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Abstract

In the face of rising climate risk, financial institutions may adapt by transferring such risk to
securitizers that have the skill and expertise to build diversified pools, such as Mortgage-Backed
Securities. In diversified pools, exposure to climate risk may be a drop in the ocean of cash
flows. This paper builds a data set of the entire securitization chain from mortgage-level to MBS
deal-level cash flows, and observes the prices of the tranches at monthly frequency. Wildfires
lead to higher rates of prepayment and foreclosure at the mortgage level, and larger losses during
foreclosure sales. At the MBS deal level, a lower spatial concentration of dollar balances (lower
spatial dollar Herfindahl), a lower spatial correlation in wildfire events (within-deal correlation),
leads to a lower exposure to wildfire events. These quantifiable metrics of diversification identify
those existing deals whose design makes them resilient to climate change. This paper builds
optimal deals by finding the portfolio weights in an asset demand system that targets return and
risk. Extrapolating wildfire risk using a granular wildfire probability model and temperature
projections in 2050, we build climate resilient MBSs whose returns are minimally impacted by
wildfire risk even as they supply mortgage credit to wildfire prone areas. Finally, we test whether
the market prices the sensitivity of each deal’s cash flow to wildfire risk.
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1 Introduction

Financial institutions face a range of physical and transition risks linked to climate change in their

portfolios. In particular, the $13 trillion mortgage finance industry faces new location-based natural

disaster risks as climate change increases risks from extreme heat, drought, and extreme rainfall.

Some areas face more wildfire risks while others face more flood risk. A growing new literature

estimates the impact of natural disasters such as wildfires and hurricanes on cash flows and prices.1

Authors have assessed whether disaster risk could lead to a new systemic risk factor (Jung, Engle &

Berner 2021). Yet, whether these place based risks pose default risks remains an empirical question.

Lenders indeed have several adaptation strategies. First, they can retreat from areas they deem

to be increasingly risky (Álvarez-Román, Mayordomo, Vergara-Alert & Vives 2024, Kim, Olson

& Phan 2023). Second, they can demand that borrowers hold su�cient insurance to cover the

remaining balance of the mortgage.2 Third, they can charge higher interest rates and structure the

mortgage’s interest rate to reflect risk o↵setting investments made by the home owner (Nguyen,

Ongena, Qi & Sila 2022, Sastry 2022, Bakkensen, Phan & Wong 2023). Fourth, they can securitize

the loans (Buchak, Matvos, Piskorski & Seru 2024).

In our recent research (Ouazad & Kahn 2022), we have explored the behavior of major lenders

before and after major disasters and have documented evidence that lenders move such loans o↵ of

their books.

One potential interpretation of this finding is that this represents adverse selection. Yet, an

alternative hypothesis for why lenders who make loans in areas experiencing disaster risks increase

their securitization rates is due to comparative advantage and gains to trade. The buyers of the

loans (the securitizers) may have an edge in bundling spatially dispersed loans to create high

return/low risk assets. Given the potential benefits of such financial technology, whether the cash

flows of individual mortgages have significant impacts on financial institutions’ balance sheets is an

1See Gallagher & Hartley (2017), Kousky, Palim & Pan (2020), Issler, Stanton, Vergara-Alert & Wallace (2020),
Holtermans, Kahn & Kok (2023), Biswas, Hossain & Zink (2023), Ho, Huynh, Jacho-Chávez & Vallée (2023), An,
Gabriel & Tzur-Ilan (2023), Addoum, Eichholtz, Steiner & Yönder (2023).

2For a discussion of flood insurance take up, see Kousky et al. (2020). For a discussion of frictions in flood
insurance pricing, see Sen & Tenekedjieva (2021). For the unintended consequences of mandatory flood insurance,
see Blickle & Santos (2022).
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empirical question.

In this paper, we study every step in the securitization chain as we explore whether mortgage

securitization facilitates natural disaster risk adaptation. From mortgage-level performance to pools

and deals’ cash flows at monthly frequency, this paper’s data sheds light on the pooling and pricing

of risk along the securitization chain. The paper matches pools to their corresponding tranche

prices using hand-collected data to estimate whether the risk is priced by financial markets.

First, the paper establishes key facts on the impact of wildfires on mortgage performance, using

mortgage-level and monthly data on principal and interest payments, prepayments and foreclosures,

as well as recorded losses.

Second, moving from mortgage-level econometric specifications to deal-level specifications, the

paper estimates the potential impact of multiple correlated wildfires on the cash flows of MBS

deals. Such impact crucially depends on quantifiable metrics of spatial diversification: (1) the

within MBS-deal spatial correlation, i.e. the probability that wildfires occur in di↵erent geographic

parts of the MBS deal; (2) a dollar Herfindahl index of the spatial concentration of dollars; (3) the

number of 5-digit ZIP codes of the deal and the size of the deal. MBS deals are very heterogeneous

in their levels of spatial correlation and concentration, giving us an opportunity to estimate the

variety of impacts wildfires on deals depending on their structure.

Third, the paper shows that building an MBS deal with a given exposure to wildfire risk is

akin to building a Koijen & Yogo (2019) demand system where the weights are chosen to target

moments of the MBS deal cash flows.3 The paper provides a key result: ways to choose the

location of mortgages in a Mortgage-Backed Security to build climate-resilient pools. A pool can

be diversified in a way that makes its returns resilient to rising global temperatures while providing

mortgage credit to wildfire-exposed areas. The Sharpe ratio-maximizing deal features economically

significant exposure to wildfire risk. Finally, the paper matches tranche prices to MBS deal cash

flows to assess whether physical climate risk exposure is priced, using a 2-step Fama & MacBeth

(1973) approach.

3The ZIP-level cash flows are built using an approach close to Chernov, Dunn & Longsta↵ (2018) and Boyarchenko,
Fuster & Lucca (2019), adding spatially correlated wildfire shocks that cause prepayments and defaults. Our Sharpe
ratios are similar to these papers.
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The paper focuses on the Private-Label Residential Mortgage Backed Securities (RMBS) mar-

ket, studying $1.7 trillions of originations and more than 300,000 mortgages. The benefit of the

private-label RMBS data is that, since reforms of the market in the aftermath of the great finan-

cial crisis (Levitin, Pavlov & Wachter 2012), data transparency allows researchers and investors

alike to observe the 5-digit ZIP code location of the real estate collateral of those mortgage loans.

The tranches of such pools are also frequently priced by financial markets. This provides with a

large laboratory of natural experiments, where we can trace out the impact of natural disasters on

cash flows and prices. By observing the variety of pooling structures across sponsors, we can test

whether more or less diversified deal respond less or more to shocks to parts of each deal.

Estimating the impact of wildfires on mortgage performance requires a control group with sim-

ilar wildfire probabilities. This paper builds a local wildfire propensity score that predicts the

occurrence of wildfires at monthly frequency with a high fit (type I and type II)4. The wildfire

propensity score is built using high-quality data collected by multiple federal agencies and our

methodology is freely replicable: it uses pre-sample local average temperatures, in-sample local ab-

normal temperatures, local drought indices of the US Department of Agriculture, land cover data to

identify forested and developed areas at the Urban Wildland Interface, electric grid infrastructure,

and the road network.

The impact of wildfires on mortgage performance is estimated by carefully constructing a lon-

gitudinal panel of control and treatment mortgages with similar wildfire propensities, and by con-

ditioning on the evolution of local amenities. As such, by controlling for local ⇥ year-month fixed

e↵ects, and by controlling for mortgage fixed e↵ects, the identification compares the change in

the mortgage performance in mortgages in 5-digit ZIP codes a↵ected by wildfires vs those not af-

fected by wildfires, within the same county in the same year-month, and weighted by the ZIP-level

Wildfire Propensity Score. Double-clustered standard errors by mortgage and year-month suggest

significant impacts on the probability of prepayment and foreclosure in the immediate months fol-

lowing the event, and lasting for at least 12 months following the event. The impact of wildfires

on foreclosure and prepayment holds across wildfires in California and the rest of the US and for

4Measured using the ROC curve of the ZIP ⇥ month logistic regression.
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both first wildfires (except on foreclosure) and repeated wildfires. Evidence suggests that a smaller

share of the unpaid principal balance is recovered in case of a foreclosure caused by a wildfire vs.

a foreclosure caused by other types of events. In the aftermath of wildfires, lenders adapt their

underwriting standards: new originations tend to have higher interest rates and lower loan-to-value

ratios.

We then move from the individual mortgage-level analysis to the MBS deal-level analysis. An

MBS’ propensity to be hit by a wildfire is the average, across the geographic locations of the MBS,

of the Wildfire Propensity Score, weighted by the dollars of unpaid principal balance. The MBS

Propensity Score is a good predictor of the average propensity of a dollar of unpaid principal

balance to be a↵ected by a wildfire. Yet, this average remains typically low. Empirically significant

events occur when an MBS experiences a tail event : when wildfires occur at the same time in

di↵erent locations, and when dollar originations are concentrated in a few locations. An MBS deal

may also be repeatedly exposed over multiple months, hence the total variance depends on the

autocorrelation, i.e. probability of repeated hits.

To measure the propensity for tail events, we decompose the variance of an MBS deal’s wildfire

exposure into three terms: (1) a spatial correlation term, which does not vanish as the number

of mortgages in the pool increases; pooling mortgages with correlated risks does not lower the

variance of wildfire risk. (2) a Herfindahl term of the concentration of dollar originations across

ZIPs, which measures how evenly (low Herfindahl) or unevenly (high Herfindahl) distributed these

dollar originations are. Finally, (3) the time series autocorrelation of wildfire events plays a role

when assessing the variance over time spans of multiple months. These three measures also lead

to a more negative skewness and a higher kurtosis (thick tails) of the share of an MBS exposed to

wildfires.

Econometric analysis suggests indeed that MBS deals with a high spatial correlation, a high

spatial Herfindahl index, a lower number of 5-digit ZIP codes are more likely to see a large share

of their unpaid principal balance exposed to wildfires in a given month. Larger originators tend to

have a greater ability to diversify spatial risk. For them the within deal spatial correlation is close

to the nationwide spatial correlation.
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The impact of wildfires on MBS deals is identified by focusing on events where more than 5% of

the unpaid principal balance of a deal is a↵ected. The frequency of these events has increased over

time. The econometric specification focuses on a �9 months to +36 months time window around

each such event, and controls for deal and year-month fixed e↵ects. MBS deals with more than 2%

or 5% of their unpaid principal balance in locations a↵ected by wildfires tend to experience strictly

positive losses in the months following a wildfire.

These results suggest a blueprint for MBS sponsors that wish to design MBS deals that have a

given exposure to wildfire risks. This problem is akin to building a portfolio of mortgages, similar to

a Koijen & Yogo (2019) asset demand system. In such an approach, the share of dollars originated

in each 5-digit ZIP codes is determined by a McFadden (1974) probabilistic model where the share

is pinned down by the Wildfire Propensity Score, and a vector of covariates including household

income, FICO score, and other borrower and mortgage characteristics. The coe�cients of such

asset demand system can be chosen to target specific moments of the returns of MBSs: expected

return, standard deviation, skewness and kurtosis of returns.5

An MBS deal that targets the Sharpe ratio will have a strictly positive volume of originations

in areas with high wildfire propensity scores. Such MBS deal will also have negatively skewed cash

flows, as wildfires may cause foreclosures and losses.

While the specific choice of the portfolio depends on the preferences of the investor, optimization

exercises run in this paper suggest that investors face a trade-o↵: areas exposed to wildfires tend

to have lower baseline prepayment rates and higher interest rates. The Sharpe ratio-maximizing

portfolio has a non-trivial exposure to wildfire-prone areas. As temperatures increase, Sharpe ratio-

maximizing deals load on wildfire-exposed areas with higher household incomes and higher FICO

scores.

The final part of the paper focuses on the market pricing of wildfire risk. The price of MBS

tranches reflects investors’ expectations about the forward-looking exposure to risk. Such expec-

tations may di↵er from historical data analyzed so far in the paper, as in Ouazad (2022).6 This

5Of course, if there is a large amount of originations in a location, this will a↵ect the types of mortgages originated,
including their rate. The model can be extended to allow for a supply elasticity. This is akin to estimating the demand
(by MBS sponsors) and the supply of mortgages (by lenders) as in Berry, Levinsohn & Pakes (1995).

6Cf. Mendelsohn, Nordhaus & Shaw (1994), where the hedonic pricing of climate change on farm values reflects
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paper’s main hypothesis – the benefits of pooling for MBS cash flows – does not hinge on the pricing

of risk, but rather this section tests whether the market prices the MBS cash flows’ wildfire risk

exposure. Tranche-level price data at monthly frequency was collected using the Bloomberg Data

Service. Each tranche of each deal is sorted by its seniority. We first estimate the sensitivity of

each deal’s cash flow to (i) the wildfire propensity score, (ii) the term structure of interest rates.

An extensive literature has measured the pricing of interest rate risk (Chernov et al. 2018, Bo-

yarchenko et al. 2019, Fabozzi, Bhattacharya & Berliner 2011, Fabozzi 2016), and this paper aims

at measuring the possible pricing of wildfire risk over and above the pricing of interest rate risk.

We show that there is a distribution of betas of cash flows with respect to the wildfire propensity

score. While the paper’s previous analysis showed the average impact, this part estimates the

heterogeneity in deals’ responses, as homeowners’ insurance coverage and the resilience of housing

structures di↵er across locations.

This is the first step of a Fama & MacBeth (1973) pricing regression. The second step is to

perform cross-sectional regressions for each month. We first show that the price (level) of MBS

deals exposed to wildfire risk (significant beta) is lower. The discount is larger for more junior

tranches, consistent with the structure of tranche cash flows. We then show that the prices adjust

more for senior tranches, while price changes are not significant for junior tranches. This suggests

that the repricing of risk is more significant for senior tranches, typically ex-ante safer than junior

tranches. While the point estimates are suggestive of an impact, the e↵ects are robust in only 15

out of 20 di↵erent specifications. While there is a possible signal, it may take more time for the

market to price this risk as it increases. These findings are suggestive of an awareness of the risk

on cash flows. These suggestive results are consistent with our analysis of the full text of MBS

prospectuses dating to as early as 2007 suggesting that investors and sponsors are aware of wildfire

risk exposure and climate risk more generally. It also suggests that investors’ marginal utility

and stochastic discount factors are correlated with wildfire risk. This may be consistent with the

literature on MBSs (Gabaix, Krishnamurthy & Vigneron 2007) suggesting that the MBS market is

segmented and traded by specialized financial institutions.

a more optimistic belief in forward-looking cash flows than what production functions suggest.

7



There is considerable literature on the methodological issues surrounding Fama MacBeth es-

timates. Unlike equity, the tranches of MBS deals present unique econometric questions as they

trade over di↵erent time periods and amortize. Estimates of the average risk premium correct for

Newey & West’s (1994) autocorrelation.

This paper contributes to at least four distinct literatures. First, this paper contributes to the

literature highlighting the rise of non-bank lenders and the rise of securitization. As the majority of

mortgages are originated and distributed, the securitization technology provides a “value-added”

that enhances the risk profile of MBSs. Such securitization technology, when guided by the tools

described in this paper (spatial correlation, Herfindahl of dollar originations, autocorrelation of

risk), provides cash flows with lower variance compared a single undiversified 100 dollars of notional.

This paper builds on the insights of Buchak, Matvos, Piskorski & Seru (2023a), Buchak, Matvos,

Piskorski & Seru (2023b), and Buchak et al. (2024). The flat and horizontal view of lenders’ balance

sheet is indeed incomplete as mortgage lenders are part of a financial network and the cash flows

of individual mortgages are increasingly securitized into larger pools.

