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Market Risk Premium Expectation: Combining Option Theory
with Traditional Predictors

Abstract

Recently there is a growing literature on predicting the market risk premium from the option

market, shedding new insights on the traditional voluminous literature of market predictability

that relies on economic state variables. This paper provides a novel link between these literatures.

Theoretically, we derive a generalized lower bound on the expected market risk premium that

combines both options and state variables. Empirically, we find that the new bound significantly

enhances the out-of-sample market predictability compared to using either type of information

alone, with gains more pronounced in the short horizons such as one to three months.

Keywords: Out-of-sample predictability, equity risk premium, lower bound, option-implied

information, recovery
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1 Introduction

The expected equity market excess return, or market risk premium, is one of the central

quantities in finance and macroeconomics. Going as far back as Dow (1920), the literature on

market predictability attempts to gain insights into the economic and financial variables that drive

the market risk premium. For example, Fama and French (1988, 1989), Campbell and Shiller

(1988a,b, 1998), and Huang, Jiang, Tu, and Zhou (2015) find that variables such as dividend-

price ratio, earnings-price ratio, and investor sentiment can predict market returns.1 Breaking

a new ground, Martin (2017) shows that option prices prove useful on the future market return

by bounding the market risk premium from below. Subsequently, Martin and Wagner (2019);

Chabi-Yo and Loudis (2020); Kadan and Tang (2020); Chabi-Yo, Dim, and Vilkov (2022), among

others, propose additional bounds. Back, Crotty, and Kazempour (2022) provide formal tests of

the bounds and find that they are inadequate for the data. The open question is then how to improve

the bounds.

In this paper, we provide a novel study that combines the insights of two literatures together,

the time-series predictability and the option recovery theory, to predict the market risk premium.

Specifically, we derive a generalized bound that incorporates both the risk-neutral volatility

computed from option prices and the economic state variables. We show that the generalized bound

performs well in forecasting the market risk premium out-of-sample and generates substantial

economic gains consistently over time. In particular, it outperforms substantially the results when

the method of each of the literatures is used alone.

Back, Crotty, and Kazempour (2022) provide the first link between the two literatures. Using a

forecasting combination approach (Rapach, Strauss, and Zhou, 2010), they combine the bound

forecasts with those forecasts from Welch and Goyal (2008) macro variables in a regression

framework. While their approach is inspirational, it differs from ours. Instead of a statistical

motivation, we focus on how to incorporate any related economic variables into the theoretical

1Rapach and Zhou (2022) provide a recent survey of the literature.
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bound, so that a state-dependent bound can be used to bound the market risk premium directly.

Our setup appears to connect economic state variables more explicitly to the market risk premium

in a structural manner.

Empirically, we construct the generalized bound using a set of commonly studied time-series

predictors, including the 14 macro variables by Welch and Goyal (2008), the five sentiment indices

by Baker and Wurgler (2006); Huang et al. (2015); Shapiro, Sudhof, and Wilson (2022), and the

short interest index (SII) by Rapach, Ringgenberg, and Zhou (2016). For comparison, we compare

the performance of the generalized bounds with other established option bounds, including Martin

(2017) bound, the slackness-adjusted bound (BCK) introduced by Back, Crotty, and Kazempour

(2022), and the risk-neutral moments bound (CYL) proposed by Chabi-Yo and Loudis (2020). We

confirm the finding in Back, Crotty, and Kazempour (2022) that the mean bounds of Martin and

CYL are substantially smaller than the mean market excess return (around 8.26%) by roughly 2.5%

to 5% per year, suggesting a substantial slackness. The median bounds are even smaller by roughly

10% to 12.5%. Although adding past slackness adjustment of Back, Crotty, and Kazempour (2022)

increases the bound, the mean and median of BCK bound are still much lower compared to those

of market excess return. In contrast, the generalized bounds are much higher than the existing

bounds in terms of both mean and median, and the magnitudes become comparable to the targeted

realized return. For instance, the mean value of generalized bounds by macro variables, sentiment,

and short interest index are around 6.44%, 7.66%, and 13.63%, respectively. Notably, the median

of SII-based bound, around 14.10%, is also comparable to that of market excess return, around

15.10%, whereas the medians of BCK and CYL bounds are both lower than 5%.

To analyze the out-of-sample predictive power of the bounds, we calculate the out-of-sample

R2
OS statistic relative to the historical average benchmark and assess its statistical significance

with Clark and West (2007) test. We find some evidence of outperformance over adjustment

by the existing bounds (especially for BCK and CYL bounds), but the predictive power mainly

comes from the period after 2008/09. For instance, the R2
OS statistics from Martin, BCK and CYL

(restricted) bounds are −0.59%, −0.54%, and −0.76% during the evaluation period 2006–2022,

but jump to 2.14%, 2.80%, and 3.25% during 2011–2022, with the latter two turning marginally
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significant at the 10% level. The weak or mixed evidence suggests that it is important to improve

the bounds further by incorporating economic state variables, the focus of our paper.

Indeed, we find that the generalized bounds demonstrate much improved out-of-sample

predictive power over different out-of-sample evaluation periods, and also over of 2006–2022

where those established bounds underperform, even in the presence of the financial crisis. Specif-

ically, both sentiment- and SII-based bounds produce positive R2
OS larger than 3%, suggesting a

meaningful degree of return predictability in terms of investment value.2 Moreover, the generalized

bounds continue to outperform the existing bounds in the post-crisis era by generating much larger

R2
OS statistics, with 8 of them significant at the 10% level and 6 significant at the 5% level. Among

three category of traditional variables, the bound incorporating SII or sentiments outperforms the

bound with macro variables, with the former exhibiting the most robust performance. For example,

the SII-based bound consistently generates significant R2
OS values of 7.88%, 17.47%, and 20.00%

across the three out-of-sample periods. One plausible explanation for the underperformance of

WG macro-based bounds may be attributed to the lack of consistent out-of-sample evidence for

these macro variables, a critique famously articulated by Welch and Goyal (2008).

The statistically strong performance by combining option theory with traditional variables is

also economically valuable. We find that neither of those existing bounds in the literature can

consistently outperform the historical average benchmark in terms of Sharpe ratio and certainty

equivalent gain (CER). The underperformance is amplified during the 2008/09 financial crisis

period. Overall, they tend to generate higher average return than the benchmark but at the cost

of even higher volatility, leading to smaller Sharpe ratios and negative CERs. For example, the

Sharpe ratios for Martin, BCK, and CYL (restricted) bounds are 0.18, 0.22, and 0.24, respectively,

compared to the Sharpe ratio of 0.26 for the benchmark. In contrast, the generalized bounds

excel in managing downside risk during the market downturn: they produce comparable standard

deviations to Martin or CYL bounds but much larger average returns. As a result, we find that

the majority of generalized bounds outperform the benchmark with substantial investment values.

2As highlighted by Campbell and Thompson (2008), an R2
OS of 0.5% for monthly return forecast indicates a

meaningful degree of return predictability in terms of increased annual portfolio returns for a mean-variance investor.
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For instance, the SII-based bound yields Sharpe ratios of 0.63 and 1.04 during the out-of-sample

periods of 2006–2022 and 2011–2022, respectively. The difference in two CERs, referred to as the

utility gain (Pástor and Stambaugh, 2000; Campbell and Thompson, 2008), indicates that investors

would be willing to pay 10.09%, 8.88%, 7.68%, or 7.73% per annum for access to the information

in the SII-based generalized bound compared to the historical average, Martin bound, BCK bound,

or CYL restricted bound, respectively.

We offer several explanations for the superb performance of generalized bounds. Firstly, when

examining the cumulative squared error, we observe results similar to those in Back, Crotty, and

Kazempour (2022), indicating substantial underperformance of bound-based forecasts during the

financial crisis and the COVID-19 pandemic, followed by partial recovery. Remarkably, only

the generalized bound fully recovers, delivering a smaller forecasting error than the benchmark.

Secondly, Martin, BCK, and CYL bounds exhibit much higher forecast variance compared to

the benchmark, resulting in negative R2
OS statistics. In contrast, the generalized bound better

regularizes forecast variability, achieving lower forecast variance and higher precision. Lastly,

we introduce a new approach to investigate bound forecasts by comparing the distributions of the

bounds and realized market returns. The distribution of realized market returns is highly dispersed,

ranging from extreme negative to extreme positive values, which can not be effectively captured

by the concentrated and right-skewed Martin, BCK, and CYL bounds. In contrast, the generalized

bound demonstrates greater dispersion and a less pronounced right skew compared to the Martin

and others. Despite the uncertain and evolving nature of the data-generating process for expected

market return, the generalized option bound, combining risk-neutral moments and state variables,

manages to mimic the distribution of expected market return, significantly contributing to its out-

of-sample predictive power.

We observe in particular that, when Martin (2017) bound is employed as a lower threshold,

it may not adequately capture market dynamics during normal periods, leading to slackness.

Conversely, it might be disproportionately large during extreme market events, such as financial

crises, resulting in the violation of NCC. Moreover, we observe a reasonable correlation between

the adjustment factor in the generalized bound and the economic sentiment. Specifically, the
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Martin bound is scaled up when economic sentiment is on the rise, and conversely, it is scaled

down when economic sentiment is on the fall. Since the adjustments made by the generalized

bounds each month vary depending on the chosen state variable and the macroeconomic condition,

the overall trend indicates that the generalized bounds consistently surpass the Martin bound most

of the time. This pattern suggests a partial alleviation of slackness by using state variables as a

real-time adjustment.

