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Abstract

We study a credit market in which the lender bases its lending decisions on a borrower’s
digital profile, and the borrower can manipulate its digital profile at a cost. We show that
when the extent of data collected by the lender is observable, as the lender utilizes more data
in its underwriting models, the borrower is more likely to manipulate their digital profile,
which impairs the quality of the lender’s data and its lending decisions. Therefore, even if
obtaining and analyzing additional data is costless, the lender will voluntarily limit its own
data coverage. In contrast, when the data coverage is unobservable, the lender tends to use
all available data. Thus, disclosure policy can play a valuable role in allowing the lender to
credibly commit to limiting its data coverage. Moreover, in the aggregate, borrowers too
prefer that some digital data be collected.
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1 Introduction

The increasing digitization of individuals’ lives has led to the generation of a substantial amount

of valuable data, derived from activities like app usage and social media engagement. These big

data are increasingly utilized by lending companies to assess and evaluate borrowers in the credit

market. In fact, one notable characteristic of FinTech lenders, as opposed to traditional banks,

is their reliance on algorithms and alternative data as a substitute for face-to-face interactions

between lenders and borrowers.

Once the digital profile information is widely used for lending decisions, it is natural that,

as implied by the Lucas critique (Lucas, 1976), in response borrowers may change their behav-

ior. In fact, borrowers may consciously attempt to manipulate their digital profile. While some

variables in such a profile may be hard to manipulate, or may require a borrower to change her

intrinsic habits (e.g., transaction records for utility bills), others can be manipulated more easily.

For instance, a consumer may switch to an iOS device when applying for loans through an online

lending platform, understanding that from the lender’s point of view, iOS users imply higher in-

come and lower default rates than Android users (Berg et al., 2020). Such manipulation adversely

affects the quality of the data collected by a lender.

Moreover, given the extensive availability of digital data, regulators worldwide have imple-

mented regulations pertaining to the utilization of alternative data in credit markets. For exam-

ple, in 2019, the federal banking regulators in the United States issued an interagency statement

that outlined the advantages and risks associated with the use of alternative data in assessing

consumers’ creditworthiness. Similarly, in 2021, the European Commission put forth proposed

revisions to the Consumer Credit Directive, which aimed to tackle specific concerns pertaining

to the processing of personal data within the consumer credit market. These revisions placed

a strong emphasis on principles such as transparency, fairness, data minimization, and purpose

limitation.

In this paper, we develop a theoretical model to examine the impact of lenders’ utilization of

big data technology on borrowers’ manipulation behavior, as well as the reciprocal influence of
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borrowers’ manipulation on the lenders’ decisions. Our study sheds new light on the regulatory

considerations surrounding the use of big data in credit markets. Our model features a single

lender and a borrower. The borrower has a project for which she seeks funding from the lender.

There are two types of borrowers, high and low, based on the probability the project will succeed.

The type is privately known to the borrower.

The borrower has a digital profile connected to her underlying type. The lender chooses

how much data to collect about the borrower’s digital profile. The collected data generate a noisy

signal about borrower creditworthiness, and the lender can base its credit decisions on this signal.

Importantly, the borrower can manipulate their digital profile at some cost, in order to fool the

lender about their type.

We consider two regulatory regimes: the transparent regime and the non-transparent regime.

In the transparent regime, the extent of data used by the lender is observed to the borrower,

whereas in the non-transparent regime, this data coverage remains unobservable. The transition

from the non-transparent regime to the transparent one thus represents a regulatory change that

enhances transparency regarding the utilization of big data in the credit market.

In the transparent regime, our key insight is that the low type borrower’s incentive to ma-

nipulate their information increases rather than decreases in the extent of data collected by the

lender. The better the data that the lender has, the more likely that those who generate high

signals are indeed high types. As a result, the interest rate offered to borrowers who generate

high signals is lower. This feature, in turn, implies that low types have a greater incentive to

manipulate their data.

As a result of this increased manipulation, an increase in the data coverage in the lender’s

underwriting model can give rise to a non-monotonic effect on its expected lending profit in

the transparent regime. On the one hand, better data coverage leads to more informed lending.

On the other hand, increased data coverage can induce low-type borrowers to manipulate their

digital profiles more often. That is, understanding that the lender would rely more on the collected

data, the low-type borrowers have a greater incentive to disguise themselves as high types. This
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manipulation lowers the quality of the lender’s data and impairs its lending decisions.

The latter negative force is more salient when the manipulation cost for borrowers is low and

low-type projects have negative net present value (NPV). We show that in the transparent regime,

the lender optimally chooses to limit its own coverage of big data in equilibrium. To establish

our result as starkly as possible, in our model we assume there is no direct cost to acquiring more

data.1 By restricting its own data collection, the lender limits manipulation by borrowers, thus

sustaining its data quality and its overall profit.

Our results imply there is an endogenous limit on the value of big data to a lender in the

transparent regime. Acquiring additional data beyond this optimal limit results in the data itself

being less useful for predicting default. As information becomes cheap in the digital age, in the

spirit of Holmström informativeness (Holmström, 1979), it seems a lender should acquire and

use unlimited amounts of information on borrowers. In our model, the lender has no direct cost

to acquiring information. Rather, borrower manipulation renders the information less valuable,

generating an endogenous cost to acquiring more of it.

In contrast, in the non-transparent regime, the lender chooses to maximize data usage. Essen-

tially, the lender always has an incentive to deviate and increase its data coverage beyond what

the borrower believes it is doing. Thus, when data coverage is unobserved by the borrower, the

lender cannot credibly commit to limiting it.

Interestingly, we find that in the aggregate borrowers too may prefer that the lender acquire

some digital information, rather than completely abstain from it. In particular, a lender who

has more information can more easily discern between the types. In this scenario, high-type

borrowers obtain better terms, and are initially better off with a better informed lender. Low-

type borrowers, on the other hand, are worse off. Aggregate borrower payoff increases, because

the improvement in the welfare of the high types initially dominates the reduction in welfare of

the low types. If the lender continues to acquire digital data, however, manipulation by the low

type increases to the point that the welfare of high-type borrowers also declines.
1It is immediate that if there were a large direct cost to increasing its data coverage, the lender would limit the

amount of data acquired.
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Our model can offer insights into the ongoing regulatory debate about the use of big data in

the credit market.

Firstly, there is concern that transparency regarding the use of alternative data is inadequate.

In the U.S., lenders are required by the Fair Credit Reporting Act (FCRA) and the Equal Credit Op-

portunity Act (ECOA) to disclose the sources and types of information used for credit decisions.

However, the extent to which these regulations apply specifically to alternative data requires

further clarification. In the EU, the 2021 proposal for the Consumer Credit Directive explicitly

emphasizes that consumers should have the right to obtain a meaningful explanation of the credit

assessment, including the main variables, logic, and associated risks involved.

In our framework, transparency is enhanced when the lender’s data coverage becomes ob-

servable to the borrower. By comparing the transparent regime to the non-transparent one, we

find that enhanced transparency regarding the use of alternative data grants the lender the power

to commit to limiting its data coverage. This restrains borrower manipulation, preserves data

quality, and maintains profitability. Therefore, rather than imposing additional restrictions that

harm profitability, increased transparency actually benefits the lender.

Secondly, regulations may impose limitations on the use of data in credit lending. In the U.S.,

the Equal Credit Opportunity Act (1974) prohibits discrimination based on race, ethnicity, gender,

and other factors in any aspect of credit. The Gramm-Leach-Bliley Act (GLBA) of 1999 establishes

basic requirements for financial institutions to safeguard the privacy and security of consumer

financial information. However, the EU has taken a more proactive approach. The 2021 proposal

for the Consumer Credit Directive explicitly states that certain types of personal data, such as

data from social media platforms or health data including cancer-related information, should not

be used to assess creditworthiness. The European Data Protection Supervisor even suggests the

prohibition of using search query data or online browsing activities, based on principles like

purpose limitation, fairness, and transparency.

In our framework, we demonstrate that if the restriction on data usage is moderate, it might

not impact the equilibrium or the mechanism highlighted in our paper. However, if the limit be-
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comes highly restrictive, it can have adverse consequences for both the lender and the borrower.

More broadly, our framework allows us to understand the effects of different factors on bor-

rower manipulation and on credit market outcomes. For example, as financial literacy improves,

i.e., individuals gain better knowledge about the data used in credit underwriting and actions

they can take to enhance their creditworthiness, the manipulation cost for borrowers may de-

crease. According to our model, this increase in financial literacy, coupled with the resulting

lower manipulation cost, can potentially induce more manipulation, ultimately diminishing bor-

rower payoff. On the other hand, anti-fraud measures implemented by lenders may actually

benefit borrowers by deterring manipulation.

Our paper builds on the literature on manipulation in contracting settings, in which the agent

can manipulate the observed performance measure. In such a setting, the multi-tasking model

of Holmström and Milgrom (1991) implies that when manipulation of a particular variable is

easy, the contract should not depend on that variable. In a moral hazard setting, Goldman and

Slezak (2006) show that manipulation is more likely when managers have high-powered incen-

tives. Lacker and Weinberg (1989) consider a situation with hidden information, and show the

optimal contract may involve the agent falsifying the reported state. When both adverse selec-

tion and moral hazard are present, Beyer et al. (2014) find that in the presence of manipulation,

the optimal contract is less steep than otherwise.

Recent work on agent manipulation in financial settings includes Barbalau and Zeni (2022)

in the context of green bonds. Cohn, Rajan, and Strobl (2022) examine an issuer manipulating

information provided to a credit rating agency, and tie the incentives to manipulate to the quality

of the rating process. With respect to mortgage loans, Rajan, Seru, and Vig (2015) show that the

interest rate on a loan becomes a worse predictor of default as securitization increases during

the subprime crisis. Our manipulation mechanism provides one potential explanation for this

documented failure of default models.

The general idea that an agent’s endogenous action can induce information loss has many

broad implications. For instance, Perez-Richet and Skreta (2022) study the optimal design of tests
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with manipulable inputs and find the optimal tests must induce productive falsification. Frankel

and Kartik (2022) also show that data-based decision making should account for the manipulation

of data by agents. Our application to the credit lending market allows us to determine normative

implications and study the effects of different regulations on borrower and lender welfare.

Our paper is also related to the growing literature on FinTech lending and the use of big data

in the lending business. Berg, Fuster, and Puri (2021) offer an excellent survey on this literature.

Berg et al. (2020) and Agarwal et al. (2020) show that digital footprint variables can be important

predictors of default, and usefully complement credit bureau information. Di Maggio and Yao

(2021) note FinTech lenders’ reliance on information provided in credit reports to automate their

lending decisions fully, and Di Maggio, Ratnadiwakara, and Carmichael (2022) find that alter-

native data used by a major FinTech platform exhibit substantially more predictive power with

respect to the likelihood of default than traditional credit scores. Jansen et al. (2022) analyze the

welfare effects of increased data availability in the credit market. Theory wise, Parlour, Rajan,

and Zhu (2022) examine the impact of FinTech competition with banks in payment services, He,

Huang, and Zhou (2023) study the effect of open banking on lending market competition, and Li

and Pegoraro (2022) model competition between banks and a bigtech platform. We contribute to

this literature by focusing on borrowers’ manipulation behavior and exploring its implications

for the lender’s decisions and the overall credit market.

2 The Model

We consider a credit market with a lender and a borrower. The borrower has a project that

requires a financial investment of 1 unit at time 0. The project may either succeed or fail. If it

succeeds, it generates a payoff at time 2 that is specified below. If it fails, the payoff is zero. The

risk-free rate is zero, and both agents are risk-neutral.

The borrower is penniless and seeks external financing for the entire investment of 1. As is

standard with limited liability, both parties receive zero when the project fails. Thus, without loss
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of generality, we can refer to the external financing contract as debt and the financier as a lender.

2.1 The Borrower

The borrower’s project: There are two types of borrowers, high (H) and low (L), who differ in

the likelihood that their project will be successful. Let qθ denote the probability that the project

of the borrower of type θ is successful, where 0 < qL < qH < 1. The borrower privately knows

her own type. The prior probability that the borrower has the high type is α ∈ (0, 1), and this

fraction is common knowledge.

If the borrower accepts a loan from the lender, she undertakes the project. If the project fails,

the borrower defaults. Otherwise, if the project succeeds, it generates a gross payoff of 1 + v,

where v captures the profitability of a successful project. We assume that v has an atomless

distribution F (·) with support [0, R] and density f(·). The distribution F (·) has an increasing

hazard rate, that is, f(v)
1−F (v)

is increasing in v.

We assume that the borrower’s outside option is zero. In other words, if the borrower does

not secure the loan for the project, their payoff is zero. Further, we assume that qH(1 + R) > 1,

that is, the most profitable project (with profitability R) is positive-NPV for the high type.