Second, the takeaways of this paper should be relevant for a broad range of financial participants

developing tools to adapt to climate risk. This includes financial participants optimizing the pooling

of cash flows of Insurance Linked Securities (ILSs), and of Credit Risk Transfers (CRTs). Davidson

& Levin (2014) suggests that the spatial diversification of pools is an important metric when dealing

with unemployment rates, fluctuations in household income, and changes in household structure

triggering mobility and thus prepayment. The current paper provides an analytical framework to

design MBS pools using a quadratic problem of risk-return optimization, building on recent seminal

papers of asset demand systems. Such asset demand systems could be designed for ILSs.

Third, this paper is complementary to the literature suggesting that natural disaster risk leads

to more skin in the game for borrowers. One of the possible adaptation responses of financial

institutions at the mortgage level is to require a higher downpayment and more equity (Sastry 2022)

for new mortgage originations. This is likely to reduce moral hazard, which alleviates concerns

about bad informational equilibria that prevent risk pooling. Equity is thus likely a complement

rather than a substitute to pooling for the securitization of cash flows.
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Fourth, this paper contributes to the literature on the impact of climate change (Kahn, Mohad-

des, Ng, Pesaran, Raissi & Yang 2021), here focusing on security cash flow and pricing. Wildfire-

prone areas of our sample experience statistically significant local temperature increases and in-

creases in the drought index. This paper collects temperature data from 29 models of the Coupled

Model Intercomparison Project Phase 6 (CMIP6). These models were part of the 6th assessment

report of the Intergovernmental Panel on Climate Change. We use such forecasts to predict local

wildfire probabilities using the coe�cients of our wildfire propensity score model. Temperature is

a key driver of wildfire propensity scores. This paper provides financial adaptation tools to change

the design of MBSs to adapt to the forward-looking challenge of global warming. In highlighting

the benefits of pooling cash flows across locations with heterogeneous risk levels, this paper is the

financial counterpart to an important literature in international trade highlighting the impact of

rising correlations (Dingel, Meng & Hsiang 2019). In the world of Mortgage-Backed Securities with

no Krugman (1991) iceberg cost, the pooling of risk provides significant diversification benefits.

This paper should be useful to policymakers and practitioners. For policymakers, this paper

suggests that the benefits of the securitization technology may lead to more valuable securities.

Further work may reveal that a significant share of agency MBSs are well-diversified across the

nation, as they report a breakdown of dollar originations across a significant number of states.

One potential approach to studying Agency MBSs would be to study the spread between To Be

Announced (TBA) transactions, where the contents of the pool cannot be observed by the investor,

and Specified Pool (SP) transactions; analysis of such spread was performed by Fusari, Li, Liu &

Song (2022) in a di↵erent context. The correlation between such spread and major events such as

Hurricanes Katrina, Sandy, and Harvey may be a fruitful area for research.

This paper’s implications for the pooling of cash flows may help in the design of Credit Risk

Transfers, which transfer credit risk traditionally held by the Government Sponsored Enterprises

back to private sector investors. For practitioners, this paper suggests a systematic portfolio-

building approach specific to fixed income securities for the pooling of climate risk. Natural disaster

risk measures such as the wildfire propensity score built in this paper with low false positive rates

and false negative rates, can be used to forecast risk with open source and replicable data.
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This paper is structured as follows. Section 2.1 presents the private-label RMBS data and the

Bloomberg tranche pricing data. Section 2.2 matches local temperature data from the PRISM

Climate Group, local drought data from the US Department of Agriculture, as well as USGS and

DoT data to build a wildfire propensity score. Section 3 estimates the impact of wildfire events on

individual mortgage cash flows. Section 4 analyzes the structure of MBS deals, and derives the key

spatial diversification metrics. It estimates the impact of individual wildfire events on MBS deals’

performance and balance. Section 5 then uses the results of Section 3 to build counterfactual deals

with a set of targeted moments of cash flows. The weights of each location in the MBS deal are

from an asset demand system. Section 6 then turns to tranche pricing data at monthly frequency,

and performs a two-step Fama & MacBeth (1973) approach to measure whether a wildfire risk

premium is significant.

2 Data Sources: Cash Flows and Wildfire Risk Propensity

This papers builds a data stack with: (i) individual mortgage cash flows, where the collateral is

geolocated, (ii) pool- and deal-level cash flows by aggregating the cash flows of individual mortgages,

and (iii) tranche-level prices. To estimate the impact of climate risk on (i), (ii), and (iii), we also

need data on local natural disaster risk probabilities and occurrence.

2.1 Data and Institutional Details: The Private-Label MBS Market

Information on private-label RMBS is obtained using three sources. First, we use mortgage orig-

ination data from Corelogic’s Non-Agency RMBS data set. The Master file includes information

about the creditworthiness of the applicant (FICO score), the characteristics of the mortgage (LTV,

origination date, maturity, origination amount, closing balance, interest rate at closing, 5-digit ZIP

Code of the house, state), and characteristics of the originator and servicer. The non-Agency RMBS

origination records contain identifiers for the pool ID and the deal ID. This enables us to link a

mortgage to its pool, deal, and then later tranche using the third source of data.

Second, a series of monthly files with payment history for each month between March 1992

and February 2021, with a unique loan identifier for longitudinal analysis, the current balance, the
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current rate, the scheduled principal payment, the Mortgage Bankers’ Association performance code

(C=Current, 3=30 days delinquent, 6=60 days delinquent, 9=90 days delinquent, F=Foreclosure,

R=Real Estate Owned, 0=Paid O↵, X=Missing), and the loss amount, when appropriate. No losses

occur until the loan is disposed of, when the balance goes to zero due to default and liquidation.

Thus, the time at which the loss is recorded may be later than the time of default.

Third, the prices of MBS tranches were hand-collected using the Bloomberg Data Service (BDS)

API calls at daily frequency. Corelogic deal identifiers were matched to Bloomberg identifiers using

the Bloomberg-Corelogic crosswalk, linking deals to the Bloomberg IDs (BBGID) of the set of

traded tranches of the deal. For each BBGID, calls to the BDS API were made to recover the

longest possible time series of the last traded price PX LAST, the bid and the ask, the last update,

and the CUSIPs. We check for the liquidity and the quality of the price data by considering 1)

the number of deals for which price information is available, 2) the number of months for which

the price can be unavailable, i.e. potential gaps in pricing, 3) the number of changes in price from

month to month. These statistics are reported in Section 6.3.

2.2 Measuring Physical Disaster Risk at the ZIP Level

We aim to understand how climate risk a↵ects MBS deal cah flows and pricing of these bonds. We

particularly focus on wildfires, which are di↵erent from hurricanes as hurricanes are more repeated

climate events seasonally. On the other hand, wildfire is a one-time event for a specific location

or property in our case having a more exogenous nature than hurricanes or flooding. Additionally,

wildfires have become a more severe and dispersed climate event with increasing frequency across

di↵erent geographies. In Figure 1, we show the annual surface area, housing units, and housing

value being exposed across the US. In general, we observe an increasing occurrences of wildfires

based on all three measures.

[Figure 1 about here.]

Since occurrences of wildfires are increasing, we might also observe wildfires across di↵erent

locations, more specifically ZIPs in our case, at the same time. Figure 2 presents the spatial
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correlation across 5-digit ZIP codes in wildfire occurrence using a yearly time window between t-2

and t+2. We see a similar increasing trend in the spacial correlation using surface, housing units,

and housing value. Figures 1 and 2 reflect that not only the frequency of occurrences of wildfires

is increasing but also the spatial correlation across ZIP codes is going up.

[Figure 2 about here.]

We connect the finance literature to the natural disaster risk literature by building wildfire

propensity measures (probabilities) that serve three purposes: (a) as a way to build control groups

of mortgages and MBS deals with similar dollar weighted wildfire propensity scores, (b) as pricing

factors that can be included in a Fama MacBeth analysis, and (c) as a way to relate global climate

change projections to the ZIP-level probability of wildfires over time.

A Granular Wildfire Propensity Index

Our methodology centers on climate and geographical factors for estimating the probability of

wildfires. To acquire historical records and perimeters, we utilize the National Interagency Fire

Center’s database of wildfires.7 Our dataset comprises GeoMAC data for wildfires before 2014 and

WFIGS data thereafter. These projects are complementary, with WFIGS continuing the GeoMAC

database. The final wildfire dataset provides monthly observations at the ZIP-code level, including

the area a↵ected by each wildfire, obtained by merging with ZIP code maps. For geographical

information and roads, we use US Census TIGER/Line Shapefiles.8

To predict wildfire propensities, we consider the share of developed and forest areas within a

ZIP code, limiting our sample to ZIP codes with at least some forest area. Data on developed and

forested areas come from the National Land Cover Database, available at the ZIP-code level from

2001 to 2021. We calculate the share of developed and forested areas and merge these shapefiles

with ZIP code shapefiles. Additionally, we compute the length of (above-ground) electricity and

road lines in a ZIP code, under the assumption that electricity lines could facilitate wildfires, while

7For detailed datasets, please refer to https://data-nifc.opendata.arcgis.com/datasets/
wildland-fire-incident-locations/about and https://data-nifc.opendata.arcgis.com/datasets/nifc::
wfigs-interagency-fire-perimeters/about.

8For more details, please visit https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.
html.
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roads may impede their spread. Electricity lines data are obtained from Homeland Infrastructure

Foundation-Level Data.9

Temperature data are sourced from PRISM Climate Data.10 We employ two temperature

measures: the mean of monthly temperatures in a ZIP code until 2000, i.e. before the start of the

sample, used as a fixed mean temperature in regressions from 2001 onward, capturing the overall

temperature characteristic; and abnormal temperature, deviated from the mean temperature in

a ZIP code. Monthly drought index, another predictor for wildfires, are obtained from ... and

matched with ZIP-code shapefiles to have monthly drought indices for each ZIP code.

After merging all datasets, we run the following logistic regression of the wildfire indicator which

gets one if there is a wildfire in a ZIP code from 2001 to 2021:

log

✓
P (Wildfireit = 1)

1� P (Wildfireit = 1)

◆
= �0 + �1Pre-Sample Average Temperaturei

+�2Abnormal Temperatureit + �3 log(Drought)it

+�4Forest Shareit + �5Developed Shareit

+�6Electricity Linesit + �7Road Lengthit

+�8 log(ZIP Code Area)it +Montht + Locationz + ✏i,t (1)

where Montht is a year-month fixed e↵ect and Locationz is either a state or CBSA fixed e↵ect.

Regression results are detailed in Table 1. All regressions except regression (1) incorporate

state, year and month fixed e↵ects. In regression (1), we do not use any fixed e↵ects to increase

the number of observation in the logistic regression. Instead of fixed e↵ects, we use the number

of past wildfires in the state of the collateral property to capture the impact of unobservable

wildfire determinants. In regressions (1) to (3), time fixed e↵ects capture unobservable monthly

factors influencing wildfire likelihood, while location fixed e↵ects account for time-invariant, local

geographic factors. The natural logarithm of the ZIP code area, a significant contributor to wildfire

probability, is controlled for in all regressions. Our main specification considers wildfires a↵ecting

9For more details, please visit https://hifld-geoplatform.opendata.arcgis.com/datasets/geoplatform::
transmission-lines/explore.

10For more details, please visit https://prism.oregonstate.edu/.
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over 10% of the ZIP code area, ensuring a clean control group. Alternative specifications using 5%

and 15% thresholds are presented in the Online Appendix.

[Table 1 about here.]

Across all regressions, mean temperature, abnormal temperature, and drought index consis-

tently increase the likelihood of wildfires. Forest share significantly increases wildfire probability

applied alone or when interacted with drought in regressions (1), (3), and (4), indicating an in-

creased wildfire probability with higher levels of drought. Regressions (1) and (4) introduces con-

trols for developed share, electricity lines, and road length. Larger developed areas decrease wildfire

probability significantly (1% level), while longer electricity lines increase it (10% level). Road length

decreases wildfire probability in regression (1), potentially due to blocking the spread of wildfires.

The number of state-level past wildfires also increase the wildfire probability in regression (1).

From each column of Table 1, we derive wildfire propensity scores (PS0 to PS3) to be used

for deal-level analysis. Locations with no wildfires are dropped, and their probability is considered

zero. Propensity scores also serve as weights in mortgage-level analysis, with PS3 from regression

(3) specifically used.

Wildfire propensity regressions are integral to mortgage- and deal-level analyses. In the ab-

sence of an adjusted R-squared in logistic regression, we estimate Receiver Operating Character-

istic (ROC) curves. These curves illustrate the tradeo↵ between true positive and false negative

outcomes. In Table 1, in-sample ROCs range from approximately 0.97 to 0.98, indicating strong

model performance. Out-of-sample ROCs for 2020 and 2021 from the regression that is run until

2019 with the same control variables as in regression (3) without and with fixed e↵ects are more

than 0.98 and 0.95, respectively. These strong ROCs a�rm the model’s robust predictive ability

as presented in Figure 3.

[Figure 3 about here.]
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Evolution of Wildfire Propensity Scores Over the Last Two Decades

An extensive attribution literature studies the potential causal link between anthropogenic climate

change and the occurrence of local natural disasters. Here we illustrate the evolution of the key

parameters of the Wildfire Propensity Score, temperature and drought, and their correlation with

global temperatures as measured by the Global Mean Surface Temperature (GMST).

Figure A presents two maps of the average annual change in temperature at the 5-digit ZIP

code level (upper panel) and the average annual change in the USDA drought index (lower panel).

The temperature map suggests increases in temperature in southwest, the northwest, and the

Atlantic coast, including Florida. Although parts of the coterminous US experience temperature

declines, the average and median temperature increases are positive and statistically significant.

Hypothesis tests using the standard errors of an OLS t-stat and using the standard errors of a

quantile regression on the constant suggest statistically significant increases. The time period is

2000-2022 and the unit of analysis is the 5-digit ZIP code (ZCTA5). The average annual increase

is +0.01 degree Celsius significant at 99%. The median increases by +0.04 per year, significant at

99%. Extremes experience larger changes: the 90th percentile of annual changes is +1.03 degree

Celsius, significant at 99%. The lower end of the distribution experiences changes as well.

The lower panel of Appendix Figure A suggests that the wildfire-prone areas of the southwest

and the northwest also experienced positive average annual changes in the drought index. In

contrast, the southeast of the U.S., including Alabama, Mississippi and the Florida panhandle

experienced declines in the drought index. It is interesting to notice that, consistent with the map

of wildfire perimeters, southwest Florida experienced both a positive annual temperature and a

positive increase in the drought index. This is correlated with the occurrence of wildfires reported

in GeoMAC data.

Indeed, while nationwide data suggest that trends in drought and temperature can be het-

erogeneous, wildfire-prone states display a rise in drought and extreme temperatures. Appendix

Figure B displays the average USDA DSCI drought index and the 90th percentile for California

and Nevada. In both cases, the increase in the frequency of wildfires since 2014 coincides with the

increase in the drought index and in P90 temperatures. These charts are consistent with the more
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formal analysis using the propensity score estimated using a logit approach at the beginning of this

section.

3 The Impact of Wildfires on Individual Mortgage Cash Flows

After constructing a predictive model for wildfire propensities, our focus shifts to analyzing mortgage-

level cash flows. We aim to explore how wildfires a↵ect mortgage cash flows, specifically examining

the likelihood of foreclosure, prepayment, and losses after foreclosure. To achieve this, we employ

an event study design.

3.1 Mortgage-Level Data and Model Design

We source mortgage cash flow and characteristic information from CoreLogic. Our sample comprises

mortgages securitized in non-agency MBS deals, allowing us to monitor the monthly performance,

characteristics, and locations of individual mortgages. Given that our wildfire data are organized

by ZIP codes, we merge this information with the monthly mortgage performance data for each

ZIP code and month.

A mortgage is classified as foreclosed in a given month if it is labeled as “F” for foreclosure

or “R” for REO in the delinquent history variable from CoreLogic. For prepayment, we classify a

mortgage as prepaid in a month if the delinquent history indicator is “0,” the loan is not foreclosed

or in REO, and loan loss is zero.