We conduct a series of robustness checks. We find that the predictive power of option bounds

is primarily concentrated in subperiods characterized by high sentiment or low risk aversion.

Furthermore, our findings remain robust across alternative constructions of generalized bounds,

extended data samples, and longer-horizon forecasts. In summary, Martin, BCK, and CYL bounds

exhibit reasonable predictability when used for forecasting longer-term market returns. However,

our generalized bounds, incorporating both option theory and traditional variables, consistently

demonstrate substantial forecasting gains across short-term (1-month), medium-term (3- or 6-

month), and long-term (12-month) horizons.

Our paper contributes to two key lines of literature concerning the market risk premium. The

first line, with Martin (2017) as a notable example, investigates how elusive it is to estimate the

(conditional) expected return, which dates back to Merton (1980), Black (1993), and Elton (1999).

The line of research, including Martin and Wagner (2019); Chabi-Yo and Loudis (2020); Kadan

and Tang (2020); Heston (2021); Martin (2021); Back, Crotty, and Kazempour (2022); Bakshi,

Gao, and Xue (2022); Chabi-Yo, Dim, and Vilkov (2022), provides substantial insights on the

market risk premium. The second line, as emphasized by Welch and Goyal (2008); Campbell

and Thompson (2008); Spiegel (2008), challenges researchers on whether any model forecasts

of the equity risk premium can be any better than the historical mean out-of-sample. While

studies, including Jagannathan and Liu (2019); Farmer, Schmidt, and Timmermann (2023); Kelly,

Malamud, and Zhou (2023), suggest the possibility of beating the historical mean, our study, which

combines insights from both lines, demonstrates an even greater predictive power. This provides a

deeper understanding of the underlying drivers.
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The rest of this paper is structured as follows. Section 2 presents the theoretical framework,

followed by the out-of-sample test in Section 3. Robustness checks are provided in Section 4.

Finally, we conclude in Section 5.

2 Theory

In this section, based on Martin (2017), we provide the theoretical underpinnings for the

important role of state variables.

For a discrete time subscript t, let St denote the time-t price of a stock market index (inclusive

of dividends). Rt,t+1 =
St+1
St

denotes the gross market return over the time period from t to the next

time t +1, and R f ,t,t+1 is the gross risk-free return over the same time period. We denote the real-

world probability measure by P, and the information set at time t by Ft . Let Mt,t+1 be a stochastic

discount factor (SDF) over the period from t to t + 1. Consequently, the risk-neutral probability

measure Q satisfies
dQ
dP

|Ft+1= R f ,t,t+1Mt,t+1. (1)

Similarly, we define Rt,T = ST
St

and R f ,t,T for any T = 1,2, · · · in a dynamic setting, with

EP
t (Mt,T Rt,T ) = 1 holding. The length of the period can be arbitrary. For simplicity, we omit

the subscript t and use the notations RT and MT to denote the gross market return and the SDF

over the period [t,T ], respectively.

2.1 Martin (2017) bound

Martin (2017) decomposes the market risk premium into two components

EP
t (RT )−R f ,t,T =

[
EP

t (MT R2
T )−R f ,t,T

]
−
[
EP

t (MT R2
T )−EP

t (RT )
]
,

=
1

R f ,t,T
VarQt (RT )−CovPt (MT RT ,RT ) , (2)
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where the first component, the risk-neutral variance, can be computed directly from time-t prices

of index options, as known from the work of Breeden and Litzenberger (1978). The second

component is a covariance term. We use the superscript P to highlight the fact that those quantities

are under the real-world probability measure. Henceforth, we drop the superscript and use Et(·) to

represent the mean conditional expectation under the P-measure.

Martin (2017) imposes a restriction that is termed negative correlation condition (NCC). He

further shows that NCC holds theoretically under mild conditions in a variety of asset pricing

settings, and it also holds empirically when a typical factor structure for the SDF is assumed.

Definition 1. The negative correlation condition (NCC) holds if

Covt (MT RT ,RT )≤ 0,

for all MT under the real-world probability measure.

By NCC, the risk-neutral variance can be viewed as a lower bound of the equity risk premium

(the expected market excess return), which is

Et (RT )−R f ,t,T ≥ 1
R f ,t,T

VarQt (RT ) , (3)

Martin (2017) provides the first test on whether the implied risk-neutral volatility bounds could

be related directly to the equity premium, going beyond early related studies by Merton (1980),

Black (1993), and Elton (1999). However, recent studies on the lower bound of the equity premium

remain controversial due to the fact that the NCC is pivotal to obtaining the lower bound and yet

there is no direct quantification of it. For instance, Bakshi, Crosby, Gao, and Zhou (2021) exploits

theoretical and empirical constructions that challenge the NCC. They use options on the S&P 500

index and STOXX 50 equity index and conclude that the overall tests favor the rejection.

Back, Crotty, and Kazempour (2022) test Martin bounds along with others at different horizons

conditionally and reject the hypothesis that they are tight for market risk premium. Therefore,
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using the lower bounds as forecasts of market risk premium appears insufficient in many cases

due to their high slackness. Goyal, Welch, and Zafirov (2021) also examine those option bounds

and demonstrate that the out-of-sample performance is never statistically significant. As a result,

Back, Crotty, and Kazempour (2022) propose to add past mean slackness to Martin’s (2017) option

bounds as a potential solution. But the solution is impeded by the lack of enough data to estimate

mean slackness, as they stress that 150 years of data is necessary for the ‘bound + mean slackness’

strategy to achieve a substantial improvement in out-of-sample performance.

2.2 A Generalization of Martin (2017) bound

We generalize Martin (2017) bound for an economy where asset prices depend on a vector xt of

state variables (such as sentiment (e.g. Asriyan, Fuchs, and Green, 2019; Hore, 2015)). In such an

economy, for any security with a return process Rt (not just the market portfolio), in equilibrium we

have E[RT ] = f (x), for some function f (·) and that E[MT R2
T ] = g(x), for some function g(·)> 0.

Therefore, we have

E[RT ] = k(x)E(MT R2
T ), (4)

where k(x) ≡ f (x)/g(x). It is straightforward to show that the NCC assumption in Martin (2017)

(and thus Martin’s lower bound) is equivalent to assuming k(x)≥ 1 for all realizations of x.

It follows from Equations (2) and (4) that the market risk premium satisfies:

Et (RT )−R f ,t,T = k(x)

 1
R f ,t,T

VarQt (RT )︸ ︷︷ ︸
Martin (2017) bound

+R f ,t,T

−R f ,t,T , (5)

which links the risk-neutral option bound to the state variable vector. When k(x)≥ 1, Equation (5)

reduces to Martin (2017) bound. Following Martin (2017), we express the risk-neutral variance in
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terms of a SVIX index over the period [t,T ] and compute the Martin bound, bt,M as

bt,M =
1

R f ,t,T
VarQt (RT )

= (T − t)R f ,t,T SVIX2
t→T , (6)

where SVIX2
t→T is defined via the formula,

SVIX2
t→T =

2
(T − t)R f ,t,T S2

t

[∫ Ft,T

0
putt,T (K)dK +

∫
∞

Ft,T

callt,T (K)dK
]
, (7)

where putt,T (K) (callt,T (K)) denotes the market price of a put (call) option with strike K and

maturity T − t, and Ft,T is the forward price of the underlying.

Equation (5) essentially combines the forward-looking feature (option prices) and backward-

looking feature (state variables). The function form for k(xt) can be either linear or non-linear.

Compared with Back, Crotty, and Kazempour (2022), instead of adding the past mean values as a

correction for slackness or relying on statistical combinations to include macro variables’ forecasts,

we provide a theoretical motivation to use the state variables as a real-time correction to the option

bound.

In the next section, we will empirically test the efficacy of Equation (5) in forecasting market

risk premium out-of-sample. We also compare both statistical and economic performances of our

generalized bound with other known bounds in the literature, including the slackness-adjusted

bound by Back, Crotty, and Kazempour (2022), and the bound by Chabi-Yo and Loudis (2020)

that is based on the first four risk-neutral moments of the market excess return.

3 Out-of-Sample Tests

In this section, we first discuss the data, followed by the forecast construction and the criteria

used to evaluate the out-of-sample performance. We then present our main out-of-sample results.
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3.1 Bound and traditional variables

We use S&P 500 index options obtained from OptionMetrics to compute Martin (2017) bound,

running from January 1996 to December 2022. We apply the same filters as in Martin (2017)

to clean the data.We then construct time series of option bounds at time horizons T − t = 1,3,6,

and 12 months. We interpolate the bound linearly to match maturities of 30, 90, 180, and 360

days. To compute the slackness-adjusted bounds, we follow Back, Crotty, and Kazempour (2022)

by matching these option bounds with realized market excess returns on the S&P 500 index

compounded over the 21, 63, 126, and 252 trading days. The daily return data for the S&P 500

index are obtained from CRSP. For the Chabi-Yo and Loudis (2020) bound, we consider both

unrestricted and restricted bounds with data from Fousseni Chabi-Yo’s website.

For state variables, we collect data for the following return predictors that are commonly used

in the time-series return predictability literature. The traditional variables can be broadly grouped

into three categories. The Internet Appendix contains the detailed description and the data source.