The borrower’s digital profile: In addition to her project type, the borrower has a digital pro-

file denoted by t ∈ {H,L}. We use the term “digital profile” to include all “alternative data” about

the borrower, that is, information other than traditional financial information that is considered

when evaluating a loan applicant. As noted by Kona (2020), for individuals such alternative data

includes information such as whether the borrower has been paying rent and utility bills on time

(i.e., cash flow data), their academic background, and their employment history. In our usage, it

also includes variables highlighted by Berg et al. (2020), such as the electronic device the borrower

uses (e.g., desktop, tablet, or mobile), the operating system of the device (e.g., Windows, iOS, or

Android), the channel through which a customer has visited a website, and the time at which a

customer applies for a loan. In addition, there may be information gleaned from the number and
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types of apps installed, metrics of social connectivity, and their social media presence (Agarwal

et al., 2020). For small and medium-sized businesses (SMBs), the digital profile can include their

business ratings and reviews on social media and other sites like Yelp, website data such as traffic

and global traffic rank, online presence, and engagement data.

Of course, in deciding whether to make a loan, the lender also considers traditional financial

information such as the credit score, income, and wealth of the borrower, as well as their history

with respect to debt (such as types of loans, outstanding balances, and length of credit history).

These variables are factored into the success probabilities qH and qL, as well as the probability

α of the borrower being the high type. Our focus is on the additional information a lender may

have from alternative data obtained from the user’s online presence.

Manipulation: A key feature of our model is that the borrower can manipulate their digital

profile. Manipulation increases the probability that the digital profile provides incorrect informa-

tion about the borrower’s type. Denote the borrower’s manipulation decision as m ∈ [0, 1]. With

probability m, the manipulation is successful, and a borrower of type θ presents a digital profile

similar to someone of type θ̃ ̸= θ. With probability 1−m, the manipulation is unsuccessful, and

their digital profile reveals them to be of type θ. To manipulate, a borrower incurs a cost C(m),

where C(0) = C ′(0) = 0 and C ′(m), C ′′(m) > 0 for all m > 0.2 The borrower’s manipulation

decision is unobserved by the lender.

There can be several ways to interpret the manipulation cost. First, it includes the expenditure

of time, effort, and money for borrowers to manipulate their digital profiles. For example, an

individual may intentionally switch from an Android phone to an iPhone when applying for a

loan online, or a restaurant seeking more funding may engage in inflating Google reviews to

enhance its social presence.

Second, manipulation can potentially have legal consequences and damage the borrower’s

reputation. For instance, in the case of the restaurant inflating its reviews, once the deception is
2In Section 6.1, we consider an extension in which the manipulation cost is affected by the lender’s data technol-

ogy as well, demonstrating the robustness of our insights.
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uncovered, it can negatively impact the restaurant’s reputation. Therefore, the potential loss of

reputation can be considered as a form of manipulation cost.

2.2 The Lender

Data technology: The lender can leverage the power of alternative data in its lending busi-

ness. It chooses a data technology ρ ∈ [0, 1] in its underwriting model, where ρ represents the

probability that the lender successfully observes the digital profile of the borrower. The more

advanced the data technology (i.e,, the higher the value of ρ), the more informative is the lender’s

signal about the borrower’s digital profile.3

Specifically, the lender observes a signal about the borrower s ∈ {sH , sL, s0}. With proba-

bility 1− ρ, the lender does not learn anything extra from the borrower’s digital profile, and we

say it observes the uninformative signal s0. Conversely, the signals sH and sL allow the lender

to update its priors over borrower type, as specified below. Because the signal obtained by the

lender is directly informative only about the borrower’s digital profile rather than the true type,

the probability of receiving signal sH and signal sL depend on the extent of manipulation by the

borrower.

To focus on the effect that manipulation by the borrower has on the lender, we assume that

the lender faces no direct technological cost. That is, increasing ρ has no cost for the lender, such

as the cost of acquiring and processing the data and the risk of privacy violations. Thus, the only

reason that the lender may not choose the most informative technology, ρ = 1, is due to the fact

that manipulation by the borrower may lead to a reduction in signal quality.4

In practice, data technology used in underwriting models encompasses various aspects, in-

cluding data coverage (that is, the amount and types of digital data obtained) and the quality

of the algorithms used to extract relevant information from the data. For example, lenders may
3We didn’t consider the lender’s information collection about the borrower’s project profitability v because com-

pared with the borrower type θ (and their digital profile), v could reflect more transient or personal borrower char-
acteristics which are hard to be captured by any data, e.g., the transient liquidity needs and the personal value of the
loan to the individual borrower.

4In Section 6.2, we consider an extension in which the lender incurs costs to acquire and process data. We
demonstrate the enduring validity of our insight in this context.
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choose to incorporate more alternative data into their underwriting models to paint a more com-

plete picture of a borrower’s digital profile. Furthermore, even with the same set of alternative

data collected in a loan application proposal, lenders can enhance their algorithms to generate

more insightful and useful information. For convenience, going forward we interpret ρ as the

extent of coverage about the borrower’s digital behavior.

Regulatory regimes: Depending on the regulatory regimes, the lender’s data coverage ρ can

be observable to the borrower or not. In the transparent regime, where the lender is required to

disclose “the main variables, the logic, and risks involved” in the credit underwriting model, ρ is

observable to the borrower. In contrast, in the non-transparent regime, the lender’s data coverage

ρ remains opaque to the borrower.

Loan pricing: We assume the lender has deep pockets and can raise an arbitrary amount of

funds at an interest rate normalized to zero. The lender’s data collection facilitates personalized

loan pricing. Specifically, the lender decision on whether to offer a loan to the borrower, and the

interest rate if it does so, is contingent on the digital signal s obtained from the borrower. The

interest rate offered to the borrower is denoted as r. Thus, if a loan is accepted and the project

succeeds, the lender obtains a net payoff r, whereas its net payoff is −1 when the project fails.

Since no borrower will accept a loan offer at an interest rate strictly higher than the project’s

maximum profitability rate R, when the lender does not want to make a loan, it can simply offer

the interest rate R.

2.3 Sequence of Moves

The sequence of moves in the game is illustrated in Figure 1. At time 0, the lender chooses

its data coverage ρ to maximize the expected profit from lending. In the transparent regime,

the borrower can observe the data coverage, while in the non-transparent regime, the borrower

cannot. The borrower then decides manipulation intensity m after learning their type. At time 1,

the borrower observes the profitability rate v of their project. Then, the lender receives signals
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about the borrower and offers a personalized loan contract at the interest rate r. Based on the

contract offer r and the project profitability rate v, the borrower decides whether or not to accept

the lender’s loan offer. Finally, at time 2, the project’s outcome is revealed, and both agents’

payoffs are realized.

Time 0

• The lender chooses data cov-
erage ρ. Depending on the
regulatory regime, ρ can be ob-
servable or not.
• The borrower learns their type
θ and chooses manipulation
intensity mθ .

Time 1

• The borrower learns their
project profitability v;
• After receiving a signal s, the
lender makes a loan offer rs to
the borrower;
• The borrower decides whether
or not to accept the offer.

Time 2

• The project outcome
1 + v or 0 is obtained,
and both agents receive
their payoffs.

Figure 1: Timeline

2.4 Equilibrium Definition

We consider perfect Bayesian equilibria of the model. The lender chooses the extent of data

coverage ρ at time 0. At time 1, after receiving the digital signal s it updates its belief over

the borrower type and chooses the interest rate to offer to the borrower, rs. The borrower knows

their own type θ and chooses the extent of manipulation at time 0. Finally, at time 1, the borrower

observes the project profitability and the offered interest rate rs, and decides whether to accept

or reject the loan.

Definition 1 (Equilibrium). A perfect Bayesian equilibrium is characterized by the lender actions

ρ∗ ∈ [0, 1] and r∗s for each s ∈ {sH , sL, s0}, borrower actions m∗
θ ∈ [0, 1] for each θ ∈ {H,L} and

a loan acceptance decision, and lender’s posterior belief µs that the borrower has the high type given

signal s, such that:

(i) The data coverage ρ∗ maximizes the lender’s expected profit.
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(ii) The manipulation intensitym∗
θ maximizes the expected payoff of a borrower with type θ given

the borrower’s belief about the data coverage.

(iii) The lender’s interest rate offer r∗s maximizes its expected payoff given the digital signal it ob-

serves, s.

(iv) The lender’s posterior belief µs given its digital signal s satisfies Bayes’ rule wherever possible.

(v) The borrower’s loan acceptance decision maximizes their expected payoff given their type θ and

project profitability v.

The lender does not observe the manipulation decisions of each type of borrower. Rather, the

lender forms a belief m̂θ about the extent of manipulation by each type, mθ. In equilibrium, of

course, the lender’s beliefs have to be correct. Similarly, in making their manipulation decisions,

the borrower forms beliefs ρ̂ regarding the lender’s data coverage. When computing the equilib-

rium, we must specify a belief function ρ̂, which stipulates how the borrower updates their belief

ρ̂ about the lender’s data coverage. Specifically, in the transparent regime where the borrower

observes the data coverage, the belief function is perfectly aligned with the lender’s actual data

coverage, i.e., ρ̂ = ρ. In contrast, in the non-transparent regime, the borrower cannot observe

the lender’s data coverage and the equilibrium belief consistency requires that ρ̂ = ρ∗, where ρ∗

is the equilibrium level of data coverage.

3 Borrower Behavior and Optimal Interest Rates

We now characterize the equilibrium in the main model. We begin the analysis by examining the

borrower’s decision to accept or reject a loan offer at time 1 and then proceed to move backward

to time 0 in our analysis.
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3.1 Optimal Loan Acceptance Decisions by the Borrower

Suppose that the borrower accepts a loan at interest rate r and undertakes the project. If the

project succeeds, the borrower repays the loan plus the interest rate, obtaining a net payoff v− r.

Otherwise, if the project fails, the borrower defaults and receives 0. As such, for θ ∈ {H,L}, the

borrower’s expected payoff if they accept the loan is

w(θ, r) = qθ [v − r] . (1)

The borrower has an outside option of zero. Thus, the borrower accepts the loan if r < v, is

indifferent if r = v, and rejects if r > v. Going forward, we assume that an indifferent borrower

accepts the loan, so that the borrower accepts if and only if

r ≤ v. (2)

Thus, at time 0, the lender believes that the probability that the borrower will accept a loan at

rate r is 1− F (r), which characterizes the demand function faced by the lender.5

3.2 Optimal Interest Rates Offer by the Lender

Consider the lender’s choice of the interest rate to offer the borrower. After observing signal

s ∈ {sH , sL, s0}, which may be contaminated by the borrower manipulation, the lender updates

its posterior beliefs about the borrower type. Let µs denote the lender’s posterior belief that the

borrower has the high type given signal s, that is, µs ≡ Pr(θ = H|s). Let q̄s = µsqH +(1−µs)qL

denote the average success rate of the project given signal s.

The lender understands that if it makes a loan offer at interest rate r, the borrower accepts

the offer with probability 1 − F (r). Conditional on the borrower accepting the offer, the lender

obtains a net payoff r if the project succeeds and −1 if the project fails. Therefore, the lender’s
5For simplicity, we do not explicitly incorporate limited liability for the borrower in our analysis. With limited

liability, one could argue that a borrower with v < r may also accept the loan and accept a net payoff of zero.
Formally, one could introduce an arbitrarily small cost to the borrower from undertaking the project. In this case,
the borrower will strictly prefer to reject the loan if v ≤ r. Hence, our analysis may be interpreted as focusing on
the limiting case in which the cost to the borrower of undertaking a project approaches zero.
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expected payoff is

πs(r) = (1− F (r))
[
q̄s · r − (1− q̄s)

]
. (3)

The offered interest rate rs maximizes this expected payoff.

Given signal s, the lender’s posterior belief µs depends on its beliefs over the borrower’s

manipulation intensity. In equilibrium, of course, the lender’s beliefs about manipulation must

match the borrower’s actual manipulation intensity.

Lemma 1. Suppose the lender obtains signal s ∈ {sH , sL, s0}. Then,

(i) If q̄s(1 +R) ≥ 1, the optimal interest rate rs satisfies the equation

r − 1− F (r)

f(r)
=

1

q̄s
− 1. (4)

(ii) If q̄s(1 +R) < 1, the optimal interest rate is rs = R.

Equation (4) is the first-order condition that emerges from the lender’s maximization problem.

