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1 Introduction

Decentralized finance, or DeFi, summarizes classical financial intermediation activities

that take place on blockchains and in other decentralized marketplaces. DeFi represents

a growing and sizable portion of trade in blockchain-based assets. One of the core activ-

ities of DeFi is automated market-making. Automated markets are smart-contract-based

exchanges that facilitate trading or swaps of tokens that are native to a decentralized dis-

tributed ledger. Due to the costly nature of blockchain-based communication, running a

limit order book on a blockchain is prohibitively expensive. As a consequence, we have

observed a rapid pace of innovation and development in efforts to provide intermedia-

tion services, known as automated market makers (AMMs), on blockchains.

While AMMs economize on transaction costs, by design, they are passive and do not

react to the information available in the market. As a result, they are susceptible to losses.

This is called impermanent losses due to adverse selection (see Glosten and Milgrom

(1985)). In this paper, we undertake a systematic analysis of the design of AMMs.

One might expect these automated markets to resemble a central limit order book

that runs as code—smart contracts—that happens to be executed on the blockchain by

the decentralized network of ledger validators or “miners.” A challenge to establishing

a central limit order book is that this method of intermediation requires an incredibly

high volume of messages to be recorded. Each bid–even each update to a bid such as a

modified price or a cancellation—is a message that changes the state of the blockchain

ledger. Since each change of the blockchain state requires a (non-negligible) transaction

cost, replicating a central limit order book on a blockchain is prohibitively expensive.

To facilitate trading on blockchains then, AMMs, such as Uniswap or Curve, have

instead deployed ad-hoc pricing functions to the ledger that define terms of trade be-

tween liquidity providers (depositors) and liquidity takers. Specifically, suppose liquidity

providers have contributed quantitiesQA andQB of tokens A and B and a liquidity taker

would like to swap qA units of token A for token B. Then the AMM pricing function G

dictates that the liquidity taker may withdraw qB = G(qA;QA,QB) units of token B (for
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some arbitrarily specified function G.1 A portion of the contributed tokens qA augment

the quantity of tokens in the pool QA and a portion is paid out to liquidity providers as

fees. A commonly used functional form is the geometric mean function wherein the geo-

metric mean of the pre-trade positions of the AMM in the two tokens equals to that of the

post-trade positions—save for the fees charged by the AMM.

While we observe a great deal of trial and error of different pricing functions, fee

structures, and code development for AMMs, there is little systematic analysis of the un-

derlying market micro-structure of AMMs. What are the gains to trade between liquidity

providers and liquidity takers? What are the potential losses from the inflexibility of the

functional form in the face of informed traders? How does the design of the AMM pricing

function impact AMM volume and the division of surplus between liquidity providers

and liquidity takers? And finally, what is the optimal design of AMM pricing, which is

robust to a variety of beliefs about the potential returns to holding tokens? There is a

nascent literature studying the outcomes of AMMs and, specifically, the opportunity cost

of providing liquidity—sometimes referred to as impermanent loss. See Milionis et al.

(2022) for a recent example. In this paper, we develop the first comprehensive framework

to examine these questions.

Our proposed framework begins by specifying potential gains to trade between liq-

uidity providers and liquidity takers—something essentially absent from the emerging

literature on AMMs. These gains arise in our model due to heterogeneous beliefs in the

(relative) value of a pair of tokens as in Harrison and Kreps (1978). Implicitly, we think

of liquidity providers as “slow” traders who are less able to obtain transaction priority

on the blockchain and, therefore, less able to take advantage of high-frequency arbitrage

opportunities.2 Such agents are the natural liquidity providers in our environment.

Liquidity takers, on the other hand, we model as “fast” and able to attain priority for

blockchain execution. In our framework, liquidity takers may be “informed” or “unin-
1In theory, one could represent a central limit order book in this fashion where the function G depends

on the entire set of messages—bids and asks—relayed to the exchange. However, here, consistent with
what we observe at AMMs, we focus on G that depend solely on quantities

2Existing work on impermanent loss implicitly assumes the opportunity cost of liquidity provision is
the ability to profit from such high-frequency opportunities Milionis et al. (2022).
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formed,”, giving rise to a classic form of adverse selection in asset markets—see Glosten

and Milgrom (1985). While we use the language of informed and uninformed trading,

our preferred interpretation is rather that uninformed traders trade for reasons that are

orthogonal to liquidity providers’ beliefs about the value of the tokens. Instead, informed

traders trade for reasons that are correlated with (changes) in liquidity providers’ beliefs

about the value of the tokens.

To the extent that AMM pricing cannot flexibly react to the news or information avail-

able in the market, and to the extent that informed traders are able to trade at the AMM

before the liquidity providers may withdraw their deposits—again, liquidity providers

are slow traders relative to liquidity takers—informed traders create losses for liquidity

providers.

We explore how this form of adverse selection distorts the amount of liquidity con-

tributed by providers who must balance profits they earn from uninformed liquidity tak-

ers (noise traders) with the losses that arise from trading with informed liquidity takers.

Our results provide modern analogs to those in Glosten and Milgrom (1985) in a smart

contract setting and offer a new interpretation of impermanent loss—committing to trade

with informed liquidity takers at “stale” prices—stemming from a traditional notion of

adverse selection. While in Glosten and Milgrom (1985) liquidity providers distort prices

to protect themselves from informed trading losses, such distortions may only manifest

in the quantities of deposits liquidity providers post in the AMM.

The conventional wisdom shared as guidance on major AMMs is that liquidity providers

should deposit liquidity in equal US dollar value amounts. For example, Uniswap ex-

plains that liquidity providers “are incentivized to deposit an equal value of both tokens

into the pool. To see why, consider the case where the first liquidity provider deposits to-

kens at a ratio different from the current market rate. This immediately creates a profitable

arbitrage opportunity, which is likely to be taken by an external party.” 3 This simple

logic, while correct, ignores the concept that some fast traders may trade for reasons or-

thogonal to current market prices should they require liquidity. Effectively, conventional

3See Uniswap-V2 (2023) https://docs.uniswap.org/contracts/v2/concepts/core-concepts/pools
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wisdom assumes there is a single agreed-upon “market price”.

Instead, we argue that (fast) liquidity takers may have heterogeneous beliefs or het-

erogeneous reasons for trade and therefore, depositing at equal value may not be optimal.

Indeed, we show that in any equilibrium where liquidity providers in sum earn strictly

positive profits, they prefer to distort their deposit ratio away from equal value. Such

changes allow them to earn higher profits per trade should the first trader be uninformed.

We find that in if the fraction of informed traders is such that the profits from uninformed

traders exactly balance the losses from informed traders, then it is optimal for liquidity

providers to deposit tokens in equal value (according to the liquidity providers’ expected

valuation of the tokens).