• Financial/macro variables (14 variables by Welch and Goyal, 2008, short for WG )

• Sentiment (five variables by Baker and Wurgler, 2006; Huang et al., 2015; Shapiro, Sudhof,

and Wilson, 2022)3

• Short interest index (Rapach, Ringgenberg, and Zhou, 2016)4

It is worth noting that option bounds with maturities of 30, 90, 180, and 360 days are computed

at a daily frequency, whereas the traditional state variables are at a monthly frequency. We merge

the state variables with the option bounds computed at the last trading day of each month, resulting

in a time series of combined predictors at a monthly frequency. Throughout the paper, we focus

on the out-of-sample predictability of 1-month return (thus the 30-day option bound), which is

3The data for Baker and Wurgler (2006) sentiment is updated to June 2022. For Baker and Wurgler (2006) and
Huang et al. (2015), we use both orthogonal and non-orthogonal measures.

4We also consider alternative short interest measure–the short selling efficiency in Chen, Da, and Huang (2022).
The results are similar.
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the primary horizon as in the influential study by Welch and Goyal (2008). But we also examine

longer-horizon forecasts in Section 4.4.

3.2 Forecast construction

Stock market excess return predictability is typically analyzed in the context of a predictive

regression model (see, for instance, Welch and Goyal, 2008; Campbell and Thompson, 2008).

In contrast, by option theory, the bound is already a meaningful expected return (Martin, 2017).

Therefore, we use the bound directly as the forecast of the expected market return.

Let rt denote the market excess return at time t. The forecast of subsequent market excess

return, rt+1 is given by

r̂t+1 = bt,i, i ∈ (M,BCK,CY L,LLXZ), (8)

where bt,M, bt,BCK , bt,CY L, and bt,LLXZ denote the Martin (2017) bound, Back, Crotty, and

Kazempour (2022) slackness-adjusted bound, Chabi-Yo and Loudis (2020) bound, and our

generalized bound by incorporating state variables computed at time t, respectively.

Our theoretical framework, defined in Equation (5), provides a flexible approach to include

state variables into option bounds. For 14 WG macro variables, we use a number of dimension

reduction techniques in a high-dimensional setting to extract a representative component and

use it for x in Equation (5). The shrinkage methods include predictor average that takes the

cross-sectional average of (normalized) variables, principal components (PCA), partial least

squares (PLS) (Wold, 1966, 1975; Kelly and Pruitt, 2013, 2015), and scaled-PCA (Huang, Jiang,

Li, Tong, and Zhou, 2022). For five sentiment measures, we apply the same shrinkage methods.

For short interest index, we use it directly. In the Internet Appendix, we also consider using each

variable individually to construct the generalized bound and repeat the analyses in the main paper.

To empirically construct the generalized bound, we choose k(x) = exp(α +βx) in Equation (5)

as the adjustment factor, where α and β are constants. Alternative function forms are discussed in
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Section 4.2. At time t, the generalized bound is computed as

bt,LLXZ = exp(α̂t + β̂txt)×
(
bt,M +R f ,t,T

)
−R f ,t,T , (9)

where {α̂t , β̂t} are estimated recursively by solving the following optimization problem:

min
α,β

t−1

∑
s=1

{
rs+1 −

[
exp(α +βxs)×

(
bs,M +R f ,s

)
−R f ,s

]}2
. (10)

We carefully use information up to time t only to avoid any forward-looking bias.

To ensure we have enough observations to estimate {α,β}, we use the first 10 years (from

1996:01 to 2005:12) of the full sample period as the initial in-sample estimation period, thus 120

observations. The subsequent 17 years, from 2006:01 to 2022:12 (204 observations), constitutes

the out-of-sample period for forecast evaluation. This relatively long out-of-sample period covers

the 2008/09 global financial crisis and COVID-19 pandemic, which allows us to analyze the

efficacy of option bounds under a variety of economic conditions. We also consider using longer

initial windows such as 15 and 20 years, so our out-of-sample periods cover 2011:01–2022:12

and 2016:01-2022:12. These two short periods allow us to evaluate the bound performance in the

post-financial crisis era.

Table 1 presents summary statistics of the 1-month market excess return and the bounds over

the period from 2006:01 to 2022:12. We follow Back, Crotty, and Kazempour (2022) to compute

market excess returns from S&P 500 index returns using the risk-free rate from Ken French’s

website. Panel A confirms the message of Back, Crotty, and Kazempour (2022) that the mean

market excess return (around 8.26%) is substantially larger than the mean bounds, by roughly 2.5%

to 5% per year. Further, the slackness-adjusted bound (BCK) by Back, Crotty, and Kazempour

(2022) and the risk-neutral moments bound (CYL) by Chabi-Yo and Loudis (2020) are generally

higher than Martin bound, so realized slackness is lower. However, compared with the mean

and median of market realized return, those bounds are still much lower, suggesting substantial

slackness.
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Panel B of Table 1 reports the summary statistics for the generalized bounds. WG Average, WG

PCA, WG PLS, and WG S-PCA are the generalized bounds based on the cross-sectional average,

first principal component, partial least square, and scaled first principal component extracted from

the 14 macro variables in Welch and Goyal (2008), respectively. Sent Average, Sent PCA, Sent

PLS, and Sent S-PCA represent those resulting from applying different shrinkage methods to

the five sentiment measures (Baker and Wurgler, 2006; Huang et al., 2015; Shapiro, Sudhof,

and Wilson, 2022). SII denotes the generalized bound based on short interest index (Rapach,

Ringgenberg, and Zhou, 2016). In contrast to Panel A, we observe that the generalized bounds,

except for WG Avg and WG PCA, are mostly higher than BCK or CYL bounds, and their

magnitudes are similar to the target market return. For instance, the mean value of the generalized

bounds after applying PCA, PLS, and scaled-PCA to sentiment variables are 8.50%, 7.53%, and

7.66%, respectively. Notably, when using the short interest index as the state variable, the mean

and median of the generalized bound, around 13.63% and 14.10%, become much comparable to

those of the market excess return, around 8.26% and 15.10%. In contrast, the mean and median of

BCK or CYL bounds are lower than 6% and 5%, respectively.

We next test whether the option bounds can successfully predict the market excess return out

of sample.

3.3 Out-of-sample statistical gains

We assess the forecast accuracy with out-of-sample R2
OS statistic relative to the prevailing

historical average benchmark.5 Given T forecasts in the out-of-sample evaluation period, R2
OS

statistic essentially measures the relative reduction in mean square prediction error (MSPE),

R2
OS = 1− ∑

T−1
t=0 (rt+1 −bt,i)

2

∑
T−1
t=0 (rt+1 − r̄t)2

, (11)

5The historical average of market risk premium is constructed from the daily return series of the S&P 500 index,
starting from July 3, 1962 on CRSP.
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where rt+1 is the realized return at time t +1, bt,i is the option bound i computed at time t, and r̄t is

the historical average forecast made at time t. A positive R2
OS > 0 indicates that the bound generates

a lower MSPE than the benchmark, thereby the out-of-sample evidence of return predictability of

option bound. To assess the statistical significance of R2
OS, we use the Clark and West’s (2007)

MSPE-adjusted statistic.

Before we report the main out-of-sample results, we first plot the time series of the Martin,

BCK, CYL bounds, as well as the SII-based generalized bound in Figure 1. Consistent with the

plots in Back, Crotty, and Kazempour (2022), the bounds are very volatile and occasionally quite

high. The peaks occur in periods when measures of market uncertainty, such as the 08/09 financial

crisis or the COVID-19 pandemic, are also very high. While the option bounds in the four panels

appear to exhibit high correlation, our generalized bound consistently surpasses other bounds,

staying above the historical average benchmark.

Table 2 reports out-of-sample R2
OS statistics for 1-month market excess return forecasts based

on option bounds for three out-of-sample periods. Martin Bound denotes the Martin (2017) bound,

BCK Bound denotes the Back, Crotty, and Kazempour (2022) slackness-adjusted bound, and

CYL Bounds denote the unrestricted and restricted (R) bounds from Chabi-Yo and Loudis (2020).

Column (1) of Table 2 reports the results for the “long” out-of-sample period 2006:01–2022:12,

which includes both 2008/09 financial crisis and 2020 COVID-19 pandemic. In Panel A, we

find that option bounds in the existing literature perform poorly out of sample, all generating

negative R2
OS statistics. For example, Martin, BCK, and CYL (restricted) produce R2

OS statistic of

−0.59%, −0.54%, and −0.76%, respectively, suggesting weak or no predictive power of option

bounds. By contrast, Panel B demonstrates much improved out-of-sample predictive power of the

generalized bounds, except for the ones based on WG variables. Specifically, sentiment-based

bounds produce economically sizable R2
OS statistics that are larger than 3% (see for instance,

Campbell and Thompson, 2008). Moreover, the SII-based bound generates an even larger R2
OS,

around 7.88% and significant at the 5% level.

Columns (3) and (4) of Table 2 report the results for two shorter periods, 2011:01–2022:12
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and 2016:01–2022:12, after the 2008/09 global financial crisis. Compared to column (1), we find

that option bounds, both existing and generalized ones, perform much better in the post-crisis era.

For example, the R2
OS statistics for Martin, BCK, and CYL (restricted) bounds jump to 2.14%,

2.80%, and 3.25%, respectively, during the 2011:01–2022:12 out-of-sample period, and the latter

two become marginally significant at the 10% level. Nevertheless, the generalized bounds still

outperform the existing ones: all generalized bounds in columns (3) and (4) become positive with

8 of them significant at the 10% level and 6 significant at the 5% level. Furthermore, we observe

that both sentiment- and SII-based bounds consistently produce R2
OS statistics larger than 10% in

magnitude.