Given signal s, if some projects have a weakly positive NPV (i.e., q̄s(1+R) ≥ 1), the lender sets an

interest rate according to equation (4). As in auction theory, the left-hand side can be interpreted

as the virtual interest rate. Rewriting the equation as rs = 1
q̄s
− 1 + 1−F (rs)

f(rs)
, the lender charges a

markup over the zero-profit interest rate 1
q̄s
− 1.

Of course, if given signal s, all projects have negative NPV (i.e., q̄s(1 + R) < 1), the lender

simply rejects the loan application by setting rs = R.

3.3 The Borrower’s Manipulation Decision

Next, consider the manipulation decision of the borrower. When making manipulation decisions,

the borrower holds a belief ρ̂ about the lender’s data coverage. As discussed above, the specifi-

cation of the belief function depends on the regulatory regime. Suppose the borrower of type

θ ∈ {H,L} manipulates with probability mθ. Since the borrower’s manipulation decision is not

observable to the lender, the lender only holds a belief about her manipulation intensity, denoted

as m̂θ for each θ. The lender’s belief about borrower manipulation in turn affects its posterior
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belief about borrower type given signal s. Finally, the lender’s posterior beliefs determine the

interest rates offered after each signal, as in Lemma 1.

Taking this belief m̂θ as given, each type of borrower determines their actual manipulation

intensity mθ accounting for the following scenarios. With probability 1 − ρ̂, the digital signal

is s0. With probability ρ̂, the digital signal about the borrower is either sH or sL. In this case,

the digital signal equals the underlying borrower type θ with further probability 1−mθ, and the

other type θ̃ with probability mθ.

Putting all this together, the expected payoff of the borrower of type θ is

u(θ,mθ; m̂θ, ρ̂) = −C(mθ) + ρ̂ mθ · qθ

∫ R

rθ̃

(v − rθ̃︸ ︷︷ ︸)dF (v)

payoff when mistaken for the other type

+ ρ̂ (1−mθ) · qθ

∫ R

rθ

(v − rθ)dF (v)︸ ︷︷ ︸
payoff when type is correctly recognized

+ (1− ρ̂) · qθ

∫ R

r0

(v − r0)dF (v)︸ ︷︷ ︸
payoff when digital signal is uninformative

. (5)

Note that when type θ generates signal sθ, we say it has been “correctly recognized,” whereas

when it generates signal sθ̃ ̸= sθ, we say it has been “mistaken for the other type.” We show

below in Proposition 1 that type H never generates signal sL in equilibrium, and that type L may

generate either signal sH or signal sL.

There are three cases to consider in equation (5). First, given the borrower’s belief ρ̂ about

the lender’s data technology, with probability ρ̂ · mθ the borrower will successfully pretend to

be a different type θ̃ ̸= θ and be offered the interest rate rθ̃. As discussed in Section 3.1, if

the realized project profitability rate v exceeds rθ̃, the borrower accepts the offer, obtaining an

expected payoff qθ(v − rθ̃). Otherwise, the borrower goes for the outside option and obtains a

payoff of zero. Therefore, when the borrower manipulates successfully, her expected payoff is

qθ
∫ R

rθ̃
(v − rθ̃)dF (v).

Second, with probability ρ̂(1−mθ), the borrower’s digital profile will be correctly recognized

as belonging to type θ. The offered interest rate is rθ. Again, she accepts the loan offer rθ if

v ≥ rθ, and settles for the outside option otherwise. Thus, the expected payoff in this case is

15



qθ
∫ R

rθ
(v − rθ)dF (v).

Finally, with the remaining probability 1− ρ̂, the lender’s digital signal is uninformative about

borrower type, and the borrower will be offered the interest rate r0. Again, the borrower needs

to make a choice between the loan offered by the lender featured with interest rate r0 and the

outside option. The resulting expected payoff for the borrower is qθ
∫ R

r0
(v − r0)dF (v).

We show that the high-type borrower never manipulates and the low-type borrower manip-

ulates with positive probability (i.e., m∗
H = 0 and m∗

L > 0) if they believe that lender’s data

coverage is strictly positive: ρ̂ > 0. Let rj denote the optimal interest rate offered by the lender

following signal sj .

Proposition 1. Suppose that the borrower’s belief about the lender’s data coverage ρ̂ > 0. Define

the marginal payoff of a low-type borrower who manipulates with intensity m and succeeds as the

following:

B(m | ρ̂) = ρ̂ qL

(∫ R

rH(m)

(v − rH(m))dF (v)−
∫ R

rL

(v − rL)dF (v)

)
. (6)

Then, in the equilibrium that emerges in the subsequent subgame,

(i) The high-type borrower does not manipulate their digital profile, i.e.,m∗
H = 0.

(ii) The low-type borrowermanipulates with positive probability, and the equilibriummanipulation

intensity m∗
L is either equal to 1, or satisfies the equation

B(mL | ρ̂) = C ′(mL), (7)

where B(·) is given by equation (6).

(iii) The interest rates offered by the lender satisfy rH < r0 < rL.

Whenever the borrower believes that the lender acquires some digital data (i.e., ρ̂ > 0), the

subsequent equilibrium sees no manipulation by the high-type borrower, but some manipulation

by the low-type borrower. Going forward, for the rest of the paper, we set mH = 0, and use

the subscript-less variable m to indicate mL, optimal manipulation by the low type. The signal

structure implied by Proposition 1 is then shown in Figure 2.
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Type H

sH

sL

s0

ρ̂

0

1− ρ̂

Type L

sH

sL

s0

ρ̂ m

ρ̂ (1−m)

1− ρ̂

Figure 2: Structure of digital signal when the high-type borrower does not manipulate, and the
low type manipulates with intensity m

Part (ii) of Proposition 1 analyzes the manipulation intensity of a low-type borrower. For a

low-type borrower, a marginal increase in manipulation intensity would enable her to secure a

loan with an interest rate of rH , resulting in an expected payoff increase of

qL

(∫ R

rH(m)
(v − rH(m))dF (v)−

∫ R

rL
(v − rL)dF (v)

)
. This scenario occurs when the borrower’s

digital profile is detected by the lender, which happens with a probability of ρ̂. Equation (6) thus

summarizes the marginal benefit for such a low-type borrower. Moreover, taking into account

the manipulation cost, we can express the net benefit of manipulation for the low-type borrower

as B(m | ρ̂)− C ′(m).

As part (ii) of Proposition 1 shows, if the net benefit of manipulation at m = 1 is still positive

for the low-type borrower, the equilibrium manipulation intensity is m = 1. Otherwise, the

equilibrium manipulation intensity takes an interior solution, determined by B(m | ρ̂) = C ′(m),

as given by equation (7). In equation (7), we write the interest rate charged for the borrower

with high-type digital profiles as rH(m) to emphasize that the interest rate is a function of the

manipulation intensity m.

Given the manipulation strategies of each type of borrower, and using the fact that in equi-

librium the lender’s beliefs must match the actual manipulation strategies, the lender’s posterior

beliefs after each signal may be written as follows. Let µj denote the posterior probability of the

high-type borrower after signal sj . Then, µL = 0, µ0 = α, and µH = α
α+(1−α)m

∈ (0, α). As part

(iii) of the proposition says, it follows that the interest rate is lowest after signal sH and highest

after signal sL.

17



As noted earlier, the borrower’s manipulation intensity depends on the interest rates offered

by the lender. The lender’s optimal interest rate offers, in turn, depend on the lender’s beliefs

about the manipulation intensity. In equilibrium, the lender’s beliefs must be correct.

The following corollary summarizes the equilibrium relationship between the manipulation

intensity and the lender’s interest rate offers.

Corollary 1 (Manipulation and optimal interest rates). In equilibrium, when the low-type bor-

rower’s manipulation intensitym increases,

(i) the interest rate charged for the borrower with a high-type digital profile increases, i.e., ∂rH
∂m

> 0;

(ii) the interest rate charged for the borrower that is unrecognized and that for the borrower with

a low-type digital profile does not change, i.e., ∂r0
∂m

= 0 and ∂rL
∂m

= 0.

Part (i) of Corollary 1 states that when the low-type borrower is more likely to manipulate

their digital profile, the lender will set higher interest rates upon receiving the high-type sig-

nal. A higher manipulation intensity by the low-type borrower lowers the posterior belief that

the borrower is truly high-type, hence the average success rate of the borrower’s project (i.e.,
∂µH

∂m
< 0 and ∂q̄H

∂m
< 0). As a result, the lender raises the interest rate when offering the loan as

compensation for the lower likelihood of retrieving the initial funding.

By contrast, as long as the signal does not reveal anything about the borrower type, the lender

always charges the interest rate r0 as given by Lemma 1, regardless of the low-type borrower’s

manipulation intensity m. This result is intuitive because m does not affect the lender’s posterior

belief when the signal is uninformative. Likewise, the lender knows that the borrower is a low

type with certainty upon signal s = L, and again, the resulting interest rate rL is not affected by

m.

Furthermore, equation (7) clearly shows that the low-type borrower’s manipulation intensity

is affected by their belief about the lender’s data coverage. The following corollary formally

presents the result. Let m∗(ρ̂) be the equilibrium manipulation intensity given the belief ρ̂ about

data coverage.
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Corollary 2. Supposem∗(ρ̂) < 1. Then, the higher the belief about the data coverage chosen by the

lender, the more intensively the low-type borrower manipulates their digital profile. That is, ∂m
∗

∂ρ̂
> 0.

When the borrower believes that the lender adopts higher data coverage in its underwriting

process (i.e., ρ̂ increases), a borrower’s digital profile is more likely to be revealed. Understanding

this, a low-type borrower will have a greater incentive to manipulate their data, and to pretend to

be a high-type borrower. The resulting positive relationship between the belief about the lender’s

choice of data coverage and the low-type borrower’s manipulation intensity, as summarized in

Corollary 2, underlies the key mechanism in our paper, driving the main insight in Section 4.

4 Optimal Data Coverage by the Lender

We now turn to the lender’s choice of data coverage, ρ. At the beginning of time 0, the lender

chooses data coverage to maximize its unconditional expected profit in the lending business,

understanding how borrowers form belief about its data coverage in different regulatory regimes.

Recall from equation (3) that the profit after signal s and interest rate offer r is πs(r) = (1 −

F (r))[q̄sr − (1− q̄s)], where q̄s = µsqH + (1− µs)qL is the average quality of the project given

signal s. The optimal interest rate offer rs also varies by signal, and is given by equation (4) in

Lemma 1.

The low-type borrower manipulates with intensitym. Overall, therefore, the borrower presents

a high-type digital profile with probability α + (1− α)m. With a further probability ρ, the bor-

rower will generate signal sH from the lender’s data technology and receive the interest rate rH .

The lender in turn makes an expected profit of πH(rH).

Next, with probability (1 − α)(1 − m) the low-type borrower continues to have the digital

profile of a low type. It is recognized as the low type by the lender with a further probability ρ.

In this case, the lender makes an expected profit of πL(rL).

Finally, with probability 1− ρ, the lender’s data technology does not work, and the borrower

will be unrecognized regardless of her underlying type. In this case, the lender sets interest rate
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r0 and makes profit π0(r0). Overall, the lender’s unconditional expected profit at time 0 may be

written as:

Π(ρ; ρ̂) = ρ
(
{α + (1− α)m}πH(rH) + (1− α)(1−m)πL(rL)

)
+ (1− ρ)π0(r0). (8)

Note that in equation (8) data coverage ρ affects the unconditional expected profit Π directly.

As implied by equations (4) and (7), the low-type borrower’s manipulation intensity m and the

lender’s optimal interest rate rH are affected by the borrower’s belief ρ̂ about the data cover-

age. Thus, the lender’s actual data coverage ρ also indirectly affects Π through m and rH in the

transparent regime since ρ̂ = ρ there.

To highlight the effects of borrower manipulation on the lender’s choice of data coverage, we

first consider a benchmark case in which the borrower cannot manipulate. We will then discuss

the equilibrium data coverage in both the transparent and non-transparent regimes.

4.1 Benchmark: No Manipulation

Consider first a benchmark economy in which the borrower is unable to manipulate their digital

profile, that is, mθ = 0 for each θ ∈ {H,L}.6 Consequently, the borrower’s digital profile

accurately reflects their true type.

In this scenario, if the lender’s signal provides any information, it directly reveals the bor-

rower’s type. That is,

s =


sθ with probability ρ, for each θ ∈ {H,L}

s0 with probability 1− ρ.

(9)

In particular, the quality of the signal strictly improves with digital data coverage ρ. Given that

increasing ρ incurs no additional costs, it is evident that the lender prefers maximum data cover-

age.