We go on to explore how the shape of the pricing functionG impacts gains to trade and

liquidity provider’s profits. Analogous to results in Milionis, Moallemi and Roughgarden

(2023b), we find that in the presence of only uninformed traders, convex prices impede

ex post trading volumes and reduce ex-ante profits of liquidity providers. Hence, in such

a case, linear pricing is optimal. However, the presence of informed traders complicates

this analysis because convex prices also limit the losses liquidity providers realize from

informed trades. Nonetheless, we show that reducing the (local) convexity of the pricing

function improves liquidity provider’s profits as long as liquidity provision is profitable.

Specifically, we construct a perturbation of the pricing function that decreases its convex-

ity around the liquidity provider’s deposit point and scales the gains from uninformed

trades at the same rate as losses from adverse selection. If the original CPMM function

induces positive ex-ante gains for the liquidity traders, then less locally convex prices

increase ex-ante gains for both liquidity providers and liquidity traders, thus improving

efficiency.

The early, existing literature on AMMs has focused on examining how AMMs per-

form along-side the presence of deep, liquid, centralized exchanges. One of the earliest

examples is Angeris and Chitra (2020) who when a class of AMM mechanisms reflect

“true" prices—those observed on an infinitely deep centralized limit order book. Angeris

et al. (2021) presents a more specific analysis of the leading AMM Uniswap and show
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that the exchange rate on Uniswap matches the exogenous prices up to the interval of

fee level. Aoyagi (2022) extends these frameworks to consider the effect of information

asymmetry in AMMs shows that the equilibrium liquidity supply is stable under the as-

sumptions that liquidity provision is perfectly competitive and one token in the pool is

stable (its value has zero volatility). Also under the assumption of a known, true price of

tokens, Fabi and Prat (2023) demonstrates how to use consumer choice theory to study

how liquidity providers and liquidity takers exert externalities on each other. They use

their framework to examine how the shape of constant function market makers impacts

adverse selection costs faced by liquidity providers and execution costs faced by liquid-

ity takers. More recently, Lehar and Parlour (2023) show how AMM fees can balance

losses imposed by liquidity traders who conduct such an arbitrage. They argue that pool

sizes should decrease with the severity of this arbitrage risk and find empirical support

for this observation. Since these papers assume the opportunity to conduct a perfect ar-

bitrage between the AMM and the centralized exchange, liquidity providers necessarily

deposit tokens in equal value according to the centralized exchange prices. One of our

contributions is to relax the assumption of perfect arbitrage and examine optimal liquid-

ity provision when the notion of equal values is not clear because perfect price discovery

is not possible.

A related literature has emerged studying the costs imposed by traders who arbitrage

between centralized exchange prices and AMM prices. For example, Capponi and Jia

(2021) studies competition for priority among traders who would like to conduct such an

arbitrage and characterizes the joint determination of gas fees and liquidity pool sizes.

Hasbrouck, Rivera and Saleh (2023) study the impact of trading fees on trading volume

and show how an increase in the fees, by attracting more liquidity provision and thus

reducing traders’ execution costs may lead to increased trading volumes. Milionis et al.

(2022) use a continuous-time Black-Scholes analysis to estimate these arbitrage losses for

liquidity providers using a stablecoin pool and decomposes the losses into risky and pre-

dictable components. Milionis, Moallemi and Roughgarden (2023a) extend the model to

involve trading fees and provide results on the arbitrager’s behavior and profits accord-

ingly. They also conduct a cost-benefit analysis on the LP’s side with the new features.
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In our model in the absence of a true price, the AMM generates gains to trade and so

liquidity provision may be sustained even in the absence of direct fees.

In terms of the design and efficiency of the price function, Park (2023) demonstrates

that constant function market makers may causes economically meaningless and costly

trading, such as front running. Bergault et al. (2023) shows that the return of LP is always

smaller than holding by duality theorem and a constant product formula with a propor-

tional fee is not efficient from the mean-variance perspective. Goyal et al. (2023) focus

on the design of convex pricing functions that maximize the fraction of trades that with

only uninformed trades. Milionis, Moallemi and Roughgarden (2023b) uses the optimal

auction framework to show that a linear price curve maximizes the expected return of the

liquidity provider when one token is a stablecoin. Our results on the optimal shape of the

design function are similar to those in Milionis, Moallemi and Roughgarden (2023b) but

hold under a wider set of assumptions on traders’ beliefs about the token valuations.

2 Model

An AMM is a blockchain-based automated market that uses smart contracts to permit

individuals to exchange cryptocurrencies. The smart contract is a computer script stored

on the blockchain. Liquidity providers and liquidity takers post transactions that are

then executed by a decentralized network of validators (or "miners"). Functionally, the

AMM smart contract is immutable, so the trade process is fixed. The typical AMM smart

contract is specific to two coins; we will call these coins A and B. The contract defines

a Liquidity Provider (LP) as one who deposits both coins A and B. Later, the LP may

withdraw both coins A and B. In contrast, the contract defines a Liquidity Taker (LT) by

the transaction of depositing one coin (e.g., A) and withdrawing the other (e.g., B). The

smart contract also specifies the function that maps the number of coins the LP deposits

to the exchange rate between the two coins received by the LT.

To model the costs and benefits of the AMM setting, we model traders’ relative value

of the coins as a mix of common and private values. The common value component is
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public information. However, the trade arrival is sequential and so some traders will be

“informed” in that they have arrived at the same time as new information. The private

value component motivates gains to trade. The public component creates the potential

for an “adverse selection” cost. This cost is sometimes called “impermanent loss” in the

AMM setting.

Information. Time is discrete, t ∈ {0, 1, ..., T }, and coins have a terminal value at date T

given by exp(di,T ). We interpret the terminal value exp(di,T ) as either the future “price" of

token i or possibly the service flow attainable by holding 1 unit of token i. For example, 1

unit of the Ethereum cryptocurrency may be “spent” on the execution of smart contracts

on the Ethereum blockchain or 1 unit of the stablecoin USDC may be redeemed for 1 US

dollar by trading with the company Circle who issues USDC (Cicle (2023)). We assume

the “dividend” or terminal common payoff of coin i evolves according to

di,T =

T−1∑
t=0

yi,t + ϵi

with the public information at each date yi,t and the residual uncertainty, ϵi realized in

period T independently and satisfying E[exp(ϵi)] = 1.

In particular, assume public information {yi,t} arrives independently across date. With

probability π̂, yA,t = yB,t = 0. With probability 1 − π̂, yi,t ∈ {−∆l,+∆h} where each is

equally likely. We assume∆l,∆h are positive and 1
2e

−∆l + 1
2e
∆h = 1 such that the expected

value is the same as the current realized value. At the beginning of each period, both LPs

and LTs have beliefs about the terminal, common value component of each token given

by µi,t where

µi,t = E[exp(di,T )|y0, . . . ,yt−1] ≡ Et[exp(di,T )].