Among three category of traditional variables, the bound incorporating SII or sentiments

outperforms the bound with macro variables, with the former exhibiting the most robust perfor-

mance. To illustrate, the SII-based bound consistently generates significant R2
OS values of 7.88%,

17.47%, and 20.00% across the three out-of-sample periods. One possible explanation for the

underperformance of WG macro-based bounds may be attributed to the absence of consistent out-

of-sample support for these macro variables, a criticism notably expressed by Welch and Goyal

(2008). As detailed in the Internet Appendix, when constructing generalized bounds using 14 WG

variables individually, merely 6 out of them yield positive R2
OS statistics over the period 2006–2022,

with only one of them achieving (marginally) significant results at the 10% level.6

We provide several statistical explanations for the superb performance of generalized bounds

in Section 3.5. Before that, we first explore the economic values of generalized bounds, apart from

the statistical gains in Table 2.

3.4 Out-of-sample economic values

In this subsection, we assess the economic values of different option bounds. We compare

the benchmark and bound-based forecasts in terms of their economic values to a mean-variance
6Neely, Rapach, Tu, and Zhou (2014) show that applying principal component regression on 14 WG variables

cannot outperform the historical average benchmark, either (see Table 3, page 1786, in their paper).
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investor. Specifically, consider an investor who allocates across equities and a risk-free asset (the

Treasury bill) each month. At the end of month t, the investor faces the objective function

argω̂t+1
ω̂t+1r̂t+1 −

γ

2
ω̂

2
t+1σ̂

2
t+1, (12)

where γ denotes the coefficient of relative risk aversion, {ω̂t+1,1− ω̂t+1} are allocation weights to

the market portfolio and the risk-free asset at month t +1, r̂t+1 is the investor’s forecast of market

excess return, and σ̂2
t+1 is the forecast of the variance of the market excess return. The optimal

mean-variance portfolio weight on the market can be computed as7

ω̂
⋆
t+1 =

(
1
γ

)(
r̂t+1

σ̂2
t+1

)
, (13)

Figure 2 plots the log cumulative excess returns for portfolios using market excess return

forecasts based on Martin, BCK, CYL, and SII-based generalized bound over the out-of-sample

period 2006:01–2022:12. The figure also depicts the log cumulative excess return for the portfolio

based on the historical average benchmark forecast. Figure 2 reveals that the portfolio that

incorporates the information from both option market and stock market generally exhibits superior

performance compared to the portfolio based on the historical average benchmark forecast. In

sharp contrast, the portfolio that solely relies on the option market information, for instance, Martin

or CYL bound, underperforms the benchmark. Consistent with the patterns of statistical gains

in Table 2, we find that the main reason that option bounds do not perform well relative to the

benchmark is due to the 2008/09 financial crisis period. In contrast to the Martin, BCK and CYL

bounds in Panels A, B and C of Figure 2, we find that the generalized bound excels in managing

downside risk during the market downturn.

Over the out-of-sample period, we compute four performance measures: (1) average portfolio

returns, µp, (2) portfolio return standard deviation, σp, (3) Sharpe ratio, SRp =
µp
σp

, and (4) certainty

equivalent return (CER), CERp = µp − γ

2σp. The results are presented in Table 3. In Panel A,

7We follow Campbell and Thompson (2008) to set γ = 3 and to constrain the portfolio weight on the market
portfolio to lie between [0,1.5] in Equation (13).
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we find that although portfolios based on existing option bounds mostly achieve higher average

returns than that based on historical average benchmark, they also exhibit much higher standard

deviations, leading to smaller Sharpe ratios and negative CERs. For instance, the Sharpe ratios

for Martin, BCK, and CYL (restricted) bounds are 0.18, 0.22, and 0.24, respectively, compared to

that of 0.26 for the benchmark. In contrast, the generalized bounds produce comparable standard

deviations to Martin or CYL bound but much larger average returns. As a result, we find that 6

out of 8 the generalized bounds produce Sharpe ratios larger than the benchmark, with 6 of them

larger than 0.30, and SII-based bound larger than 0.6. We also consider adjusting for a proportional

transaction cost of 50 basis points per transaction. The results are robust and are available in the

Internet Appendix.

In light of the finding in Table 2 that option bounds may underperform during the financial crisis

period, we also assess the out-of-sample economic gains during the post-crisis period 2011:01–

2022:12 in Table 4. Indeed, we observe a much improved economic values for Martin, BCK

and CYL bounds, with Sharpe ratios ranging from 0.67 to 0.73 and CERs ranging from 6.04%

to 7.80%, slightly above those of the benchmark (around 0.64 and 4.83%). Notwithstanding, the

generalized bounds continue to outperform the historical average benchmark with both higher

Sharpe ratio and larger CERs. Using WG macro variables, the best performed generalized bound

(WG PLS) achieves a Sharpe ratio of 0.83 and a CER of 9.89%. Using sentiment variables,

most of generalized bounds produce a Sharpe ratio larger than 0.80 and a CER larger than 10%.

Notably, the SII-based bound remains the best-performing in terms of economic value: it achieves

an impressive Sharpe ratio of 1.04 and a CER of 14.92% over the period 2011:01–2022:12. The

difference between two CERs, known as the utility gain (Pástor and Stambaugh, 2000; Campbell

and Thompson, 2008), suggests that the investor would be willing to pay 10.09%, 8.88%, 7.68%,

and 7.73% per annum to have access to the information in the SII-based generalized bound relative

to the historical average, Martin bound, BCK bound, and CYL restricted bound, respectively.

Overall, we demonstrate consistent out-of-sample evidence of market return predictability by

combining option theory with economic state variables. The results are both statistically and

economically significant. To further understand the superb performance of the generalized bound,
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we next investigate several plausible explanations from a statistical point of view.

3.5 Statistical explanations

In this subsection, we provide three possible ways to explain the exceptional out-of-sample

performance of the generalized bound. We first follow Welch and Goyal (2008) to plot the

cumulative squared errors over time and then follow Theil (1966) to conduct a bias-variance

decomposition. Finally, we provide a novel approach to evaluate the efficacy of option bounds

by comparing their time-series distributions.

3.5.1 Cumulative squared error

To gain a better understanding of those forecasts, we first employ the methodology outlined by

Welch and Goyal (2008) to calculate the cumulative differences in squared forecast errors between

the historical average benchmark and the bound-based forecast,

squared error difference = (rt+1 − r̄t)
2 − (rt+1 −bt,i)

2, (14)

where rt+1 is the realized return at time t +1, bt,i is the option bound i computed at time t, and r̄t

is the historical average forecast computed at time t.

Figure 3 plots the cumulative squared error difference over the out-of-sample period 2006:01–

2022:12. This tool provides a straightforward way to assess whether a competing forecast can

consistently outperform the benchmark over time. An increasing (decreasing) curve indicates

that the competing forecast consistently exhibits a lower (higher) MSPE than the benchmark.

Moreover, a curve that concludes higher (lower) at the end of the out-of-sample period than at

the beginning is equivalent to a positive R2
OS in Equation (11). Similar to the finding in Back,

Crotty, and Kazempour (2022), we find that the bound-based forecasts substantially underperform

and then partially recover in the financial crisis and in the COVID-19 pandemic. However, only

the generalized bound fully recover by achieving a higher point at the end of the period than at
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the beginning. The outperformance during those extreme market downturn periods results in the

overall significantly positive R2
OS in Table 2 for the generalized bound.

3.5.2 Bias-variance trade-off

The R2
OS statistic in Equation (11) essentially compares two MSPEs between two forecasts. We

next adopt the decomposition of MSPE proposed by Theil (1966):

MSPE =
( ¯̂e
)2

+Var(ê), (15)

where ê signifies the forecast error,
( ¯̂e
)2 is the squared forecast bias, and Var(ê) is the forecast

variance.

Figure 4 presents four scatterplots on the variance-bias plane. Each panel compares the

historical average benchmark with an option bound. Within Panels A, B, and C, we observe that

historical average forecasts lie in the top left, while Martin, BCK, and CYL bounds are situated in

the bottom right. This suggests that option bounds exhibit much higher forecast variance compared

to the benchmark, leading to negative R2
OS statistics. In contrast, in Panel D, we note that the

historical average is located in the top right of the panel, while the generalized bound is in the

bottom left, suggesting that the generalized bound achieves both much lower forecast variance and

higher forecast precision. In summary, the generalized bound better regularizes forecast variability,

leading to substantially improved out-of-sample forecast accuracy.

3.5.3 Bound distribution

Apart from the time-series plot of the cumulative squared error difference and the classic bias-

variance analysis, we next propose an alternative way to explain the superb performance of the

generalized bound achieved by combing option theory with economic state variables.

In Figure 5, we plot the distribution of the realized 1-month market excess return (compounded

over the 21 trading days) versus the 1-month option bound during the period 2006:01–2022:12. As
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depicted in each panel, the distribution of realized market excess return is very dispersed, ranging

from extreme negative values to extreme positive values. In contrast, Martin, BCK, and CYL

bounds in Panels A, B, and C are much concentrated and right skewed. Moreover, the modes of

the those three distributions are just slightly above zero, which also suggests that those existing

lower bounds are too loose. This observation is consistent with the summary statistics in Table 1

where we find that the mean bounds (less than 5%) are substantially smaller than the market excess

return (around 8.26%) per year, and the median bounds (less than 5%) are even smaller compared

to the median of market excess return (around 15.10%).