Proposition 2 (No-manipulation benchmark). Suppose the borrower cannot manipulate their dig-

ital profile. Then, regardless of the regulatory regimes, in equilibrium the lender chooses maximal
6Alternatively, we can assume the borrower’s marginal cost of manipulation is infinite for any positive m, i.e.,

C ′(m) = ∞ for any value of m > 0.
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data coverage, i.e., ρ∗ = 1. Hence, the digital signal is fully informative about borrower type.

In the absence of borrower manipulation, the lender will actively pursue all accessible digital

data prior to granting a loan. This finding is intuitive because, in such a scenario, gathering more

data unequivocally leads to improved borrower screening, yielding only benefits.

4.2 The Transparent Regime: Endogenous Limits on Data Coverage

We now return to our base model, in which the borrower may manipulate their digital profile. In

this section, we study the equilibrium in the transparent regime. When the lender’s data coverage

is observable to the borrower, their belief about the data coverage is always consistent with the

lender’s actual data coverage, i.e., ρ̂ = ρ.

In the transparent regime, we are particularly interested in understanding under what cir-

cumstance the lender’s optimal choice of data coverage is strictly below 1, that is, ρ∗ < 1. The

key insight builds on Corollary 2. Manipulation by the low-type borrower reduces the lender’s

profit. Suppose that if the lender chooses full data coverage (i.e., sets ρ = 1), the low-type bor-

rower optimally manipulates with less than full intensity (i.e., chooses m < 1). Then, by reducing

its data coverage slightly, the lender can induce the low-type borrower to reduce the extent of

manipulation. The direct effect of reducing data coverage is to reduce lender profit, whereas the

indirect effect of thereby reducing borrower manipulation increases lender profit.

We identify sufficient conditions under which the indirect effect outweights the direct effect,

and overall lender profit is greater at some ρ < 1 than at ρ = 1. Recall that the interest rate

charged after signal sH depends on the manipulation intensity of the low-type borrower, m. If

the borrower manipulates fully (i.e., sets m = 1), the belief after signal H is µH = α, that is, it is

equal to the prior and to the belief after signal r0. Thus, the optimal interest rate set by the lender

in this case is r0.

Proposition 3 (Optimal data coverage in the transparent regime). Suppose the lender’s choice of

digital data coverage, ρ, is observable to the borrower. In equilibrium,
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(i) The lender chooses a strictly positive data coverage, i.e., ρ∗ > 0.

(ii) If qL < 1
1+R

(i.e., low-type projects are all negative NPV) and C ′(1) ≤ B(1 | 1) (i.e., manipu-

lation cost is sufficiently low), where B(·) is given by equation (6), the lender chooses less than

full data coverage (i.e., ρ∗ < 1).

Proposition 3 shows that, in the transparent regime, despite the data technology having no

direct cost in our model, the lender may choose to adopt less than full data coverage. This result

sharply contrasts with the benchmark economy without manipulation.

The conditions in part (ii) of the proposition include: (a) projects of low-type borrowers all

have negative NPV, or qL(1+R) < 1, and (b) the borrower’s manipulation cost is sufficiently low.

More specifically, Condition (b) states that the highest manipulation cost C ′(1) should be lower

than a threshold denoted by B(1 | 1). Based on equation (6), the low-type borrower’s marginal

manipulation benefit monotonically decreases in the manipulation intensity. Thus, when the

low-type borrower manipulates with full intensity, the marginal payoff becomes the lowest. In

this case, the lender’s signal sH becomes completely uninformative, leading to the same level of

interest rates under the high signal and no signal, that is, rH(1) = r0. We thus can rewrite the

threshold B(1 | 1) as

B(1 | 1) = qL

(∫ R

r0

(v − r0)dF (v)−
∫ R

rL

(v − rL)dF (v)

)
. (10)

Taken together, the second condition implies that the digital profile is easily manipulable, and the

first ensures that such manipulation by the low type leads to a significant deterioration in lender

profit. In such a case, the lender endogenously avoids full data coverage in order to maintain data

quality. Note that these are sufficient conditions, and the result on the lender choosing less than

full data coverage can continue to hold if the conditions are violated in a minor way.

We will show in the next section that the borrower being able to observe the extent of data

coverage chosen by the lender is critical to the result in Proposition 3.
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4.3 The Non-Transparent Regime

In the non-transparent regime, the lender’s choice of data coverage remains opaque to the bor-

rower. The equilibrium consistency requires that the borrower’s belief about the data coverage

must match the lender’s actual choice in equilibrium, i.e., ρ̂ = ρ∗.

Proposition 4 (Optimal data coverage in the non-transparent regime). Suppose the lender’s choice

of digital data coverage, ρ, is not observable to the borrower. Then,

(i) If C ′(1) < B(1 | 1), where B(1 | 1) is given by equation (10), there is an equilibrium the

lender chooses maximal data coverage, i.e., ρ∗ = 1, and the low-type borrower manipulates

with probability 1 (i.e.,m∗ = 1).

(ii) If C ′(1) ≥ B(1 | 1), there is a unique equilibrium in which the lender chooses maximal data

coverage, i.e., ρ∗ = 1, and the low-type borrower manipulates with strictly positive probability

(i.e., m∗ > 0).

Proposition 4 shows that when the lender’s credit underwriting model remains opaque to

the borrower, the maximal data coverage can always be sustained in equilibrium, i.e., ρ∗ = 1.

Notably, the borrower will choose to manipulate their digital profile, so here the lender’s signal

is not fully informative about borrower type.

Why does the lender choose maximal data coverage? Suppose, instead, the borrower believes

the lender limits the scope of alternative data it acquires (ρ̂ < 1). In response to this belief about

the data coverage, the borrower will restrict their manipulation of their digital profile. However,

the lender now has an incentive to deviate and increase its data coverage. In other words, the

lender cannot credibly commit to acquiring limited information about the borrower.

Importantly, since the borrower cannot observe the actual increase in data coverage, she only

makes her manipulation decision based on her belief about the data coverage. Therefore, for any

belief ρ̂ the borrower may have about the lender’s data coverage such that m(ρ̂) < 1, the lender

strictly prefers acquiring more data. In equilibrium, this force drives the lender towards achieving

the highest possible data coverage.
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In Section 5, we will examine the implications of regulations that impose transparency on the

use of alternative data in credit markets. We will compare the equilibria in the transparent and

non-transparent regimes to gain insights into these implications.

4.4 Borrower Surplus and Total Surplus

Having examined the optimal data coverage for the lender in both the transparent and non-

transparent regimes, in this section, we explore the effects of the equilibrium data coverage on the

borrower and the social planner. To simplify notations, we denote the equilibrium data coverage

as ρ.

First, consider the borrower. Let uθ(ρ) be the expected utility of the type θ borrower when

the data coverage is ρ. Here,

uH(ρ) = qH

{
ρ

∫ R

rH(m)

(v − rH(m))dF (v) + (1− ρ)

∫ R

r0

(v − r0)dF (v)
}
, (11)

uL(ρ) = qL

{
ρm

∫ R

rH(m)

(v − rH(m))dF (v) + ρ(1−m)

∫ R

rL

(v − rL)dF (v)

+(1− ρ)

∫ R

r0

(v − r0)dF (v)
}
− C(m). (12)

Note that m, the equilibrium manipulation intensity of the low-type borrower, depends on ρ.

The borrower’s ex ante expected payoff is

U = αuH + (1− α)uL. (13)

The social planner cares about the total surplus, which is defined as the sum of the lender profit

and the borrower surplus:

S = Π+ U , (14)

where the lender profit Π and the borrower surplus U are given by equations (8) and (13), respec-

tively.

We show that there are conditions under which both the borrower and the social planner have

a higher utility when the data coverage is strictly positive. It is unsurprising that the lender’s

profit would be higher when data coverage is strictly positive than when it is zero. What might
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be surprising is that in ex ante terms the borrower too is strictly better off.

Intuitively, the low type is hurt as data coverage increases from zero, for two reasons. First,

when ρ > 0, in equilibrium the low type is sometimes revealed to be the low type, and obtains a

low payoff. Second, the increase in ρ induces the low type to increase their manipulation, which

incurs a cost. Conversely, the high type benefits when data coverage is increased above zero,

because when the digital signal is high, they obtain a better interest rate (i.e., they sometimes

obtain the rate rH rather than r0). The trade-off between these two effects will depend on how

much manipulation by the low type (m) and the interest rates offered by the lender (rH , rL, and

r0) change as ρ increases. The sizes of these effects, in turn, depend on the distribution of project

profitability, v.

We show that if v has the uniform distribution, both the borrower and the social planner are

better off with strictly positive data coverage.

Proposition 5 (Borrower surplus and total surplus). Comparing strictly positive data coverage

(i.e., some ρ > 0) to no data coverage (i.e., ρ = 0),

(i) The high-type borrower is better off and the low-type borrower is worse off with strictly positive

data coverage. That is, ∂uH

∂ρ
|ρ=0> 0 and ∂uL

∂ρ
|ρ=0< 0.

(ii) Suppose that the project profitability v is uniformly distributed, that is, v ∼ U [0, R]. Then, ex

ante both the borrower and the social planner are better off with strictly positive data coverage.

That is, ∂U
∂ρ

|ρ=0> 0 and ∂S
∂ρ

|ρ=0> 0.

Proposition 5 reveals an interesting finding that counters the common belief that the borrower

is fearful of data collection. In fact, the borrower actually prefers the lender to have access to some

digital data. The collection of such data enables personalized loan pricing, which can potentially

be detrimental to the low-type borrower. However, the high-type borrower benefits from more

extensive screening and personalized pricing. Surprisingly, the latter effect can outweigh the

former, resulting in an optimally positive data coverage for the borrower.
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Finally, while the borrower prefers a low (yet positive) level of data coverage and the lender

prefers a high (but not full) level of data coverage, the social planner aims to strike a balance

between the two. Consequently, the social planner favors a moderately positive data coverage

that satisfies the interests of both parties.

4.5 A Numerical Example

Sections 4.2 and 4.3 demonstrate that the lender restricts data coverage in the transparent regime,

while utilizing the complete data coverage in the non-transparent regime. In this section, we

present a numerical example to illustrate this crucial finding of our paper. Figure 3 plots the

impact of data coverage on the equilibrium variables in the transparent regime, while ρ = 1 can

always be sustained in equilibrium in the non-transparent regime.

In this numerical example, we suppose the project profitability follows a uniform distribution;

that is, v ∼ U [0, R]. The manipulation cost is assumed to be C(m) = c ·m2. The parameters are

qH = 0.8, qL = 0.3, α = 0.5, R = 2.7, and c = 0.02.

To begin with, consistent with Corollary 2, Panel (a) of Figure 3 demonstrates that in the

transparent regime, more data coverage ρ can induce (weakly) more manipulation from the low-

type borrower. That is, when ρ < 0.85, the equilibrium manipulation intensity m∗ by the low-

type borrower strictly increases in ρ. After ρ continues to grow and exceeds 0.85, the low-type

borrower fully manipulate their digital profile, i.e., m∗ = 1.

As the low-type borrower manipulates their digital profile more intensively, the lender’s pos-

terior belief about the borrower being the high type after receiving the high signal sH decreases.

In response, the lender charges a higher interest, as shown in Corollary 1 and Panel (b) of Figure

3. By contrast, since only the low-type borrower manipulates and their manipulation does not

affect the lender’s posterior belief when the signal is uninformative, the interest rates the lender

charges for the unrecognized and the low type do not change. Note that in Panel (b) of Figure 3,

we also plot several auxiliary horizontal lines at the level of R (the maximum project profitabil-

ity), and vθ ≡ 1
qθ

− 1 (the zero-profit interest rate for type θ, as discussed in Lemma 1). Panel
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(a) Manipulation intensity (b) Interest rates (c) Lender profit

(d1) Borrower surplus (d2) uL (d3) uH (e) Total surplus

This figure plots the effect of data coverage ρ on the low-type borrower’s manipulation intensity in Panel (a), equilib-
rium interest rates in Panel (b), the lender’s profit in Panel (c), borrower surplus in Panels (d1)-(d3), and total surplus
in Panel (e). The manipulation cost function is assumed to be C(m) = c ·m2. The parameters are α = 0.5, qH = 0.8,
qL = 0.3, R = 2.7, and c = 0.02.

Figure 3: The effect of data coverage

(b) confirms that the interest rate rs charged for the borrower of digital profile θ has always a

markup over the zero-profit interest rate, that is, rs > vs, where s ∈ {sH , sL}.

With more intensive manipulation, the lender’s unconditional expected profit can decrease

in the data coverage when ρ takes a large value, as shown in Panel (c) of Figure 3. Therefore,

the lender may not choose the maximum data coverage even though it is free. In this numerical

example, the lender optimally chooses ρ∗ ≈ 0.35 to maximize its lending profit in the transparent

regime (as indicated by the red dot), which strictly falls below 1. This is consistent with Proposi-

tion 3. In contrast, Proposition 4 shows that the lender always tends to choose the maximal data

coverage in the non-transparent regime, ρ∗ = 1.

