑇𝑇𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 𝑏𝑏𝑏𝑏𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐸𝐸𝑇𝑇𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑇𝑇

𝑁𝑁𝑁𝑁𝑁𝑁
 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑖𝑖𝐷𝐷𝑇𝑇𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑄𝑄𝑤𝑤 𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 𝑏𝑏𝑏𝑏𝑖𝑖

 

We then estimate the following portfolio-level regression: 

𝐷𝐷𝑇𝑇𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑝𝑝 =  𝛼𝛼 +  𝛽𝛽1𝐸𝐸𝑇𝑇𝑅𝑅 𝐷𝐷𝑇𝑇𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 𝑁𝑁𝑁𝑁𝑁𝑁𝑝𝑝 + 𝜖𝜖𝑝𝑝(Model 4) 

separately for each version of 𝐷𝐷𝑇𝑇𝐷𝐷 𝑃𝑃𝑃𝑃𝑃𝑃𝑓𝑓 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃𝑇𝑇𝑝𝑝 and report the results in Table IX. First, as 

expected, we find that PT execution costs are strongly positively correlated to ETF deviations 

from NAV. The magnitude of the effect is economically meaningful. When investors sell 

bonds via PTs at a time when the ETF is trading one basis point above NAV, the PTs are 

executed on average 0.58 basis points above the Bloomberg bid price (column (1) in Table 

IX). Conversely, when investors sell and the ETF trades one basis point below NAV, PTs 

execute 0.58 basis points below the bid price. These results are consistent with our previous 
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conclusion that transaction costs are lower when the PTs are aligned with the direction of 

ETF flows. The same effect holds when investors buy bonds via PTs when the ETF trades 

below NAV.19  

In column (2), we augment Model 4 by including several portfolio-specific 

characteristics: liquidity, tail liquidity (difference between the liquidity of ETF and non-ETF 

bonds), volume and number of line items. Interestingly, adding these variables improves only 

marginally the R-squared of the regression, leading us to conclude that ETF deviations from 

NAV is by far the most important factor driving PT prices.  

We now test if the implied RFQ prices have a different sensitivity to ETF deviations 

from NAV. Since computing this is only meaningful for those portfolios where we see all or 

(nearly all) line items in both protocols on the same day (about 60% of the PTs),  we first 

verify that the sensitivity to ETF deviations is not systematically different for those PTs 

which have an RFQ equivalent compared to those that do not (column (3) in Table IX).  

Then, we estimate Model 4 using implied RFQ prices and report the results in columns 

(4) and (5). The sensitivity to ETF deviations from NAV is one fourth as large (𝛽𝛽1=0.15) and 

the coefficient is not statistically significant. Further, although the total R-squared is similar 

across the two specifications, the contribution of ETF and portfolio-specific factors is 

materially different. While movements in the ETF price explain the majority of variation in 

PT prices, the factors related to bond characteristics drive RFQ execution outcomes. 

Our results show that for the same bonds traded on the same day, PT and RFQ protocols 

are priced in very different ways, which helps answer the two questions we posited in this 

paper: (1) Why trade in a portfolio and not individually, and (2), Why is portfolio trading so 

                                                           
19 Because of our limited sample size, we estimate the regressions by pulling all trades together. However, we 
verify in robustness checks that the direction and magnitude of the estimate are comparable for investor sells 
and for investor buys. 
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cost effective for illiquid bonds? ETFs provide benefits of price transparency, price discovery 

and risk hedging, which only apply when the bonds are traded in portfolio form. The 

relationship to the ETF ecosystem is especially important for older, less liquid bonds. These 

bonds tend to trade very infrequently, as a result of which their price marks could be stale. 

Exploiting the high overlap between the line items in a portfolio trade and the ETFs improves 

the price discovery process for these illiquid securities.  

6.4 Alternative Explanations  

The main focus of our paper is to the estimate the difference in execution costs between 

PT and RFQ trades, and not the level. In fact, the time-series correlation between the 

execution costs of these two protocols is 0.80, which suggests the presence of common 

factors driving the level of costs for both protocols. Market-makers’ bid-offer spreads reflect 

a number of components, which have been well documented in the literature: inventory and 

hedging costs (e.g. Goldstein and Hotchkiss (2020)), price transparency (e.g. Edwards, 

Harris, & Piwowar (2007)), and volatility among others. However, the cost benefit of 

portfolio trading cannot be attributed to these common factors, since by taking the difference 

in EHS, their effect will cancel out. Based on the evidence we provide, we believe that ETFs 

provide the most likely explanation why portfolio trades work so well. Nonetheless, we have 

also considered two alternative explanations– competition for market share and clients 

“swapping” portfolios. We find strong evidence against either of these theories. 

Market-makers might use portfolio trades to gain market share, and the competition to 

win these trades could drive the bid-offer they charge. According to this narrative, the 

reduction in execution costs could either reflect an increased motivation to win the trades, or 

it could be linked to some information that market-makers obtain through executing these 

trades that they would not obtain by unsuccessfully bidding/offering on the same portfolio. 

To test this theory, in Figure 8 we plot the time series of the difference between the average 
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EHS of transactions executed via the PT and RFQ protocol over the period Jan 1st 2020 – 

December 31st 2021. We also show PT volumes as a percentage of total TRACE IG volumes. 

The reduction in EHS associated with PTs remained stable over a period when the use of 

portfolio trading rose dramatically. This is the opposite of what we would expect if marker-

markers were simply “buying” market share, as they would have increased the benefit of 

portfolio trading to entice more participation. 

Another explanation could be that investors use PTs to “swap” entire portfolios with 

other investors, who want to trade the same bonds but in the opposite direction. In this 

scenario, a market-maker would act as an agent, lining up both sides of the PT and charging a 

considerably lower bid-offer than if the market-maker had acted as a principal and priced the 

bonds out of inventory. If this were common, we would find examples of offsetting PT trades 

in our database. However, we find that this occurs in less than 0.5% of the PTs in our sample 

(Table X), which speaks strongly against the theory. 