For both foreclosure and prepayment, we create separate survival data designs. Mortgages enter

our dataset upon origination or the beginning of our sample period (starting in 2001), whichever

comes first. An exit from our dataset occurs when a mortgage matures, our sample period concludes

(in 2021), foreclosure or REO status is reached, or prepayment occurs. In prepayment analysis,

a loan exits the data if the loan is delinquent for three months. We exclude all observations

from mortgages with a loss exceeding 120% after foreclosure or a loss reported when there is no

foreclosure. Our analysis, which uses propensity scores as weights, excludes mortgages from states

without wildfires, including Alaska.

In our event study design, the treated sample comprises mortgages exposed to wildfires. We
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include the nine months before the wildfire starts and the 12 months following. The control group

consists of mortgages without exposure to wildfires but from the states experiencing any wildfires.

Using the matched sample, we run a two-way fixed-e↵ects di↵erence-in-di↵erences (DiD) regression:

Mortgage Eventi,t = ↵i + �i,t + �1Wildfireit ⇥ PREt + �2Wildfireit ⇥ POSTt + ✏i,t (2)

where Wildfireit represents a ZIP-code level wildfire covering 10% of the area in a ZIP code, ↵i de-

notes mortgage fixed e↵ects, and �i,t indicates county ⇥ year-month fixed e↵ects. Mortgage Eventi,t

corresponds to either foreclosure or prepayment, as defined above. PREt covers the nine months

before the wildfire starts, and POSTt spans the 12 months following the wildfire start month.

Several crucial features distinguish this model in a typical two-way fixed-e↵ects DiD design.

Mortgage fixed e↵ects account for time-invariant mortgage characteristics, such as borrower fi-

nancial health at origination or mortgage type. Instead of time fixed e↵ects, we apply county ⇥

year-month fixed e↵ects to capture time-varying local economic factors at the county level, in-

cluding variables such as time-varying local income or employment. To have intensive level of fixed

e↵ects, we run equation (2) using linear probability model. We also apply propensity-weighted least

squares (PSWLS) regression with propensity scores, PS3 as weights from Table 1. PSWLS enables

us to compare treated mortgages with a control group with similar climatological and geographic

conditions determined by the wildfire propensity regressions.

3.2 Findings on Mortgage-Level Cash Flows

Main Results

We present our primary findings on mortgage foreclosure and prepayment in Figure 4. In Panel

(a), we illustrate the impact of wildfires on mortgage foreclosure using equation (2). Our results

indicate that the likelihood of foreclosure starts to increase by the first month following a wildfire,

with a persistent increase of approximately 1% within six to 12 months. There is no discernible

pre-trend in the nine months before a wildfire, as evidenced by the line intersecting the zero line.

Overall, these findings suggest that wildfires significantly elevate the likelihood of foreclosure across
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the US.

[Figure 4 about here.]

In Panel (b), we shift our focus to the likelihood of prepayment. Our results show that the

likelihood of prepayment begins to rise by the second month after a wildfire, experiencing a notable

increase of over 4% within 12 months. When examining the pre-trend, we observe a slightly

higher likelihood of prepayment (by less than 1%) for treated mortgages before the wildfire, which

diminishes until the first month and starts to increase thereafter. The small di↵erence before the

wildfire could be attributed to previous wildfires in nearby locations or di↵erential beliefs in climate

change by borrowers. We do not expect prior wildfires in other ZIP codes to lead to foreclosure

before a wildfire, as foreclosure carries economic consequences for borrowers. However, it is plausible

that a borrower may choose to sell their property following a previous wildfire in a nearby ZIP code.

Despite this, Panel (b) does not reveal a significant pre-trend issue in our analysis, as post-wildfire

months are statistically significantly larger than pre-wildfire months. Overall, our findings suggest

that wildfires increase the likelihood of foreclosure and prepayment by 1% and 4%, respectively,

within a year following a wildfire.

Cross-Sectional Variation in Mortgage Cash Flows

Before our study, wildfire research predominantly focused on California. Our sample includes both

California wildfires and wildfires from the rest of the US. To assess whether our results are influenced

by California wildfires or if similar trends are observed in the rest of the US, we interact pre-wildfire

and post-wildfire dummies in equation (2) with a California dummy. The results are presented in

Figure 5.

[Figure 5 about here.]

Our findings indicate that wildfires in both California and the rest of the US increase the

likelihood of foreclosure and prepayment. In Panel (a), we observe a statistically significant 1%

increase in the likelihood of foreclosure for California and 1.5% for the rest of the US within 12
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months. Confidence intervals are larger for the rest of the US, suggesting greater variation in the

impact of wildfires compared to California. Both locations do not exhibit any pre-trend.

Results for the likelihood of prepayment are presented in Panel (b). The likelihood of prepay-

ment increases by around 4% for both California and the rest of the US following a wildfire. While

California’s results do not indicate a pre-trend, there is a higher likelihood of prepayment in the

months before a wildfire in the rest of the US, warranting cautious interpretation. This discrepancy

may be due to varying impacts of wildfires on prepayment across di↵erent locations, as prepayment

can be a choice by borrowers to sell the property.

[Figure 6 about here.]

Figure 6 distinguishes between the impact of the first occurrence of a wildfire in a ZIP code and

repeated wildfires in a ZIP code. Overall, the findings suggest that repeated wildfires have a more

pronounced impact on the likelihood of both foreclosure and prepayment. In Panel (a), repeated

wildfires increase the likelihood of foreclosure by less than 1% within 12 months, with no observable

pre-trend. The impact of first wildfires on foreclosure does not reflect an economically significant

impact if we compare the months after a wildfire with the months before a wildfire.

In Panel (b), we examine the variation in the impact of the first wildfire and repeated wildfires

on prepayment. The likelihood of prepayment increases by 3 to 4% for both the first wildfire

and repeated wildfires, with no discernible pre-trend. Notably, there is a larger variation in the

impact of first wildfires, as evidenced by the larger confidence intervals. Overall, repeated wildfires

have statistically and economically significant impacts on the likelihood of both foreclosure and

prepayment while we also observe some impact by the first wildfires in a ZIP code.

Loss in a Foreclosure

After presenting evidence of an increasing likelihood of foreclosure and prepayment, our focus shifts

to examining losses following foreclosures. Given that wildfires can directly damage a property and

potentially have economic consequences locally, slowing down the neighborhood’s economy, we

hypothesize that losses in a foreclosure are more substantial.
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For this purpose, we conduct a regression of losses conditional on a foreclosure event. Since

we can only concentrate on foreclosed mortgages, we control for selection bias, representing the

predicted probability of a loan being foreclosed. This is derived from the regression in Panel (a) of

Figure 4, following the approach of Olsen (1980). Their method enables us to utilize a broader set

of fixed e↵ects by employing a linear probability regression rather than a logistic regression. The

results are presented in Table 2.

[Table 2 about here.]

We regress the wildfire indicator along with year-month fixed e↵ects and county fixed e↵ects in

column (1). In column (2), we incorporate the selection correction variable (1 - fitted foreclosure

probability) as suggested by Olsen (1980), and in column (3), we add mortgage characteristics.

The loss-to-balance ratio significantly increases by 4.5% to 6.3% in the presence of a wildfire. In

other words, the unconditional recovery rate is 63% after a foreclosure. Wildfires can reduce the

recovery rate to less than 57%, based on our findings.

In columns (4) to (6), we include the natural logarithm of FICO scores and its interaction with

the wildfire dummy. Our findings indicate that higher FICO scores mitigate the impact of wildfires

on foreclosure loss. In simpler terms, borrowers with lower FICO scores experience larger losses

following a wildfire. This finding remains robust when using ZIP code fixed e↵ects, as presented in

Column 6 of Table 2.

Mortgage Contracts in the Aftermath of Wildfires

Our findings illustrate that wildfires increase the likelihood of foreclosure and prepayment, leading

to larger losses in a foreclosure. We also evaluate how lenders respond to loan originations after

wildfires, given the heightened risks. This response represents the financial market’s initial defense

against wildfire risk. We specifically investigate the interest rate and Loan-to-Value (LTV) at loan

originations within a year following a wildfire, presenting our results in Table 3.

In columns (1) to (3), we regress the interest rate at origination on a binary indicator for

any wildfire in the ZIP code of the collateral property within the last year. We include loan
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characteristics, year-month fixed e↵ects, and county or ZIP code fixed e↵ects. Columns 2 and 3

focus on loans with an LTV less than 80%, distinguishing our analysis from borrowers potentially

healthier and granted LTVs exceeding 80%. Consistently, we find that a wildfire in the previous

year increases the interest rate of loans originated by 5.4 to 5.6 basis points, irrespective of location

fixed e↵ects or the inclusion of LTV as a control or exclusion of borrowers receiving loans larger

than 80% from the sample.

[Table 3 about here.]

In columns (4) to (6), we regress LTV with similar controls and sample restrictions. Our findings

indicate that borrowers from ZIP codes a↵ected by wildfires have LTVs 3.1% to 3.5% lower than

their peers at origination, controlling for loan characteristics and time and county fixed e↵ects. If

we control for ZIP code fixed e↵ects, the decline in LTV for borrowers from a↵ected ZIP codes

becomes less than 6%. This e↵ect of wildfires in the previous year reflects variation within ZIP

codes. Overall, our findings demonstrate that lenders respond to wildfire risk following wildfires by

increasing interest rates and lowering LTVs at loan origination.

4 MBS Deals’ Exposure to Wildfires: Diversification, Spatial Cor-

relation, and Impact on Cash Flows

The previous section estimated economically and statistically significant impacts of wildfires on

prepayments, defaults, and losses. Whether this risk has a significant impact on deal cash flows is

an empirical question. We first measure the exposure of deals to wildfires, then provide evidence

that is related to the within-MBS deal spatial correlation in wildfire risk exposure. We then turn

to the estimation of the causal impact of wildfire exposure on deal-level cash flows, and explore the

sources of heterogeneity explaining the di↵erences in treatment e↵ects across MBS deals.

4.1 Deal-Level Wildfire Exposure

We first measure a deal’s realized dollar exposure. Deals are exposed due to correlated risks, due

to large dollar concentrations in exposed geographic areas, and due to time series correlation. This
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is captured by breaking down the components of the variance of MBS deal exposure.

MBS Deal Exposure

We measure the exposure of MBS using the dollar value of mortgages’ unpaid principal balance that

is located in a↵ected 5-digit ZIP codes. Treated 5-digit ZIP codes are defined as in the mortgage-

level Section 3, as locations where more than 10% of the surface area is a↵ected. The share of an

MBS a↵ected by such wildfire exposure in month t is then estimated as using such treated ZIP

codes:

MBS Share A↵ectedjt =

PL
l=1 BalancejltTreatedZIPltPL

l=1 Balancejlt
(3)

where l indexes 5-digit ZIP codes, j is the deal, and Balancejlt is the unpaid principal balance in

location l for MBS j at the beginning of time t. For MBSs, we use deals.

The Variance of MBS Exposure: Correlation and Concentration

A key driver of tail events in MBS deal exposure is the possibility that multiple locations within

a deal are a↵ected at the same time, i.e. in a correlated fashion. This is formally visible when

considering ex-ante the distribution of the random variable gWildfirejt for deal j in month t, the

aggregation of wildfire shocks for each mortgage.

gWildfirejt =

PNj

i=1 Balanceijt
gWildfire`(i)t

PNj

i=1 Balanceijt
=

NjX

i=1

bijt gWildfire`(i)t, (4)

where `(i) is the location of mortgage i, and gWildfire`(i)t = 1 whenever a wildfire hits location j,

and zero otherwise.11

We can see the benefits of pooling risk. Denote by:

Wlt = E
h
gWildfire`(i)t

i
, (5)

11Section 3 provides multiple definitions for this treatment, based on the surface, dollar value of housing units, or
number of housing units within the wildfire perimeter.
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the probability that a wildfire hits location l, and by:

⇢ = Corr
h
gWildfire`t, gWildfire`0t

i
, (6)

the correlation that any pair l, l0 of locations experiences a wildfire in the same time period.12 The

variance of deal-level wildfire exposure depends on the (i) correlation between locations and on the

(ii) concentration of risk:

Var( gWildfirejt) = ⇢

(
2
X

i<i0

bijtbi0jtW`(i)t(1�W`(i)t)W`(i0)t(1�W`(i0)t)

)

| {z }
Spatial Correlation

+

NjX

i=1

b2ijtW`(i)(1�W`(i))

| {z }
Herfindahl of Spatial Concentration

(7)

The first term is a term due to the correlation of wildfire risk. The second term is akin to a

Herfindahl index, measuring the dispersion of dollars of balance across locations. The Herfindahl

index
PNj

i=1 b
2
ijt will be minimum when the dollar balance is spread equally across locations.

To see clearly where pooling helps (and does not), consider the case where mortgages have equal

sizes, so that the total balance B is split across N mortgages. Also simplify by assuming equal

probabilities across locations. Then:

Var( gWildfirejt) = ⇢
�
(N � 1)B2W 2(1�W )2

 
| {z }

Correlation Term, stays finite as N!1

+
1

N
W (1�W )

| {z }
Vanishes as N!1

(8)

and we can see that the first correlation term stays finite as the number of mortgages increases to

infinity. Thus deal-level pooling of wildfire can reduce the variance of risk whenever the correlation

of risk stays small compared to the number of mortgages N .

Specifying the way the deal-level correlation is estimated allows us to estimate standard errors

for this parameter as well. This distinguishes the random occurrence of joint events from the

occurrence of genuinely correlated shocks.

12The correlation can be made to depend on any pair of locations.
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The correlation can be simply estimated as the regression coe�cient of wildfire occurrence on

average wildfire occurence for other ZIPs of the MBS:

Wj`t = Cst
j + (⇢jVarj)Wj�`t + "j`t (9)

where Wd�`t is the average frequency of wildfires in other locations of the MBS deal d at time t. The

regression is weighted by deal’s dollar balances bj`t in each location. The correlation b⇢j = dCovj/dVarj

is the ratio of the estimated coe�cient and the estimated variance. The distribution of the estimate

of the covariance dCovj is obtained by simulating wildfire occurrences Wlt across locations using the

estimated variance-covariance for the locations of the deal. The variance of the sample of covariance

estimates is the variance of the estimator of the covariance on the sample. This process is repeated

for each deal, knowing its vector bjlt of shares of unpaid principal balance.

4.2 Estimating the Impact of Wildfires on Deal-Level Cash Flows

Identifying the impact of wildfire exposure on deal cash flows is challenging for at least two reasons.

First, deals cover extensive geographic areas, and may thus be exposed to a large number of multiple

treatments. An MBS deal’s wildfire exposure evolves over time as the distribution of unpaid

principal balances across locations evolves as households prepay and default at di↵erent speeds.

Deals may be formed at origination in a way that is both correlated with wildfire propensity and

with other aspects of climate change adaptation, such as the ability of the lender to renegotiate

the terms of the mortgage or allow for forbearance.

Second, multiple wildfires may occur in the same month or in di↵erent months, precluding the

construction of event studies with non-overlapping treatments. We address these challenges by

building an event study where, for each first wildfire event of an MBS deal, treated MBS deals are

compared to control MBS deals with similar wildfire propensity at the time of exposure.

Treated Deals

The MBS industry has described potential wildfire exposure since at least the early 2000s. A

common method in the industry is to count the % of the deal’s balance in locations a↵ected by a
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wildfire. This is from the 2007 prospectus of a deal of Credit Suisse loans serviced by Wells Fargo:

Thornburg Mortgage Securities Trust. Mortgage Loan Pass-Through Certificates,

Series 2007-5. Page S-24.