Timing. In each period, before public information is realized, the LP decides how much

of each token to deposit in the AMM smart contract. Once the LP deposits tokens, public
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information is realized. After public information is realized, LTs value the tokens accord-

ing to

µ̂i,t = Et+1[exp(di,T )]exp(ηi)

where ηi reflects a private value component of owning token i realized by the LT that

trades in period t. Our timing implies that the LT is a “fast trader” who may modify

their liquidity position before the LP may re-balance their supplied liquidity. Blockchain

transaction ordering depends on the decisions of the miners who maintain the blockchain

ledger. Because space for transactions in these ledgers is scarce relative to the demand to

place transactions on the ledger, there is a market for priority. Our model captures the

idea that the “natural” liquidity providers are those who are unlikely know how to obtain

priority (or are unwilling to pay for priority) while those who are efficient at obtaining

priority are likely to be liquidity takers.

Once the LT trades, a new period begins and the LP may re-balance the liquidity sup-

plied to the AMM.

2.1 One-Period Model

We now specialize this information setting to a static, one-period model. While we model

these as individual agents, we think of the LP and LT as representatives of a pool of po-

tential liquidity providers and takers, respectively. The representative liquidity provider

is initially endowed with a portfolio of tokens (EA,EB). We assume the LT has deep

pockets and cares only about her net trading profits. At the beginning of the period, be-

fore any new public information is realized, both the liquidity providers and liquidity

takers have the same beliefs, µi where we drop the time subscripts for ease of notation.

(One may think of this as µi,T = ET [exp(di,T )], the beliefs of LPs and LTs upon enter-

ing the last period of the dynamic game described above before any public information

in period T is realized.) Once public information arrives, the LT who trades has val-

uation µ̂i distinct from µi. (Using notation from the last period of the game, we have
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µ̂i,T = ET+1[exp(di,T )] exp(ηi).)

Here, we make one more specific assumption to leverage the insights from this setting.

Recall that with probability 1 − π̂ trader j arrives where yi,t ∈ {−∆l,∆h}. For that trader,

we set ηi = 0. Under this specification, our model features two types of information

events as in Glosten and Milgrom (1985). The first type of information event—analogous

to uninformed trading in Glosten and Milgrom (1985)—occurs when yi,t = 0 and repre-

sents a case where the LT’s new beliefs of the tokens’ values, µ̂i are uncorrelated with the

LP’s beliefs. That is, the LP believes the value of each token i will yield terminal value

according to Et+1[exp(di,T )] = Et[exp(di,T )] while the LT believes the value of each to-

ken i is distributed according to µ̂i = Et[exp(di,T )]exp(ηi). When ηi ̸= 0 under such an

event, there are gains to trade between the LP and the LT. Following the literature, we

interpret such an event as a “pure noise” trade where trade occurs for reasons orthogonal

to the LP’s beliefs about the potential returns to her tokens. We let π ∈ [0, 1] denote the

probability of this first type of information event which we describe as a trade for tastes or

uninformed trade.

Instead, the second type of information event—analogous to informed trading in Glosten

and Milgrom (1985)—occurs when yi,t ∈ {−∆l,∆h} (for some token i) and represents a

case where the LT’s new beliefs are correlated with the LP’s new beliefs. In such a case

both the LP and the LT now believe the value of each token has mean µ̂i = Et+1[exp(di,T )]

and hence there can be no gains to trade between the LT and the LP. Following the litera-

ture, we interpret such an event as pure information event that we describe as an informed

trade. This imposed correlation between the information arrival and private values of the

LT lets us isolate the idea that liquidity takers are either trading for “information” or are

trading for “tastes.”

Suppose the LP has deposited a portfolio (eA, eB) with the smart contract of the AMM.

We letG(·) the embedded pricing function. That is, if the LT wishes to deposit (withdraw)

qA units of token A then the function specifies an amount qB units of token B that the LT
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may withdraw (deposit) where

qB = G(qA|eA, eB).

We use the convention that if qA > 0—the LT deposits token A—then qB < 0—the

LT may withdraw token B—and vice versa. Most AMM price functions also have the

property that qB is decreasing in qA so that the LT must pay more of token A per unit

of token B she wishes to withdraw. The price function G also requires qi ⩽ ei, at least

implicitly, as capacity constraints.

The most common implementation of automated markets imposes the constant prod-

uct market maker (CPMM):

(eA + qA)(eB − qB) = eAeB. (1)

This particular function was originally proposed by Bergault et al. (2023) and was then

adopted in Uniswap-V2 (2023).

To summarize the static model, at the beginning of the period, the LP deposits a port-

folio (eA, eB) with the AMM given a pricing functionG(·) given her beliefs (µa,µb). Next,

the type of information event is realized according to π and the LT realizes a shock to her

beliefs specified by (µ̂A, µ̂B). With probability π the LT is uninformed and the LP’s beliefs

remain (µA,µB). With probability 1 − π the LT is informed and the LP’s beliefs also shift

to (µ̂A, µ̂B). In either case, once information is realized the LT then chooses an amount to

trade with the AMM. Finally, values and payoffs are realized according to the terminal

portfolios of the LP and LT.

Next, we define the problem of the liquidity taker and the liquidity provider working

backwards from the LT’s problem. We maintain the Constant Product Market Making

rule specified in Equation (1) through Section 2.2, 2.3, 3 below.
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2.2 The Liquidity Taker’s Problem

The LT—whether in an uninformed or informed trading event—observes liquidity on

deposit at the AMM as well as her realization of µ̂i. From her own perspective, the LT

perceives an arbitrage opportunity as prices at the AMM do not reflect her realized beliefs

of the token values.

The LT maximizes the expected value of her tokens:

max
qA,qB

− µ̂AqA + µ̂BqB (2)

s.t. (eA + qA)(eB − qB) = eAeB

When qA > 0, the LT’s problem given in (2) represents a case where the LT “buys”

token B from the AMM by depositing token A. She may wish to set qA < 0 in which

case she buys token A from the exchange by depositing some amount of token B. The

constraint represents the effective price she faces on any trade. Under the Constant Prod-

uct rule, the LT would have to deposit infinitely much of one token to withdraw all of the

other (i.e. setting qB = eB, requires qA → −∞) and hence the implicit capacity constraints

are slack under such a rule.