7. Discussion 

In this article we introduce the concept of portfolio trading, the latest innovation in the 

corporate bond market, which involves trading a basket of bonds as a single piece of risk, and 

transacting the entire basket with one single market-maker. Using a proprietary dataset of 

portfolio inquiries, we develop an algorithm to identify corporate bond portfolio trades in 

TRACE. We show that investors typically use this new trade protocol to transact in illiquid 

bonds and that portfolio trades reduce transaction costs by more than 40% compared to trades 

using the standard RFQ protocol. We also demonstrate that spill overs from the ETF 

ecosystem allow market-makers to both offload the inventory of bonds which accumulates as 

a result of portfolio trading and provide a transparent intra-day tool to price and hedge PTs.  
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Our work opens a broad set of avenues for future research. It will be interesting to 

investigate if and how our results translate to the HY market. HY ETFs tend to be even more 

focused on the liquid spectrum of bonds that IG funds, implying that HY ETF managers 

should theoretically have a lower demand for illiquid HY bonds than IG ETF managers. A 

promising research question one could ask is whether the HY ETF C/R mechanism also helps 

to reduce execution costs for illiquid HY bonds.  

Jiang, Li and Wang (2021) show that when faced with significant redemptions investors 

typically follow a pecking order of liquidity, selling the most liquid assets first. Meli and 

Todorova (2022) show that institutional investors use corporate bond ETFs to manage flows-

driven liquidity, thus increasingly substituting bond trade volumes with ETFs. In this article, 

we provide evidence that compared to the standard RFQ volumes, PTs facilitate much more 

efficient trading in less liquid bonds. Together, these findings suggest greater capacity to 

manage trading needs at lower cost. The natural question to ask is how the liquidity risk 

premium has responded to the change in the demand for liquidity as investors have adopted 

both new products and new ways to manage liquidity and transact in illiquid bonds. 

Another open question is if the rise in PT volumes itself generates spill-overs. The 

inclusion of less liquid CUSIPs in PTs may give market-makers more comfort providing 

liquidity in that part of the market, even away from PTs, thereby causing liquidity to 

snowball. Finally, we are interested in how transaction costs vary with market conditions. 

Our analysis offers some preliminary guidance in that direction, but it would be helpful to 

explore this topic in further detail. For example, periods when trade volumes are singularly 

one-sided (investors are either heavily net buying or heavily net selling) typically coincide 

with periods when the ETF C/R mechanism is also one-sided, but in a way that most of the 

trades are “wrong way” for the ETFs. This could potentially limit the ability to offload risk 

via the C/R mechanism and, thus, also could limit the cost effectiveness of portfolio trades. 
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On a related vein, periods of market distress also typically correlate heavily with periods 

when the volatility of the ETF bid/offer sharply increases, translating into higher hedging 

costs of PTs. Market-makers in their turn are likely to pass on these costs to investors, which 

could result in higher transaction costs of PTs.  
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List of Figures 
Figure 1: Client Inquiries 

The figure shows the growth in the number and $ volume of investor portfolio inquiries received by Barclays trading desk. 

 
 

Figure 2: Flowchart of the Methodology Process 

The figure shows the steps we undertook to construct the dataset of TRACE portfolio trades. 
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Figure 3: Algorithm Validation – Distribution of Portfolio Trade Volumes by Sector 

The figure overlays the distribution of volumes by sector for the TRACE portfolios identified by the ML algorithm and the 

investor inquiries. Data based on portfolio trades executed during the period 1st January 2021 – 31st December 2021. 

 
 

Figure 4: Distribution of Portfolio Volume by Liquidity Quintile 

The figure shows the distribution of total IG portfolio trade volume by LCS quintile, where Q1 comprises the most liquid 

bonds and Q5 comprises the least liquid bond. Data based on portfolio trades identified by our ML algorithm executed 

during the period 1st January 2021 – 31st December 2021. 
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Figure 5: Mixing Liquid and Illiquid Bonds 

The boxplot shows the distribution of the percentage of liquid volume (sum of trade volumes in the first two most liquid 

LCS quintiles) for Liquid and Illiquid portfolio trades. Liquid (Illiquid) PTs have lower (higher) trade volume-weighted LCS 

than the trade volume-weighted LCS of the bonds belonging to the Bloomberg IG Corporate Bond Index. Lower (higher) 

LCS is better (worse). Each box gives the 25th, median (red line) and 75th percentile of the distribution. Data based on 

portfolio trades identified by our ML algorithm executed during the period 1st January 2021 – 31st December 2021. 

 

 

Figure 6: Identification Strategy 

The figure shows the distribution of bond-date fraction of portfolio trades, expressed as a percentage of total count of trades 

on that day. Data based on portfolio trades identified by our ML algorithm executed during the period 1st January 2021 – 31st 

December 2021. 
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Figure 7: Overlap Between Portfolio Trades and ETFs 

The figure shows the overlap between the line items of IG portfolio trades and the monthly holdings of LQD. An overlap of 

0 means that none of the bonds in a given portfolio trade are held by LQD in that month; conversely, an overlap of 1 means 

that all of the bonds in the portfolio are held by LQD in that month. Data based on portfolio trades identified by our ML 

algorithm executed during the period 1st January 2021 – 31st December 2021. 

 
 

Figure 8: Portfolio Trade Execution Costs Over Time 

The figure shows the difference between the average EHS of transactions executed in the PT and RFQ protocol (LHS) and 

the PT volumes as a percentage of TRACE (RHS). Smaller values of the difference indicate lower transaction costs of the 

PT protocol compared to the RFQ protocol. For more details on the definition of our TRACE universe refer to Section 2.3. 

Data are based on portfolio trades identified by our ML algorithm executed during the period 1st January 2020 – 31st 

December 2021. 
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List of Tables 
Table I: A Portfolio Trade Examples 

The table gives two examples of portfolio inquiries. The first inquiry comes from our primary dataset has 145 line items 

(Panel A); the second inquiry comes from our secondary (intra-day) dataset and has 250 line items (Panel B). Note that since 

data are proprietary, all values displayed in the table are for illustrative purposes only and do not represent actual inquiries. 