Wildfires in California may adversely a↵ect holders of the certificates

As of the date of this prospectus supplement, vast regions of Southern California from north

of Los Angeles to south of San Diego are experiencing multiple extensive wildfires resulting in

significant property damage and the evacuation of close to one million residents. President Bush

has declared a state of federal emergency for the counties of Los Angeles, Orange, Riverside, San

Bernardino, San Diego, Santa Barbara and Ventura, entitling them to federal disaster assistance

under FEMA. Approximately 15.43%, 13.39% and 11.70% of mortgage loans (by aggregate unpaid

principal balance as of the cut-o↵ date) in loan groups 1, 2 and 3, respectively, are secured by

mortgaged properties located in these counties. In addition, other counties may have been or may

become a↵ected by the wildfires.

We adopt this industry standard in this paper. Figure 7(a) presents the number of deals for which

the ZIPs treated represent more than 5% of the unpaid principal balance of the MBS deal. Figure

8 presents the same statistics by month for three di↵erent thresholds.

Treateddt = 1

 PJ
j=1 BalancedjtTreated ZIPjtP

j=1 Balancedjt
> Threshold

!
(10)

For each month for which there is at least one MBS deal treated, observations of the treated deals

in the window of �12 to +36 months is considered.

[Figure 7 about here.]

[Figure 8 about here.]

Treated Deals and Spatial Concentration

Table 4 describes how the spatial concentration of originations in MBS deals leads to wildfire

exposure. Our findings suggest that deals that are treated have higher level of within-deal spatial

correlation (fires occuring at the same time across the ZIP codes of the deal), a higher level of

concentration of dollars in a small number of ZIP codes, measured by the Herfindahl index of
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origination volumes; and such deals tend to have mortgages in a smaller number of ZIP codes.

Treateddt = Constant + b1Spatial Correlationd + b2 log(Herfindahl)

+b3 log(# ZIPs in Deal) + b4 log(Deal Balance at Origination) + Residualdt(11)

The result of this regression is presented in column (2). Deals with a correlation of 1 tend be

40 percentage points more likely to be treated. Deals with a 10-percentage-point increase in the

Herfindahl index are 0.80 percentage points more likely to be treated. Deals with 10% more ZIPs

in the deal tend to be 1.7 percentage points less likely to be treated. Larger deals are more likely

to be treated ceteris paribus. Thus, conditional on deal size, the margins of spatial correlation, the

herfindahl, and the number of ZIPs can make it less likely that the deal is treated. Column (1)

regresses the maximum of the unpaid principal balance of the deal exposed to wildfires on the same

covariates. Signs are similar. Column (3) suggests that, consistent with standard microeconomic

theory, the larger number of ZIPs in a deal leads to a lower Herfindahl index and, in column (4), a

lower within-deal spatial correlation.

[Table 4 about here.]

Our findings in Table 4 demonstrate that within-deal spatial correlation increases the likelihood

of a deal to be treated – being exposed to wildfire risk. On the other hand, in Figure 9, we evaluate

the variation in within-pool or -month spatial correlation. Panel (a) shows whether the size of

originators is correlated with within-pool spatial correlation. We observe that the largest originators

can lower within-pool spatial correlation. Panel (b) presents within-month sparial correlation. We

observe that within-month autocorrelation has increased by years. One caveat in this descriptive

analysis is the availability of geographic data provided by originators and sponsors, almost 100%

until 2015, decreases after 2015.

[Figure 9 about here.]
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Econometric Specification

The specification uses the event study data to estimate the impact of wildfires on deal-level loss

amounts normalized by the total dollar value of a deal.

Deal Lossi,t = ↵i + �i,t + �1First Wildfire Exposureit ⇥ PREt

+�2First Wildfire Exposureit ⇥ POSTt + ✏i,t

(12)

where First Wildfire Exposured◆ = 1 when deal d has been exposed to a wildfire event. Deal Lossdt

is a measure of the share of losses as a fraction of the deal’s unpaid principal balance. A wildfire

event is considered when at least one deal has had more than 2% or 5% of its UPB a↵ected by a

wildfire. The control group is built by considering the set of never treated deals throughout the

period and the deals that are a↵ected by less than 1%. PREt and POSTt are the months before

and after the month the first wildfire a↵ecting the deal starts. The regressions include deal and

year-month fixed e↵ects representing a two-way fixed e↵ects DiD model.

The year-month fixed e↵ects control for macro trends that impact cash flows and are statistically

correlated with wildfire exposure. The year-month fixed e↵ects also control for seasonal e↵ects: as

wildfires occur in specific months of the year, during so-called hot seasons of housing markets (Ngai

& Tenreyro 2014), this may be correlated with cash flows. The deal fixed e↵ects control for deal-

specific unobservables that may be correlated with wildfire exposure and cash flows: these include

deals located in specific fire-prone parts of the US that may also be a↵ected by di↵erent trends in

house prices, household mobility, interest rates, loan-to-value ratios, and amortization structure of

the mortgages. Standard errors are double-clustered at the deal and the year-month levels.

4.3 Results

Results are presented on Figure 10. In Panel (a), we present the results of analysis using treated

deals that are a↵ected by more than 2% of a deal. The sample exludes deals that are a↵ected by

between 1% and 2%. In Panel (b), we use deals that are a↵ected by more than 5% of the deal

balance and similarly exludes deals that are a↵ected by between 1% and 5%. The event time used
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ranges from month t-9 to t+36.

[Figure 10 about here.]

Both panels reflect that the early months following the wildfire do not constitute any impact on

deal losses. However, the losses start to increase thereafter. Compared to mortgage-level results,

this is expected as the losses appear after some attempts for resolution. For the treated deals with

more than 2% a↵ected, the loss as a share of unpaid principal reaches to 0.5 ppts. For treated

deals with more than 5% a↵ected, the loss increases to more than 0.5% of the deal. The impact

is statistically significant and persistent up to 36 months. We only see some decline in the impact

after the 28th month for the treated deals a↵ected by more than 5%. We also do not observe

any significant pre-trend back to nine months before the wildfire starts. Overall, our findings

demonstrate that the increased probability of foreclosure following wildfires is carried over the

deals similarly with larger losses following a wilfire a↵ecting a deal.

5 Designing MBS Deals by Building Portfolios of Mortgages

Pooling mortgages from across the US may enable a diversification of risk, as such pooling averages

out the idiosyncratic risk of individual mortgages. As wildfire risk increases in specific locations due

to climate change, such diversification tools enable investors to adapt to climate change by picking

more diversified pools. How can we design Mortgage-Backed Securities that o↵er a given profile of

risk and return? Depending on the risk preferences of the investor, should such Mortgage-Backed

Securities be exposed to wildfire risk on top of the existing interest rate and credit risks?

This section presents and solves numerically this pooling problem over the 5-digit ZIP codes of

the coterminous US, by calculating the risk and return of an MBS deal with any arbitrary weight

in each of the US’s more than 32,000 ZIP Code Tabulation Areas.

Choosing an MBS is akin to solving a portfolio problem, where the individual securities are

mortgages across the US. Each location has a specific baseline prepayment and foreclosure rate, a

sensitivity of prepayment to future mortgage rates, and potential wildfires that a↵ect prepayment

and foreclosure. These parameters have been estimated in the previous sections. In turn, this yields
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possible 5-digit ZIP code cash flows: their average, standard deviation, skewness, and kurtosis.

These cash flows are correlated across locations, as wildfires occur in a correlated fashion and as

interest rate risk potentially a↵ects the prepayment probabilities of all pools at di↵erent margins.

By combining mortgages from locations across the US, we can calculate the set of possible expected

returns and risk profiles. By using the IPCC’s forecast of temperatures in 2050, we can measure,

for each simulated pool, the impact of such increasing wildfire risk on risk, return, and the Sharpe

ratio of these pools. Pools can be built to be resilient to climate risk. A key takeaway of this section

is that such pools have non-zero exposure to wildfire risk as areas with higher risk tend to have

lower baseline prepayment rates. The method produces maps of dollar allocations for any arbitrary

target Sharpe ratio, and any target DCF of cash flows and should be a guide for investors.

Wildfire risk causes prepayments and foreclosures for individual mortgages. Interest rates a↵ect

the probability of prepayment and foreclosure at the mortgage level. Credit risk causes increases in

foreclosure rates as well. We simulate the local and spatially correlated wildfire shocks in each 5-

digit ZIP code, either during a scenario of stationary wildfire probabilities (2010–2021 probabilities),

under a scenario of higher temperatures (IPCC models CMIP6) in 2050. We also model the dynamic

of interest rates, using a Heath, Jarrow & Morton (1990) approach that forecasts the entire yield

curve using four factors.

This section shows that pooling can significantly alleviate the impact of rising wildfire risk on

MBSs’ rate of return. As temperatures increase, this causes a decline in returns and an increase

in risk at given pooling. Yet, when MBS pools are re-optimized, the impact on returns and risks is

significantly smaller.

A Portfolio Problem

We focus on designing a security that o↵ers a profile of risk and return, characterized by the

probability distribution of its stochastic monthly return r̃t. This probability distribution is a↵ected

by the probability of prepayment and foreclosure each month, and the recovery rate conditional on

a foreclosure.

To solve this pooling problem, we build a dataset of cash flows and notionals for each 5-digit
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ZIP code over 360 months (30 years) and across 50 simulations of interest rates and wildfires. The

return of holding mortgages in each location is computed for each month and each simulation, and

the optimal pool is a trade-o↵ between (a) the expected average return over the life of the pool

and across simulations and (b) the expected risk, typically measured using the standard deviation,

the skewness, and the kurtosis of returns. Fixed income investments have, by nature, skewed and

leptokurtic returns. When focusing on the mean return and the standard deviation of returns, we

can use the Sharpe ratio, as in Boyarchenko et al. (2019) and our numerical estimates of the Sharpe

ratio are consistent with this paper.

The dimensionality problem can be an issue when dealing with optimal allocations of dollars of

mortgage originations across a large number of ZIP codes of the coterminous US. We can reduce

such dimension by using selecting portfolio weights in a Koijen & Yogo (2019) demand system. The

optimization here targets moments of cash flows, as a Lucas Jr (1978) tree investor who consumes

the cash flows of the MBS deal in every period. Formally, the goal is to choose the coe�cients of

the demand system that maximizes the present discounted utility of cash flows over the life of the

MBS deal. We denote these coe�cients by !w for the portfolio coe�cient for wildfire risk, and by

! for the other ZIP-specific covariates. They pin down the dollar allocation in each location j, a

positive13 vector (wj,0) = w0 that sums to 1.

The monthly stochastic return of the pool is due to (i) the decline of the notional, due to pre-

payments and foreclosures and (ii) the cash flow of the pool, due to coupon payments, prepayments

and foreclosure sales:14

r̃t(w0) =
eNt � eNt�1

eNt�1

+
fCFt

eNt�1

(13)

The cash flow of the deal CFt is the aggregation of the cash flows of individual mortgages.

fCFt =
JX

j=1

wj,0 ( eNj,tcj + e�j,t↵j,tIj,t)| {z }
Cash Flow fCFj,t at Location j

(14)

eNj,t is the dollar notional at location j in month t. cj is the coupon rate in location j. When

13We do not allow the short-selling of mortgages in this exercise.
14x̃t indicates that the variable x is stochastic.
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mortgages are fixed rate mortgages (FRMs), this is cj = rj(1 + rj)T /((1 + rj)T � 1). The coupon

rate is fixed at origination. e�j,t 2 [0, 1] is the hazard rate of prepayment and foreclosure. It is

ex-ante a sequence of random variables for each future month t = 1, 2, . . . , 360. The notional eNj,t

declines at speed the hazard rate e�j,t, as:

eNj,t+1 = (1� e�j,t) eNj,t (15)

The quantity ↵j,t 2 [0, 1] is the recovery rate. It measures the share of the unpaid principal balance

that is recovered in case of a prepayment or default. It is also a random variable that increases

when a wildfire occurs, consistent with the results of Section 3.2. When mortgages prepay only,

↵j,t = 1. For private-label MBS deals, the investor may lose part of the balance, and ↵j,t  1.

The hazard rate of prepayment and foreclosure e�j,t depends on (i) borrowers’ incentives to pre-

pay, based on the di↵erence between the current mortgage rate r30yt and the national mortgage rate

at origination at the location r30y0 ; and it depends on (ii) the occurrence of wildfires at location j.15

log

 
e�jt

1� e�jt

!
= log

 
�0
j

1� �0
j

!
+ ⇣(r30y0 � r̃30yt ) + � gWildfirejt + ejt (16)

The future path of wildfires is simulated by accounting for (i) each location’s specific wildfire

probability (e.g. higher in California and lower in New York) and (ii) the spatial correlation of

wildfires across locations. The simulation of such events across ZIP codes is described below.

Each location has a specific base hazard rate �0
j . The specification can account for the concavity

of the relationship between mortgage rates and the hazard rate, the so-called S curve of MBSs mea-

suring refinancing incentives (Fabozzi et al. 2011, Fabozzi 2016, Chernov et al. 2018, Boyarchenko

et al. 2019).

Denoting by wj,0 the weight of location j in the deal at origination t = 0, the log weight is

expressed as a function of the wildfire propensity score and a vector of covariates for the location:

wj,0

w0,0
= exp (!wWildfire PSj + xj!) "j,0 (17)

15The mortgage rate at origination is absorbed by the fixed e↵ect.
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This is akin to a McFadden (1974) discrete choice model. The portfolio coe�cient !w measures how

the dollar allocation depends on the wildfire propensity score. xj is a vector of covariates that MBS

sponsors may use when choosing the spatial allocation of dollars. This includes borrowers’ FICO

scores, income, but may also include the characteristics of the mortgages such as LTV, interest

rate, and amortization structure.

The di↵erence here with a McFadden (1974) approach is that the coe�cients !w and ! are

chosen to maximize the intertemporal utility of the investor. A more complex problem would

be to select the dollar investment in each location separately, but the more than 30,000 5-digit

ZIP codes make this approach infeasible. Rather the parameterized approach of equation 17 is a

low-dimensionality approach to allows us to focus on a small set of coe�cients. In this approach

we pick the dollar origination volume in each location at t = 0 and the mortgages amortize over

t = 1, 2, ..., T .

Simulating future hazard rates for a given pool composition takes two inputs: a model of

the term structure of interest rates, and a model of wildfire occurrence. We start with wildfire

occurrence.

Wildfires are simulated by using correlated Bernoulli {0, 1} draws where each location has a

specific probability of a wildfire (a specific wildfire propensity score), and wildfire occurrence has a

spatial correlation ⇢s > 0 across locations within a state s.16

P (Wildfirejt) = PSjt, Cor(Wildfirejt,Wildfirej0t) = ⇢s(j), if s(j) = s(j0) (18)

For such probabilities we use either (i) the average Wildfire Propensity Score as estimated in Sec-

tion 2.2, or (ii) wildfire propensity scores for 2050 and 2100 simulated using the IPCC’s projections

of temperatures in CMIP6 models. This allows to estimate the benefits of pooling in the face of

rising wildfire risk.

The investor takes as given: the ex-ante probability of wildfires PSjt across the 360 months of

the mortgage, the ex-ante spatial correlation ⇢s within each state s, the coupon rate cj in each

16The numerical approach to draw these correlated Bernoulli draws is described in the Appendix.
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location, the baseline hazard rate �0
j and recovery rate ↵j in each location, the ex-ante probability

distribution f(r̃30yt ) of interest rates in future periods.17

For the forecast of the 30-year mortgage rate, we model the stochastic process of interest rates

using the workhorse Heath et al. (1990) approach to the modeling of the term structure. The

7-year Treasury plus a stochastic FRM premium is used to predict the 30-year mortgage rate. We

estimate the 7-year by taking the product of the forward rates estimated by the factor decomposition

of Heath et al. (1990).

The starting point of the optimization problem matters as the information set ⌦ of the investor

is di↵erent in each month t. First, the term structure of interest rates is simulated from the initial

condition using a Heath et al. (1990) estimated on historical data prior to this starting point. The

30-year FRM premium over the 7-year is simulated conditional on the current premium.18 Third,

when such forward-looking term structure is plugged-in to the hazard rate equation, this provides

the forward-looking probabilities of prepayment and foreclosure.