The solution to the LT’s problem is straightforward and satisfies

eA + qA =

√
µ̂B
µ̂A
eAeB, eB − qB =

√
µ̂A
µ̂B
eAeB. (3)

More importantly, for any beliefs µ̂i, she will trade up until the relative price at the

AMM equals her relative valuation of the tokens or

µ̂B
µ̂A

=
eA + qA
eB − qB

. (4)

If we let xA = eA+qA and xB = eB−qB denote the LP’s post-trade portfolio, then (1) and
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Figure 1: Liquidity Taker’s Optimal Trade

(4) imply that LP’s post-trade portfolio satisfies

xAxB = eAeB (5)

µ̂AxA = µ̂BxB. (6)

The liquidity provider internalizes that for any realization of beliefs of the LT, µ̂i, her

ex-post portfolio will satisfy (5)–(6). We may represent this behavior graphically as in

Figure 1.

The convex curve represents the constant product market-making rule, and the point

(eA, eB) represents the liquidity deposited by the LP. Any trade by the LT will move the

LP’s ex-post portfolio along the convex curve. Once the LT realizes her beliefs µ̂i, she will

trade up until the relative price at the AMM equals her relative valuation of the tokens

(represented by the dashed line with slope −µ̂A/µ̂B.
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2.3 The Liquidity Provider’s Problem

Anticipating the behavior of the liquidity taker, the LP chooses her liquidity deposit to

solve the following program.

max
eA,eB

π(µAE[xA − eA] + µBE[xB − eB])+ (7)

(1 − π)(Eµ̂A[xA − eA] + µBEµ̂B[xB − eB])

s.t. (5)–(6),

0 ⩽ ei ⩽ Ei, ∀i

where π is the probability of an uninformed trading event. Notice, regardless of whether

the LP experiences an uninformed or informed trading event, the beliefs of the liquidity

taker will result in an ex-post portfolio of the LP according to (5)–(6). These events differ,

however, in how the LP perceives the value of these ex-post portfolios. When the LT

represents an uninformed trade, the LP continues to value her ex-post portfolio according

to her prior beliefs, µi. Instead, when the LT represents an informed trade, the LP values

her ex-post portfolio according to the realized beliefs of the LT, µ̂i. As we show below, the

LP will trade off profits she earns on uninformed trades with losses on informed trades.

Unlike in standard models of exchange subject to adverse selection where market makers

post prices that reflect the extent of adverse selection, blockchain market makers must

distort their quantity choices for liquidity provision to protect themselves from possible

adverse selection.

3 Equilibrium AMM Liquidity Provision

In this section, we examine equilibrium liquidity provision by liquidity providers in our

model. Our notion of equilibrium is standard subgame perfect equilibrium. We examine

the usefulness of the conventional wisdom from existing automated marketplaces—that

liquidity providers should deposit liquidity in equal (dollar) values—and find that such
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behavior is optimal for the representative liquidity provider only under special circum-

stances. We demonstrate how adverse selection distorts the quantities of liquidity de-

posited by providers on automated exchanges. To ease the analysis, we first consider

two special cases of our model—when all trade is uninformed and when all trade is

informed—before turning to the general case.

3.1 Liquidity Provision with Uninformed Trade Only

Suppose first that π = 1 so that there are only uninformed trades. Using straightforward

algebra, the LP’s problem (7) simplifies to

max
eA,eB

µA

(
E

√
µ̂B
µ̂A
eAeB − eA

)
+ µB

(
E

√
µ̂A
µ̂B
eAeB − eB

)
s.t. 0 ⩽ ei ⩽ Ei, ∀i.

Since the LP’s deposit quantities, ei, are not random, her objective may be written as(
Eω+ E

1
ω

− 2
)
√
µAeA

√
µBeB − (

√
µAeA −

√
µBeB)

2 (8)

where ω =
√
µ̂A/µA
µ̂B/µB

. Equation (8) shows how an LP facing only uninformed trade

chooses the optimal liquidity to provide. By changing the quantities of tokens A and

B she deposits, she adjusts the position of the pricing curve the LT will face ex-post.

To better understand (8), consider one possible (suboptimal) deposit choice for the LP:

an equal value deposit, or eA and eB that satisfy µAeA = µBeB. Notice that all possible

ex-post portfolios for the LP lie on the constant product price function that runs through

the point (eA, eB). Moreover, at (eA, eB), the constant product price function has slope

−µA/µB. Since the constant product price function is convex, any trade by the LT will

appear to happen at favorable prices from the perspective of the LP—that is, terms of

trade are better than −µA/µB for the LP regardless of whether the LT is buying token A

or token B. As a result, for such a deposit choice, the LP only stands to gain and suffers

no losses.
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Figure 2: Liquidity Provider’s “No-Loss” Deposit Choice

Figure 2 illustrates this result graphically. Given the LP’s beliefs are fixed, facing only

uninformed trades, the straight (blue) line with slope −µA/µB reflects the LP’s indiffer-

ence curve. Since all terminal portfolios lie on the constant product price function, and

this function lies above the LP’s preferences, such a deposit choice by the LP ensures the

LP only stands to gain from trade.

Should the LP provide liquidity different from an equal value deposit, then for small

differences in beliefs from her own, the constant produce price function will provide

prices that appear unfavorable from the perspective of the LP and yield second-order

losses. For this reason, the LP faces a loss function—the second term in (8)—that depends

on how her portfolio differs from an equal value (µAeA = µBeB) portfolio.

To the extent µ̂i differs from µi, there are gains to trade. The value of these gains

depend on the term Eω + E 1
ω − 2 ⩾ 0. (The inequality follows directly from Jensen’s

inequality.) As a result, from any equal value deposit, a small perturbation that raises

eA or eB on the margin will induce second-order losses but incur first-order gains. As

a result, equal-value deposits are generically not optimal for the LP. In general, the LP

desires to provide as much liquidity as possible to facilitate gains to trade, and thus, her

budget constraint must bind (either eA = EA or eB = EB). We then have the following

proposition.
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Figure 3: Liquidity Provider’s Optimal Deposit Choice

Proposition 1: Optimal Liquidity with only Uninformed Trade. With only uninformed

trade, the optimal liquidity deposit satisfies:
e∗A = EA, e∗B = min

{(
Eω+E 1

ω
2

)2
µA
µB
EA,EB

}
, if µAEA ⩽ µBEB

e∗A = min

{(
Eω+E 1

ω
2

)2
µB
µA
EB,EA

}
, e∗B = EB, if µAEA > µBEB.

Generically, then, the LP will prefer a deposit choice different from the equal value

portfolio to maximize intermediation profits with uninformed traders. Such a choice is

illustrated in Figure 3 where, according to Proposition 1 typically, we expect either eA =

EA or eB = EB.