Panel A: Primary Dataset 

Date PT ID PT ID_Cusip Cusip Quantity Direction 

2021-01-05 123 123_1 05971KAE9 $250,000 Client Buys 

2021-01-05 123 123_2 03835VAG1 $500,000 Client Buys 

2021-01-05 123 123_3 037833CJ7 $750,000 Client Buys 

2021-01-05 … … 172967LD1 … … 

2021-01-05 123 123_144 29444UBE5 $300,000 Client Buys 

2021-01-05 123 124_145 404119BN8 $500,000 Client Buys 

 

Panel B: Secondary Dataset (Intra-day Data) 

Time stamp PT ID PT ID_Cusip Cusip Quantity Direction BVAL 
Bid 

BVAL 
Offer 

ETF Dev from 
NAV 

2022-09-12 11:32:42 EST 348 348_1 874054AH2 $700,000 Client Sells $92.41 $92.71 7.62 bps 

2022-09-12 11:32:42 EST 348 348_2 8426EPAF5 $250,000 Client Sells $100.63 $100.72 7.62 bps 

2022-09-12 11:32:42 EST 348 348_3 855244AU3 $100,000 Client Sells $87.97 $88.27 7.62 bps 

… … … 86765BAV1 … … $87.23 $87.61 7.62 bps 

2022-09-12 11:32:42 EST 348 348_249 87264AAX3 $550,000 Client Sells $87.52 $88.06 7.62 bps 

2022-09-12 11:32:42 EST 348 348_250 87264ACB9 $600,000 Client Sells $83.13 $83.22 7.62 bps 

 

 

Table II: The Portfolio Trades Database 

The table presents summary statistics of the portfolio trades database constructed using our ML algorithm. The estimate of 

the TRACE market excludes non-index corporate bonds, but includes volumes at common spotting times. For more details 

on the bond sample and discussion around spotting times, refer to Section 2 and Section 3.  

 # Bond-PT Obs. # of PTs $ Volume (bln) % of TRACE 

Panel A: Aggregate 

2018-2021 998,975 12,107 696 3.47 

Panel B: Time Series 

2018 107,541 1,950 81 1.14 

2019 175,224 2,265 127 1.68 

2020 245,774 2,978 177 3.09 

2021 470,436 4,914 311 6.89 
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Table III: Algorithm Validation – True Positives and False Positives 

The table shows how well the clustering algorithm is capable of identifying the “true” portfolios in the investor inquiries 

database. For any given inquiry, the true positives rate is calculated as the number of line items the algorithm identified divided 

by the total number of line items in that inquiry. The false positives rate is defined as the number of incorrectly identified line 

items divided by the total number of line items the algorithm found. 

 Portfolio-level: 

 True positive rate False Positive rate 

Mean 85% 15% 

Median 100% 3% 

 

 

 

Table IV: Algorithm Validation – Empirical Distribution 

The table compares the empirical distributions of the investor inquiries (INQ) and the portfolio trades (PT) identified using 

our ML algorithm along two dimensions: characteristics of the portfolio (Panel A) and characteristics of the bonds in the 

portfolio (Panel B). Portfolio LCS, Maturity and Age (time since issuance) are computed as a weighted average where the 

weights are given by the notionals of the line items in that portfolio. Our sample of inquiries comprises those inquiries which 

we could successfully match in full to the TRACE database. The last low, TRACE ex PT, reports the volume-weighted LCS, 

maturity and bond age for all non-portfolio trades in TRACE. 

 Panel A: Portfolio Characteristics Panel B: Bond Characteristics 

 # Line Items Volume 
($ mn) 

Line Item Wgt 
(%) 

# of Sectors LCS 
(%) 

Maturity 
(years) 

Bond Age 
(years) 

 INQ PT INQ  PT INQ PT INQ PT INQ PT INQ PT INQ PT 

Mean 93 97 76.3 68 2.16 2.04 11 12 0.83 0.84 9.44 10.22 2.53 2.62 

Std 114.9 115.67 118.6 109 1.73 2.93 3.45 3.05 0.29 0.45 6.01 5.94 1.32 1.38 

P25 27 37 14.1 21 0.83 0.97 9 10 0.68 0.59 6.15 6.21 1.66 1.71 

Median 51 60 36.2 34.4 1.75 1.72 11 12 0.81 0.75 7.1 8.13 2.25 2.42 

P75 109 105 89.9 69 3.12 2.78 14 14 0.92 0.97 10.66 12.72 3.12 3.17 

TRACE ex PT NA 0.69 10.7 2.44 
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Table V: Identification Strategy – Time-series and Cross-sectional Distribution 

The table shows the daily time-series distribution of the percentage of bonds that traded in both RFQ and portfolio trade 

protocols over the period Jan 1st 2021-December 2021 (column (1)) and for those bonds that traded in both, the average number 

of portfolio trades they were included in per day (column (2)).  

 % of Bonds with both RFQ 
and PT Trades 

# of PTs for bonds with at 
least 1 PT 

Mean 21.0% 1.15 

Std 6.7% 0.25 

P25 16.5% 1.0 

Median 20.8% 1.1 

P75 41.6% 1.2 

Observations 250 days 10,622 bonds 
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Table VI: Transaction Costs of Portfolio Trades 

𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊,𝒋𝒋,𝒕𝒕 =  𝜷𝜷𝟏𝟏𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕𝑷𝑷𝑷𝑷𝑷𝑷𝒊𝒊𝑷𝑷 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝚪𝚪𝒁𝒁𝒋𝒋,𝒕𝒕 + 𝛅𝛅𝑩𝑩𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝝀𝝀𝒋𝒋 + 𝜹𝜹𝒕𝒕 + 𝝐𝝐𝒊𝒊,𝒋𝒋,𝒕𝒕 

The table reports transaction-level regressions of effective half spread on a portfolio trade dummy (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡) and 

a set of controls. Regressions control for bond-level maturity and numeric rating (higher values are worse) (collected in vector 

𝑍𝑍𝑗𝑗,𝑡𝑡) and include a transaction-level dummy variable equal to 1 for all trades larger than $5 million (𝐵𝐵𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡). All 

variables are winsorized at the 1% level. All regressions include bond and date fixed effects. T-stats in parentheses. Standard 

errors are clustered at the bond and date (day) level. Significance at the 1 %, 5 % and 10 % statistical level is denoted by ***, 

**, and * respectively. 

 Effective Half Spread (EHS) 

 (1) TRACE Portfolios (2) Investor Inquiries 

Portfolio Trade -7.37*** 
(-22.71) 

-7.63*** 
(-5.24) 

Maturity 0.62*** 
(7.58) 

0.59*** 
(715) 

Numeric rating 0.55*** 
(2.79) 

0.57** 
(2.17) 

Block Trade -4.36*** 
(-17.65) 

-3.91*** 
(-16.10) 

Mean EHS (Portfolio Trade = 0) 16.5 15.8 

% Improvement 44.6% 48.3% 

Bond FE YES YES 

Date FE YES YES 

Bond-trade Observations 4,467,324 

Sample Period Jan 1st 2021 – December 31st 2021 
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Table VII: Transaction Costs of Portfolio Trades By Liquidity Profile 

𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊,𝒋𝒋,𝒕𝒕 =  𝜷𝜷𝟏𝟏𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝜷𝜷𝟐𝟐𝑰𝑰𝑷𝑷𝑷𝑷𝒊𝒊𝑰𝑰𝒋𝒋,𝒕𝒕 + 𝜷𝜷𝟑𝟑𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 × 𝑰𝑰𝑷𝑷𝑷𝑷𝒊𝒊𝑰𝑰𝒋𝒋,𝒕𝒕  + 𝚪𝚪𝒁𝒁𝒋𝒋,𝒕𝒕 + 𝛅𝛅𝑩𝑩𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝝀𝝀𝒋𝒋 + 𝜹𝜹𝒕𝒕 + 𝝐𝝐𝒊𝒊,𝒋𝒋,𝒕𝒕 

The table reports transaction-level regressions of effective half spread on a portfolio trade dummy (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡), bond-

level illiquidity (𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼𝑗𝑗,𝑡𝑡) and their interactions. Regressions control for bond-level maturity and numeric rating (higher values 

are worse) (collected in vector 𝑍𝑍𝑗𝑗,𝑡𝑡) and include a transaction-level dummy variable equal to 1 for all trades larger than $5 

million (𝐵𝐵𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡). All variables are winsorized at the 1% level. All regressions include bond and date fixed effects. 

T-stats in parentheses. Standard errors are clustered at the bond and date (day) level. Significance at the 1 %, 5 % and 10 % 

statistical level is denoted by ***, **, and * respectively. 

 Effective Half Spread (EHS) 

 (1) LCS (2) TES (3) Bond Age (4) Price Impact (5) Roll 

Portfolio Trade -4.61*** 
(-16.86) 

-5.57*** 
(-12.03) 

-5.68*** 
(-6.68) 

-5.63*** 
(-14.91) 

-2.04** 
(-1.96) 

Illiquidity 3.32*** 
(4.31) 

0.33*** 
(7.98) 

1.08 
(1.55) 

0.19*** 
(15.54) 

4.11*** 
(4.39) 

Portfolio Trade ×Illiquidity -4.55*** 
(-6.39) 

-0.51*** 
(-6.73) 

-0.51*** 
(-3.51) 

-0.36*** 
(-12.68) 

-4.65*** 
(-6.19) 

Maturity 0.46** 
(2.47) 

0.66*** 
(3.97) 

0.50*** 
(3.11) 

0.39** 
(2.08) 

0.55*** 
(3.27) 

Numeric rating 0.13 
(0.81) 

0.05 
(0.96) 

0.49* 
(1.76) 

0.59* 
(1.89) 

0.40 
(1.27) 

Block Trade -4.33*** 
(-13.72) 

-3.92*** 
(-12.00) 

-4.36*** 
(-14.34) 

-4.31*** 
(-14.06) 

-4.36*** 
(-14.41) 

Bond FE YES YES YES YES YES 

Date FE YES YES YES YES YES 

Bond-trade Observations 4,467,324 4,403,651 4,863,671 4,745,469 4,863,671 

Sample Period Jan 1st 2021 – December 31st 2021 
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Table VIII: Relationship to the ETF Ecosystem – “Right way” for the ETF C/R 

𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊,𝒋𝒋,𝒕𝒕 =  𝜷𝜷𝟏𝟏𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝜷𝜷𝟐𝟐𝑹𝑹𝒊𝒊𝑹𝑹𝑹𝑹𝒕𝒕 𝒘𝒘𝑻𝑻𝒘𝒘𝒊𝒊,𝒋𝒋,𝒕𝒕
𝑳𝑳𝑳𝑳𝑳𝑳 + 𝜷𝜷𝟑𝟑𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 × 𝑹𝑹𝒊𝒊𝑹𝑹𝑹𝑹𝒕𝒕 𝒘𝒘𝑻𝑻𝒘𝒘𝒊𝒊,𝒋𝒋,𝒕𝒕

𝑳𝑳𝑳𝑳𝑳𝑳  + 𝚪𝚪𝒁𝒁𝒋𝒋,𝒕𝒕 + 𝛅𝛅𝑩𝑩𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝝀𝝀𝒋𝒋 + 𝜹𝜹𝒕𝒕 + 𝝐𝝐𝒊𝒊,𝒋𝒋,𝒕𝒕 

The table reports transaction-level regressions of effective half spread on a portfolio trade dummy (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡), a trade-

level dummy variable (𝑅𝑅𝑃𝑃𝑅𝑅ℎ𝑃𝑃 𝑤𝑤𝑇𝑇𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 ) and their interactions for bonds owned by the largest IG ETF (ticker LQD). 

𝑅𝑅𝑃𝑃𝑅𝑅ℎ𝑃𝑃 𝑤𝑤𝑇𝑇𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 equal 1 for all customer sell (buy) trades that also belong to the imputed LQD create (redeem) basket and zero 

otherwise. Since our methodology for imputing create (redeem) baskets computes average baskets, to minimize noise we focus 

only on days when LQD is heavily creating (redeeming) shares (i.e. daily percentage change in ETF shares is below the 25th 

percentile or above the 75th percentile). We split our sample into three sub-samples using terciles of the bond-level LCS 

distribution: liquid, medium and illiquid. Regressions control for bond-level maturity and numeric rating (higher values are 

worse) (collected in vector 𝑍𝑍𝑗𝑗,𝑡𝑡) and include a transaction-level dummy variable equal to 1 for all trades larger than $5 million 

(𝐵𝐵𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡). All variables are winsorized at the 1% level. All regressions include bond and date fixed effects. T-stats in 

parentheses. Standard errors are clustered at the bond and date (day) level. Significance at the 1 %, 5 % and 10 % statistical 

level is denoted by ***, **, and * respectively. 