Trade-O↵s Between Wildfire Exposure and Prepayment, Foreclosure Risk

The portfolio optimization problem will have a non-trivial solution as there is a trade-o↵ : house-

holds in wildfire exposed areas tend to have lower baseline prepayment and foreclosure risks.

We describe this trade-o↵ in Appendix Table A. This table presents cross-sectional regressions

of the baseline hazard rate of prepayment (column (1)), the baseline hazard rate of foreclosure

(column (2)), and the interest rate (column (3)) on the average value of the wildfire propensity

score. These regressions suggest that ZIP codes with higher wildfire propensities tend to have lower

baseline odds of prepayment (upper panel). The third column of the lower panel suggests that areas

with higher wildfire risk tend to have higher interest rates. This suggests that, at the minimum,

there are non-trivial trade-o↵s. Investors may thus want to hold non-zero exposure !w > 0 to areas

17Investors may not take the characteristics of mortgages as exogenous, e.g. the coupon or the LTV. Extensions
of this approach may include understanding how MBS sponsors vertically integrated with originators change the
Loan-to-Value requirements or the amortization structures o↵ered to borrowers. Originators can provide incentives
to fortify homes. Another possible extension of the model is to allow for an interest rate response when credit supply
increases. Literature suggests that credit supply a↵ects location choices (Ouazad & Rancière 2019).

18We do not reject the null hypothesis that such premium is a random walk, as the Dickey Fuller test does not
reject the null, and the autocorrelogram for the first-di↵erenced premium does not display significant AR coe�cients.
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with higher wildfire propensity scores.

5.1 Empirical Results: Exposure to Wildfires and the Moments of MBS Cash

Flows

We simulate 1,000 MBSs across 50 simulations of interest rate paths and wildfires. We focus on the

following states for computational reasons: California, Oregon, Washington, Indiana, Montana,

Wyoming, Nevada, Utah, Colorado, Arizona, and New Mexico. Creating an MBS with lower

wildfire propensity scores, with mortgages in New York and New England would lower the risk of

the pool but may have non-trivial impacts on expected returns.

We start by describing the benefits of pooling risk across ZIP codes by bundling mortgages

across mortgages. Table 5 displays the distribution of the returns for our simulated MBS deals across

di↵erent portfolio weights (!w,!) (rows 2,4,6), alongside the distribution of ZIP-level returns (rows

1,3,5). The first two rows compare the average monthly returns on investing the entire origination

amount in one ZIP code vs any of the simulated MBSs. The next two rows describe the standard

of returns, and the last two rows the Sharpe ratios. The main benefit of pooling that this table

suggest is that it smoothes the tail risk of individual ZIP codes, reducing the standard deviation by

58.7% = (3.18-7.71)/7.71 for the median ZIP code compared to the median MBS deal. This leads

to a distribution of returns with thinner tails and in particular the lower tail of monthly returns.

[Table 5 about here.]

This benefit of pooling mortgages across locations arises as the returns are imperfectly corre-

lated. Appendix Figure D plots the correlation matrix for the ZIP codes of our sample. Each row

and each column is a ZIP code, and the shades of gray correspond to the correlations cor(r̃jt, r̃j0t)

for any pair j, j0 of ZIP codes. It shows that, while some pairs have correlated returns due to

prepayment probabilities driven by macroeconomic shocks (Chernov et al. 2018), other pairs have

lower correlations (lighter gray colors) and the standard deviation of returns can be lowered by

pooling them in the same MBS deal. This correlation matrix is, up to constants, the covariance

matrix ⌃ of a standard Markowitz (1991) portfolio optimization exercise.
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In Table 5, the Sharpe ratio is calculated using a risk-free rate of 1.7% corresponding to the

yield of the 5-year Treasury (FRED series DGS5) on January 2nd 2014, which is the starting point

of our simulations. The median simulated pool has a return of 5.03%, a standard deviation of

3.18ppt, and a Sharpe ratio of 1.04, which is consistent with prior literature. The expectation and

the standard deviation of returns are estimated across months and across simulations:

bE(r̃t) =
1

ST

SX

s=1

TX

t=1

rs,t (19)

with S = 50 and T = 360.

Figure 11 presents the baseline distributions of expected returns, standard deviation of expected

returns, and sharp ratios of the simulated pools. Panel (d) also presents the dollar allocation of

loan originations by wildfire propensity score in the sumulated MBS. The upper panels of Figure 11

suggest a thick tail of MBS returns (a),standard deviations (b), and sharp ratios (c) with most deals’

performance around the average and some deals with significantly lower returns, higher standard

deviations, and lower sharp ratios. This is consistent with the paper’s finding when analyzing actual

deals of the PLS RMBS market (Table 4): undiversified deals may significantly underperform better

designed deals.

[Figure 11 about here.]

Panel (d) of Figure 11 displays the dollars invested in each location when starting with a 100

million dollar balance and investing it across locations to maximize the Sharpe ratio. This figure

suggests that the Sharpe-ratio maximizing pool has non-zero exposure to wildfire risk. Similarly,

the results of our portfolio optimization exercise by selected locations are displayed on the upper

panels of Figure 12. While the optimal, Sharpe Ratio-maximizing pool, includes mortgages from

across the states of our analysis, we focus here on the dollars originated in San Francisco and Los

Angeles for clarity. The maps suggest indeed that the Sharpe ratio maximizing pool invests dollars

in Northern and North-East Los Angeles, as well as the Northern Bay area, which have higher

wildfire propensity scores. These findings are consistent with panel (d) of Figure 11.

[Figure 12 about here.]
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While the two maps of the upper panel of Figure 12 presented the Sharpe ratio maximizing

pools, the two maps of the lower panel of Figure 12 present the geographic allocation of dollars for

the most climate-exposed pool. This is a pool that experiences the largest change in returns using

current risk and using expected risk. Such pool includes areas of the urban-wildland interface of

the Bay Area, including areas next to Cupertino, Saratoga, Los Gatos, and the greener areas west

and east of San Martin.

Adapting to Wildfire Risk in 2050 and 2100: Does Risk Pooling help?

We can use the tools we develop to assess whether the ability to select mortgages for securitization

helps in mitigating the impact of rising wildfire risk in the 21st century.

The first step is to collect data from the IPCC’s Coupled Model Intercomparison Projects

(CMIP6) models, developed for the Sixth Assessment Report (AR6). The evolution of such tem-

peratures is depicted on Figure 13, where the observations within the red dotted line are the

in-sample simulations, and those right of the red dotted line are the forecasts. We use such global

temperature deviations in combination with the coe�cients of the wildfire propensity model esti-

mated on Table 1 to forecast wildfire risk at the 5-digit ZIP code level in the future holding other

parameters constant, including electric lines, land cover, and the road network. Other parameters

could evolve over the time period 2022-2050 and 2050-2100 and this is a Lucas critique. This paper

focuses on one dimension of such Lucas critique, the evolution of MBS pooling and keeps other

parameters constant.

[Figure 13 about here.]

Figure 14 presents a map of the coterminous US with the average wildfire propensity score in-

sample, from 2010 to 2021 (upper panel), and, the evolution of the wildfire probabilities by 5-digit

ZIP codes (lower panel). Areas in the periphery of metropolitan areas experience large increases,

consistent with the finding that wildfires occur at the urban-wildland interface (Kestelman 2023).

[Figure 14 about here.]
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Using these forecasts, we can then simulate the cash flows by month, for 360 months, for each

of the numerical simulations. The probability of wildfires increases in most locations. We keep the

spatial correlation constant. We keep the 50 interest rate simulations and only incorporate what,

in the prepayment and foreclosure hazard rates, is due to the increased risk of wildfires. We then

calculate the impact of such 2050 risk on the returns of MBSs.

[Figure 15 about here.]

The first finding is that the increased wildfire activity has an economically significant impact on

expected returns, their standard deviation, and the Sharpe ratio as presented in Figure 15. Panel

(d) of Figure 15 shows a scatter plot of the impact on each MBS’s return (in %) by wildfire portfolio

coe�cient. Panels (a) and (b) of Figure 15 show the impact of rising risk in 2050 on expected returns

and standard deviations. On the other hand, panel (c) of the figure shows the impact on the Sharpe

ratio. These figures overall suggest that (i) wildfire risk can have an economically significant impact

on returns but (ii) well diversified pools have very similar returns when originated now or in 2050.

The red lines of Figure 16 show the relationship between the Sharpe ratio and portfolio coef-

ficients in 2050 (red) and with current risk (black line). Figure 16 shows the relationship between

the Sharpe ratio and three portfolio coe�cients: the portfolio for wildfire propensity, the portfolio

coe�cient for the interaction between wildfire propensity and household income, and the portfolio

coe�cient for the interaction between wildfire propensity and the FICO score. They suggest that

the Sharpe ratio maximizing MBS may lower its allocation towards wildfire prone areas, except in

places with high household income and high FICO scores.

[Figure 16 about here.]

6 The Pricing of Wildfire Risk in MBSs

Previous sections present evidence that mortgage cash flows and deal cash flows are a↵ected by

wildfire exposure. In particular, MBS experiencing correlated shocks may experience large increases

in prepayments and losses.
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Whether the impacts on cash flows, measured ex-post, are (i) reflected in the observed ex-ante

prices of tranches and (ii) lead to ex-post changes in the returns of such tranches, remains an

open question. There are indeed at least two separate questions: (i) whether investors price their

expectations of wildfire exposure as the risk premium of a wildfire factor, and (ii) whether investors

reprice MBS when learning new news about the wildfire risk of the unpaid principal balance of the

deal.

We address point (i) by assessing how the sensitivity of each MBS deal’s cash flows a↵ect the

price level of each tranche, as a compensating di↵erential for the expected impact of wildfires on

cash flows. We address point (ii) by estimating how such sensitivity a↵ects the returns of each

tranche, as increasing wildfire propensity leads to an adjustment of prices.

6.1 Measuring the Sensitivity (Beta) of Deal Cash Flows to Wildfire Risk

To assess the sensitivity of each deal’s cash flow to wildfire risk, we need to use a deal-specific

wildfire propensity factor. Section 2.2 provided a ZIP-level wildfire propensity factor with low type

I and type II errors. Such factor, at the ZIP code ⇥ year level, based on temperature, land cover,

drought, and electricity and road infrastructure maps, is a strong predictor of the local occurrence

of wildfires. As MBS deals have mortgages in a large number of locations, we build an MBS wildfire

propensity factor by dollar-weighting the wildfire propensity factors based on the unpaid principal

balance in each location.

Correlating the MBS-level wildfire propensity factor with cash flows may not indicate a causal

impact of wildfire risk probabilities on cash flows. Wildfires are located in specific places (e.g.

the San Francisco Bay or specific neighborhoods of Los Angeles) that are also exposed to other

economic factors. Our wildfire propensity factor could also be correlated with one of the 14 factors

of Harvey & Liu (2021).

We estimate a heterogeneous, deal-level, sensitivity of cash flows to (a) the wildfire propensity

factor, by controlling for a (b) deal fixed e↵ect, which captures non-time varying di↵erences in

other climate risks such as flood risk, but also di↵erences in economic factor exposure, and by

controlling for (c) the short rate, the one-month T bill, (c) the term premium, measured either
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using the di↵erence between the 5 year and the one month T-bill, or the di↵erence between the

7 or 10-year Treasury and the one month T-bill. (b) and (c) capture the impact of interest rates

on borrowers’ prepayment and foreclosure behavior. Controlling for the term structure of interest

rates is important as Table 6 suggests a significant pairwise correlation between the national dollar

weighted wildfire propensity scores and the term premium, measured as in (c) above.

[Table 6 about here.]

The following regression is run separately, at the deal-level, along the time periods for which

the cash flows of the deal are observed:

rCF
dt = Deald + �w

d Wildfire PSdt + �1m
d One Montht + �p

dTerm Premiumt + xdt�
x
d + "dt (20)

where �w
d is the deal-specific sensitivity to wildfire risk, rCF

dt is the monthly deal-level cash flow

divided by the unpaid principal balance of the deal, Deald is a deal fixed e↵ect. Later, we expand

the analysis to the inclusion of fourteen additional factors. Here the Wildfire PSdt is the deal-

level wildfire propensity score, calculated as the dollar-weighted propensity score across locations

of mortgages of the deal:

Wildfire PSdt =

PNd
i=1 BalanceidtWildfire PS`(i,d)tPNd

i=1 Balanceidt
. (21)

The Balanceidt is the balance of mortgage i of deal d in month t, and Wildfire PS`(i,d)t is the wildfire

propensity for 5-digit ZIP code ` in month t. We use each of the four di↵erent propensity score

measures PS0-PS3 developed in Section 2.2. This time-varying propensity score accounts for three

types of variations: (i) the unequal timing of principal payments across locations, (ii) the geographic

concentration of mortgage originations across locations within a deal, (iii) the evolution of the

climate, including temperature extremes, land cover, and infrastructure. The wildfire propensity

score is deal-specific j. This reflects the fact that deals di↵er in the geographic location of the

mortgages at origination. However, the variation in the balance is only due to the prepayment of

the principal or losses incurred.

39



We also allow for the possibility of additional controls xdt specific to the pool, such as home

price indices, home price appreciation, the state of the labor market, or the evolution of household

size, as suggested by Davidson & Levin (2014), Fabozzi et al. (2011), and denoted by the letter

gamma in Boyarchenko et al. (2019). These are drivers of mobility, and thus of prepayments and

defaults. The term structure of interest rates is a major driver of MBS prices, as they determine

the discounting of cash flows, the incentives to prepay and default, as well as correlate strongly

with the 30-year fixed mortgage rate. The 30-year FRM correlates strongly with the 5-year and

the 7-year Treasuries.

For each deal, the beta �w
d w.r.t. wildfire propensity is thus a su�cient statistic for: the

adaptation of the housing and the mortgage markets to natural disaster risk, as homeowners may

have incentive to build more resilient units; in such a case wildfire exposure may not translate

into an impact on deal-level cash flows CFjt. The mortgage market may also adapt, as lenders

may either o↵er the possibility of forbearance or the possibility of renegotiating the terms of the

mortgage to avoid default. Thus, the �w
j is a reduced-form measure of the adaptation of the housing

and mortgage markets to natural disaster risk.

6.2 The Pricing of Wildfire Risk: MBS Bond Prices and the Repricing

MBS tranche prices should reflect the deal-specific sensitivity of cash flows w.r.t. wildfire risk if

investors’ forecasts of such sensitivity is consistent with our estimates of the wildfire cash flow beta.

In the second step of the Fama MacBeth approach, we estimate the cross-sectional correlation

coe�cients with prices or returns as the left-hand side, and with the estimated deal-level betas as

explanatory variable. For each month t separately, we estimate �wt :

log p⌧dt = �0 + �wt b�w
d(⌧) + �1mt b�1m

d(⌧) + �pt b�
p
d(⌧) + ⌘dt (22)

where log p⌧dt is the log price level of the tranche for 100 USD of notional. Results using the price

level p⌧dt are qualitatively similar. d(⌧) is the deal of tranche ⌧ .

The b�w
j ,
b�1m
j , b�p

j are generated regressors from the first step Fama MacBeth approach and thus

the standard errors of �̂w require special treatment as described in an extensive literature . A
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variety of approaches are used in the literature (Shanken 1992, Goyal 2012, Petersen 2008). Here

we estimate the variance covariance matrix of the estimates and estimate the variance of the average

of the gammas accounting for the covariance across time periods. The variance-covariance matrix

accounts for the Newey & West (1986) and Newey & West (1994) autocorrelation. Following

Cochrane (2009), the average of cross-sectional risk premia for each month is equal to an estimate

of the intertemporal risk premium:

b�w =
1

T

TX

t=1

b�wt (23)

And the standard errors of the average b�w account for the autocorrelation lags of the estimated risk

premia b�w, as Var(b�w) = 1
T e

0⌦e, e is the vector of ones, and ⌦ is the variance-covariance matrix of

the vector of monthly cross sectional estimates. Other approaches such as GMM and the Shanken

correction are possible. Given the noisiness of the pricing of wildfire risk in tranches, we expect

these tests to weaken the pricing further.