In Panel D of Figure 5, we observe that the distribution of the SII-based generalized bound

demonstrates greater dispersion and a less pronounced right skew compared to the Martin and

other bounds, though it remains less dispersed than the market excess return. More importantly,

the mode and the median of the generalized bound distribution become comparable to those of

the market excess return. This is also consistent with the summary statistics in Table 1 where

the median of SII-based bound is 14.10%, which is similar to the median of market excess

return. In other words, despite the uncertain and evolving nature of the data-generating process

for expected market return, the generalized option bound, combining risk-neutral moments from

option prices and economic state variables, manages to mimic the distribution of expected market

return, significantly contributing to its out-of-sample predictive power.

3.6 Dynamics of bound adjustment, k(x)

We generalize Martin (2017) bound by theoretically incorporating the economic state variables

into the bound construction. In this subsection, we compare the Martin and the generalized bounds.

Figure 6 comprises four panels, with the first three presenting bar plots that depict three

generalized bounds derived from sentiment using three different shrinkage techniques, and the last

one presenting the bound derived from the short interest index. Additionally, within each panel, a

bar plot illustrating the Martin bound is also included. While the adjustment in each month varies

depending on the chosen state variable, the overarching trend reveals that the generalized bounds
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consistently surpass the Martin bound most of the time. This pattern suggests a partial alleviation

of slackness. It is also noteworthy that the adjustments during the 2008/09 financial crisis and

the 2020 COVID-19 pandemic exhibit opposing trends: during the former period, we generally

observe a downward adjustment of the Martin bound, whereas in the latter, an upward adjustment

prevails.

In the context of Equation (5), the adjustment by the generalized bound essentially depends on

the k(x). An upward (downward) adjustment is equivalent to k(x)> 1 (k(x)< 1). Figure 7 depicts

the estimated k(x) over time based on different state variables. The solid lines depicted in Figure

7 indicate that k(x) experiences a drastic decrease below one in the period spanning 2008-2009,

followed by a partial (or complete) recovery to levels above one, contingent on the chosen state

variable. The red dotted line represents the economic sentiment index by Shapiro, Sudhof, and

Wilson (2022). Overall, we note a reasonable correlation between k(x) and economic sentiment.

Specifically, Martin bound is scaled down when economic sentiment is on the fall, and conversely,

it is scaled up when economic sentiment is on the rise.

The limited use of Martin bound is contended either because of its significant slackness (Back,

Crotty, and Kazempour, 2022), or the breach of the NCC (Bakshi et al., 2021). Theoretically,

k(x) = 1 is equivalent to NCC = 0 (indicating a tight bound); k(x) > 1 is equivalent to NCC < 0

(which may result in slackness); and k(x) < 1 is equivalent to NCC > 0 (indicating a violation).

In this regard, Figures 7 provides a visual explanation for the efficacy of Martin (2017) bound.

We find that k(xt) consistently exceeds one for the majority of the observed period, notably over

the past decade. This observation aligns with the finding of Back, Crotty, and Kazempour (2022),

highlighting that the Martin bound, when used as a lower threshold, may not sufficiently capture

market dynamics during normal periods. Conversely, during the 2008/09 financial crisis, k(x)

dips below one, indicating that the Martin bound, as a lower bound, might be unduly large during

extreme market conditions, potentially leading to the violation of the inequality in Equation (3).

In Panel A of Table 5, we present the summary statistics of the time-series of estimated k(x)

based on different state variables over the out-of-sample period 2006:01–2022:12. For comparison,
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we express k(x) in percent. Using WG macro variables, k(x) > 1 holds for more than half of the

months, with mean values either above or slightly below the threshold of one. This may also help to

explain the underperformance of WG-based bounds: the bounds are still loose. Using sentiment or

short interest index, we find that k(x)> 1 holds for more than 75% cases, and sometimes more than

90%. As a result, the mean values of k(x) range from 1.0031 to 1.0082, and are significant larger

than one based on Newey and West (1987) standard errors. In Panel B when we switch to the out-

of-sample period 2006:01–2022:12, we find that almost all k(x) estimates become significantly

larger than one, suggesting a further correction of slackness in the Martin (2017) bound. For

instance, the mean value of k(x) using short interest index becomes 1.0100, significant at the 1%

level.

4 Robustness

In this section, we perform a battery of robustness checks, including subperiod analysis with

respect to different economic conditions, alternative adjustment form to construct the generalized

bound, extended data sample, and the longer-horizon forecast.

4.1 Bounds and economic conditions

As highlighted in Figures 2 and 3, the predictive power of option bounds might be heavily

affected by the economic conditions. In light of this, we next compute the out-of-sample R2
OS

during periods of “High” or “Low” economic regimes over 2006:01–2022:12, where the regimes

are based on sorted values of Shapiro, Sudhof, and Wilson’s (2022) news sentiment and Bekaert,

Engstrom, and Xu’s (2022) risk aversion index (in turn). “High” and “Low” periods are defined

using the top and bottom third of sorted values, respectively, in order to have a reasonable number

of observations in each regime. The results are reported in Table 6.

We find that the predictive power of option bounds is mainly concentrated in the subperiod

of high sentiment or low risk aversion: both BCK slackness-adjusted bound and our generalized
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bounds produce significantly positive R2
OS statistics, though the R2

OS of the latter remain much

larger in magnitude. In contrast, we observe that neither Martin nor CYL bound can outperform

the historical average benchmark in subperiods. One possible explanation is that Martin and CYL

bound rely sole on the risk-neutral information implied from derivative market, whereas BCK and

generalized bounds incorporate both stock market and derivative market information. To examine

the robustness of the results, we also analyze the bound forecast during NBER-dated business

cycles. The results are reported in the Internet Appendix.

4.2 Alternative adjustment factor k(x)

In this subsection, we consider two alternative forms for the adjustment factor, k(x) in Equation

(5). We first consider a linear function form such that

k(x) = α +βx, (16)

where α and β are constants. In addition, we also consider incorporating both interaction and

individual terms,8

k(x) = exp(α +βx)+λ , (17)

where α , β , and λ are constants.

We repeat the out-of-sample test with the new specifications and present the results in Table

7. The results are quite similar to those in Table 2. Combing options with traditional variables

greatly improve the out-of-sample forecast accuracy with SII-based generalized bound as the best

performing one. Overall, our theory-based generalized bound is robust to the different choices of

function form k(x).

8We thank Tyler Beason for this valuable suggestion.
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4.3 Extended sample period

Our sample begins in 1996 due to the availability of option data. As mentioned in Equation

(5), Martin bound is expressed in terms of SVIX index.

Since SVIX and CBOE VIX index are highly correlated (with a correlation coefficient of 0.99),

we next use VIX data to construct a similar ‘Martin bound’,

bt,M =


(T − t)R f ,t,T SVIX2

t→T , if t ≥ 1996;

(T − t)R f ,t,T VIX2
t→T , if t < 1996,

(18)

and thus extend the full sample period to 1990:01–2022:12. Subsequently, we can construct the

generalized bound by Equation (9).

The out-of-sample R2
OS statistics with extended data sample are presented in Table 8. We

consider the same three out-of-sample evaluation periods: 2006:01–2022:12, 2011:01–2022:12,

and 2016:01–2022:12. We observe similar results as in Table 2. For example, Martin bound

cannot outperform the benchmark during the period 2006:01–2022:12, yielding a negative R2
OS,

though the predictive power partially recovers after the 2008/09 financial crisis with R2
OS jumping

to 2.09% and 2.29%, over the periods 2011:01–2022:12 and 2016:01–2022:12, respectively. The

generalized bounds based on sentiment and short interest index continue to outperform both the

historical average benchmark and the established option bounds.

Rather than using both VIX and SVIX to construct the bound, we can simply employ VIX

to create the entire ‘Martin bound’ from 1990 to 2022. Figure 8 depicts the 30-day SVIX index

alongside the CBOE VIX index. Both indices exhibit nearly identical patterns. As shown in Table

9, both Martin and generalized bounds by VIX exhibit similar results to the ones by SVIX as

in Tables 2 and 8. Since VIX and SVIX both capture important aspects of market returns, their

disparity can be minimal under certain conditions, such as log-normality (see Martin, 2017).
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4.4 Longer-horizon forecast

In this subsection, we conduct out-of-sample forecasting for longer horizons. Following Back,

Crotty, and Kazempour (2022), we linearly interpolate the option bounds to correspond with 90,

180, and 360-day maturities. We then align these with realized returns over 63, 126, and 252

trading days. Table 10 presents the out-of-sample R2
OS statistics for 1-, 3-, 6-, and 12-month

market excess return forecasts based on option bounds during the out-of-sample evaluation period

2006:01–2022:12.

We find that option bounds generally perform well relative to the historical mean in long-

horizon forecasting, exhibiting mostly positive R2
OS statistics. Martin and BCK bounds achieve

significantly positive R2
OS statistics when predicting 6- and 12-month market excess returns. CYL

bounds perform substantially well in 6- and 12-month market excess return forecasts, displaying

large and significantly positive R2
OS statistics. Additionally, our generalized bounds continue to

outperform the historical mean in long-horizon forecasting. For instance, the R2
OS statistics from

the SII-based bound rise to significant values of 11.70%, 18.66%, and 22.83% for 3-, 6-, and

12-month return forecasts, respectively. These findings are expected given the overall upward

trend observed in the market over the long term. Similar findings are reported by Campbell and

Thompson (2008) in their analysis of forecasting 12-month market excess return through the use of

macro variables (refer to Panel B, Table 2, in their paper). They highlight a substantial R2
OS value,

reaching as high as 7.89% for the 12-month return forecast achieved through an unconstrained

simple predictive regression.9 However, it is worth noting that the same regression approach

has also faced major criticism since Welch and Goyal (2008) for its inability to outperform the

historical average benchmark, particularly when used for 1-month return forecasting.