Next, we study the normative implications of the data coverage for borrower surplus and

total surplus, as examined in Section 4.4. Panel (d) plots the effect of data coverage on the ex ante
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borrower surplus U , the high-type borrower surplus uH , and low-type borrower surplus uL. Like

the lender profit, the expected borrower surplus also exhibits a hump-shape pattern with respect

to the data coverage. Thus, consistent with Proposition 5, the borrower also favors a strictly

positive data coverage. In this example, ex ante borrower payoff is maximized at ρ ≈ 0.16. For

a low-type borrower, higher data coverage makes it hard for her to pretend a high type, leading

to unfavorable interest rate. Moreover, the low-type borrower engages in more manipulation,

incurs higher cost, and becomes even more worse off, resulting in a (weakly) decreasing line as

shown in Panel (d2). For a high-type borrower, higher data coverage implies that she is more

likely to be identified by the lender and receives a favorable interest rate. However, when the

low-type borrower manipulates intensively, the lender’s signal has very low quality, making it

more difficult for the high-type borrower to separate themselves from the low-type one and thus

leading to the unfavorable interest rates. Thus, as shown in Panel (d3), the borrower surplus for

the high type can exhibit a hump-shape pattern, with the maximum point at ρ ≈ 0.33.

Finally, panel (e) of Figure 3 confirms Proposition 5 that the social planner desires a positive

data coverage from the lender. Total welfare is maximized at ρ ≈ 0.26 in this numerical example.

5 Implications

In this section, we examine the implications of our framework for the credit market. We begin by

discussing how our model provides new insights into regulations surrounding the utilization of

alternative data in credit underwriting. Specifically, we focus on two regulatory aspects: trans-

parency regarding the use of alternative data and limitations on its usage. Subsequently, we delve

into the impact of manipulation costs.

5.1 Regulating the Use of Alternative Data in Underwriting Credit

Motivated by the widespread availability of digital data, many countries in the world have regu-

lations related to the use of data, which are often quite heterogeneous across different countries.
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Consider the U.S., for example. On July 25, 2019, in a U.S. House hearing entitled “Examin-

ing the Use of Alternative Data in Underwriting and Credit Scoring to Expand Access to Credit,”

Stephen Lynch, Chairman of the Task Force on Financial Technology, commented that “oversight

of the use of alternative data is either highly fragmented or completely nonexistent, leading to

uncertainty for lenders and potential harm for consumers.”7 On December 3, 2019, U.S. federal

banking regulators issued an interagency statement discussing the benefits and risks of alterna-

tive data in assessing consumers’ creditworthiness.8 The agencies recognize that use of alternative

data in a manner consistent with applicable consumer protection laws may improve the speed

and accuracy of credit decisions and may help firms evaluate the creditworthiness of consumers

who currently may not obtain credit in the mainstream credit system.

The European Union (EU) has taken a significant step in regulating data usage through the

General Data Protection Regulation (GDPR). In response to the growth of digital lenders and the

increasing online distribution of consumer credit, the European Commission proposed a revision

to the Consumer Credit Directive in June 2021. This proposal aligns with the GDPR and aims to

address specific concerns related to personal data processing within the consumer credit market.

These concerns include the use of alternative data sources for creditworthiness assessments and

the transparency of assessments conducted using machine learning techniques.9 The European

Data Protection Supervisor (EDPS) emphasizes the importance of complying with data protec-

tion legislation, particularly regarding creditworthiness assessments. This includes upholding

principles such as transparency, fairness, data minimization, and purpose limitation.10

Regulators are therefore aware of some of the trade-offs with the use of data in the context of

creditworthiness assessment. We here discuss two possible aspects of regulations that our model

can shed light on: transparency on the use of alternative data, and limits on its use.
7See https://www.congress.gov/event/116th-congress/house-event/LC65599/text?s=1&r=3.
8See https://www.fdic.gov/news/financial-institution-letters/2019/fil19082.html.
9EC (2021), ‘The Proposal for a Directive of the European Parliament and of the Council on Consumer Credits,’

European Commission Brussels COM(2021) 347 final.
10See https://edps.europa.eu/system/files/2021-08/EDPS-2021-15-Consumer Credits fin EN.pdf.
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5.1.1 Transparency on the use of alternative data

There is concern that there is insufficient transparency about the types of alternative data being

used and their impact on credit decisions. To ensure transparency, the Fair Credit Reporting

Act (FCRA) and the Equal Credit Opportunity Act (ECOA) in the U.S. require lenders to disclose

the sources and types of information used, so that consumers are aware of the reasons for credit

decisions. However, as noted by Johnson (2019), the broad applicability of these regulations needs

to be reaffirmed, especially in the context of alternative data.

In the EU, the European Commission’s proposal for the Consumer Credit Directive has already

included provisions to enhance transparency. For instance, it explicitly states that “the consumer

should also have the right to obtain a meaningful explanation of the assessment made and of the

functioning of the automated processing used, including among others the main variables, the

logic and risks involved, as well as a right to express his or her point of view and to contest the

assessment of the creditworthiness and the decision.”

Now, suppose a regulatory authority formally implements rules requiring transparency of

lender behavior. In the model, that translates to an economy switching from the non-transparent

regime to the transparent regime. Proposition 4 shows that in the non-transparent regime, the

lender tends to adopt the maximal data coverage in its underwriting model. However, when

we transition to the transparent regime, Proposition 3 illustrates that when the manipulation

cost is low, the equilibrium exhibits less than full data coverage (i.e., ρ∗ < 1); that is, the lender

deliberately limits its use of available data. In other words, compared to when the data coverage is

unobservable, the lender consistently chooses lower data usage when the data coverage becomes

observable.

Interestingly, rather than decreasing profit, transparency regarding the use of alternative data

in credit underwriting (weakly) benefits the lender. Opacity harms the lender because, for a

given level of borrower belief about the data coverage, the lender can always opportunistically

raise it, which increases profit without triggering more borrower manipulation. When the data

collection is transparent, the lender can credibly commit to limited data acquisition, i.e., a lower
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ρ. Thus, the observability of data coverage imposed by the regulation effectively grants the lender

commitment power to restrict data usage.

Corollary 3 (Lender prefers transparency). The lender’s data coverage is (weakly) lower, while

the expected profit is (weakly) higher when the data coverage is observable compared to when it is

unobservable.

In addition to increasing lending profit, Figure 3 demonstrates that transparency on the use of

alternative data can also benefit the borrower. In our framework, this improvement arises from

the reduction of manipulation cost and a more favorable interest rate received by the high-type

borrower.

5.1.2 Limits on the use of alternative data

Regulators may seek to limit the kinds of alternative data that a lender can use. Within our model,

we can interpret such a limit as an upper bound on the extent of data coverage a lender can choose.

That is, the maximum amount of data allowed by regulation may be ρ̄, where ρ̄ ∈ [0, 1].

The specific level of ρ̄ will be determined by the legal and regulatory landscape governing

consumer financial data. For instance, the 1999 Gramm-Leach-Bliley Act (GLBA) in the U.S. es-

tablishes baseline requirements for financial institutions to protect the privacy and security of

consumer financial information. The Equal Credit Opportunity Act (1974) prohibits discrimi-

nation on the basis of race, ethnicity, gender, and some other factors in any aspect of a credit

transaction. Privacy and fairness considerations can therefore limit the types of alternative data

that can be used in credit underwriting, ultimately determining the level of ρ̄.

In the EU, Recital 47 of the Proposal for the Consumer Credit Directive offers clear indications

on the types of information which should not be used to assess creditworthiness. Specifically,

it states that “personal data, such as personal data found on social media platforms or health

data, including cancer data, should not be used when conducting a creditworthiness assessment.”

Furthermore, the EDPS explicitly recommends extending the prohibition to search query data or

online browsing activities. The EDPS argues that the utilization of such data is incompatible with
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the principles of purpose limitation, fairness, transparency, as well as the relevance, adequacy,

and proportionality of data processing.

Our baseline model assumes that the maximum possible value of ρ is 1, meaning that ρ̄ = 1.

This represents an economy without any constraint on data coverage, and the equilibrium level

of data coverage in this case is denoted as ρ∗, regardless of the regulatory regime.

We can extend our baseline model to a more general scenario where ρ̄ can range between

0 and 1. In this extended economy, if the constraint is not binding, meaning that ρ̄ > ρ∗, the

equilibrium will feature the same level of data coverage as ρ∗. However, if ρ̄ is less than ρ∗, the

equilibrium data coverage might differ.

The status quo can be understood as an economy where ρ̄ is close to 1, enabling the lender to

utilize all available alternative data given the existing technology. As regulations become more

specific regarding the permissible types of alternative data, the upper limit ρ̄ may decrease. In

both the transparent and non-transparent regimes, if the regulation moderately restricts the use

of alternative data based on privacy or fairness concerns, the equilibrium level of data coverage

should remain unaffected. However, if regulators impose highly restrictive regulations (i.e., set-

ting a very low ρ̄), it can have negative consequences not only for the lender but also for the

borrower.

5.2 The Effect of Manipulation Costs

One crucial parameter in our model is the cost of manipulation. In practice, several factors can

influence this cost. For example, if financial literacy improves (i.e., individuals become knowl-

edgeable about the data used in credit underwriting and the actions they can take to enhance

their creditworthiness), it may result in a decrease in the manipulation cost within our model.

Furthermore, many lenders are adopting more sophisticated algorithms and techniques to de-

tect and prevent borrower manipulation. In our framework, this would result in an increase in the

manipulation cost for the borrower. As lenders become better equipped to identify and mitigate

manipulation attempts, borrowers would likely face higher costs and challenges in successfully
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manipulating their digital profiles.

These factors contribute to the dynamic nature of the manipulation cost within our model,

reflecting the evolving landscape of financial literacy and technological advancements in credit

underwriting practices.

We consider the impact of the manipulation cost through a numerical comparative statics

analysis in the transparent regime, depicted in Figure 4. Note that in the non-transparent regime,

as shown in Proposition 4, the lender always adopts the maximal data coverage. Thus, the effect

of the manipulation cost in the non-transparent regime can be examined in the same comparative

statics analysis when ρ∗ = 1. In Figure 4, we fix the parameters to be qH = 0.8, qL = 0.3, α = 0.5,

and R = 2.7, the same as those for Figure 3. The manipulation cost is set to c ·m2, where c varies

between 0.01 and 0.2. For each value of c, we first determine ρ∗, the optimal data coverage for

the lenders in the transparent regime, and then the equilibrium values of the other variables.

As Panel (a) of Figure 4 shows, when the manipulation cost increases, the lender generally

increases it data coverage, knowing that the borrower’s actions are now less likely to compromise

the quality of data it receives. Panel (b) shows that as a result of the increase in c, even though

data coverage is increasing, the low-type borrower does indeed reduce its manipulation.

Consequently, in Panel (c) of Figure 4, when the lender receives signal sH indicating high-type

digital profile, it can exhibit greater confidence in the borrower being of high type. This increased

certainty enables the lender to offer a lower interest rate. As a result of its superior information

(both due to increased data coverage and reduced manipulation), the lender can generate higher

expected profits from the lending business, as illustrated in Panel (d) of Figure 4.

In Panels (e1) of Figure 4, it is evident that the reduced manipulation by the borrower benefits

them in an ex ante sense. Upon closer examination in Panel (e2), a greater manipulation cost

can have adverse effects on the low-type borrower. Additionally, the inability of the low type

to mimic the high type means they consistently receive unfavorable interest rates, resulting in

lower surplus.

In contrast, Panel (e3) of the figure demonstrates that the high-type borrower consistently
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(a) Data coverage (b) Manipulation (c) Interest rates

(d) Lender profit (e1) Borrower surplus (e2) Borrower surplus: low type

(e3) Borrower surplus: high type (f) Total surplus

This figure plots the effect of the manipulation cost on borrowers’ manipulation intensity, the lender’s data coverage,
lender profit, and borrower surplus. The reservation interest rate v is assumed to follow a uniform distribution
U(0, R), and the manipulation cost function is C(m) = c ·m2. The parameters are qH = 0.8, qL = 0.3, α = 0.5,
and R = 2.7, which are the same as in Figure 3. For each value of c, we first find the optimal ρ for the lender, and
then compute the equilibrium values of the other variables.

Figure 4: The effect of the manipulation cost
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experiences higher payoffs as the manipulation cost increases. This is because they are more

likely to distinguish themselves from the low type and enjoy the advantageous low interest rates.

Overall, total surplus increases in the manipulation cost.