 Effective Half Spread (EHS) 

 (1) All LQD Bonds (2) Liquid (3) Medium (4) Illiquid 

Portfolio Trade -6.55*** 
(-4.17) 

-4.38*** 
(-4.76) 

-5.75*** 
(-3.28) 

-10.6*** 
(-3.87) 

Right way -10.10** 
(-2.33) 

-6.22*** 
(-2.76) 

-8.65** 
(-2.15) 

-14.42* 
(-1.83) 

Portfolio Trade × Right way -6.64* 
(-1.78) 

-2.63 
(-1.32) 

-5.57 
(-1.43) 

-9.56* 
(-1.73) 

Maturity 0.22 
(0.43) 

-0.29 
(-0.57) 

1.42*** 
(2.66) 

0.52 
(0.35) 

Numeric rating -0.73 
(-0.72) 

-0.13 
(-0.15) 

-2.20 
(-1.50) 

-0.34 
(-0.11) 

Block Trade -3.79*** 
(-4.51) 

1.96*** 
(-2.79) 

-2.80*** 
(-2.78) 

-5.14*** 
(-3.06) 

Bond FE YES YES YES YES 

Date FE YES YES YES YES 

Bond-trade Observations 185,784 87,784 64,207 49,969 

Sample Bonds included in LQD Jan 1st 2021 – December 31st 2021 
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Table IX: Relationship to the ETF Ecosystem – ETF Prices 

𝑷𝑷𝑻𝑻 𝑳𝑳𝑻𝑻𝑫𝑫 𝑷𝑷𝑷𝑷𝑷𝑷𝒇𝒇 𝑳𝑳𝑸𝑸𝑷𝑷𝒕𝒕𝑻𝑻𝒑𝒑 =  𝜶𝜶 + 𝜷𝜷𝟏𝟏𝑬𝑬𝑻𝑻𝑬𝑬 𝑳𝑳𝑻𝑻𝑫𝑫 𝑷𝑷𝑷𝑷𝑷𝑷𝒇𝒇 𝑵𝑵𝑵𝑵𝑵𝑵𝒑𝒑 + 𝜷𝜷𝟐𝟐𝑷𝑷𝑻𝑻 𝑳𝑳𝑳𝑳𝑬𝑬𝒑𝒑 + 𝜷𝜷𝟑𝟑𝑻𝑻𝑻𝑻𝒊𝒊𝑷𝑷 𝑳𝑳𝒊𝒊𝑰𝑰𝑸𝑸𝒊𝒊𝑻𝑻𝒊𝒊𝒕𝒕𝒘𝒘𝒑𝒑  + 𝜷𝜷𝟒𝟒𝑵𝑵𝑷𝑷𝑷𝑷𝑸𝑸𝒇𝒇𝑻𝑻𝒑𝒑+ 𝜷𝜷𝟓𝟓𝑵𝑵𝑷𝑷𝑷𝑷𝑸𝑸𝒇𝒇𝑻𝑻𝒑𝒑 + 𝝐𝝐𝒑𝒑 

The table reports portfolio-level regressions of intra-day deviations from Bloomberg bid/offer quotes on intra-day ETF 

deviations from NAV, portfolio LCS (computed from bond-level LCS weighted by notional), tail liquidity (difference between 

the notional-weighted LCS of bonds not held by LQD and those held by LQD), portfolio volume and number of line items. T-

stats in parentheses. Significance at the 1 %, 5 % and 10 % statistical level is denoted by ***, **, and * respectively. 

 Deviations from Bid/Offer Quote (bps) 

 PTs Implied RFQ 

 (1) (2) (3) matched to 
RFQ exists 

(4) (5)  

ETF Deviations from NAV 0.58*** 
(2.93) 

0.58*** 
(2.71) 

0.54*** 
(2.83) 

0.15 
(0.59) 

0.17 
(0.67) 

PT LCS - -12.63 
(-0.41) 

-17.16 
(-0.72) 

- 0.17 
(1.1) 

Tail Liquidity - 61.40 
(1.29) 

50.78 
(1.27) 

- 30.7 
(0.66) 

Volume - 0.03 
(0.26) 

-0.19 
(-1.23) 

- 0.02 
(0.99) 

Number of Line Items - 0.10 
(0.14) 

-0.15** 
(-2.26) 

- -0.09 
(-1.19) 

R-squared 12.3% 15.6% 28.8% 0.8% 11.3% 

PT observations 63 63 46 46 46 

Sample  1st September 2022 – 26th January 2023 
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Table X: Alternative Explanations – Investors “Swapping” Portfolios 

The table shows the probability of an offsetting portfolio trade (i.e. in the opposite direction as the original PT) covering at 

least 50% of the line items in the original trade happening on the same day (T) or in the next 5 business days (T+1, T+2, T+3, 

T+4 and T+5). 

 T T+1 T+2 T+3 T+4 T+5 

Mean 0.0057 0.0037 0.0039 0.0041 0.0038 0.0042 

Std 0.075 0.061 0.062 0.063 0.062 0.065 

P25 0 0 0 0 0 0 

Median 0 0 0 0 0 0 

P75 0 0 0 0 0 0 

Observations 4,914 PTs executed during the period Jan 1st 2021 – Dec 31st 2021 
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Data Appendix 
A1. The Machine Learning Algorithm 

Step 1: Matching Barclays Inquiries to TRACE 

The TRACE rules require dealers to report a trade for each individual bond in the 

portfolio with an attributed dollar price and an execution timestamp, despite the fact that 

technically the dealer and the client agree on a single price for the entire basket of bonds. 

This means that the individual line items must appear in TRACE if a portfolio inquiry is 

executed. For each line item in our portfolio inquiries database, we search through the 

TRACE database for Dealer-to-Customer trades which exactly match the line items in the 

inquiry on CUSIP, date, quantity traded and direction (dealer buy or dealer sell) 20. The result 

of this process is a database of traded inquiries, augmented with the exact execution time 

stamp and the executed price, both of which are recorded in TRACE. 

In 85% of the matches we find in TRACE, there is exactly one trade which satisfies the 

criteria above. The difficulty comes from the remaining 15% for which there are multiple 

matches. This occurs because our inquiries database only records the date but not the exact 

execution time stamp. Due to the enormous number of trades in TRACE, in some cases it is 

not possible to identify the trade without the time stamp. This applies particularly for trade 

sizes less than $250K and trades executed around busy times sometimes cannot be identified 

without the exact execution timestamp. To determine the most likely candidate for a given 

bond belonging to a portfolio inquiry where multiple candidates are available, we use the 

distribution of the execution timestamps of the other line items in that portfolio trade. For 

example, we know that on Jan 5th 2021, a $250K buy trade in bond X was part of a portfolio 

inquiry. Assume we find three such trades executed at 10:00, 12:30 and 14:30. If the majority 

                                                           
20 We define a dealer as a traditional broker-dealer or as an alternative trading system (ATS), which we identify 
setting the field “Reporting Party Type” as either “D” or “T”. A dealer must report a trade if the counterparty is 
either a customer or an affiliate, which we identify by setting the field “Contraparty Type” as either “C” or “A”. 
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of the other line items in that inquiry were executed around 14:30, we would select the 

$250K trade in bond X at 14:30 and discard the other two candidate trades.  

To create the blueprint of the typical portfolio trade, we need to convert the matched line 

items to matched portfolio inquiries. However, in doing so, we face the following trade-off. 