In summary, we find that existing bounds, including Martin, BCK, and CYL, exhibit

strong predictive power when employed to forecast longer-term market returns. Conversely,

our generalized bounds, combining option theory and traditional variables, show substantial

9The R2
OS values are not directly comparable as our R2

OS is derived from using the bound as a meaningful expected
return, while the R2

OS from Campbell and Thompson (2008) is obtained through regression forecasts.
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forecasting gains consistently across short-term (1-month), medium-term (3- or 6-month), and

long-term (12-month) horizons.

5 Conclusion

Predicting the market risk premium is one of the fundamental challenges in finance, which is of

interest because it is a pivotal determinant of the required rate of return for investors to hold assets

in asset pricing models. Despite numerous studies on the time-series predictability in the literature,

the out-of-sample predictability continues to exhibit limited effectiveness. Recent developments

by Martin (2017) and others offer new insights into learning about the expected market return from

options prices; however, the empirical performance remains unsatisfactory.

In this paper, we provide a novel approach to combine two lines of literature on market risk

premium. We theoretically derive a new bound on the market risk premium by combining risk-

neutral variance with traditional economic state variables. We further show that the new bound

performs well empirically and the improvement in out-of-sample forecasting is economically

substantial. Collectively, our paper provides new insights into the market risk premium by drawing

perspectives from both the time-series return predictability literature and the option literature.

26



References

Asriyan, V., Fuchs, W., Green, B., 2019. Liquidity sentiments. American Economic Review 109,
3813–3848.

Back, K., Crotty, K., Kazempour, S. M., 2022. Validity, tightness, and forecasting power of risk
premium bounds. Journal of Financial Economics 144, 732–760.

Baker, M., Wurgler, J., 2006. Investor sentiment and the cross-section of stock returns. Journal of
Finance 61, 1645–1680.

Bakshi, G., Crosby, J., Gao, X., Zhou, W., 2021. Negative correlation condition and the dark matter
property of asset pricing models. Unpublished working paper.

Bakshi, G., Gao, X., Xue, J., 2022. Recovery with applications to forecasting equity disaster
probability and testing the spanning hypothesis in the treasury market. Journal of Financial and
Quantitative Analysis 58, 1808–1842.

Bekaert, G., Engstrom, E. C., Xu, N. R., 2022. The time variation in risk appetite and uncertainty.
Management Science 68, 3975–4004.

Black, F., 1993. Estimating expected return. Financial Analysts Journal 49, 36–38.

Breeden, D. T., Litzenberger, R. H., 1978. Prices of state-contingent claims implicit in option
prices. Journal of Business 51, 621–651.

Campbell, J. Y., Shiller, R. J., 1988a. The dividend-price ratio and expectations of future dividends
and discount factors. Review of Financial Studies 1, 195–228.

Campbell, J. Y., Shiller, R. J., 1988b. Stock prices, earnings, and expected dividends. Journal of
Finance 43, 661–676.

Campbell, J. Y., Shiller, R. J., 1998. Valuation ratios and the long-run stock market outlook. Journal
of Portfolio Management 24, 11–26.

Campbell, J. Y., Thompson, S. B., 2008. Predicting excess stock returns out of sample: Can
anything beat the historical average? Review of Financial Studies 21, 1509–1531.

Chabi-Yo, F., Dim, C., Vilkov, G., 2022. Generalized bounds on the conditional expected excess
return on individual stocks. Management Science 69, 922–939.

27



Chabi-Yo, F., Loudis, J., 2020. The conditional expected market return. Journal of Financial
Economics 137, 752–786.

Chen, Y., Da, Z., Huang, D., 2022. Short selling efficiency. Journal of Financial Economics 145,
387–408.

Clark, T. E., West, K. D., 2007. Approximately normal tests for equal predictive accuracy in nested
models. Journal of Econometrics 138, 291–311.

Dow, C. H., 1920. Scientific stock speculation. Magazine of Wall Street.

Elton, E. J., 1999. Presidential address: Expected return, realized return, and asset pricing tests.
Journal of Finance 54, 1199–1220.

Fama, E. F., French, K. R., 1988. Dividend yields and expected stock returns. Journal of Financial
Economics 22, 3–25.

Fama, E. F., French, K. R., 1989. Business conditions and expected returns on stocks and bonds.
Journal of Financial Economics 25, 23–49.

Farmer, L., Schmidt, L., Timmermann, A., 2023. Pockets of predictability. Journal of Finance 78,
1279–1341.

Goyal, A., Welch, I., Zafirov, A., 2021. A comprehensive look at the empirical performance of
equity premium prediction II. Unpublished working paper.

Heston, S. L., 2021. Recovering the variance premium. Unpublished working paper.

Hore, S., 2015. Equilibrium predictability, term structure of equity premia, and other return
characteristics. Review of Finance 19, 423–466.

Huang, D., Jiang, F., Li, K., Tong, G., Zhou, G., 2022. Scaled pca: A new approach to dimension
reduction. Management Science 68, 1678–1695.

Huang, D., Jiang, F., Tu, J., Zhou, G., 2015. Investor sentiment aligned: A powerful predictor of
stock returns. Review of Financial Studies 28, 791–837.

Jagannathan, R., Liu, B., 2019. Dividend dynamics, learning, and expected stock index returns.
Journal of Finance 74, 401–448.

Kadan, O., Tang, X., 2020. A bound on expected stock returns. Review of Financial Studies 33,
1565–1617.

28



Kelly, B., Pruitt, S., 2013. Market expectations in the cross-section of present values. Journal of
Finance 68, 1721–1756.

Kelly, B., Pruitt, S., 2015. The three-pass regression filter: A new approach to forecasting using
many predictors. Journal of Econometrics 186, 294–316.

Kelly, B. T., Malamud, S., Zhou, K., 2023. The virtue of complexity in return prediction. Journal
of Finance, forthcoming.

Martin, I., 2017. What is the expected return on the market? Quarterly Journal of Economics 132,
367–433.

Martin, I., 2021. On the autocorrelation of the stock market. Journal of Financial Econometrics 19,
39–52.

Martin, I. W., Wagner, C., 2019. What is the expected return on a stock? Journal of Finance 74,
1887–1929.

Merton, R. C., 1980. On estimating the expected return on the market: An exploratory
investigation. Journal of Financial Economics 8, 323–361.

Neely, C. J., Rapach, D. E., Tu, J., Zhou, G., 2014. Forecasting the equity risk premium: The role
of technical indicators. Management Science 60, 1772–1791.

Newey, W. K., West, K. D., 1987. A simple, positive semi-definite, heteroskedasticity and
autocorrelation consistent covariance matrix. Econometrica 55, 703–708.
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Table 1: Summary statistics
This table reports summary statistics for realized returns and option bounds. The sample comprises monthly
observations from 2006:01 to 2022:12. The market excess return is the S&P 500 return in excess of the
risk-free rate. Martin Bound denotes the Martin (2017) bound, BCK Bound denotes the Back, Crotty, and
Kazempour (2022) slackness-adjusted bound, and CYL Bound denotes the unrestricted and restricted (R)
bounds from Chabi-Yo and Loudis (2020). Panel B reports summary statistics of the generalized bounds
based on state variables indicated in row headings. WG Average, WG PCA, WG PLS, and WG S-PCA
are the generalized bounds based on the cross-sectional average, first principal component, partial least
square, and scaled first principal component extracted from the 14 macro variables in Welch and Goyal
(2008), respectively. Sent Average, Sent PCA, Sent PLS, and Sent S-PCA represent those resulting from
applying different shrinkage methods to the 5 sentiment measures (Baker and Wurgler, 2006; Huang et al.,
2015; Shapiro, Sudhof, and Wilson, 2022). SII represents the generalized bound based on short interest
index (Rapach, Ringgenberg, and Zhou, 2016). All results are annualized and expressed in percent.

(1) (2) (3) (4) (5) (6) (7) (8)
Mean (%) S.D. (%) P10 (%) P25 (%) P50 (%) P75 (%) P90 (%)

Panel A: Market excess return and established bounds

Market excess return 8.26 57.53 −72.81 −15.72 15.10 40.82 71.09

Martin Bound 3.72 3.69 1.11 1.59 2.46 4.38 7.16

BCK Bound 5.28 3.52 2.24 3.19 4.30 6.39 9.67

CYL Bound 5.80 5.95 1.79 2.42 3.78 6.95 10.76

CYL Bound (R) 4.90 5.24 1.47 1.97 3.10 5.80 9.40

Panel B: Generalized bounds
State Variables

WG Avg 4.44 6.64 0.00 0.91 2.60 5.17 10.40

WG PCA 5.42 4.87 0.00 2.47 4.27 6.91 13.80

WG PLS 12.73 8.57 0.20 6.85 11.76 17.36 23.32

WG S-PCA 6.44 5.78 0.00 2.67 4.68 9.05 16.21

Sent Avg 8.25 5.03 3.75 5.56 7.20 10.04 14.44

Sent PCA 8.50 3.27 5.33 6.45 8.18 9.58 11.69

Sent PLS 7.53 3.61 2.33 5.20 7.63 10.24 11.51

Sent S-PCA 7.66 3.76 3.00 5.15 7.68 10.19 11.97

SII 13.63 6.26 3.13 10.55 14.10 18.00 21.49
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Table 2: R2
OS (%) for market risk premium forecast

This table reports out-of-sample R2
OS for 1-month market excess return forecasts by option bounds. Panel

A uses the option bounds by Martin (2017), the slackness-adjusted bound by Back, Crotty, and Kazempour
(2022), and the four risk-neutral moments-based bounds by Chabi-Yo and Loudis (2020) (both unrestricted
and restricted). Panel B uses the generalized bounds based on state variables indicated in row headings. WG
Average, WG PCA, WG PLS, and WG S-PCA are the generalized bounds based on the cross-sectional
average, first principal component, partial least square, and scaled first principal component extracted
from the 14 macro variables, respectively. Sent Average, Sent PCA, Sent PLS, and Sent S-PCA represent
those resulting from applying different shrinkage methods to the 5 sentiment measures. SII represents the
generalized bound based on short interest index. *, ** and *** indicate significance at the 10%, 5% and 1%
levels for the positive R2

OS, respectively, based on Clark and West (2007) test.