Revisiting the discussions at the beginning of the section, our results shed new light on the

implications of financial literacy and technological advancements in credit underwriting. Firstly,

an increase in financial literacy can potentially have negative implications for consumers. As

depicted in Figure 4, a decrease in the manipulation cost associated with these factors may lead to

a rise in manipulation, thereby compromising the lender’s data quality and its ability to accurately

screen borrowers. Consequently, the high-type borrower may receive inferior loan terms and

experience lower payoffs, ultimately reducing ex ante borrower surplus.

On the other hand, anti-fraud measures implemented by lenders may actually prove beneficial

to borrowers on average. The resulting higher manipulation cost acts as a deterrent for low-type

borrowers, discouraging them from manipulating their digital profile. This allows the lender to

offer low interest rates to borrowers who appear highly creditworthy (i.e., those that generate

high signals). These borrowers benefit, and indeed the ex ante borrower surplus also increases.

It is worth noting that the current analysis of comparative statics reveals that total surplus

increases monotonically with the manipulation cost. This suggests that, if feasible, the regula-

tor should set the manipulation cost as high as possible. However, if we expand the model by

explicitly incorporating borrowers’ privacy concerns, there may be an optimal choice for the

manipulation cost that lies within a range. Specifically, the privacy cost can be seen as a func-

tion that increases as the lender acquires more data, resulting in a decrease in borrower surplus.

Since a higher manipulation cost reduces the lender’s worry about borrower manipulation and is

associated with higher data coverage, an increasing manipulation cost might ultimately reduce

borrower surplus and total surplus, leading to an interior optimal choice of the manipulation cost

for the regulator.
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6 Extensions

We finally discuss several extensions of our baseline model to demonstrate the robustness of our

key insights.

6.1 When Data Coverage Affects Manipulation Costs

As the data technology employed by the lender becomes more advanced, one may conjecture

that it becomes increasingly challenging for the borrower to manipulate their digital profile. For

instance, the machine learning algorithm can be designed to be highly opaque, making it difficult

for borrowers to understand how each factor affects their creditworthiness as evaluated by the

lender. Additionally, when thousands of variables are incorporated into the underwriting mod-

els, diminishing the individual significance of each variable in determining creditworthiness, it

becomes more arduous to manipulate multiple variables simultaneously.

In this section, we consider this possibility by augmenting the manipulation cost from C(m)

toC(m, ρ), whereC(0, ρ) = C ′(0, ρ) = 0, ∂C(m,ρ)
∂m

> 0, ∂2C(m,ρ)
∂m2 > 0, and ∂C(m,ρ)

∂ρ
> 0. This means

that, not only does more intensive manipulation incur higher costs, similar to the baseline model,

but also a higher level of data coverage in the lender’s underwriting model induces additional

manipulation costs.

The following Proposition 6 demonstrates the robustness of our main results. Specifically,

as in Proposition 3, Part (i) of Proposition 6 characterizes the sufficient conditions under which

the equilibrium in the transparent regime exhibits data coverage that is strictly lower than one.

Similarly, the lender avoids full data coverage if funding a project of the low-type borrowers only

results in a loss (i.e., qL(1 +R) < 1) and the borrower’s manipulation cost is sufficiently low.

Part (ii) of Proposition 6, similar to Proposition 4, characterizes the equilibrium in the non-

transparent regime. In this case, when data coverage is unobservable to the borrower, the max-

imal data coverage can always be sustained in equilibrium. Finally, Part (iii) of the proposition

demonstrates that in the extended model, the lender benefits from the transparency imposed by
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the regulation.

Proposition 6 (Augmented Manipulation Cost). Suppose that themanipulation cost is also affected

by the lender’s data coverage, i.e., C(m, ρ), where C(0, ρ) = C ′(0, ρ) = 0, ∂C(m,ρ)
∂m

> 0, ∂2C(m,ρ)
∂m2 >

0, and ∂C(m,ρ)
∂ρ

> 0.

(i) Suppose that the data coverage is observable to the borrower. In equilibrium, the lender chooses

a strictly positive data coverage, i.e., ρ∗ > 0. Moreover, if qL < 1
1+R

(i.e., low-type projects

are all negative NPV) and ∂C(m,ρ)
∂m

|m=1≤ B(1 | 1) (i.e., manipulation cost is sufficiently low),

where B(1 | 1) is given by equation (10), the lender chooses less than full data coverage (i.e.,

ρ∗ < 1).

(ii) Suppose that the data coverage is unobservable to the borrower.

• If ∂C(m,ρ)
∂m

|m=1< B(1 | 1), there is an equilibrium the lender chooses maximal data cover-

age, i.e., ρ∗ = 1, and the low-type borrower manipulates with probability 1 (i.e.,m∗ = 1).

• If ∂C(m,ρ)
∂m

|m=1≥ B(1 | 1), there is a unique equilibrium in which the lender chooses

maximal data coverage, i.e., ρ∗ = 1, and the low-type borrower manipulates with strictly

positive probability (i.e.,m∗ > 0).

(iii) As in Corollary 3, the lender’s data coverage is (weakly) lower, while its expected profit is

(weakly) higher when the data coverage is observable compared to when it is unobservable.

6.2 Costly Data Coverage

In the baseline model, we exclude the direct data-collection cost and show that, despite the avail-

ability of free data technology, under certain sufficient conditions, the lender may choose to adopt

less than full data technology. While it is easy to define the bound ρ = 1 as full data coverage in

the model, it could be challenging to conceptualize its real-world equivalent.

In this section, we propose an alternative approach to model the bound. Specifically, we

consider that as the lender collects more data, the associated cost increases. Let’s assume that
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collecting data with an extent of ρ incurs a cost for the lender, denoted as K(ρ). Here, we as-

sume that K ′(ρ) > 0 and K ′′(ρ) > 0, indicating that the cost increases with the extent of data

collection.

The following proposition summarizes equilibrium data coverage under observable and un-

observable data coverage and demonstrate the robustness of our insights.

Proposition 7 (Data collection cost). Suppose that to acquire and process the data with data cov-

erage ρ costs the lender K(ρ), where K ′(ρ) > 0 and K ′′
(ρ) > 0.

(i) Suppose that the data coverage is observable to the borrower. Then the same conditions in

Proposition 3 identify the sufficient conditions for ρ∗ < 1. That is, qL < 1
1+R

(i.e., low-type

projects are all negative NPV) and C ′(1) ≤ B(1 | 1) (i.e., manipulation cost is sufficiently low),

where B(1 | 1) is given by equation (10).

(ii) Suppose that the data coverage is unobservable to the borrower. Unlike Proposition 4, even if

C ′(1) ≤ B(1 | 1), the lender will not choose the optimal data coverage such that the low-type

manipulates with probability 1. If C ′(1) > B(1 | 1) and the marginal data collection cost

K ′(ρ) is not that steep, like Proposition 4, there is a unique equilibrium in which the lender

chooses maximal data coverage, i.e., ρ∗ = 1, and the low-type borrower manipulates with

strictly positive probability (i.e.,m∗ > 0).

(iii) As in Corollary 3, the lender’s data coverage is (weakly) lower, while its expected profit is

(weakly) higher when the data coverage is observable compared to when it is unobservable.

Part (i) of Proposition 7 demonstrates that, under the same sufficient conditions as character-

ized in the baseline model (see Proposition 3), the lender does not fully utilize all available data

in credit underwriting. Given that this extended economy is more restricted than the baseline

economy, it is intuitive to observe non-full data coverage under the same sufficient conditions.

Part (ii) of Proposition 7 examines the scenario when data coverage is unobservable. Tak-

ing into account the costs associated with acquiring and processing data, even if the borrower’s
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manipulation cost is low, the lender’s optimal choice of data coverage will not result in 100%

manipulation intensity from the low-type borrower. This contrasts with Part (i) of Proposition 7.

The reason is that full manipulation by the low-type borrower would render the lender’s signal

completely useless, thereby undermining any initial investment in data technology by the lender.

Only when the borrower’s manipulation cost is high and the cost of data collection for the lender

is relatively low can we observe the lender employing full data coverage.

Finally, similar to Corollary 3 in the baseline model, Part (iii) of Proposition 7 demonstrates

that the regulatory authority’s request for transparency can assist the lender in committing to

limit its data usage in credit underwriting, thereby enhancing profitability.

7 Conclusion

FinTech lenders often base their lending decisions on alternative data, including the online or

digital profiles of borrowers. Some components of alternative data may be easier for borrowers

to manipulate than traditional credit metrics. In this paper, we study a credit model in which

the lender collects signals about the borrower’s digital profiles, but the digital profiles can be

manipulated by the borrower at a cost.

We consider two regulatory regimes: the transparent regime in which the lender’s use of

alternative data is observable to the borrower and the non-transparent regime in which the usage

is unobservable. In the non-transparent regime, the lender tends to use full data coverage. In

contrast, in the transparent regime, when the lender’s signal is improved by higher data coverage,

the borrower is more likely to manipulate their digital profile, which reduces the lender’s signal

quality and impairs its lending decisions. Thus, even if it is costless to include more data in the

underwriting model, in equilibrium, the lender chooses to avoid exploiting the full potential of

its data in the transparent regime.

The comparison of the two regulatory regimes reveals that disclosure policy can play an im-

portant role; by making the extent of the lender’s data coverage transparent, it may allow the
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lender to credibly signal that their data collection efforts are limited, reducing the incentive of

the borrower to manipulate their digital profile and sustaining the lender profit.

Interestingly, we also find that in the aggregate borrowers are better off if the lender does col-

lect some alternative data, as opposed to not acquiring it at all. Better data leads to the high type

in expectation obtaining better credit terms. Even though the low-type borrower has a reduced

payoff, aggregate borrower surplus initially improves when the lender acquires some alternative

data. Thus, when the manipulation cost is relatively low, both the lender and the borrower strictly

prefer that the lender acquire some alternative data, rather than limit the amount of data they

collect.
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Appendix: Proofs

Proof of Lemma 1

Suppose the lender obtains signal s ∈ {sH , sL, s0}. Recall that µs = Prob(θ = H | s), and

q̄s = µsqH + (1− µs)qL.

(i) Suppose the lender offers the interest rate r. Borrowers of either type θ ∈ {H,L} accept the

offer if v ≥ r. If the borrower has type θ, the lender earns qθ(1+r) when the project is successful

and zero when it is not. The expected profit of the lender given signal s and interest rate offer r

is therefore

πs(r) = (1− F (r))[µs{qH(1 + r)− 1}+ (1− µs){qL(1 + r)− 1}]

= (1− F (r))[q̄s(1 + r)− 1]. (A15)

The first-order condition is:

−f(r)[q̄sr − (1− q̄s)] + (1− F (r))q̄s = 0,

which can be simplified to

r − 1− F (r)

f(r)
=

1

q̄s
− 1, (A16)

which is equation (4) in the lemma.

Now, the first-order condition provides a solution to the lender’s problem only if there exists

an interest rate r ∈ (0, R) at which the lender earns a strictly positive profit. A necessary and

sufficient condition for the latter is that q̄s(1 +R) > 1.

The second-order condition is

−2q̄sf(r)− f ′(rs)[q̄sr − (1− q̄s)] < 0. (A17)

By assumption, the hazard rate f(r)
1−F (r)

is strictly increasing in r. Therefore, the inverse hazard

rate 1−F (r)
f(r)

is strictly decreasing in r, and the left-hand side of the first-order condition, equation

(4) is strictly increasing in r. Thus, the first-order condition provides a unique maximum to the

lender’s problem.
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(ii) Suppose that q̄s(1 + R) ≤ 1. Then, there is no interest rate r at which the lender can earn a

positive profit. Therefore, it is optimal to set rs = R.

Proof of Proposition 1

Suppose that ρ̂ > 0. We first show that, in any equilibrium of the subsequent game, the lender

charges a strictly lower interest rate when it observes the signal s = sH rather than when it

observes the signal s = sL. Let rj denote the optimal interest rate offer after signal sj .

Claim: rH < rL.

Proof of Claim We prove the claim by contradiction. Suppose instead that rH > rL, that is,

borrowers who generate signal sH are charged higher interest rates than those who generate

signal sL.