On the one hand, we want to find as many of the inquiries that actually traded as possible, but 

on the other, we want to minimize the number of individual bond trades we incorrectly 

classify as part of a portfolio i.e. the false positives. To strike the optimal balance between 

these goals we can pull two levers – (1) the maximum time period within which those line 

items must be executed; and (2) the minimum percentage of line items in the inquiry required 

to classify a portfolio as found21. 

To illustrate, assume that we require to find at least 80% of the line items in an inquiry. 

As we increase the time span between the trades that we consider, we will match more of the 

line items, and thus match more of the portfolios. However, we also risk over-classifying 

trades in TRACE, which just happen to have the same notional and the same direction as the 

portfolio inquiry but were not part of it. Figure A1.1 demonstrates this trade-off. If we allow 

a time interval of 2 hours, we find 70% of the portfolio inquiries, but we over-classify 20% of 

the line items (i.e. 20% of the line items have multiple matches). By tightening the time 

interval to 5 minutes, we steeply reduce over-classification to c.2% at the cost of finding only 

slightly fewer of the inquiries. We conclude that 5 minutes is the optimal time interval since 

tightening beyond that only marginally improves precision, but drastically reduces the 

proportion of the inquiries that we can find. 

 

                                                           
21 For example, if we were only able to match two line items out of one hundred included in a portfolio inquiry, 
and they occurred hours apart, then we clearly have not actually found the portfolio inquiry in TRACE. In 
contrast, if we find all one hundred line items within two seconds, then we are quite confident that we’ve located 
the portfolio trade. 
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Figure A1.1: Varying the Maximum Time Interval When Matching Portfolio Inquiries 

The figure shows the trade-off between the percentage of portfolio inquiries we find in TRACE against the over-

classification error, as we vary the maximum time span we allow between the first and the last line item in any 

given portfolio inquiry. 

 

In Figure A1.2 we vary the threshold of line items per portfolio we require to match in 

TRACE. We find 68% of all inquiries with at least 80% of line items. In comparison, we find 

57% of all inquiries with at least 95% of line items. Interestingly, the percentage of inquiries 

we find decreases from 100% to 75% as we just increase the threshold from 0% to 5%, but 

then decreases only very slowly as we further tighten the criterion. This suggests that we 

either find the inquiries (almost) in full or we don’t find them at all. This confirms the 

anecdotal evidence we have received from our conversations with portfolio desk traders 

about the take-it-or-leave-it nature of portfolio trades. Nonetheless, we set a rather 

conservative threshold of 80% of line items found in order to minimize classification error.  
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Figure A1.2: Varying the Minimum Number of Matched Line Items 

The figure shows the percentage of portfolio inquiries we find as we vary the minimum number of matched line 

items per portfolio inquiry. 

 

Step 2: Clustering algorithm 

The two most important parameters of the ML algorithm we train are the maximum time 

we allow to elapse between the lines items in any given portfolio trade and the characteristics 

of the typical portfolio trade. We select and tune both parameters based on the proprietary 

dataset of portfolio inquiries matched to TRACE in Step 1. 

Analysing the inquiries, we discovered that when we plot the number of trades recorded 

in TRACE per each second of the trading day, seconds during which portfolio inquiries were 

executed appear like spikes or clusters (Figure A1.3). However, the problem is that such 

clusters are both rare (compared to the total volume that appears on TRACE) and could take 

very different time to appear on the TRACE tape. For example, most inquiries span zero to 

two seconds, but some of the larger ones could take up to 20 seconds. This means that we 

need to develop an algorithm which is able to separate the large amount of “noise” in the data 

(i.e. the non-portfolio trades), but is flexible enough to accommodate different portfolio 

structures. In other words, the algorithm needs to allow for different length (in terms of time) 
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of the portfolios. For example, an algorithm which identifies clusters based on a fixed time 

interval, no matter how tight that interval is, would produce noisier estimates. 

We employ a machine learning toolkit and use a DBSCAN clustering algorithm 

(Density-based Spatial Clustering of Applications with Noise) to obtain a list of portfolio 

candidates (Ester, Kriegel, & Sander, 1996). DBSCAN searches through the millions of 

TRACE observations and forms clusters of trades whose execution timestamps are closely 

packed together (i.e. the trades have many nearby neighbours) and marks as outliers points 

that are located in low-density regions (i.e. their nearest neighbours are too far away). 

Clusters identified in this way are strictly non-overlapping and the individual line items 

included in any cluster are unique to that cluster only.  

More specifically, each day from January 1st 2018 to December 31st 2021, the algorithm 

orders all dealer-to-customer trades in TRACE by their timestamp and, starting from the first 

trade on that day, searches for trades which have at least 25 other trades recorded within a 

two second interval. Each such a trade is labelled as a “core” trade. Some of the trades that 

are within the two second neighbourhood of a “core” trade could be “core” trades themselves. 

For example, if a trade that is exactly two seconds from the original “core” trade has at least 

25 trades within its own two second window, it too would be a “core” trade. We then link 

“core” trades and their two second neighbourhoods to form a cluster. In other words, each 

cluster must contain at least one core point. Further, individual trades in a cluster may well be 

more than two seconds apart, but any trade in a cluster is at most two seconds away from 

some core trade. It is precisely the “expanding” nature of the algorithm, which produces 

clusters with different time length.  
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Figure A1.3: Examples of How Portfolio Trades Appear in TRACE 

Example 1 “Tight” – Inquiry with 244 Bonds  Example 2 “Spread-out” – Inquiry with 105 Bonds 

 

  

Example 3 “Batched” – Inquiry with 98 Bonds  Example 4 “Batched” – Inquiry with 88 Bonds 

   

 

Step 3: Re-clustering 

Each of the clusters the algorithm identifies has a high probability of being an actual 

portfolio trade. As shown by the examples above, some portfolio trades are split into multiple 

batches, and others are in one, and it is extremely difficult for our algorithm to tell which is 

which. This is why we think this approach will give accurate estimates of the volumes 

associated with this trend, but less accurate estimates of the boundaries of portfolio trades, 

and hence the overall count. However, since we eventually want to test how execution quality 

differs across different portfolio construction strategies, it would be extremely valuable to 

reconstitute these clusters into their original portfolios, if possible.  
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To this end, we re-classify the clusters from the previous step by aggregating those 

clusters that happen one minute apart into a unified portfolio. The idea is to bring together 

several batches of the same portfolio (as in Example 3 and 4 on Figure A1.3). It is important 

to note that we neither add nor delete portfolio volume in this step – we simply adjust the 

boundaries of the clusters.  