3.2 Liquidity Provision with Informed Trade Only

Suppose next that π = 0 so that there are only informed trades. The LP’s problem (7)

simplifies to

max
eA,eB

Eµ̂A

(√
µ̂B
µ̂A
eAeB − eA

)
+ Eµ̂B

(√
µ̂A
µ̂B
eAeB − eB

)
(9)

s.t. 0 ⩽ ei ⩽ Ei, ∀i (10)
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If we impose a mild assumption that µ̂i is a mean preserving spread of µi, i.e. E
µ̂i
µi

= 1,

the LP’s objective in this case may be written as

(2Eψ− 2)
√
µAeA

√
µBeB − (

√
µAeA −

√
µBeB)

2 (11)

where ψ =
√
µ̂A
µA

µ̂B
µB

. Equation (11) shows how an LP facing only informed trade chooses

the optimal liquidity to provide.

Since the LP and the LT hold the same ex-post belief, any gains of the LT must reflect

losses borne by the LP. Moreover, since the LT only trades when it is beneficial for herself,

all trades hurt the LP. As a result, the case of only informed trading reflects a case of pure

adverse selection and induced losses for the LP relative to what the value of her wealth

would have been had she simply held her portfolio rather than providing liquidity.4

Mathematically, the Cauchy-Schwarz inequality implies Eψ ⩽
√

E
µ̂A
µA

E
µ̂B
µB

and holds

with equality only when µ̂A and µ̂B are perfectly correlated. Since we impose Eµ̂i/µi = 1,

the above inequality implies Eψ ⩽ 1. Therefore, the LP’s objective function is necessarily

non-positive for any deposit amount, yielding our next proposition.

Proposition 2: No Liquidity Provision with Only Informed Trade. The optimal liquidity

deposit satisfies:

e∗A = e∗B = 0.

3.3 Liquidity Provision with Uninformed and Informed Trading

We now use these results to understand better the general problem (7) with arbitrary π.

We once again simplify the LP’s objective function as[
π

(
Eω+ E

1
ω

)
+ (1 − π)2Eψ− 2

]
√
µAeA

√
µBeB − (

√
µAeA −

√
µBeB)

2 (12)

4Since we implicitly assume LPs are “slow” traders, we do not consider the opportunity cost of trading
at an AMM herself. See Milionis et al. (2022) for such an analysis.

17



As before, we may write the LP’s objective as the sum of a revenue function less losses that

depend on how the LP’s deposit portfolio differs from an equal value portfolio. The rev-

enue function now reflects the probability of realizing an informed versus an uninformed

trade. Similar to the previous cases, when uninformed trades occur the LP realizes profits

and when informed trades occur, the LP realizes losses. If the gains from uninformed

trades are larger than the loss from informed trades, i.e. π
(
Eω+ E 1

ω

)
+ (1 − π)2Eψ ⩾ 2,

then the LP will be willing to provide as much liquidity as possible—up to their ex-ante

resource constraint. Otherwise, the LP will optimally choose to provide no liquidity. We

summarize this result in the next proposition.

Proposition 3: Optimal Liquidity. The optimal liquidity deposit with π proportion of

uninformed trade and 1 − π proportion of informed trade satisfies
e∗A = EA, e∗B = min

{(
π

(
EUω+EU

1
ω

2

)
+ (1 − π)EIψ

)2
µA
µB
EA,EB

}
, if µAEA ⩽ µBEB

e∗A = min

{(
π

(
EUω+EU

1
ω

2

)
+ (1 − π)EIψ

)2
µB
µA
EB,EA

}
, e∗B = EB, if µAEA > µBEB

if π
(
Eω+ E 1

ω

)
+ (1 − π)2Eψ ⩾ 2 and

e∗A = e∗B = 0

otherwise.

Given optimal liquidity provision, we next explore the optimality of the conventional

wisdom that liquidity providers should deposit portfolios with equal values.

We write Π = π

(
EUω+EU

1
ω

2

)
+ (1 − π)EIψ to represent the LP’s expected profit mar-

gin from liquidity provision. According to Proposition 3, if Π > 1, then the optimal value
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ratio µAe∗A/µBe
∗
B satisfies

µAe
∗
A

µBe
∗
B

=



1
Π2 if EA ⩽ 1

Π2
µB
µA
EB

µAEA
µBEB

if 1
Π2
µB
µA
EB < EA < Π

2 µB
µA
EB

Π2 if Π2 µB
µA
EB ⩽ EA

. (13)

For Π > 1, unless µAEA = µBEB then the optimal deposit ratio is always different from

1. However, Proposition 3 also reveals that as Π → 1 then µAe∗A → µBe
∗
B for all values

of EA,EB. In other words, only when the gains from uninformed trades exactly offset the

losses from informed trades, then it is optimal for the LP to deposit a portfolio with equal

values.

We note that the LP’s expected profit margin Π is increasing in the probability that

trades are uninformed, π. Hence, there is a minimal value π such that Π = 1. We then

have the following Corollary.

Corollary 1: Optimal Value Share. Let π be such that Π = 1 and assume µAEA ̸= µBEB.5

The equal value deposit µAeA = µBeB is optimal only when π = π.

3.4 Break Even Proportion of Uninformed Trading

The threshold π also sheds light on the extent to which liquidity provision is profitable.

The value of π such that Π = 1 depends critically on the distribution of the LT’s beliefs

specified by Hi. Since the term ω + 1
ω is not globally convex in µ̂i, a mean preserving

spread of the LT’s beliefs µ̂i could increase or decrease the threshold π. We instead explore

how the profitability of liquidity provision varies with the distribution of the LT’s beliefs

via a numerical example.

5If the LP happens to be endowed with an equal value portfolio and profits from liquidity provision
are increasing, then she may deposit in equal value simply because she is constrained. We rule out this
uninteresting case with this assumption.
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To simplify the numerical analysis, consider a special case where one token is a stable-

coin whose value (purportedly) does not fluctuate over time such as USDC or Tether.6 We

let token B represent the stable coin and set µ̂B = µB = 1 and hB(µ̂B) = 1 if µ̂B = 1. Then

we have ω = ψ =
√
µ̂A
µA

. We assume µ̂A
µA

is a log-normally distributed random variable

with E[µ̂A/µA] = 1 and Var[µ̂A/µA] = σ2
A. As a benchmark, we impose σ2

A = 0.8 consis-

tent with variation in the daily price of ETH–the native cryptocurrency of the Ethereum

blockchain–over the past five years.7 Around this benchmark, we explore how changes

in the variance of beliefs about ETH prices change the threshold probability for liquid-

ity provision to be profitable, π. We plot how this threshold varies with the variance of

the LT’s beliefs in Figure 4, which shows that increases in variance typically decrease this

threshold. 8 In other words, liquidity provision becomes more profitable (LPs can tolerate

more informed trading) as ETH price risk increases.