Are prices evolving as wildfire risk propensities increase? To answer this question, we estimate

(24) using the log price changes as the dependent variable.

� log p⌧dt = ⇣0 + ⇣wt b�w
d(⌧) + ⇣1mt b�1m

d(⌧) + ⇣pt b�
p
d(⌧) + ✏dt (24)

where ⇣wt is the impact of the wildfire beta on the price return, ⇣1mt is the impact of the 1-month

T-bill return, and ⇣pt is the impact of the term premium, as before.

6.3 Sample Construction: Tranche-Deal ⇥ Month Sample

The sample is built as follows. First, we consider the daily tranche price data set extracted using

the Bloomberg Data Service described in Section 2.1. This provides a set of tranche prices at the

level of the CUSIP and Bloomberg Identifier (BBGID). The frequency of the price data set is the

month, consistent with the frequency of the cash flow data set. For each month, we keep the price

of the tranche first observed, between January 2011 and February 2021. We choose to start in 2011

and exclude the data of the Great Financial Crisis where rates are volatile.19 Prices are quoted per

19Delinquency rates on single-family residential mortgages peak in Q1 2011 and decline steadily until the end of
the sample period (Series DRSFRMACBS). The 1-month T-bill does not exceed 1 percent between September 30th
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100 USD of notional. We exclude outlier prices above 150 USD.20 We consider tranches that have

month-to-month price observations, which is the case for more than 99.9% of the tranche ⇥ month

data, or 968,574 out of 969,456. We consider tranches for which month-to-month price changes

do not exceed 50% in any month. These tranches are legacies of the great financial crisis and are

experiencing fire sales in the early part of the sample. The 99th percentile of monthly price changes

is +17.4% and the 1st percentile is �19.4%.

For each deal, we consider the set of tranches, ranked in order of their earliest observed price.

The median number of tranches per deal is 7, and the average number of tranches per deal is 8.6.

For all the deals in the tranche data set, we consider the cash flows due to prepayment and interest

payment. Prepayment cash flows include unscheduled principal payments.

Second, we merge the tranche price panel data set at monthly frequency with the deal cash

flow panel data set at the same frequency. Scheduled principal payments come from Corelogic

variable SCH MNTH P and unscheduled principal payments are the decline in the balance over and

above scheduled principal payments. This includes losses. Interest payments are computed using

the current rate and the current balance, thus allowing for deals with ARMs and FRMs.

We estimate the betas of cash flows w.r.t. wildfire risk exposure at the deal-level. We estimate

the pricing of risk for each tranche separately, allowing for heterogeneous pricing of cash flow risk

depending on the seniority of the tranche within the deal. Apart from the ranking of tranches,

this does not require further assumptions regarding the allocation of cash flows into tranches, as

it treats deal-level cash flows separately from tranche-level prices. The longitudinal sample has

two sets of key quantities at the deal- and the tranche levels. First, the deal-level cash flow return

rCF
dt = CFdt

Balancedt
at monthly frequency, as the cash flow divided by the unpaid principal balance.

Second, the deal-level price level log p⌧dt and the log price change � log p⌧dt where ⌧ is the tranche,

d is the deal, and t is the month.

2008 and November 2017 (Series DGS1MO).
20The 99th percentile of the price distribution is 106.8 USD.
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6.4 Estimation Results

Table 7 presents the impact b�w of the wildfire risk cash flow beta. Such b�w is estimated from

the second stage of the Fama MacBeth regressions for a range of specifications. The dependent

variable of the second step is the price level. Prior literature suggests the importance of robustness

checks when estimating second-step regressions with generated regressors, and we therefore present

estimates with 20 di↵erent regressions: (1) using all tranche prices (2) using only deals whose

balance at origination is higher than 100 million dollars (3) for only the most junior tranches

(tranche rank >0.5) (4) for the most senior tranches (tranche rank <0.5) and (5) for the most junior

tranche only. We run each of these five specifications using the four di↵erent wildfire propensity

scores (0,1,2,3) built in Table 1.

[Table 7 about here.]

Key facts emerge from this analysis. First, point estimates suggest that MBS tranche prices

are lower when the sensitivity of cash flows to wildfire propensity is higher. This is consistent with

the fact that MBSs experiencing prepayments and foreclosures during wildfires the point estimates

are consistently negative, ranging between -0.19 and -1.631. Second, such impact is statistically

significant for 15 of the 20 regressions. The result does not survive 5 of the specifications, those

using the wildfire propensity score 0, which is a propensity score without controls (fixed e↵ects)

for local wildfire propensity. Third, while the di↵erence is not statistically significant, the point

estimates for junior tranches are larger than the point estimates of the risk premium of senior

tranches. The point estimates for the most junior tranche are larger than the point estimates for

the senior tranche. Overall, the data is suggestive of a pricing of wildfire risk, but cannot provide

support in every tested specification.

Table 8 estimates whether greater wildfire risk propensities lead to greater returns � log p⌧dt.

Point estimates suggest that the most junior tranches experience the least amount of price changes:

�0.004 insignificant for the most junior tranche in the first set of specifications, +0.087 for junior

tranches (tranche rank > 0.5) as compared to +0.165 for senior tranches in the same set of specifi-

cations. This pattern holds when using the betas w.r.t. wildfire propensity scores 1, 2, or 3. When
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breaking down by tranche price rank at origination (Tranche rank >0.5 and Tranche rank <0.5),

the results are significant in each of the 5 specifications (wildfire propensity 0,1,2,3).

[Table 8 about here.]

The estimates are significant at 95% for 10 of the 20 specifications. While this is suggestive,

and while the sign of the point estimates are identical across specifications, it is not possible at this

stage to conclude that tranche prices decisively price the wildfire propensity score.

6.5 Potential Confounders: Additional Pricing Factors and the Wildfire Propen-

sity Factor as a “Zero-Beta” Factor

Our results on the pricing of wildfire risk exposure will be confounded if those wildfire risk factors are

correlated with other common pricing factors. In this case, the beta w.r.t. to the deal-level wildfire

risk factor would be capturing the correlation with an omitted variable. These omitted variables

potentially include Fama & French’s (2015) five factors, Frazzini & Pedersen’s (2014) betting against

beta, the gross profitability of Novy-Marx (2013), the liquidity of Pástor & Stambaugh (2003),

the momentum factor of Carhart (1997), the quality minus junk of Asness, Frazzini & Pedersen

(2019), investment and profitability from Hou, Xue & Zhang (2015), conditional skewness from

Harvey & Siddique (2000), and common idiosyncratic volatility from Herskovic, Kelly, Lustig &

Van Nieuwerburgh (2016). In total, we test for the potential confounding e↵ect of 14 factors with

each of the five potential wildfire risk factors at the national level:

National Wildfire PSt =

PJ
j=1Volume Originated (USD)jtPSjtPJ

j=1Volume Originated (USD)jt
(25)

where the 5-digit ZIP code wildfire propensity scores j = 1, 2, . . . , J are weighted by the dollar

value of originations. An alternative is to weigh by the current outstanding balance in each 5-digit

ZIP codes. For each propensity score PS1–PS5, and for each of the 14 factors, we estimate the

correlation, e.g. Cor(PSkt, smbt) for the smb factor. The absence of a significant correlation implies

that the potential omitted variable bias is not significant.
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The set of 5⇥ 14 pairwise correlations are presented on Table 9. The wildfire propensity factor

is not significantly correlated at 1, 5 or 10% with the 5 Fama French factors. Out of the 70

pairwise correlations, only the correlations with the investment (ia) factor from Hou et al. (2015)

are significant for each of the 5 wildfire propensity factors, with a significance level below 1% and

above 5%.

[Table 9 about here.]

6.6 Investor Awareness: Textual Analysis of MBS Prospectuses

An analysis of the prospectuses of MBS deals may shed light on investors’ awareness of wildfire

risk, climate risk, and disasters. We collect the full text of 482 deals using a manual script on the

Bloomberg terminal, and convert such prospectuses to series of words and expressions. Prospectuses

contain a wealth of information on tranches, mortgages, coupons, and other factors. Here we focus

on simple metrics: the occurence of words related to wildfire risk. This analysis can be extended

with further metrics. Table 10 suggests that MBS prospectuses provide at least mention of wildfire

risk beyond legal footnotes. We use two sets of words. First, we use the counts of ‘wildfire’

and ‘wildfires’. Second, we use the Merriam-Webster thesaurus to build a set of words related to

wildfires, hurricanes, climate change (29 words in this analysis).

[Table 10 about here.]

The results are presented on Table 10. Rows 1 and 3 present the frequency of words per 100,000

words, and rows 2 and 4 present the simple count of words per deal. Table 10 presents the moments

of the distribution, where each observation is an MBS deal. The average prospectus mentions the

word wildfire or wildfires 0.6 times per 100,000 words, and 1.02 times in a prospectus. The 90th

percentile of the distribution mentions the word wildfire 2.21 times per 100,000 words, and 4 times

overall. When using a broader set of words (list on the table), the average is significantly higher,

at 14.79 times per 100,000 and 23.58 times overall.
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7 Conclusion

With rising climate risk involving significant parts of the financial system (Coronese, Lamperti,

Keller, Chiaromonte & Roventini 2019, Monasterolo 2020), the returns to better financial engineer-

ing increase. New sources of systematic risk, such as wildfire risk, generate demand for a complete

market of securities with heterogeneous disaster risk exposures. This includes Mortgage-Backed

Securities, Insurance Linked Securities, and Credit Risk Transfers.

This paper provides a constructive path to design such climate risk e�cient frontier of securities

with di↵erent returns and risks as global temperatures rise. Such securities may be designed so that

natural disasters have no noticeable impact on deal-level cash flows. Other securities may o↵er a

significant covariance with global temperatures. This paper provides quantifiable metrics that can

assess the risk exposure of securities, and in reverse, provides tools to bundle cash flows to target

a specific risk exposure.

Diversification also enables the financial engineer to smooth out the tail risk of individual

locations, as quantified in Table 5, preventing large catastrophes that have been the focus of

macroeconomics and finance (Barro & Ursúa 2012, Pindyck & Wang 2013); current correlations

suggest signification diversification benefits. As local correlations rise, pooling risk beyond state

borders, across the nation, and then across countries, makes the financial system more resilient.

Mortgages are light to ‘ship to pools’ across the nation and countries;21 in trade, iceberg costs

have been an obstacle to international risk sharing (Dingel et al. 2019), and lowering them has

welfare benefits (Irarrazabal, Moxnes & Opromolla 2015). The globalization of climate finance

provides a larger set of uncorrelated or negatively correlated cash flows that help reduce the tail

risk of individual locations.

This paper highlights the importance of correlation metrics rather than a flat assessment of

probabilities. In the growing market for climate risk assessments, spurred by the SEC’s new climate

change disclosure rules, investors and regulators alike can acknowldege the benefits of assessing

portfolio correlations as those drive risk over and above average risk probabilities.22

21For the impact of wildfires in Portugal on mortgage pricing, see Götz, Mager & Zietz (2024).
22“The Enhancement and Standardization of Climate-Related Disclosures for Investors”, issued March 6, 2024,

https://www.sec.gov/rules/2022/03/enhancement-and-standardization-climate-related-disclosures-investors.
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Figure 1: Rising Wildfire Frequency – Surface Area of Wildfire Perimeters, Housing Units and
Total House Value A↵ected

These three charts present the annual exposure to wildfires by (a) surface area, (b) the number of
housing units, (c) housing value. The surface area exposed is in thousands of squared kilometers.
The number of housing units exposed is the sum of housing units at the Census tract level within
wildfire perimeters. Housing values from the 2010 Census.

(a) Surface Area Exposed (b) Housing Units Exposed (c) Housing Value Exposed

Sources: Wildfire perimeters from GeoMAC, NIFC. Census aggregate house values.

Area, ZCTA5 boundaries, US National Atlas projection.
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Figure 2: Rising Spatial Correlations in Wildfire Risk

These three barplots present the spatial correlation across 5-digit ZIP codes in wildfire occurrence. For each year t, we

consider a time window Jt�2 ..t+2K of two years before and after, and estimate the correlation across ZIP codes over

these five years. The correlation is either in the share of the surface a↵ected (a), in the share of housing units a↵ected

(b), or in the share of housing value a↵ected (c). The share in (a) is the spatial intersection of wildfire perimeters

with ZCTA5 boundaries. The shares in (b) and (c) are obtained by intersecting wildfire perimeters with Census tract

data for 2010. As such, it keeps the distribution of housing units and their values constant.

(a) Correlation, Surface (b) Correlation, Housing Units (c) Correlation, Housing Value

(d) Autocorrelation, Surface (e) Autocorrelation, Housing Units (f) Autocorrelation, Housing Value
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Figure 3: Wildfire Propensity Score – Out-of-Sample ROC Curves: Performance of Wildfire
Propensity Regressions

The figure presents the out-of-sample ROCs for the logistic regressions of PS0 and PS3 from Table 1 regressed until

2019. The out-of-sample ROCs are estimated for 2020 and 2021.

(a) Out-of-Sample ROC of PS0 (No Fixed E↵ects)

(b) Out-of-Sample ROC of PS3 (with Fixed E↵ects)
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Figure 4: Mortgage-Level Analysis – Wildfire Exposure and Mortgage-Level Cash Flows

The figures present the two-way DiD regression of the likelihood of foreclosure (panel (a)) and prepayment (panel (b))

using equation (2). The 90% confidence intervals are presented for the event study from �9 months and +12 months

around a wildfire event. Robust standard errors are clustered by mortgage and year-month.

(a) Two-Way Fixed-E↵ects DiD Estimation of Wildfires on Foreclosure

(b) Two-Way Fixed-E↵ects DiD Estimation of Wildfires on Prepayment
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Figure 5: Mortgage-Level Analysis – Wildfire Exposure and Mortgage-Level Cash Flows by Lo-
cation

The figures present the two-way DiD regression of the likelihood of foreclosure (panel (a)) and prepayment (panel

(b)) using equation (2). The 90% confidence intervals are presented for the event study from �9 months and +12

months around a wildfire event. Robust standard errors are clustered by mortgage and year-month. In both panels,

the interaction between wildfire event dummy and event month dummies are also interacted by a California dummy

to present the event results on California wildfires and rest of the US wildfires, separately.

(a) Two-Way Fixed-E↵ects DiD Estimation of Wildfires on Foreclosure

(b) Two-Way Fixed-E↵ects DiD Estimation of Wildfires on Prepayment
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Figure 6: Mortgage-Level Analysis – Wildfire Exposure and Mortgage-Level Cash Flows by Tim-
ing

The figures present the two-way DiD regression of the likelihood of foreclosure (panel (a)) and prepayment (panel

(b)) using equation (2). The 90% confidence intervals are presented for the event study from �9 months and +12

months around a wildfire event. Robust standard errors are clustered by mortgage and year-month. In both panels,

the interaction between wildfire event dummy and event month dummies are also interacted by a first wildfire (in a

ZIP code) dummy to present the event results on the first wildfires and repeated wildfires, separately.