Step 4: Filtering 

Next, we filter this list to remove candidate clusters than don’t line up with what we 

expect given the analysis of our inquiry in Step 1: 

• We drop clusters that are within 5-minute intervals before and after popular delayed 

spot times – 11.00, 15.00, 15.30, 16.00, 16.30. As a result, we are likely to understate 

the true prevalence of portfolio trades because some IG portfolio trades are certainly 

spotted at these times. However, if we don’t drop those clusters we are certain to 

include lots of false positives. 

• We drop clusters that contain less than $5 million in HY and $10 million in IG, and 

clusters with average line item size below $100K in HY and below $250K in IG. This 

is necessary to reduce false positives associated with odd lots trading, much of which 

is electronic. 

Finally, we fine-tune by deleting a small number of line items which are markedly different 

from the cluster to which they belong. These adjustments have a minor impact on the total 

portfolio volume we identify but substantially reduce the portfolio-level false positives rate: 

• We know from our inquiries that portfolio trades are either buy-only, sell-only or 

balanced buy-and-sells trades. For example, if we see a candidate cluster with 100 

bonds, the most likely distribution of trades is – a client buys 100 bonds; a client sells 

100 bonds and client buys 50 bonds and sells 50 bonds. Hence, a candidate cluster 
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where a client buys 97 bonds and sells 3 bonds is extremely unlikely – in reality this is 

a buy-only trade with 97 bonds and the 3 sell trades were coincidentally executed at 

the same time. 

• Similarly, the majority of portfolio inquiries are HY only or IG only. Whenever HY 

and IG bonds are mixed in the same portfolio trade, these are likely to be at the 

boundary between HY and IG – e.g. a mix of BAA3s and BA1s. In other words, a 

candidate cluster of 95 B2 bonds and 5 AAA bonds is highly unlikely, even if the 

direction (buy or sell) matches. This is likely to be a straight HY trade with 95 bonds. 
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A2. Figures 
Figure A2. 1: Correlation Between Actual and Implied ETF Flows 

The figure shows the histogram of monthly correlation coefficients between actual and implied LQD flows. We obtain actual 
flows data from Bloomberg. Implied flows data are estimated following the procedure developed by Shim and Todorov 
(2021) and Koont et al. (2022) (for details refer to Section 2.3 ETF Sample). Estimation period January 2018-December 
2022. 
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A3. Tables 
Table A3.1: Other  Portfolio Strategies 

The table shows a summary of the different strategies investors use when trading portfolios of bonds. When classifying a 

portfolio trade we always compare it to the Bloomberg IG Corporate Bond Index. A Liquidity strategy applies in those cases 

where the portfolio trade contains at least 50% more trade volume in the 4th or 5th LCS quintile (most illiquid quintiles) than 

what we would normally expect in the IG Index.  A Market View strategy applies in those cases when the portfolio 

maturity/sector/rating Herfindahl score (HHI) is at least 50% higher than the respective HHI of the Index. Portfolio trades that 

are neither axed towards a Liquidity nor a Market View strategy are classified as Diversified.  

Type of Strategy % of IG PT Volume 

 Liquidity 49% 

 Market View  

o Maturity View 35% 

o Sector View 24% 

o Rating View 13% 

Concentrated (Liquidity OR Market View) 69% 

Diversified (Flows Management) 31% 
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Table A3.2: Robustness – Fixed Effects 

𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊,𝒋𝒋,𝒕𝒕 =  𝜷𝜷𝟏𝟏𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝚪𝚪𝒁𝒁𝒋𝒋,𝒕𝒕 + 𝛅𝛅𝑩𝑩𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝚯𝚯𝒀𝒀𝒘𝒘 + 𝝀𝝀𝒋𝒋,𝒕𝒕 + 𝝐𝝐𝒊𝒊,𝒋𝒋,𝒕𝒕 

The table reports transaction-level regressions of effective half spread on a portfolio trade dummy (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡) and a set 

of controls. Bond-level controls include: maturity, time since issuance, numeric rating, option-adjusted spread, logarithm of 

issue size, coupon, call type and sector dummies and time until next call. Date-level controls include: the VIX, the logarithm 

of total trading volume and percentage of block trades (>$5 million). T-stats in parentheses. Standard errors are clustered at 

the bond and date (day) level. Significance at the 1 %, 5 % and 10 % statistical level is denoted by ***, **, and * respectively. 

 Effective Half Spread (EHS) 

 TRACE PT Client Inquiries 

 (1) (2) (3) (4) 

Portfolio Trade -6.84*** 
(-24.66) 

-8.72*** 
(-33.93) 

-5.99*** 
(-4.76) 

-10.44*** 
(-5.67) 

Bond-level Controls YES YES YES YES 

Trade-level Controls YES YES YES YES 

Date-level Controls NO YES NO YES 

Bond FE NO NO NO NO 

Date FE NO NO NO NO 

Bond-Date FE YES NO YES NO 

Bond-trade Observations 4,467,324 3,818,560 4,467,324 3,818,560 

Sample Bonds included in LQD Jan 1st 2021 – December 31st 2021 
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Table A3.3: Relationship to the ETF C/R – “Right way” for the ETF 

𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊,𝒋𝒋,𝒕𝒕 =  𝜷𝜷𝟏𝟏𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝜷𝜷𝟐𝟐𝑹𝑹𝒊𝒊𝑹𝑹𝑹𝑹𝒕𝒕 𝒘𝒘𝑻𝑻𝒘𝒘𝒊𝒊,𝒋𝒋,𝒕𝒕
𝑳𝑳𝑳𝑳𝑳𝑳 + 𝜷𝜷𝟑𝟑𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 × 𝑹𝑹𝒊𝒊𝑹𝑹𝑹𝑹𝒕𝒕 𝒘𝒘𝑻𝑻𝒘𝒘𝒊𝒊,𝒋𝒋,𝒕𝒕

𝑳𝑳𝑳𝑳𝑳𝑳  + 𝚪𝚪𝒁𝒁𝒋𝒋,𝒕𝒕 + 𝛅𝛅𝑩𝑩𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝝀𝝀𝒋𝒋 + 𝜹𝜹𝒕𝒕 + 𝝐𝝐𝒊𝒊,𝒋𝒋,𝒕𝒕 

The table reports transaction-level regressions of effective half spread on a portfolio trade dummy (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡), a trade-

level dummy variable (𝑅𝑅𝑃𝑃𝑅𝑅ℎ𝑃𝑃 𝑤𝑤𝑇𝑇𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 ) and their interactions for all bonds owned by the largest IG ETF (ticker LQD). 