4 Efficiency Losses from Constant Product Market Making

In this section we examine how the shape of the AMM pricing function impacts gains to

trade realized by liquidity providers. We focus on the (local) convexity of the CPMM price

function and leave a full mechanism design perspective for future work (see Milionis,

Moallemi and Roughgarden (2023b) for such an approach applied in an environment with

only one risky token and limit pocket for the traders.) Specifically, we consider perturbing

the CPMM price formula and study a class of pricing functions given by

(eA + (1 − τ)qA) (eB − (1 − τ)qB) = eAeB (14)

where τ ∈ [0, 1). Notice that this class of price functions admits the CPMM function when

τ = 0. For values of qi close to zero, an increase in τ reduces the convexity of the price

6In practice, the value of stablecoins do fluctuate at specific points in time, such as when USDC de-
pegged for a short window in April 2023. For our example, we assume liquidity providers and takers
believe the stablecoin peg will hold with certainty.

7Based on the Coinbase ETH index price obtained from fred.stlouis.org.
8We experimented with several other distributional assumptions for µ̂A

µA
and found similar results. De-

tails are available upon request.
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Figure 4: π against variance of µ̂A

function. For larger values of qi, it is possible the price function becomes more convex.

Moreover, for any τ > 0, there exist values of qi such that the implied ex-post portfolio of

the LP would have a negative amount of token A or B so we must impose the boundary

conditions, eA ⩾ qA and eB ⩾ qB. Such boundary conditions also tend to increase the

global convexity of the price function.

We illustrate how an increase in τ impacts the price function locally in Figure 5 below.

The solid curve represents the standard CPMM with τ = 0. Around a given deposit point,

(eA, eB), the dashed curve represents how the CPMM function changes when τ increases.

If we impose the LP’s ex-post token holdings (xA = eA + qA and xB = eB − qB) then

we may re-write (14) as

((1 − τ)xA + τeA) ((1 − τ)xB + τeB) = eAeB. (15)

The price function (14) is convex and smoothly decreasing when x > 0. The convexity of
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Figure 5: CPMM prices with τ = 0 (the solid, orange curve) and with τ > 0 (the dashed,
blue curve).

the function is decreasing in τ. The boundary conditions on qi simply imply xi ⩾ 0.

For a given the realization of the LT’s beliefs, (µ̂A, µ̂B), the LP’s net proceeds from

trade satisfy

x− eA =
1

1 − τ

[√
µ̂B
µ̂A
eAeB − eA

]
, y− eB =

1
1 − τ

[√
µ̂A
µ̂B
eAeB − eB

]
. (16)

Since net proceeds for both tokens scale by the same factor 1/(1 − τ), the LP’s expected

returns also scale by 1
1−τ . Moreover, gains from uninformed trading and losses from

informed trading scale by the same ratio so that the break-even proportion π does not

change with τ. As a result, increased (local) convexity of the CPMM hinders trading

volume and reduces gains to trade for both the LP and the LT.

However, eliminating (global) convexity of the CPMM is not costless. When τ > 0,

equation 15 has finite positive intercepts: (0, 1+τ
τ eB) and (1+τ

τ eA, 0). For such values of τ,

trading volume cannot increase beyond the two intercepts, even for more extreme beliefs

of the LT. Holding the LP’s choice of liquidity fixed, we argue that relaxing the local

convexity of the pricing function may be detrimental to the LP’s ex-ante profits.
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To illustrate this, it is simplest to consider a piece-wise linear approximation to the

convex pricing function that runs through the LP’s (fixed) choice of liquidity deposit.

With piece-wise linear prices, liquidity takers either do not trade or trade up to one of the

intercept points. For example, suppose ph represents the (minus the) slope of the price

function for values of xA between 0 and eA the amount of token A deposited by the LP.

If the beliefs of the LT are more optimistic than ph (so if µ̂A/µA > ph), then the LT will

trade up to the intercept where xA = 0—the LT will buy all of token A in the pool at the

prevailing price, ph. Otherwise, for ph > µ̂A/µA > 1, the LT will not trade.

Consider a marginal increase in ph (in absolute value). Such a change increases the

region of no trade by the LT and thus reduces trading volume on the extensive margin.

Recall that the LP only loses expected value from informed trades (and earns exactly zero

losses on the marginal informed LT who is just indifferent between trading at ph and not

trading). Therefore, decreasing the volume of trade reduces the LP’s expected losses from

informed trading. Among uninformed trades, reducing volume is costly on the extensive

margin, but raising the intercept implies the LP realizes increased gains to trade for all

beliefs where the LT continues to trade. An analogous argument occurs if beliefs of the

LT are sufficiently low so that the LT trades to the point where xB = 0. Consequently, it

is possible that the gains from increasing the global convexity of a piece-wise linear price

function outweigh the costs, implying some degree of convexity is desirable. We show

this result both for piece-wise linear prices as well as for the continuously differentiable

price function in (14) in Appendix B.

If the distribution of the LT’s beliefs has bounded support, then the potential losses

from reduced (global) convexity for extremal beliefs may be limited with an appropriate

choice of τ. In other words, when the LT’s beliefs have bounded support, then there exists

τ > 0 that increases the LP’s expected returns. In fact, we generalize these results beyond

the CPMM formula in the next Proposition (proved in Appendix A).

Proposition 4: Pareto Improvement. Consider a convex and smoothly decreasing price

function y = G(x). Assume the distributions of the LT’s valuations of the tokens (µ̂A, µ̂B)

have bounded support such that a trade that exhausts one token never happens under
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the price function G(x). Then there exists τ = τ̂ ∈ (0, 1) such that the new price function

(1 − τ̂)y+ τ̂eB = G((1 − τ̂) x+ τ̂eA) is less convex at (eA, eB), the LP’s optimal deposit is

the same at τ = τ̂ as at τ = 0, and τ = τ̂ increases both the LP’s and the LT’s expected

returns proportionally by τ
1−τ .

In particular, if G(x) is the CPMM function and if
[
µi,µi

]
is the support of the distri-

bution of µ̂i, then the result of Proposition 4 hold for all τ ⩽ τ̄ = min
{√

µBeB
µAeA

,
√
µAeA
µBeB

}
with τ̄ > 0.

We see that with bounded beliefs, convexity hurts the LP’s expected returns. In fact,

with some additional conditions, the optimal price function for the LP is the linear price

function: plxA + xB = pleA + eB, x ⩾ eA

phxA + xB = pheA + eB, x < eA
(17)

where again ei are the LP’s deposit and xi are the tokens left in the pool after the LT’s

trading. Similar to the results in Milionis, Moallemi and Roughgarden (2023b), we have

the following proposition (proved in Appendix C).