(a) Two-Way Fixed-E↵ects DiD Estimation of Wildfires on Foreclosure

(b) Two-Way Fixed-E↵ects DiD Estimation of Wildfires on Prepayment

58



Figure 7: MBS Deal Analysis – The Exposure of MBS to Wildfires – Event Study Design

The upper panel presents, across months, the number of MBS deals in the treatment group. A deal is in the treatment

group when the treated ZIP codes represent more than 5% of the unpaid principal balance of the deal. The upper panel

is for the first exposure. The lower panel is for subsequent exposures. For each event of the upper panel, we consider

a �12 to +24 months time window around the event for the treated MBS deals.
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Figure 8: MBS Deal Analysis – The Exposure of MBS to Wildfires – At Di↵erent Thresholds

The three panels present, across months, the number of MBS deals exposed by share of the UPB in treated ZIPs.

A deal is in the treatment group when the treated ZIP codes represent more than 5% of the unpaid principal

balance of the deal on panel (a), 10% on panel (b), and 15% on panel (c).

(a) Number of Deals with more than 5% A↵ected (Dollar Value Measure)

(b) Number of Deals with more than 10% A↵ected (Dollar Value Measure)

(c) Number of Deals with more than 15% A↵ected (Dollar Value Measure)
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Figure 9: MBS Deal Analysis – Within-MBS Spatial Correlation in Wildfire Risk

For each originator (panel (a)) or for each month (panel (b)), we estimate the within-
originator or within-month spatial correlation in wildfire occurrence, weighted by the USD
unpaid principal balance in each location. Each point on panel (a) is an originator. Each
point on panel (b) is a month. This figure is descriptive as servicers may not report the iden-
tity of the originator for all mortgages. Regression analysis later in this paper controls for
deal fixed e↵ects and thus uses the longitudinal variation as a source of identification.

(a) By Size

(b) By Origination Date
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Figure 10: MBS Deal Analysis – The Impact of Wildfires on Deal Cash Flows – Event Study Design

The figures present the two-way DiD regression of deal-level loss normalized by unpaid balance in a deal
using equation (12). Panel (a) presents the event study results where deals are treated when the deal is
a↵ected by more than 2% of the unpaid balance at the time of the first wildfire. Panel (b) presents the
event study results where deals are treated when the deal is a↵ected by more than 5% of the unpaid balance
at the time of the first wildfire. Control group includes una↵ected deals and the deals that are a↵ected
by less than 1% of the unpaid balance at the time of a treated wildfire. The 90% confidence intervals are
presented for the event study from �9 months and +36 months around a wildfire event. Robust standard
errors are clustered by deal and year-month.

(a) Deals A↵ected by at least 2% of Deal Balance

(b) Deals A↵ected by at least 5% of Deal Balance
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Figure 11: Designing MBS – Simulated Pools and their Performance

We simulate the cash flows of 1,000 pools with di↵erent geographic diversification coe�cients (portfolio
coe�cients !w and !), and across 50 di↵erent simulations of interest rate paths and wildfire shocks for
each pool, over 360 months. The upper left graph shows the distribution of average monthly returns
across deals. The vertical axis is the number of pools, the horizontal axis is the expected monthly return
(0.06=6%). The upper right histogram shows the distribution of MBS-level standard deviation of returns.
Panel (c) presents the distribution of the sharp ratio of the simulated pools. Panel (d) focuses on one
MBS, that which maximizes the Sharpe ratio of monthly returns. The panel shows one point per 5-digit
ZIP code where the MBS deal includes mortgages. on the vertical axis, the dollars originated in each
location. On the horizontal axis, the wildfire propensity score. The Sharpe ratio maximizing MBS features
non-zero weights on wildfire exposed areas.
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(c) Baseline Distribution of Sharpe Ratios
Across Simulated Pools
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(d) Dollars Invested by Location for the Sharpe
Ratio Maximizing MBS
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Source: Simulations by the authors. ZIP-level cash flows calculated using the historical ZIP-level prepay-
ment and foreclosure rates. Impact of wildfires on cash flows estimated on Figure 4. Wildfire frequencies
and within-state spatial correlations across ZIP codes estimated using National Fire Interagency data.
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Figure 12: Designing MBSs – Sharpe Ratio Maximization and Resilience to Climate Change

The bottom panel plots the dollar allocation of mortgage originations at the mean-variance-maximizing
portfolio. !w is the coe�cient of wildfire propensity in the (Koijen & Yogo 2019) portfolio weight.

— Designing Deals: Sharpe-Ratio Maximizing —

(a) Los Angeles (b) San Francisco

— Designing Deals: Returns Most A↵ected by Rising Temperatures —

(c) Los Angeles (d) San Francisco
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Figure 13: Designing MBS Deals with Evolving Risk – Global Surface Temperature Forecasts

This line chart presents the simulated global surface temperature according to each of the IPCC’s CMIP6
models. We average these simulated temperatures across models. The red dotted lines are for the in-sample
data used in the MBS simulations.
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Figure 14: Designing MBS Deals with Evolving Risk – Evolution of the Wildfire Propensity Score

The wildfire propensity score partly determines the composition of a Mortgage-Backed Security whenever
the investor chooses a portfolio weight w.r.t. such wildfire propensity score. The upper panel shows the
average wildfire propensity score (PS0, first specification) in sample, over the time period of the sample.
The lower panel shows the projected change in the wildfire propensity score in 2050. Such change is
used to forecast cash flows with increased wildfire risk. The wildfire propensity model is estimated using
historical wildfire perimeters. The projected change in 2050 is estimated using the IPCC’s CMIP6 projected
temperatures and the wildfire propensity model of this paper.

(a) Initial In Sample Wildfire Propensity Score (Wildfire Propensity Model)

(b) Projected Change in the Wildfire Propensity Score (CMIP6 Forecast + Wildfire Propensity Model)
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Figure 15: Designing MBS – Simulated Pools and their Performance, with Rising Temperatures

Across 1,000 simulated MBS pools as in the previous Figure, the two upper panels show the impact of rising
temperatures, and thus rising wildfire risk, on expected returns (a) and the standard deviations of returns
(b). Panel (c) shows the impact of rising wildfire risk in 2050 on portfolios with di↵erent weights !w on
the wildfire propensity score. Panel (d) relates the change in return by 2050 based on rising temperatures
to the portfolio coe�cient of wildfire risk.
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Figure 16: Designing MBSs – Portfolio Coe�cients and MBS Sharpe Ratio with Current Wildfire Risk
(Black) and with Wildfire Risk in 2050 (Red)

These graphs show the relationship between the Sharpe ratio of monthly MBS returns and the portfolio
coe�cients. As in Koijen & Yogo (2019), the portfolio weight is pinned down by a discrete choice model
as in McFadden (1974). Here the covariates are the zip-level wildfire propensity score (as in Table 1),
the median household income from the 2010 Census, the average FICO score, the interaction between the
wildfire propensity score and household income, and the interaction between the wildfire propensity score
and the FICO score. The zip code-level covariates pin down the allocation of mortgage origination dollars.
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(b) Sharpe Ratio and Portfolio Coe�cient for the
interaction between Wildfire Propensity Score and
Median Household Income
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(c) Sharpe Ratio and Portfolio Coe�cient for the
interaction between Wildfire Propensity Score and
FICO
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—: wildfire risk using 2010-2021 data. —: wildfire risk using projected IPCC CMIP6 temperature in
2050, and the wildfire logit coe�cients estimated on Table 1.
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Table 1: Wildfire Propensity Score – Estimation of the Wildfire Propensity Score – Predicting of Wildfire
Occurrence at the ZIP Code Level

This table presents the estimation results from logistic regressions of a wildfire in ZIP code in a month
from January 2001 to December 2021. The dependent variable is a dummy variable that takes the value
of one if there is a wildfire in a month in a given month and zero otherwise. Abnormal temperature is the
monthly temperature net of the mean of temperatures in a calendar month calculated from 1980 to 2000.
Mean temperature is the monthly average temperature in a ZIP code from 1980 to 2000 and fixed for a
ZIP code. Drought index is the ZIP code-level DSCI and in log terms. Forest share is the share of forest
area in a ZIP code area in a given year. Developed area share is the share of developed area in a ZIP
code area in a given year. Electricity lines are the length of all above-ground electricity lines in a ZIP
code. Similarly, road length is the length of all roads in a ZIP code. We also control for the number of
state-level past wildfires in regression (1). Robust standard errors are clustered at ZIP code level and are
reported in parentheses. Significance is indicated as follows: * p<0.1; ** p<0.05; *** p<0.01.

Wildfire in a ZIP Code (1=Yes)

(1) (2) (3) (4)
PS0 PS1 PS2 PS3

Abnormal Temperature 0.229*** 0.266*** 0.265*** 0.262***
(0.009) (0.011) (0.011) (0.011)

Mean Temperature 0.106*** 0.062*** 0.063*** 0.062***
(0.003) (0.013) (0.013) (0.013)

ln(Drought Index) 0.036*** 0.101*** 0.051*** 0.049***
(0.011) (0.007) (0.009) (0.009)

⇥ Forest Share 0.003*** 0.002*** 0.002***
(0.000) (0.000) (0.000)

Forest Share -0.005*** 0.003** -0.006*** -0.007***
(0.002) (0.001) (0.002) (0.002)

Developed Area Share -0.009** -0.018***
(0.004) (0.006)

Electricity Lines (m/m2) 226.911** 357.312***
(105.138) (135.263)

Road Length (m/m2) -72.807** 32.666
(34.382) (46.157)

ln(ZIP Code Area) 0.222*** 0.828*** 0.831*** 0.773***
(0.027) (0.032) (0.032) (0.038)

ln(# of State-Level Past Wildfires) 2.098***
(0.031)

Constant -13.894*** -24.565*** -24.449*** -23.292***
(0.560) (0.704) (0.703) (0.822)

Year FE – Yes Yes Yes
Month FE – Yes Yes Yes
State FE – Yes Yes Yes
# of ZIP Code-Months 5,396,580 3,205,692 3,205,692 3,205,692
In-Sample ROC 0.984 0.969 0.969 0.969
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Table 2: Mortgage-Level Analysis – Loss in a Foreclosure following Wildfires

This table presents the cross-sectional estimation of loss as a share of unpaid mortgage balance in a
foreclosure conditional on that there is a foreclosure in a mortgage. Our control variables include the
natural logarithm of the FICO score of the borrower at origination, unpaid balance, an indicator whether
the interest rate is adjustable, the natural logarithm of the term to maturity, LTV, and the interest rate of
the mortgage. We also add a selection correction following Olsen (1980) in regressions (2) to (6). Robust
standard errors are clustered at county level and are reported in parentheses. Significance is indicated as
follows: * p<0.1; ** p<0.05; *** p<0.01.

Loss-to-Balance Ratio

(1) (2) (3) (4) (5) (6)

Wildfire (1=Yes) 0.052*** 0.063*** 0.045* 0.038 6.156*** 7.033***
(2.597) (2.679) (1.784) (1.550) (3.853) (3.931)

⇥ ln(FICO) -0.929*** -1.061***
(-3.818) (-3.887)

ln(FICO) -0.652*** 0.061* 0.071**
(-3.356) (1.905) (2.566)

Selection Correction -0.000 0.000 0.000 0.000 -0.000
(-0.633) (0.108) (0.233) (0.262) (-0.635)

ln(Unpaid Balance) 0.045*** 0.061*** 0.065*** 0.065***
(2.946) (4.992) (5.604) (4.570)

Adjustable (1=Yes) -0.127*** -0.097*** -0.085*** -0.074***
(-5.288) (-5.827) (-5.239) (-4.421)

ln(Term to Maturity) 0.279*** 0.297*** 0.295*** 0.320***
(8.952) (10.356) (11.142) (10.481)

LTV (%) 0.006*** 0.006*** 0.006*** 0.006***
(6.017) (6.221) (6.240) (6.493)

Interest Rate (%) 0.064*** 0.059*** 0.058*** 0.060***
(5.204) (6.232) (6.580) (7.223)

Constant Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes –
ZIP Code FE – – – – – Yes
# of Loans at Foreclosure 50,926 37,417 37,413 37,060 37,060 36,254
Adj. R-squared 0.615 0.622 0.867 0.871 0.873 0.891
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Table 3: Mortgage-Level Analysis – The Changing Features of Mortgage Contracts in the Aftermath of
Wildfires

This table presents the cross-sectional estimation of interest rate (regressions (1) to (3)) and LTV
(regressions (4) to (6)) at origination. Our variable of interest is an indicator which gets one if there
is a wildfire in the last year in the ZIP code of the collateral property. Our control variables include the
natural logarithm of loan balance, the natural logarithm of the FICO score of the borrower at origination,
an indicator whether the interest rate is adjustable, the natural logarithm of the term to maturity, LTV
(in regressions (1) to (3)), and the interest rate of the mortgage (in regression (4)). In regressions (2),
(3), (5) and (6), we limit the sample to the loans that have an LTV less than 80% at origination. Robust
standard errors are clustered at county level and are reported in parentheses. Significance is indicated as
follows: * p<0.1; ** p<0.05; *** p<0.01.

Interest Rate (%) LTV (%)

(1) (2) (3) (4) (5) (6)
All Loans with LTV<80% All Loans with LTV<80%

Wildfire Last Year (1=Yes) 0.054*** 0.054*** 0.056*** -3.486* -3.118* -5.969***
(0.018) (0.009) (0.011) (1.934) (1.610) (1.519)

ln(Loan Balance) 0.019 0.049 0.052 -0.463 0.115 6.156***
(0.069) (0.077) (0.086) (2.049) (2.268) (2.315)

ln(FICO) -0.360 -0.308 -0.376* 39.055*** 42.117** 25.958
(0.220) (0.243) (0.225) (14.800) (18.562) (20.063)

Adjustable (1=Yes) -0.698*** -0.686*** -0.709*** 0.465 -7.945 1.337
(0.095) (0.157) (0.171) (10.966) (14.244) (16.357)

ln(Term to Maturity) 0.943*** 0.936*** 0.951*** -0.418 2.846 4.060
(0.211) (0.222) (0.220) (4.853) (2.767) (2.954)

LTV (%) 0.001
(0.001)

LTV<80% (1=Yes) -0.114***
(0.026)

Interest Rate (%) 7.729**
(3.582)

Constant Yes Yes Yes Yes Yes Yes
Year-Month FE Yes Yes Yes Yes Yes Yes
County FE Yes Yes – Yes Yes –
ZIP Code FE – – Yes – – Yes
# of Loan Originations 12,625 8,932 8,596 12,625 8,932 8,596
Adj. R-squared 0.969 0.781 0.808 0.722 0.364 0.540
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Table 4: MBS Deal Analysis – MBS Deal Geographic Diversification and MBS Deals’ Unpaid Principal
Balance Exposed to Wildfires

The first column regresses the maximum Unpaid principal balance exposed to a wildfire on the within-MBS
deal spatial correlation in wildfire exposure, the log of the Herfindahl index of spatial concentration, the
log number of ZIPs in the deal, and the balance at origination. The within-deal correlation is obtained by
correlating the ZIP share of dollar housing value exposed to wildfires with the average ZIP share exposed of
other ZIPs in the MBS deal in the same year. The Herfindahl is obtained by taking the sum of the squared
share of balance in each ZIP, as a fraction of the overall balance in the MBS deal. The deal balance at
origination is the highest balance observed for the deal. IID standard errors are clustered at ZIP code level
and are reported in parentheses. Significance is indicated as follows: * p<0.1; ** p<0.05; *** p<0.01.