As shown in equation (5), the expected utility of a type θ borrower who chooses manipulation

intensity m is

u(θ,m; m̂θ, ρ̂) = qθ

{
ρ̂
(
m

∫ R

rθ̃

(v − rθ̃)dF (v) + (1−m)

∫ R

rθ

(v − rθ)dF (v)
)

+(1− ρ̂)

∫ R

r0

(v − r0)dF (v)
}
− C(mθ). (A18)

Observe that the interest rates rθ and rθ̃ are not directly dependent on m, but instead depend

on the lender’s beliefs m̂θ. The borrower takes these interest rates as given (even though the

offers themselves will only materialize at date 1). In equilibrium, manipulation is strictly positive

if and only if ∂u(θ,m;m̂θ,ρ̂)
∂m

|m=0> 0. As C ′(0) = 0, this condition reduces to

ρ̂ qθ

{∫ R

rθ̃

(v − rθ̃))dF (v)−
∫ R

rθ

(v − rθ))dF (v)
}
> 0. (A19)

That is, for m > 0, it must be that (i) ρ̂ > 0 and (ii)
∫ R

rθ̃
(v − rθ̃))dF (v) >

∫ R

rθ
(v − rθ))dF (v). The

latter condition immediately implies that rθ̃ < rθ because
∫ R

r
(v − r))dF (v) is decreasing in r.

Thus, to have m > 0 in equilibrium, it must be that ρ̂ > 0 and rθ̃ < rθ.

Now, suppose that rH ≥ rL. Then, it must be that the low-type borrowers do not manipulate,

i.e., mL = 0. Therefore, on receiving an H signal, the lender knows the borrower must have the
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high type. On receiving signal L, at best the borrower is the high type with probability α (and

this can only happen if the high type manipulates with probability 1; else the probability of the

high type is strictly less than 1 when signal L is received). Therefore, it must be that rH < rL,

which is a contradiction.

(i) Given that rH < rL, following similar arguments as above, it follows that the high-type bor-

rower will never manipulate their data, i.e., mH = 0. The low-type borrower will manipulate

with positive intensity, i.e., mL > 0, when ρ̂ > 0.

(ii) Suppose ρ̂ > 0. Following arguments in the proof of the Claim, the low-type borrower will

manipulate with positive probability if rH < rL, which is true. For simplicity, we denote the low-

type borrower’s manipulation intensity mL as m. Thus, the equilibrium manipulation intensity

m∗ satisfies the first-order condition

ρ̂qL

(∫ R

rH

(v − rH)dF (v)−
∫ R

rL

(v − rL)dF (v)

)
= C ′(m). (A20)

Since C(·) is convex, the second-order condition is immediately satisfied. As the lender must

hold consistent beliefs in equilibrium, we impose m̂ = m in the first-order condition (A20),

which yields equation (7), where we write rH(m) to emphasize the rH is a function of m.

(iii) We have shown above that rH < rL. It remains to show that r0 ∈ (rH , rL). In equilibrium, the

lender’s posterior beliefs must match the actual manipulation strategies of the borrower. Observe

that when mH = 0 and mL = m > 0, the lender’s posterior beliefs after each signal s therefore

satisfy µH = α
α+(1−α)m

, µL = 0, and µ0 = α. That is, we have µL < µ0 < µH . It follows

immediately that rH < r0 < rL.

Proof of Corollary 1

As mentioned in the proof of Proposition 1 part (iii), the lender’s equilibrium beliefs are µH =

α
α+(1−α)m

, µL = 0, and µ0 = α. Observe that the posterior beliefs after signals sL and s0 are there-

fore independent of the actual manipulation m. Thus, based on Lemma 1, the optimal interest
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rates r0 and rL are also independent of m. This proves part (ii) of the Corollary.

Consider part (i) of the Corollary. It is immediate that ∂µH

∂m
< 0 in equilibrium. Given that

q̄H = µHqH + (1 − µH)qL, we have ∂q̄H
∂m

< 0. Therefore, based on Lemma 1, rH must increase

when m increases.

Proof of Corollary 2

In what follows, for notational convenience we write m = m∗. When m < 1, it satisfies the

first-order condition for optimal manipulation, equation (7).

Denote IH =
∫ R

rH(m)
(v − rH(m))dF (v), and IL =

∫ R

rL
(v − rL)dF (v). Then, this first-order

condition may be written as ρ̂qL(IH − IL) = C ′(m).

Applying the implicit function theorem, we have

dm

dρ̂
= − qL(IH(m)− IL)

−C ′′(m) + ρ̂qL
∂IH(m)

∂m

=
qL(IH(m)− IL)

C ′′(m)− ρ̂qL
∂IH(m)

∂m

. (A21)

In the last expression, IH(m) > IL because rH(m) < rL, so the numerator is strictly positive.

Further, ∂IH(m)
∂m

= −(1 − F (rH))r
′
H(m) > 0. Now, an increase in m implies a reduction in µH ,

the posterior probability of the high type after signal sH . In turn, through Lemma 1 part (i), it

implies an increase in rH . That is, r′H(m) > 0. Therefore, the denominator in the last expression

in equation (A21) is strictly positive. Hence, dm
dρ̂

> 0.

Proof of Proposition 2

Suppose the borrower cannot manipulate their signal. Then, for any positive value of ρ, the

lender’s beliefs after each signal s are µH = 1, µL = 0, and µ0 = α. The corresponding optimal

interest rates are as in Lemma 1, and it follows that rH < r0 < rL.

Recall that the lending profit after signal s and interest rate r is πs = (1−F (r))[q̄sr−(1− q̄s)],

where q̄s = µsqH + (1− µs)qL is the average quality of the project given signal s. Then, at date

0, given the data coverage ρ the lender’s expected profit may be written as

Π = ρ {απH(rH) + (1− α)πL(rL)}+ (1− ρ)π0(r0). (A22)
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To prove that the lender optimally chooses ρ∗ = 1, we show that the lender’s expected profit

Π is monotonically increasing in ρ. Observe that as the borrower is taking no action with respect

to manipulation, the offers rH , rL, and r0 do not depend on ρ. Thus, taking the derivative of the

expected profit in (A22) with respect to ρ yields

dΠ

dρ
= απH(rH) + (1− α)πL(rL)− π0(r0).

Thus, dΠ
dρ

> 0 is equivalent to

dΠ

dρ
> 0 ⇐⇒ απH(rH) + (1− α)πL(rL) > π0(r0)

⇐⇒ αmax
r

πH(r) + (1− α)max
r

πL(r) > max
r

π0(r)

⇐⇒ αmax
r

πH(r) + (1− α)max
r

πL(r) > max
r

[
απH(r) + (1− α)πL(r)

]
. (A23)

As rH ̸= rL, it is straightforward that the last inequality must hold. Therefore, the lender’s ex-

pected profit is monotonically increasing in ρ and it thus chooses the maximum ρ in equilibrium.

Proof of Proposition 3

In the transparent regime, ρ̂ = ρ.

(i) Recall from equation (8) that the lender’s profit is

Π(ρ) = ρ
(
{α + (1− α)m}πH(rH) + (1− α)(1−m)πL(rL)

)
+ (1− ρ)π0(r0), (A24)

where m is the manipulation intensity of the low-type borrower.

Thus,

dΠ

dρ
=

∂Π

∂ρ
+

∂Π

∂m

dm

dρ
= {α + (1− α)m}πH + (1− α)(1−m)πL − π0

+ρ{(1− α)(πH − πL) + {α + (1− α)m}π′
H(rH)r

′
H(m)}dm

dρ
.(A25)

Thus,

dΠ

dρ
|ρ=0 = {α + (1− α)m}πH + (1− α)(1−m)πL − π0. (A26)

Observe that when ρ = 0, m = 0. Together with what we have already shown in the proof of

47



Proposition 2 that απH +(1−α)πL−π0 > 0 (see equation (A23) and the related arguments), we

can derive that dΠ
dρ

|ρ=0> 0, so that ρ∗ > 0.

(ii) For part (ii), we invert the mapping between ρ and m and think of ρ as a function of the m in

equilibrium, that is, we consider the ρ that gives rise to a particular equilibrium m.

First, we show that Π is decreasing in m at the point m = 1; that is, ∂Π
∂m

|m=1< 0. Based on

equation (A24),

dΠ

dm
=

∂Π

∂m
+

∂Π

∂ρ

dρ

dm

= ρ
{
(1− α)πH(rH(m)) + (α + (1− α)m)

∂πH(rH(m))

∂m
− (1− α)πL(rL)

}
+

{
{α + (1− α)m}πH(rH(m)) + (1− α)(1−m)πL(rL)− π0(r0)

} dρ

dm
. (A27)

Observe that when m = 1, we have πH(rH(m)) = π0(r0). That is, when all low-type borrowers

manipulate their data, signal sH becomes completely uninformative and is hence equivalent to

signal s0. Therefore, when we substitute m = 1 into equation (A27), the second row drops out,

and we have

dΠ

dm
|m=1= ρ

{
(1− α){πH(rH(m))− πL(rL)}+

∂πH(rH(m))

∂m
|m=1

}
. (A28)

Recall that

πH(rH(m)) = {1− F (rH(m))} [q̄H(1 + rH(m))− 1], (A29)

where q̄H = µHqH + (1− µH)qL. Thus,

∂πH(rH(m))

∂m
= −f(rH(m))

∂rH(m)

∂m
[q̄H(1 + rH(m))− 1]

+ (1− F (rH(m)))

(
∂q̄H
∂m

(1 + rH(m)) + q̄H
∂rH
∂m

)
(A30)

Now, from Lemma 1, we have q̄H(1 + rH)− 1 = 1−F (rH(m))
f(rH(m))

q̄H . Substituting into equation (A30)

and simplifying,

∂πH(rH(m))

∂m
= {1− F (rH(m))} (1 + rH(m))

∂q̄H
∂m

. (A31)

Further, we can write q̄H = qL + α
α+(1−α)m

(qH − qL), so that ∂q̄H
∂m

= − α(1−α)
{α+(1−α)m}2 (qH − qL).
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Substituting this expression into equation (A31) and setting m = 1, we have

∂πH(rH(m))

∂m
|m=1= −{1− F (rH(1))} (1 + rH(1))α(1− α)(qH − qL). (A32)

In addition, when m = 1, q̄H = αqH + (1− α)qL. Using this expression and equation (A32), and

making the appropriate substitutions into equation (A28), we obtain

∂Π

∂m
|m=1= ρ(1− α)

{
{1− F (rH(m))}{(1 + rH(m))qL − 1} − πL(rL)

}
. (A33)

Observe that πL(rL) ≥ 0. Therefore, a sufficient condition to ensure that ∂Π
∂m

|m=1< 0 is

qL(1 +R) < 1, or qL <
1

1 +R
, (A34)

which has been assumed in the statement of the proposition.

Second, we ensure that when ρ = 1, the low-type borrower optimally chooses m = 1. Based

on the first-order condition for optimal manipulation by the low type, equation (7) in Proposition

1, we know that if that condition is satisfied at m = 1, we must have:

ρqL

(∫ R

rH(1)

(v − rH(1))dF (v)−
∫ R

rL

(v − rL)dF (v)

)
= C ′(1).

Therefore, when ρ = 1, the low-type borrower optimally choose m = 1 whenever the cost is

overshadowed by the benefit

C ′(1) ≤ qL

(∫ R

rH(1)

(v − rH(1))dF (v)−
∫ R

rL

(v − rL)dF (v)

)
. (A35)

Now, observe that when m = 1, we have µH = α = µ0. Thus, the optimal interest rate set by the

lender is r0, that is, rH(1) = r0. We can therefore rewrite equation (A35) as

C ′(1) ≤ qL

(∫ R

r0

(v − r0)dF (v)−
∫ R

rL

(v − rL)dF (v)

)
. (A36)

If the condition (A36) holds with equality, then the fact that ∂Π
∂m

|m=1< 0 is enough to show

that the lender does not choose full data coverage.

If the condition (A36) holds as a strict inequality, then a small reduction in ρ from ρ = 1 has

no effect on manipulation (i.e., we continue to have m = 1). Note that the profit of the lender is

flat in this region, because as commented earlier, when m = 1, signals sH and s0 are equivalent,

so changing the probabilities across these signals cannot affect the profit. Further, in this case
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there exists some ρ1 < 1 such that

ρ1qL

(∫ R

rH(1)

(v − rH(1))dF (v)−
∫ R

rL

(v − rL)dF (v)

)
= C ′(1). (A37)

At ρ1, we again have ∂Π
∂m

|m=1< 0, so that the data coverage chosen by the lender is strictly less

than ρ1, and hence strictly less than 1.

Proof of Proposition 4

Recall that ρ̂ denotes the borrower’s belief about the extent of data coverage and ρ denotes the

actual choice of data coverage. Then, the low-type borrower’s equilibrium manipulation intensity

m is a function of ρ̂. Thus, the offered interest rate after signal sH depends on ρ̂ rather than ρ.

The lender’s payoff function may be written as:

Π(ρ, ρ̂) = ρ
(
{α + (1− α)m(ρ̂)}πH(rH(m(ρ̂))) + (1− α)(1−m(ρ̂))πL

}
+(1− ρ)π0(r0). (A38)

The derivative with respect to ρ is

∂Π

∂ρ
= {α + (1− α)m(ρ̂)}πH(rH) + (1− α)(1−m(ρ̂))πL(rL)− π0(r0).