Proposition 5: LP’s Optimal Pricing Function Assume the distributions of the values of

the tokens have bounded support and the LT has a budget limit on at least one token, i.e.

x or y can’t go to infinite. Given the LP’s deposit (eA, eB), the optimal pricing formula is

the linear pricing formula is one of the following conditions is satisfied:

1. All trades are uninformed trading, i.e. π = 1;

2. The LT’s value (µ̂A, µ̂B) follows the same distribution for both informed and unin-

formed trading. And one of the two tokens is a stablecoin. In the case of token A is

stable, it implies µ̂A = µA for sure. Also, there exists some uninformed trading, i.e.

π ̸= 0.
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5 Conclusion

Blockchain technology has spawned a very large variety of cryptocurrency tokens. Given

the large disagreement about their speculative value and heterogeneity about any util-

ity of the tokens, trading the tokens is important. Over the past decade, a large number

of new centralized exchanges have been successful (and unsuccessful) at both generat-

ing large volumes and innovating. The perpetual futures contract is one example of in-

novation (Soska et al. (2021), Christin et al. (2023)). Similarly, Automated Market Mak-

ers (AMM) have innovated trade by designing smart contracts (automated code on the

blockchain) to conduct trade directly on a blockchain.

In this paper, we have explored the key design characteristic of AMM technology,

the pricing curve. Specifically, we look at two aspects related to the pricing curve, G.

First, what is the optimal ratio for deposits? Contrary to conventional AMM wisdom,

depositing tokens in equal value (measured through the lens of the liquidity provider)

is not optimal. Second, we explore the convexity of G and its impact on the liquidity

provider profits. The tradeoff is subtle since convexity impacts the profits from trading

with both informed and uninformed liquidity takers.

There are, of course, several important areas we have left for future research. Our

model treats the G function as given. This, along with the “deep pockets” assumption

for the liquidity takers, means the liquidity provider’s decision can be made in isolation

(i.e., atomistic with respect to liquidity takers). In practice, there are multiple AMM ex-

changes. So, thinking about competition across the design of theG function is interesting.

Second, our model takes a simplified view of the timing of transactions – first, the LP posts

and then the LT trades. Again, in practice, the timing of transactions in a decentralized

blockchain is complicated and potentially strategic.
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A Proof of Optimal Liquidity Provision

LP’s optimal deposit problem is

max
eA,eB

π(µAE[xA − eA] + µBE[xB − eB])+

(1 − π)(Eµ̂A[xA − eA] + µBEµ̂B[xB − eB])

s.t. (5)–(6),

0 ⩽ ei ⩽ Ei, ∀i
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Based on equation (5)–(6), we can write down the post-trade portfolio of the LP as

xA =

√
µ̂B
µ̂A
eAeB, xB =

√
µ̂A
µ̂B
eAeB

Then we can write the post-trade net value gains from each token in the hand of the

LP by depositing as

µA(xA − eA) =

√
µ̂B/µB
µ̂A/µA

µAµBeAeB − µAeA

µB(xB − eB) =

√
µ̂A/µA
µ̂B/µB

µAµBeAeB − µBeB

for uninformed trades and

µ̂A(xA − eA) =

√
µ̂Aµ̂B
µAµB

µAµBeAeB − µ̂AeA

µ̂B(xB − eB) =

√
µ̂Aµ̂B
µAµB

µAµBeAeB − µ̂BeB

for informed trades.

Denoteω =
√
µ̂A/µA
µ̂B/µB

and ψ =
√
µ̂A
µA

µ̂B
µB

. With assumptions that Eµ̂i = µi, LP’s optimal

deposit problem becomes

max
eA,eB

[
π

(
Eω+ E

1
ω

)
+ (1 − π)2Eψ

]
√
µAeA

√
µBeB − µAeA − µBeB

s.t. 0 ⩽ ei ⩽ Ei, ∀i

Further denote Π = π
Eω+E 1

ω
2 + (1 − π)Eψ. We can use the standard Lagrangian method

to solve the above constraint optimization problem. The FOCs are

∂L

∂eA
: µA

(
Π

√
µBeB
µAeA

− 1
)
+ ηA − λA = 0

∂L

∂eB
: µB

(
Π

√
µAeA
µBeB

− 1
)
+ ηB − λB = 0

where ηi is the Lagrangian multiplier for 0 ⩽ ei and λi is the Lagrangian multiplier for
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ei ⩽ Ei.

If Π < 1, the above FOCs only hold when eA = eB = 0. In this case ηi > 0 and λi = 0.

If Π > 1, the solution is always at the corner, i.e. at least one of the λi > 0. To see

this, consider the interior cases where ηi = 0 and λi = 0. For the FOCs to hold, we

need Π
√

µBeB
µAeA

= Π
√
µAeA
µBeB

= 1, which is impossible. Since Π > 1, if one of Π
√

µBeB
µAeA

and Π
√
µAeA
µBeB

equals to 1, then the other one must be bigger than 1. And it needs the

corresponding λi to be positive for the FOCs to hold.

Therefore, we have the following optimal deposit of the LPe
∗
A = EA, e∗B = min

{
Π2 µA

µB
EA,EB

}
, if µAEA ⩽ µBEB

e∗A = min
{
Π2 µB

µA
EB,EA

}
, e∗B = EB, if µAEA > µBEB

if Π > 1 and

e∗A = e∗B = 0

if Π < 1.

B Proof of Pareto Improvement

Let y = G(x) be a convex and smoothly decreasing price function where eB = G(eA).

Consider a uniform stretch of the function around the initial deposit point (eA, eB): (1 −

τ)y + τeB = G((1 − τ)x + τeA) where τ ∈ (0, 1). Then the second order derivatives is
d2y
dx2 = (1− τ)2G ′′((1− τ)x+ τeA). Therefore, the transformation is less convex around the

initial deposit point (eA, eB) as τ increases.

Now we can write the LT’s problem as:

max
eA,eB

µ̂A(eA − x) + µ̂B(eB − y)

s.t. (1 − τ)y+ τeB = G((1 − τ)x+ τeA)
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Assume the distributions of the LT’s values of the tokens (µ̂A, µ̂B) have bounded support

such that a trade that exhausts one token never happens. Then the first order condition

becomes G ′((1 − τ)x+ τeA) = − µ̂A
µ̂B

. Similar to the CPMM case, the LP’s post-trade port-

folio satisfies

(1 − τ)y+ τeB = G((1 − τ)x+ τeA)

G ′((1 − τ)x+ τeA) = −
µ̂A
µ̂B

Let (x0,y0) be the post-trade portfolio for the original function, i.e., when τ = 0. Let

(xτ,yτ) be the portfolio for some τ ∈ (0, 1). Then given µ̂A
µ̂B

, the ex post portfolios satisfies

(1 − τ)xτ + τeA = x0

(1 − τ)yτ + τeA = y0

which can be written as

xτ − eA =
1

1 − τ
(x0 − eA)

yτ − eB =
1

1 − τ
(y0 − eB)

Therefore, the trading volume is proportionally increased by 1 − 1
1−τ = τ

1−τ for every ex

post scenario.