(1) (2) (3) (4)
Out-of-sample periods 2006:01–2022:12 2011:01–2022:12 2016:01–2022:12

Panel A: Established bounds
Martin Bound −0.59 2.14 2.27

BCK Bound −0.54 2.80* 2.99

CYL Bound −0.84 3.89* 3.93

CYL Bound (R) −0.76 3.25* 3.44

Panel B: Generalized bounds
State Variables

WG Avg −4.07 1.97 2.30

WG PCA −0.91 2.68 3.44

WG PLS −1.60 0.58*** 2.49*

WG S-PCA −1.99 1.95 3.07

Sent Avg −1.24 3.90* 3.14

Sent PCA 3.55 15.10** 13.63

Sent PLS 3.80 14.30** 12.65

Sent S-PCA 3.37 14.54** 13.29

SII 7.88** 17.47*** 20.00**
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Table 3: Out-of-sample economic gains, 2006:01–2022:12
This table provides various economic performance measures for a mean-variance investor with a relative risk
aversion coefficient of three when using various option bounds as forecasts for market risk premium. The
investor reallocates between equities and risk-free bills monthly during the out-of-sample period 2006:01–
2022:12. Allocation weights depend on the bound-based return forecasts as indicated by panel headings.
WG Average, WG PCA, WG PLS, and WG S-PCA are the generalized bounds based on the cross-sectional
average, first principal component, partial least square, and scaled first principal component extracted from
the 14 macro variables, respectively. Sent Average, Sent PCA, Sent PLS, and Sent S-PCA represent
those resulting from applying different shrinkage methods to the 5 sentiment measures. SII represents
the generalized bound based on short interest index. The computed performance measures include out-of-
sample average excess return, standard deviation, Sharpe ratio, and certainty equivalent return (CER). All
results are annualized.

(1) (2) (3) (4) (5)
Avg. Ret. (%) S.D. (%) Sharpe Ratio CER (%)

Panel A: Benchmark and established bounds

HA 2.77 10.59 0.26 1.08

Martin Bound 3.09 16.94 0.18 −1.22

BCK Bound 4.23 19.65 0.22 −1.56

CYL Bound 5.54 19.53 0.28 −0.18

CYL Bound (R) 4.41 18.39 0.24 −0.66

Panel B: Generalized bounds
State Variables

WG Avg 2.59 17.70 0.15 −2.10

WG PCA 4.82 17.71 0.27 0.11

WG PLS 8.17 18.23 0.45 3.18

WG S-PCA 2.65 17.60 0.15 −1.99

Sent Avg 6.78 21.03 0.32 0.15

Sent PCA 7.91 21.61 0.37 0.91

Sent PLS 6.90 19.16 0.36 1.39

Sent S-PCA 6.54 19.66 0.33 0.74

SII 14.51 23.10 0.63 6.51

33



Table 4: Out-of-sample economic gains, 2011:01–2022:12
This table provides various economic performance measures for a mean-variance investor characterized
by a relative risk aversion coefficient of three when using various option bounds as forecasts for market
risk premium. The investor reallocates between equities and risk-free bills on a monthly basis during the
out-of-sample period from 2011:01 to 2022:12 (post the 2008/09 financial crisis). The allocation weights
depend on the bound-based return forecasts as indicated by the panel headings. WG Average, WG PCA,
WG PLS, and WG S-PCA are the generalized bounds based on the cross-sectional average, first principal
component, partial least square, and scaled first principal component extracted from the 14 macro variables,
respectively. Sent Average, Sent PCA, Sent PLS, and Sent S-PCA represent those resulting from applying
different shrinkage methods to the 5 sentiment measures. SII represents the generalized bound based on
short interest index. The computed performance measures encompass out-of-sample average excess return,
standard deviation, Sharpe ratio, and certainty equivalent return (CER). All results are annualized.

(1) (2) (3) (4) (5)
Avg. Ret. (%) S.D. (%) Sharpe Ratio CER (%)

Panel A: Benchmark and established bounds

HA 6.25 9.70 0.64 4.83

Martin Bound 8.45 12.67 0.67 6.04

BCK Bound 11.76 17.36 0.68 7.24

CYL Bound 11.45 15.60 0.73 7.80

CYL Bound (R) 10.23 14.22 0.72 7.19

Panel B: Generalized bounds
State Variables

WG Avg 7.66 13.11 0.58 5.08

WG PCA 11.25 17.00 0.66 6.91

WG PLS 14.29 17.14 0.83 9.89

WG S-PCA 9.17 15.24 0.60 5.69

Sent Avg 13.39 18.04 0.74 8.51

Sent PCA 15.88 18.30 0.87 10.86

Sent PLS 15.07 17.95 0.84 10.24

Sent S-PCA 15.19 17.85 0.85 10.42

SII 21.03 20.20 1.04 14.92
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Table 5: Estimates of k(x), expressed in percent
This table reports summary statistics for the time-series estimates of k(xt) = exp(αt +βtxt) where {αt ,βt}
are estimated recursively. WG Average, WG PCA, WG PLS, and WG S-PCA are the generalized bounds
based on the cross-sectional average, first principal component, partial least square, and scaled first principal
component extracted from the 14 macro variables, respectively. Sent Average, Sent PCA, Sent PLS, and Sent
S-PCA represent those resulting from applying different shrinkage methods to the 5 sentiment measures. SII
represents the generalized bound based on short interest index. All results expressed in percent. * and ***
indicate significance at the 10% and 1% levels, respectively, for the null hypothesis k(x) = 1, based on
Newey and West (1987) standard errors.

(1) (2) (3) (4) (5) (6) (7)
Mean (%) P10 (%) P25 (%) P50 (%) P75 (%) P90 (%)

Panel A: Out-of-sample period 2006:01–2022:12
State Variables

WG Avg 100.04 99.70 99.90 100.00 100.12 100.34

WG PCA 99.97 99.65 99.93 100.21 100.26 100.45

WG PLS 100.44* 99.55 100.23 100.81 101.22 101.81

WG S-PCA 99.98 99.53 99.98 100.19 100.32 101.13

Sent Avg 100.35*** 100.01 100.23 100.37 100.52 100.75

Sent PCA 100.40*** 100.18 100.27 100.40 100.55 100.68

Sent PLS 100.31*** 99.79 100.21 100.39 100.61 100.75

Sent S-PCA 100.33*** 99.88 100.18 100.33 100.62 100.76

SII 100.82*** 100.10 100.67 100.89 101.12 101.42

Panel B: Out-of-sample period 2011:01–2022:12
State Variables

WG Avg 99.98 99.72 99.91 100.00 100.08 100.17

WG PCA 100.15*** 99.86 100.11 100.22 100.25 100.28

WG PLS 100.86*** 99.99 100.38 100.86 101.45 102.03

WG S-PCA 100.09* 99.69 100.04 100.18 100.27 100.32

Sent Avg 100.31*** 99.68 100.24 100.38 100.49 100.67

Sent PCA 100.42*** 100.20 100.31 100.41 100.56 100.68

Sent PLS 100.41*** 100.09 100.28 100.39 100.61 100.78

Sent S-PCA 100.38*** 100.12 100.20 100.33 100.52 100.74

SII 101.00*** 100.73 100.81 100.94 101.14 101.44
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Table 6: R2
OS (%) during subperiods of extreme market conditions

This table reports out-of-sample R2
OS for 1-month market excess return forecasts by option bounds over

the period from 2006:01 to 2022:12. We compute R2
OS in two subperiods corresponding to the top tercile

(High) and the bottom tercile (Low) of values based on economic news sentiment by Shapiro, Sudhof, and
Wilson (2022) or the risk aversion index by Bekaert, Engstrom, and Xu (2022). WG Average, WG PCA,
WG PLS, and WG S-PCA are the generalized bounds based on the cross-sectional average, first principal
component, partial least square, and scaled first principal component extracted from the 14 macro variables,
respectively. Sent Average, Sent PCA, Sent PLS, and Sent S-PCA represent those resulting from applying
different shrinkage methods to the 5 sentiment measures. SII represents the generalized bound based on
short interest index. *, **, and *** indicate significance at the 10%, 5%, and 1% levels for positive R2

OS,
respectively, based on the Clark and West (2007) test.