Noting that πH(rH) > πL(rL) and 0 ≤ m(ρ̂) < 1 we have

{α + (1− α)m(ρ̂)}πH(rH) + (1− α)(1−m(ρ̂))πL(rL) ≥ απH(rH) + (1− α)πL(rL)

> π0(r0),

where the last inequality was proved toward the end of the proof of Proposition 2.

Therefore, whenever m(ρ̂) < 1, we have ∂Π
∂ρ

> 0, and the lender has an incentive to increase

ρ. If m(ρ̂) = 1, then the posterior beliefs after signal sH and signal s0 are the same and equal to

the prior α. Thus, at this point, setting ρ = ρ̂ is a best response, and any ρ ≥ ρ̂ represents an

equilibrium (because m is weakly increasing in ρ, it follows that m(y) = 1 for any y ≥ ρ̂).

Finally, note that following the arguments in the proof of Proposition 3, when C ′(1) ≥

qL

(∫ R

r0
(v − r0)dF (v)−

∫ R

rL
(v − rL)dF (v)

)
, we have m(ρ̂) < 1 for any ρ̂ < 1.

Both parts of the Proposition now follow.
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Proof of Proposition 5

(i) Denote Ij =
∫ R

rj
(v − rj)dF (v). Specifically, IH(m) =

∫ R

rH(m)
(v − rH)dF (v), IL =

∫ R

rL
(v −

rL)dF (v) and I0 =
∫ R

r0
(v − r0)dF (v).

Then, the payoff of the high-type borrower may be written as

uH(ρ,m(ρ)) = ρqHIH(m) + (1− ρ)qHI0.

Hence,

duH

dρ
=

∂uH

∂ρ
+

∂uH

∂m

dm

dρ
= qH(IH − I0) + ρqH

∂IH
∂m

dm

dρ
. (A39)

Here, ∂IH
∂m

= −(1− F (rH(m))) r′H(m), and dm
dρ

is as in equation (A21).

Now, observe that when ρ = 0 we obtain

duH

dρ
|ρ=0 = qH(IH − I0). (A40)

Note that when ρ = 0, the low-type optimally setsm = 0. Further IH(0) > I0. Thus, duH

dρ
|ρ=0> 0.

Similarly, we can write the payoff of the low-type borrower as

uL(ρ,m(ρ)) = −C(m) + ρmqLIH + ρ(1−m)qLIL + (1− ρ)qLI0.

Therefore,

duL

dρ
=

∂uL

∂ρ
+

∂uL

∂m

dm

dρ
. (A41)

Here, ∂uL

∂ρ
= qL{mIH + (1 − m)IL − I0}. Further, ∂uL

∂m
= −C ′(m) + ρ(qH − qL) + ρmqL

∂IH
∂m

.

Observe that the low-type’s first-order condition for optimal manipulation (equation (7)) specifies

that C ′(m) = ρ(qH − qL). Therefore, we have ∂uL

∂m
= ρmqL

∂IH
∂m

.

Substituting these expressions into equation (A41), we obtain

duL

dρ
= qL{mIH + (1−m)IL − I0}+ ρmqL

∂IH
∂m

dm

dρ
. (A42)

Noting again that when ρ = 0 we also have m = 0,

duL

dρ
|ρ=0= qL{IL − I0} < 0, (A43)

as IL < I0.
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(ii) The ex ante borrower payoff is

U = αuH + (1− α)uL. (A44)

Using the expressions for duH

dρ
|ρ=0 and duL

dρ
|ρ=0 in equations (A40) and (A43) respectively, we

obtain

dU
dρ

|ρ=0 = αqH(IH − I0) + (1− α)qL(IL − I0). (A45)

Now, denote a function G(q) ≡ q
∫ R

r(q)
(v − r(q))dF (v), where r(q) is implicitly determined

by equation (4) in Lemma 1. Assume that rs < R for s ∈ {sH , sL, s0}.

Then, we can write equation (A45) as

dU
dρ

|ρ=0 = αG(qH) + (1− α)G(qL)−G(αqH + (1− α)qL). (A46)

Hence, dU
dρ

|ρ=0> 0 if and only if G is convex, that is, G′′(q) > 0.

Now,

G′(q) =

∫ R

r(q)

(v − r(q))dF (v)− q

∫ R

r(q)

r′(q)dF (v) (A47)

G′′(q) = −(1− F (r)){2r′(q) + qr′′(q)}+ q f(r(q)) (r′(q))2. (A48)

Define the inverse hazard rate as H(r) = 1−F (r)
f(r)

. Applying the implicit function theorem to the

implicit equation that sets the optimal interest rate, equation (4) in Lemma 1, we show that

r′(q) = − 1

q2(1−H ′(r))
< 0, (A49)

r
′′
(q) =

2q(1−H ′(r)) + q2H
′′
(r)r′(q)

q4(1−H ′(r))2
=

(
− 2

q
− H

′′
(r)r′(q)

1−H ′(r)

)
r′(q). (A50)

Substituting into the right-hand side of equation (A48), we have

G′′(q) = −(1− F (r)){2r′(q)− 2r′(q)− qH
′′
(r)(r′(q))2

1−H ′(r)
+ q f(r(q)) (r′(q))2

=
(H(r)H ′′(r)

1−H ′(r)
+ 1

)
q f(r(q) (r′(q))2. (A51)

Therefore, G′′(q) > 0 whenever

H(r)H ′′(r) < 1−H ′(r). (A52)

The right-hand side is strictly positive, as H ′(r) is strictly decreasing (recall that we have assumed
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F (·) has an increasing hazard rate).

Now, when v ∼ U [0, R], we have f(r) = 1
R

and F (r) = r
R

. Thus H(r) = R − r, so that

H ′(r) = −1 and H ′′(r) = 0. It is immediate that equation (A52) holds, and hence in this case

G′′(q) > 0. It follows that dU
dρ

|ρ=0> 0.

Finally, observe that S = U+Π. In Proposition 3, we have shown that dΠ
dρ

|ρ=0> 0. Therefore,

it follows immediately that dS
dρ

|ρ=0> 0.

Proof of Corollary 3

The proof follows Propositions 3 and 4. Specifically, when the manipulation cost is low, i.e.,

C ′(1) ≤ qL

(∫ R

r0
(v − r0)dF (v)−

∫ R

rL
(v − rL)dF (v)

)
, as discussed around equation (A36), there

exists some ρ1 such that equation (A37) holds and the lender achieves the same profit when

ρ ∈ (ρ1, 1). Since ∂Π
∂m

|m=1< 0, the lender’s optimal data coverage ρ∗ must be strictly less than ρ1.

In contrast, when the data coverage is unobservable, the lender is indifferent between ρ ∈ [ρ1, 1].

Consequently, the lender’s data coverage is strictly lower when the data coverage is observable

compared to when it is unobservable. Furthermore, the lender earns a higher profit in the former

case.

Otherwise, when C ′(1) > qL

(∫ R

r0
(v − r0)dF (v)−

∫ R

rL
(v − rL)dF (v)

)
, even at ρ = 1 the

low-type borrower manipulates with probability less than 1. Here, the lender might choose full

data coverage under even when data coverage is observable data. If so, the lender chooses the

same extent of data coverage and it earns the same profit as under unobservable data coverage.

Proof of Proposition 6

In the transparent regime, the derivation follows similar procedures in the baseline model. The

extended manipulation cost function only affects the characterization of the equilibrium manip-

ulation intensity for the low-type borrower when ρ > 0. Specifically, equation (7) becomes the
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following:

ρqL

(∫ R

rH(m)

(v − rH(m))dF (v)−
∫ R

rL

(v − rL)dF (v)

)
=

∂C(m, ρ)

∂m
. (A53)

Thus, the sufficient conditions for ρ∗ < 1, as characterized in equations (A35) or (A36), change

accordingly.

The proof of part (ii) of the proposition is similar to the proof of Proposition 4 with only

replacing C ′(1) with ∂C(m,ρ)
∂m

|m=1. Finally, the proof of part (iii) of the proposition is similar to

that of Corollary 3.

Proof of Proposition 7

(i) Consider the scenario in which the data coverage is observable to the borrower. Given a data

coverage ρ, the subsequent game will be characterized in the same way as in the baseline model.

Thus, the only change occurs at the beginning of the game when determining the optimal data

coverage. The proof here follows that of Proposition 3. The lender’s expected profit function is

Π(ρ) = ρ
(
{α + (1− α)m}πH(rH) + (1− α)(1−m)πL(rL)

)
+ (1− ρ)π0(r0)−K(ρ). (A54)

Compared with equation (A24), there is an extra cost term −K(ρ) here. Taking the partial deriva-

tive with respect to ρ yields

dΠ

dρ
= {α + (1− α)m}πH + (1− α)(1−m)πL − π0

+ρ{(1− α)(πH − πL) + {α + (1− α)m}π′
H(rH)r

′
H(m)}dm

dρ
−K ′(ρ).

Setting it to zero implicitly determines the equilibrium ρ:

0 = {α + (1− α)m}πH + (1− α)(1−m)πL − π0

+ρ{(1− α)(πH − πL) + {α + (1− α)m}π′
H(rH)r

′
H(m)}dm

dρ
−K ′(ρ). (A55)

Next, as in the proof of Proposition 3, we can show that ρ∗ > 0. Furthermore, to characterize

the sufficient conditions for ρ∗ < 1, we follow the same procedure as in the proof of Proposition
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3, expressing ρ as a function of m, and obtain

∂Π

∂m
|m=1= ρ(1− α)

{
{1− F (rH(m))}{(1 + rH(m))qL − 1} − πL(rL)

}
− ∂K(ρ)

∂ρ

dρ

dm
,

which is the counterpart of equation (A33). Note that we’ve shown that dρ
dm

> 0 and assumed

that ∂K(ρ)
∂ρ

> 0. Thus, as in the baseline model, a sufficient condition to ensure that ∂Π
∂m

|m=1< 0

is

qL(1 +R) < 1, or qL <
1

1 +R
.

Moreover, as the lender’s data-collection cost does not enter directly into the borrower’s manip-

ulation function, the other sufficient condition does not change, which is equation (A36), or

C ′(1) ≤ qL

(∫ R

r0

(v − r0)dF (v)−
∫ R

rL

(v − rL)dF (v)

)
.

(ii) Consider the scenario in which the data coverage is unobservable to the borrower. Again,

given the borrower’s belief about the data coverage ρ̂, the borrower determines the manipulation

intensity. The lender’s optimal interest rates are also set in accordance with the borrower manip-

ulation behavior. So the characterization of the subsequent game after ρ̂ remains the same as in

the baseline model.

We then move back to the beginning of the game to determine the lender’s optimal data

coverage, following similar procedures as in Proposition 4. The lender’s expected profit function

(A38) can be augmented as the following:

Π(ρ, ρ̂) = ρ
(
{α + (1− α)m(ρ̂)}πH(rH(m(ρ̂))) + (1− α)(1−m(ρ̂))πL

}
+(1− ρ)π0(r0)−K(ρ).

The derivative with respect to ρ is

∂Π

∂ρ
= {α + (1− α)m(ρ̂)}πH(rH) + (1− α)(1−m(ρ̂))πL(rL)− π0(r0)−K ′(ρ). (A56)

Denote ∆(ρ̂) = {α + (1− α)m(ρ̂)}πH(rH) + (1− α)(1−m(ρ̂))πL(rL)− π0(r0). Then

∂Π

∂ρ
= ∆(ρ̂)−K ′(ρ). (A57)

When m(ρ̂) = 1 so that ∆(ρ̂) = 0, we know that ∂Π
∂ρ

< 0 for any ρ > 0. Therefore, unlike the
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baseline model, the lender will never allow m∗ = 1 in equilibrium.

When m(ρ̂) < 1, we’ve shown ∆(ρ̂) > 0 in the baseline model. Inserting ρ̂ = ρ in equation

(A56) and setting it to zero yields the optimal data coverage ρ, which is the solution implicitly

determined by: ∆(ρ) = K ′(ρ). Only when the marginal data-collection cost is not steep, i.e.,

K ′(ρ) is low for any ρ, do we have ∂Π
∂ρ

> 0 so that the equilibrium ρ∗ = 1.

(iii) Since the newly added data-collection cost K(ρ) affects the lender by only reducing their

expected profit by K(ρ), under both observable and unobservable data coverage, the compar-

ison between the two scenarios should resemble that in the baseline model where K(ρ) = 0.

Therefore, Corollary 3 remains valid in this extension.
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