𝑅𝑅𝑃𝑃𝑅𝑅ℎ𝑃𝑃 𝑤𝑤𝑇𝑇𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 equal 1 for all customer sell (buy) trades on days when LQD is mostly creating (redeeming) shares and 0 

otherwise. We split our sample into three sub-samples using terciles of the bond-level LCS distribution: liquid, medium and 

illiquid. Regressions control for bond-level maturity and numeric rating (higher values are worse) (collected in vector 𝑍𝑍𝑗𝑗,𝑡𝑡) and 

include a transaction-level dummy variable equal to 1 for all trades larger than $5 million (𝐵𝐵𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡). All variables are 

winsorized at the 1% level. All regressions include bond and date fixed effects. T-stats in parentheses. Standard errors are 

clustered at the bond and date (day) level. Significance at the 1 %, 5 % and 10 % statistical level is denoted by ***, **, and * 

respectively. 

 Effective Half Spread (EHS) 

 (1) All LQD Bonds (2) Liquid (3) Medium (4) Illiquid 

Portfolio Trade -6.33*** 
(-10.29) 

-5.16*** 
(-17.37) 

-6.75*** 
(-11.11) 

-7.78*** 
(-5.17) 

Right way 0.86 
(0.51) 

1.11 
(1.14) 

0.58 
(0.31) 

0.51 
(0.13) 

Portfolio Trade × Right way -1.67* 
(-1.76) 

-0.91** 
(-1.95) 

-1.27* 
(-1.69) 

-3.39* 
(-1.75) 

Maturity 0.55*** 
(11.82) 

-0.10 
(-0.63) 

0.51*** 
(4.20) 

2.29*** 
(4.44) 

Numeric rating 0.35 
(1.38) 

0.14 
(0.51) 

-0.44 
(-0.85) 

2.88*** 
(2.38) 

Block Trade -3.43*** 
(-10.40) 

3.28*** 
(-16.38) 

-4.34*** 
(-11.36) 

-2.47*** 
(-3.39) 

Bond FE YES YES YES YES 

Date FE YES YES YES YES 

Bond-trade Observations 2,324,395 1,088,002 837,440 398,953 

Sample Bonds included in LQD Jan 1st 2021 – December 31st 2021 
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Table A3.4: Relationship to the ETF C/R – “Right way” for the ETF with Portfolio 
Inquiries 

𝑬𝑬𝑬𝑬𝑬𝑬𝒊𝒊,𝒋𝒋,𝒕𝒕 =  𝜷𝜷𝟏𝟏𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝜷𝜷𝟐𝟐𝑹𝑹𝒊𝒊𝑹𝑹𝑹𝑹𝒕𝒕 𝒘𝒘𝑻𝑻𝒘𝒘𝒊𝒊,𝒋𝒋,𝒕𝒕
𝑳𝑳𝑳𝑳𝑳𝑳 + 𝜷𝜷𝟑𝟑𝑷𝑷𝑷𝑷𝑷𝑷𝒕𝒕 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 × 𝑹𝑹𝒊𝒊𝑹𝑹𝑹𝑹𝒕𝒕 𝒘𝒘𝑻𝑻𝒘𝒘𝒊𝒊,𝒋𝒋,𝒕𝒕

𝑳𝑳𝑳𝑳𝑳𝑳  + 𝚪𝚪𝒁𝒁𝒋𝒋,𝒕𝒕 + 𝛅𝛅𝑩𝑩𝑷𝑷𝑷𝑷𝑩𝑩𝑩𝑩 𝑻𝑻𝑷𝑷𝑻𝑻𝑻𝑻𝑻𝑻𝒊𝒊,𝒋𝒋,𝒕𝒕 + 𝝀𝝀𝒋𝒋 + 𝜹𝜹𝒕𝒕 + 𝝐𝝐𝒊𝒊,𝒋𝒋,𝒕𝒕 

The table reports transaction-level regressions of effective half spread on a portfolio trade dummy (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡), a trade-

level dummy variable (𝑅𝑅𝑃𝑃𝑅𝑅ℎ𝑃𝑃 𝑤𝑤𝑇𝑇𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 ) and their interactions for all bonds owned by the largest IG ETF (ticker LQD). 

𝑅𝑅𝑃𝑃𝑅𝑅ℎ𝑃𝑃 𝑤𝑤𝑇𝑇𝑤𝑤𝑖𝑖,𝑗𝑗,𝑡𝑡 equal 1 for all customer sell (buy) trades on days when LQD is mostly creating (redeeming) shares and 0 

otherwise. We split our sample into three sub-samples using terciles of the bond-level LCS distribution – liquid, medium and 

illiquid. Regressions control for bond-level maturity and numeric rating (higher values are worse) (collected in vector 𝑍𝑍𝑗𝑗,𝑡𝑡) and 

include a transaction-level dummy variable equal to 1 for all trades larger than $5 million (𝐵𝐵𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗,𝑡𝑡). All variables are 

winsorized at the 1% level. All regressions include bond and date fixed effects. T-stats in parentheses. Standard errors are 

clustered at the bond and date (day) level. Significance at the 1 %, 5 % and 10 % statistical level is denoted by ***, **, and * 

respectively. 

 All LQD Bonds Liquid Medium Illiquid 

Portfolio Trade -5.16** 
(-1.96) 

-4.60*** 
(-3.02) 

-5.08** 
(-1.97) 

-5.52* 
(-1.79) 

Right way 0.72 
(0.43) 

0.11 
(1.09) 

0.47 
(0.26) 

0.12 
(0.03) 

Portfolio Trade × Right way -2.21 
(-0.47) 

-0.94 
(-0.45) 

-2.02 
(-0.48) 

-3.37 
(-0.44) 

Maturity 0.51*** 
(11.07) 

-0.13 
(-0.77) 

0.48*** 
(3.97) 

2.25*** 
(4.43) 

Numeric rating 0.36** 
(1.69) 

0.13 
(0.51) 

-0.45 
(-0.87) 

3.04** 
(2.43) 

Block Trade -2.94*** 
(-8.97) 

-3.01*** 
(-15.02) 

-3.82*** 
(-9.98) 

-1.56** 
(-2.17) 

Bond FE YES YES YES YES 

Date FE YES YES YES YES 

Bond-trade Observations 2,324,395 1,088,002 837,440 398,953 

Sample Bonds included in LQD Jan 1st 2021 – December 31st 2021 
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