Given the probability of uninformed trading π, the LP’s expected return with the

transformed price function is

Rτ =E[(πµA + (1 − π)µ̂A)(xτ − eA) + (πµB + (1 − π)µ̂B)(yτ − eB)]

=
1

1 − τ
E[(πµA + (1 − π)µ̂A)(x0 − eA) + (πµB + (1 − π)µ̂B)(y0 − eB)]

Since the objective is just scaled up by a constant, the optimal deposit decision (e∗A, e∗B)

shouldn’t change as well.
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C Cost of Convexity

Again let token B represent a stable coin and set µ̂B = µB = 1 and hB(µ̂B) = 1 if µ̂B = 1.

Denote rA = µ̂A/µA. Assume rA follows a distribution with CDF F(rA). For simplicity,

assume µAeA
µBeB

= 1. The results still go through when µAeA
µBeB

equals to some constant other

than 1.

C.1 Piece-wise Linear

Consider the piece-wise linear prices 17. The region of belief where a trade happens with

price ph is when rA ⩾ ph. From the LP’s perspective, the trading volume in this region

is −eA for token A and pheA for token B. The expected return of the LP from uninformed

trading is ∫∞
ph

(ph − 1)dF(rA)µAeA

with derivative as [1− F(ph)− (ph− 1)f(ph)]µAeA. The first term represents the increased

gains to trade for all beliefs where the LT continues to trade. The second term represents

the reduced trading volume on the margin.

On the other hand, the expected return (negative) of the LP from informed trading is∫∞
ph

(ph − rA)dF(rA)µAeA

with derivative as (1 − F(ph))µAeA. Since on the marginal informed LT is just indifferent

between trading and not, the second term in the case of uninformed trades is not here.

Given the proportion of uninformed trades π, the marginal benefits of increasing ph

(increasing convexity) is

[1 − F(ph) − π(ph − 1)f(ph)]µAeA

which has finite number of roots. It implies that some degree of convexity is desirable.
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C.2 Continuously Differentiable Price

Now consider the continuously differentiable price function in 15. Similarly, the region of

belief where a trade happens with price ph is when rA ⩾ 1
τ2 . From the LP’s perspective,

the trading volume in this region is −eA for token A and 1
τeB for token B. Denote c = 1

τ ∈

(1,∞). So, increasing c increases the local convexity. The expected return of the LP from

uninformed trading is ∫∞
c2
(c− 1)dF(rA)µAeA

with derivative as [1 − F(c2) − (c− 1)f(c2)]µAeA. Again the first term represents the in-

creased gains to trade for all beliefs where the LT continues to trade. The second term

represents the reduced trading volume on the margin.

On the other hand, the expected return (negative) of the LP from informed trading is∫∞
c2
(c− rA)dF(rA)µAeA

with derivative as [1 − F(c2) + c(c− 1)f(c2)]µAeA. Since c > 1 there is an additional gain

for the LP from reducing the trading volume further.

Given the proportion of uninformed trades π, the marginal benefits of increasing ph

(increasing convexity) is

[1 − F(c2) + (c− 1)((1 − π)c− π)f(c2)]µAeA

which is always positive for c ⩾ π
1−π . In these cases, increasing (local) convexity is always

beneficial for trades induced by extremal beliefs. However, it reduces the trading volume

and the returns from mild beliefs.

D Proof of Optimal Pricing Function

We can consider the optimal design problem as the LP post the ending position of the

pool given the new valuation of the LT (µ̂A, µ̂B) such that the LT is willing to participate
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(Individual Rational) and truthfully report the values (Incentive Compatible).

Assume the LT’s value (µ̂A, µ̂B) follows the same distribution for both informed and

uninformed trading. Also, assume the LT has at most lB token B to trade in.

Let tA = eA − x and tB = eB − y be the net amount of token the LP loses by trading.

With the percentage of uninformed trading π, the problem can be written as:

max
x,y

E{µ̂A,µ̂B} [− (πµA + (1 − π) µ̂A) tA (µ̂A, µ̂B) − (πµB + (1 − π) µ̂B) tB (µ̂A, µ̂B)]

s.t. µ̂AtA (µ̂A, µ̂B) + µ̂BtB (µ̂A, µ̂B) ⩾ µ̂AtA
(
µ̂ ′
A, µ̂ ′

B

)
+ µ̂BtB

(
µ̂ ′
A, µ̂ ′

B

)
µ̂AtA (µ̂A, µ̂B) + µ̂BtB (µ̂A, µ̂B) ⩾ 0

tA (µ̂A, µ̂B) ⩽ eA, −lB ⩽ tB (µ̂A, µ̂B) ⩽ eB

Since only p = µ̂B
µ̂A

eB
eA

matters in the constraints, the problem can be written as

max
tA,tB

Ep

[(
−
tA (p)

eA
−

(πµB + (1 − π) µ̂B)

(πµA + (1 − π) µ̂A)

eB
eA

tB (p)

eB

)
(πµA + (1 − π) µ̂A)

]
eA

s.t.
tA (p)

eA
+ p

tB (p)

eB
⩾
tB (p̂)

eB
+ p

tB (p̂)

eB
tA (p)

eA
+ p

tB (p)

eB
⩾ 0

tA (p)

eA
⩽ 1, −

lB
eB

⩽
tB (p)

eB
⩽ 1

Under one of the two conditions, i.e. π = 0 or µ̂A = µA for sure, we know πµA +

(1 − π) µ̂A is a constant. So the objective can be simplified. Let −
tA(p)
eA

+ 1 = y (p),
tB(p)
eB

= x (p) and (πµB+(1−π)µ̂B)
(πµA+(1−π)µ̂A)

eB
eA

= π (p0,p). The problem then has the same expres-

sion as Milionis, Moallemi and Roughgarden (2023b).

max
x,y

Ep [y (p) − π (p0,p) x (p)]

s.t. px (p) − y (p) ⩾ px (p̂) − y (p̂)

px (p) − y (p) ⩾ 0

y (p) ⩾ 0, −c ⩽ x (p) ⩽ 1

33


	Introduction
	Model
	One-Period Model
	The Liquidity Taker's Problem
	The Liquidity Provider's Problem

	Equilibrium AMM Liquidity Provision
	Liquidity Provision with Uninformed Trade Only
	Liquidity Provision with Informed Trade Only
	Liquidity Provision with Uninformed and Informed Trading
	Break Even Proportion of Uninformed Trading

	Efficiency Losses from Constant Product Market Making
	Conclusion
	Proof of Optimal Liquidity Provision
	Proof of Pareto Improvement
	Cost of Convexity
	Piece-wise Linear
	Continuously Differentiable Price

	Proof of Optimal Pricing Function