Dependent Variables: Max. UPB Treated
Exposed to Wildfires MBS Deal log(Herfindahl) Within Deal Spatial Correlation

2 [0, 1] = 0, 1 2 (�1, 0] 2 [�1, 1]
Model: (1) (2) (3) (4) (5)

Constant 0.1423⇤⇤⇤ -2.044⇤⇤⇤ 2.633⇤⇤⇤ -1.227⇤⇤⇤ -0.7643⇤⇤⇤

(0.0517) (0.4037) (0.2243) (0.1212) (0.0617)

Within-Deal 0.0854⇤⇤⇤ 0.4011⇤⇤⇤

Spatial Correlation (0.0109) (0.0852)

log(Herfindahl) 0.0076⇤⇤⇤ 0.0797⇤⇤⇤

(0.0023) (0.0179)

log(# ZIPs in Deal) -0.0228⇤⇤⇤ -0.1686⇤⇤⇤ -0.6716⇤⇤⇤ -0.0508⇤⇤⇤

(0.0048) (0.0373) (0.0116) (0.0115)

log(Deal Balance) 0.0041 0.1848⇤⇤⇤ -0.1226⇤⇤⇤ 0.0704⇤⇤⇤ 0.0350⇤⇤⇤

at Origination (0.0035) (0.0276) (0.0121) (0.0085) (0.0029)

Fit statistics

Observations 1,550 1,550 1,786 1,550 1,550
R2 0.16081 0.07452 0.78389 0.09742 0.08599
Adjusted R2 0.15864 0.07213 0.78365 0.09625 0.08540
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Table 5: Designing MBSs – The Benefits of Securitization: Returns at the ZIP and MBS Levels, Nu-
merical Simulations

The table presents annualized average monthly returns, standard deviation of monthly returns, and sharp
ration of monthly returns by quartiles of wildfire risk at ZIP code level and MBS level.

Level 10th Percentile 1st Quartile Mean Median 3rd Quartile 90th Percentile

Average Monthly Return (Annualized)
ZIP Level -0.18 0.85 10.05 1.45 2.26 3.39
MBS Level 0.51 3.16 4.22 5.03 5.71 5.77

S.D. Monthly Return (Annualized)
ZIP Level 4.14 6.19 7.65 7.71 8.80 10.46
MBS Level 2.79 2.88 3.72 3.18 4.90 5.28

Sharpe Ratio of Monthly Returns
ZIP Level -2.70 -1.27 1.19 -0.41 1.07 3.80
MBS Level -0.22 0.30 0.84 1.04 1.35 1.45
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Table 6: MBS Pricing Analysis – Correlation of the National Wildfire Propensity Factor with the Term
Structure of Interest Rates

This table presents the set of unconditional pairwise correlations between each of the wildfire propensity
factors and the term structure of interest rates, measured by the (1) 1 Month T-bill yield (series DGS1MO),
(2) the 5, 7-year yields (series DGS5 and DGS7), (3) the term premium measured as the di↵erence between
the yield on the 1-month T-bill and the 5, 7, 10, or 30 year Treasury yields (series DGS10 and DGS30).
Definitions of the wildfire propensity scores presented in Section 2.2.

Wildfire Propensity 1 month 5y � 1 mo 7y � 1 mo 10y � 1 mo 30y � 1 mo 5y 7y

PS0 -0.14 -0.05 -0.06 -0.06 -0.05 -0.19 -0.21
p value 0.02 0.42 0.38 0.32 0.45 0.00 0.00

PS1 -0.01 -0.18 -0.19 -0.19 -0.17 -0.13 -0.16
p value 0.83 0.00 0.00 0.00 0.01 0.05 0.01

PS2 -0.01 -0.19 -0.19 -0.19 -0.17 -0.13 -0.16
p value 0.89 0.00 0.00 0.00 0.01 0.05 0.01

PS3 -0.01 -0.18 -0.19 -0.19 -0.17 -0.12 -0.16
p value 0.91 0.00 0.00 0.00 0.01 0.06 0.01
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Table 7: MBS Pricing Analysis – Fama MacBeth Estimates of the Pricing of Wildfire Risk – log Price
Level

These tables present the estimate �̂ of the impact of wildfire risk probabilities on the log price level of
each tranche. This is the average of the cross-sectional coe�cients for the wildfire beta �w in the second-
step regression at monthly frequency. Standard errors account for correlation structures described in
Section 6.1. Such correlation structures allow for autocorrelation in �̂t. The panel below provides estimates
for di↵erent specifications using one of the five wildfire propensity scores, where PS0–PS3 refer to the four
columns of Table 1. t-statistics are adjusted for Newey-West Autocorrelation in b�t.

log p⌧dt, log price of tranche ⌧ of deal d in month t

� of Cash Flows w.r.t. Wildfire Propensity Score 0

Sample Estimate S.E. t statistic p value

All tranches �0.330 0.275 �1.198 0.233
Tranche rank <0.5 (senior tranches) �0.190 0.243 �0.784 0.435
Tranche rank >0.5 (junior tranches) �0.283 0.236 �1.199 0.233
Most junior tranche �0.484 0.176 �2.750 0.007

� of Cash Flows w.r.t. Wildfire Propensity Score 1

Sample Estimate S.E. t statistic p value

All tranches �1.631 0.487 �3.351 0.001
Tranche rank <0.5 (senior tranches) �0.489 0.212 �2.302 0.023
Tranche rank >0.5 (junior tranches) �1.436 0.473 �3.034 0.003
Most junior tranche �0.845 0.215 �3.928 0.000

� of Cash Flows w.r.t. Wildfire Propensity Score 2

Sample Estimate S.E. t statistic p value

All tranches �1.594 0.508 �3.138 0.002
Tranche rank <0.5 (senior tranches) �0.489 0.227 �2.151 0.033
Tranche rank >0.5 (junior tranches) �1.421 0.491 �2.892 0.005
Most junior tranche �0.881 0.198 �4.443 0.000

� of Cash Flows w.r.t. Wildfire Propensity Score 3

Sample Estimate S.E. t statistic p value

All tranches �1.160 0.374 �3.104 0.002
Tranche rank <0.5 (senior tranches) �0.222 0.153 �1.445 0.151
Tranche rank >0.5 (junior tranches) �0.955 0.347 �2.747 0.007
Most junior tranche �0.621 0.125 �4.976 0.000
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Table 8: MBS Pricing Analysis – Fama MacBeth Estimates of the Wildfire Risk Premium – Monthly
log Price Changes

These tables present the estimate ⇣̂w of the impact of wildfire risk probabilities on returns (at the tranche-
deal-month level). This is the average of the cross-sectional coe�cients ⇣̂wt for the wildfire beta �w in the
second-step regression at monthly frequency when the dependent variable is the log price change. Standard
errors account for correlation structures described in Section 6.1. Such correlation structures allow for
autocorrelation in �̂t. The panel below provides estimates for di↵erent specifications using one of the five
wildfire propensity scores, where PS0–PS3 refer to the four columns of Table 1. t-statistics are adjusted
for Newey-West Autocorrelation in b�t.

� log p⌧dt, log price appreciation of tranche ⌧ of deal d in month t

� of Cash Flows w.r.t. Wildfire Propensity Score 0

Sample Estimate S.E. t statistic p value

All tranches 0.108 0.016 6.793 0.000
Tranche rank <0.5 (senior tranches) 0.165 0.031 5.395 0.000
Tranche rank >0.5 (junior tranches) 0.087 0.024 3.610 0.000
Most junior tranche �0.004 0.016 �0.218 0.828

� of Cash Flows w.r.t. Wildfire Propensity Score 1

Sample Estimate S.E. t statistic p value

All tranches 0.685 0.752 0.910 0.364
Tranche rank <0.5 (senior tranches) 0.281 0.135 2.079 0.040
Tranche rank >0.5 (junior tranches) 0.174 0.086 2.032 0.044
Most junior tranche �0.031 0.038 �0.831 0.408

� of Cash Flows w.r.t. Wildfire Propensity Score 2

Sample Estimate S.E. t statistic p value

All tranches 0.370 0.265 1.396 0.165
Tranche rank <0.5 (senior tranches) 0.273 0.131 2.091 0.039
Tranche rank >0.5 (junior tranches) 0.144 0.065 2.227 0.028
Most junior tranche �0.036 0.037 �0.963 0.338

� of Cash Flows w.r.t. Wildfire Propensity Score 3

Sample Estimate S.E. t statistic p value

All tranches 0.311 0.229 1.357 0.177
Tranche rank <0.5 (senior tranches) 0.206 0.102 2.024 0.045
Tranche rank >0.5 (junior tranches) 0.122 0.059 2.052 0.042
Most junior tranche �0.022 0.028 �0.793 0.429
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Table 9: MBS Pricing Analysis – Correlations of the National Wildfire Propensity Factor with 14 Factors

These two tables present a set of 5⇥14 unconditional correlations, between each of the 4 wildfire propensity
scores built as in Section 2.2, and 14 factors: excess market return (mkt), size (smb), book-to-market
(hml), profitability (rmw), and investment (cma) from Fama & French (2015), betting against beta (bab)
in Frazzini & Pedersen (2014), gross profitability (gp) in Novy-Marx (2013), liquidity (psl) from Pástor
& Stambaugh (2003), momentum (mom) in Carhart (1997), quality minus junk (qmj) in Asness et al.
(2019), investment (ia) and profitability (roe) from Hou et al. (2015), coskewness (csk) from Harvey
& Siddique (2000), and common idiosyncratic volatility (civ) from Herskovic et al. (2016). The factor
longitudinal panel data set is from Harvey & Liu (2021). Each wildfire propensity score PS0 to PS3 is a
national score, the average across 5-digit ZIP codes of the wildfire propensity score at monthly frequency,
weighted by the dollars of mortgage origination. The p value is computed for each correlation coe�cient
separately.

Wildfire Propensity Mkt-RF SMB HML RMW CMA Mom12m Coskewness

PS0 -0.06 -0.10 -0.05 0.06 -0.08 0.12 -0.01
p value 0.32 0.10 0.39 0.35 0.20 0.05 0.84
PS1 -0.02 -0.11 -0.06 0.06 -0.09 0.11 -0.04
p value 0.78 0.09 0.33 0.34 0.16 0.08 0.56
PS2 -0.02 -0.11 -0.06 0.06 -0.09 0.11 -0.04
p value 0.80 0.09 0.33 0.35 0.17 0.08 0.55
PS3 -0.02 -0.10 -0.06 0.06 -0.09 0.11 -0.04
p value 0.78 0.10 0.34 0.35 0.17 0.08 0.54

Wildfire Propensity BetaLiquidityPS R ROE R IA qmj bab GP IdioVol3F

PS0 -0.07 0.14 -0.10 0.16 -0.03 0.09 0.07
p value 0.30 0.03 0.10 0.01 0.64 0.14 0.28
PS1 -0.10 0.12 -0.16 0.10 -0.06 0.08 0.04
p value 0.15 0.05 0.01 0.12 0.37 0.19 0.52
PS2 -0.09 0.12 -0.15 0.09 -0.06 0.08 0.04
p value 0.16 0.06 0.01 0.13 0.38 0.20 0.55
PS3 -0.09 0.12 -0.15 0.09 -0.05 0.08 0.04
p value 0.17 0.06 0.01 0.13 0.39 0.20 0.55
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Table 10: Text Analysis of MBS Prospectuses

This table presents summary statistics of the analysis of the full text of MBS prospectuses. An observation
is an MBS deal.

Variable P10 P25 Average S.D. P75 P90 # of Deals

Wildfire, Wildfires
Frequency per 100,000 words 0.00 0.00 0.61 0.97 1.05 2.21 482
Number of words per prospectus 0.00 0.00 1.02 1.60 2.00 4.00 482

Broader Set of Words
Frequency per 100,000 words 8.36 11.46 14.79 5.41 18.61 21.62 482
Number of words per prospectus 11.00 16.00 23.58 10.02 30.00 36.00 482

Broader Set of Words: climate, warming, wildfire, hurricane, storm, flood, tornado, thunderstorm, ty-
phoon, cyclone, heatwave, drought, rainstorm, blizzard”, avalanche, mudslide, landslide, windstorm, hail-
storm, ice, snowstorm, blaze, inferno, forest, campfire, conflagration, backfire, arson, flare-up.
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Appendix Figure A: Evolution of Temperatures (PRISM) and of the Drought Index – Average Annual
Change

These two maps present the evolution of two key inputs in the Wildfire Propensity Score developed in Sec-
tion 2.2 and in equation 1. These two key inputs are temperatures and the US Department of Agriculture’s
drought index, ranging from 0 (no drought) to 4 (exceptional drought).

(a) 5-digit ZIP code Average Annual Change in Temperature (C)

(b) 5-digit ZIP code Average Annual Change in the Drought Index, USDA DSCI (higher is drier).
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Appendix Figure B: Monthly Drought Index and Extreme Temperatures for two Wildfire-Prone States

The two charts of the upper panel present the average of the USDA DSCI drought index for two states:
California and Nevada. Higher is drier. Data from the U.S. Drought Monitor hosted at the University
of Nebraska-Lincoln. The two charts of the lower panel present the 90th percentile of temperatures for
the same two states. Temperature data is from Oregon State University’s PRISM project. Both the DSCI
index and the temperature are averaged at the ZIP-code level, consistent with Specification 1.

(a) California’s Average Drought Index (b) Nevada’s Average Drought Index

(c) California’s 90th Percentile of Temperature (d) Nevada’s 90th Percentile of Temperature
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Appendix Figure C: Designing MBSs – Simulation Example, Cash Flow for One 5-Digit ZIP Code

This figure presents the path of cash flows, notional, prepayment rate, and remaining principal for one
ZIP code in one interest rate simulation and one wildfire simulation. The vertical dotted line is for the
wildfire. In total, we perform 50 interest rate and wildfire simulations per 5-digit ZIP code. These cash
flow simulations are then weighted for each MBS. An MBS is a portfolio of mortgages across ZIP codes.

(a) Cash Flow CFj,t (b) Notional Nj,t

(c) Hazard Rate �j,t (d) Remaining Principal Ij,t
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Appendix Figure D: Designing MBSs – Correlation of Monthly Returns Across 5-digit ZIP Codes

This plot displays the correlation matrix for the numerical simulation of monthly returns of ZIP-level
mortgage investments Cor(r̃jt, r̃j0t) for any pair of ZIP codes j, j0. An MBS deal can lower the risk
(standard deviation of monthly returns) by pooling mortgages from ZIP codes with lower return correlations
(lighter shades of gray). The correlation matrix is ordered using the approach of Hahsler, Hornik & Buchta
(2008). The number of rows and the number of columns are equal to the number of 5-digit ZIP codes of our
sample, which includes the wildfire-prone states of California, Oregon, Washington, Indiana, Montana,
Wyoming, Nevada, Utah, Colorado, Arizona, and New Mexico.

Correlation Matrix Across 5−digit ZIPs, Monthly Returns
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Appendix Table A: Designing MBSs – Trade-O↵s Between Wildfire Risk, Prepayment and Foreclosure
Risk

This table presents the cross-sectional regressions of the baseline (1) prepayment and (2) foreclosure hazard
rates, and the (3) mortgage interest rate at the ZIP level on each of the wildfire propensity score of the first
column of Table 1. The baseline hazard rates are estimated using the logistic regression (16). The hazard
rate and the interest rate are available in 5-digit ZIP codes with private label mortgage originations.

Panel A: Linear Regression on the Wildfire Propensity Score

(1) (2) (3)
Prepayment Hazard Foreclosure Hazard Interest Rate

(Intercept) 2.283*** 0.174*** 4.900***
(0.044) (0.012) (0.013)

Wildfire Propensity Score -0.023** 0.001 0.002
(0.010) (0.003) (0.003)

Num.Obs. 2938 2938 2938

Panel B: Regression on 4 bins of the Wildfire Propensity Score

(1) (2) (3)
Prepayment Hazard Foreclosure Hazard Interest Rate

(Intercept) 2.229*** 0.180*** 4.895***
(0.055) (0.014) (0.016)

Wildfire Propensity Score P60-P70 -0.138 -0.082** -0.162***
(0.145) (0.038) (0.042)

Wildfire Propensity Score P70-P80 0.106 -0.006 -0.016
(0.145) (0.038) (0.042)

Wildfire Propensity Score P80-P90 0.490*** -0.005 0.115***
(0.145) (0.038) (0.042)

Wildfire Propensity Score P90-P100 -0.157 0.037 0.129***
(0.145) (0.038) (0.042)

Num.Obs. 2,938 2,938 2,938
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