(1) (2) (3) (4) (5)
Economic sentiment Risk aversion

High Low High Low

Panel A: Established bounds
Martin Bound −3.12 −1.52 −1.68 −4.41

BCK Bound 1.96** −1.58 −2.49 4.69***

CYL Bound −0.61 −3.27 −3.72 −0.28

CYL Bound (R) −1.84 −2.59 −2.87 −2.33

Panel B: Generalized bounds
State Variables

WG avg −3.63 −6.78 −7.19 −4.98

WG PCA −1.93 −0.87 −2.41 2.81

WG PLS 7.14*** −5.66 −7.08 24.55***

WG S-PCA −3.96 −2.8 −3.88 1.74*

Sent Avg 2.58* −3.67 −4.99 6.96***

Sent PCA 6.73** −2.42 −5.88 20.11***

Sent PLS 6.81** −1.09 −4.84 21.02***

Sent S-PCA 6.11** −1.84 −5.36 20.49***

SII 12.13*** −1.93 −2.99 26.87***
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Table 7: R2
OS (%) by alternative construction forms

This table reports out-of-sample R2
OS statistics for 1-month market excess return forecasts based on the

generalized option bounds with alternative construction forms as indicated in panel headings. WG Average,
WG PCA, WG PLS, and WG S-PCA are the generalized bounds based on the cross-sectional average, first
principal component, partial least square, and scaled first principal component extracted from the 14 macro
variables, respectively. Sent Average, Sent PCA, Sent PLS, and Sent S-PCA represent those resulting from
applying different shrinkage methods to the 5 sentiment measures. SII represents the generalized bound
based on short interest index. *, ** and *** indicate significance at the 10%, 5% and 1% levels for the
positive R2

OS, respectively, based on Clark and West (2007) test.

(1) (2) (3) (4)
Out-of-sample periods 2006:01–2022:12 2011:01–2022:12 2016:01–2022:12

Panel A: bt,LLXZ = (α +βxt)× (bt,M +R f ,t,T )−R f ,t,T
State Variables

WG Avg −4.19 2.04 2.40

WG PCA −0.89 2.66 3.43

WG PLS −1.62 0.55*** 2.47*

WG S-PCA −3.83 2.31 3.17

Sent Avg −1.25 3.89* 3.13

Sent PCA 3.58 15.14** 13.65

Sent PLS 3.80 14.30** 12.65

Sent S-PCA 2.71 14.04* 12.78

SII 7.88** 17.47*** 19.98**

Panel B: bt,LLXZ = [exp(α +βxt)+λ ]× (bt,M +R f ,t,T )−R f ,t,T
State Variables

WG Avg −4.17 1.95 2.27

WG PCA −0.88 2.68* 3.45

WG PLS −1.14 1.47*** 3.03**

WG S-PCA 0.58 1.93 1.91

Sent Avg −1.24 3.90* 3.15

Sent PCA 3.56 15.12** 13.66

Sent PLS 2.29 13.19* 11.61

Sent S-PCA 2.69 13.74* 13.27

SII 7.90** 17.50*** 20.04**
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Table 8: R2
OS (%) by using both SVIX and VIX to construct option bounds

This table reports out-of-sample R2
OS statistics for 1-month market excess return forecasts based on option

bounds using an extended sample. In Panel A, we construct the Martin (2017) bound using VIX during
1990:01–1995:12 and SVIX during 1996:01–2022:12. In Panel B, we construct the generalized bounds
based on the Martin bound in Panel A. WG Average, WG PCA, WG PLS, and WG S-PCA are the
generalized bounds based on the cross-sectional average, first principal component, partial least square,
and scaled first principal component extracted from the 14 macro variables, respectively. Sent Average, Sent
PCA, Sent PLS, and Sent S-PCA represent those resulting from applying different shrinkage methods to the
5 sentiment measures. SII represents the generalized bound based on short interest index. *, ** and ***
indicate significance at the 10%, 5% and 1% levels for the positive R2

OS, respectively, based on Clark and
West (2007) test.

(1) (2) (3) (4)
Out-of-sample periods 2006:01–2022:12 2011:01–2022:12 2016:01–2022:12

Panel A: Martin (2017) bound

Martin Bound −0.70 2.09* 2.29

Panel B: Generalized bounds
State Variables

WG Avg −1.43 2.23 2.78

WG PCA −1.16 2.89* 3.22

WG PLS −0.24 0.45 0.95

WG S-PCA −0.76 0.02 −0.26

Sent Avg −1.00 4.14** 3.18

Sent PCA 3.75 13.10** 13.83

Sent PLS 3.74 12.21** 13.07

Sent S-PCA 4.23 12.64** 14.03*

SII 8.12** 15.83*** 18.87**
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Table 9: R2
OS (%) by using VIX only to construct option bounds

This table presents out-of-sample R2
OS statistics for 1-month market excess return forecasts based on option

bounds using an extended sample. Panel A reports the results of a modified Martin (2017) bound constructed
by VIX over the period 1990:01–2022:12. Panel B reports the results of generalized bounds based on the
Martin bound in Panel A. WG Average, WG PCA, WG PLS, and WG S-PCA are the generalized bounds
based on the cross-sectional average, first principal component, partial least square, and scaled first principal
component extracted from the 14 macro variables, respectively. Sent Average, Sent PCA, Sent PLS, and Sent
S-PCA represent those resulting from applying different shrinkage methods to the 5 sentiment measures. SII
represents the generalized bound based on short interest index. *, ** and *** indicate significance at the
10%, 5% and 1% levels for the positive R2

OS, respectively, based on Clark and West (2007) test.

(1) (2) (3) (4)
Out-of-sample periods 2006:01–2022:12 2011:01–2022:12 2016:01–2022:12

Panel A: Martin (2017) bound by VIX

Martin Bound −0.56 3.36** 3.53*

Panel B: Generalized bounds
State Variables

WG Avg −1.74 2.78* 3.53

WG PCA −1.39 3.44* 4.02*

WG PLS −0.04 0.76 1.29

WG S-PCA −1.00 2.58* 3.39*

Sent Avg −1.29 4.73** 3.94

Sent PCA 3.49 13.74** 14.69*

Sent PLS 3.58 12.89** 13.95

Sent S-PCA 2.92 11.99* 13.65

SII 7.99** 16.57*** 19.81**
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Table 10: R2
OS statistics (%) for longer-horizon forecasts

This table displays out-of-sample R2
OS statistics for 1-, 3-, 6-, and 12-month market excess return forecasts

based on option bounds. The out-of-sample period is from 2006:01 to 2022:12, with a 10-year initial
estimation window. Panel A uses the option bounds by Martin (2017), the slackness-adjusted bound by
Back, Crotty, and Kazempour (2022), and the four risk-neutral moments-based bounds by Chabi-Yo and
Loudis (2020) (both unrestricted and restricted). Panel B uses the generalized option bounds based on the
state variables indicated in the row heading. WG Average, WG PCA, WG PLS, and WG S-PCA are the
generalized bounds based on the cross-sectional average, first principal component, partial least square, and
scaled first principal component extracted from the 14 macro variables, respectively. Sent Average, Sent
PCA, Sent PLS, and Sent S-PCA represent those resulting from applying different shrinkage methods to the
5 sentiment measures. SII represents the generalized bound based on short interest index. *, ** and ***
indicate significance at the 10%, 5% and 1% levels for the positive R2

OS, respectively, based on Clark and
West (2007) test.

(1) (2) (3) (4) (5)
Horizons 1-month 3-month 6-month 12-month

Panel A: Established bounds

Martin bound −0.59 2.26 7.14*** 9.88***

BCK bound −0.54 1.99 6.31*** 9.64***

CYL bound −0.84 3.50* 12.73*** 25.74***

CYL bound (R) −0.76 3.19* 12.70*** 26.73***

Panel B: Generalized bounds
State Variables

WG avg −4.07 −10.08 −2.00 −25.42

WG PCA −0.91 −1.98 −7.65 −17.14

WG PLS −1.60 6.16*** 12.24*** 15.22***

WG S-PCA −1.99 −6.21 −12.66 −22.99

Sent Avg −1.24 0.43 5.43*** 7.47***

Sent PCA 3.55 2.14** 10.29*** 12.53***

Sent PLS 3.80 −0.36 6.36*** 8.74***

Sent S-PCA 3.37 0.13** 7.14*** 8.03***

SII 7.88** 11.70*** 18.66*** 22.83***
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Figure 1: Out-of-sample forecasts
Each panel depicts the 1-month market excess return forecasts by historical average benchmark (blue solid
line) and the option bound (red dotted line) as indicated in each panel heading over the out-of-sample period
from 2006:01 to 2022:12.
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Figure 2: Log cumulative excess returns for out-of-sample bound-based portfolios
Each panel depicts the log cumulative excess return for a portfolio constructed using the historical average
benchmark forecast (blue solid line) and the bound-based forecast (red dotted line) indicated in the panel
heading for the out-of-sample period from 2006:01 to 2022:12. Vertical lines indicate NBER-dated business-
cycle peaks (P) and troughs (T).
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Figure 3: Cumulative squared errors
Each panel depicts the cumulative squared error of the benchmark minus the cumulative squared error of
the bound-based forecast over the out-of-sample period from 2006:01 to 2022:12,

squared error difference = (rt+1 − r̄t)
2 − (rt+1 −bt,i)

2,

where rt+1 is the realized market excess return, r̄t is the historical average benchmark, and bt,i is the bound-
based forecast indicated in each panel heading. Vertical lines indicate NBER-dated business-cycle peaks (P)
and troughs (T).
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Figure 4: Bias-Variance decomposition
Each panel depicts the bias-variance decomposition of the mean squared prediction error (MSPE) using
forecasts derived from option bounds or historical average benchmark during the out-of-sample period from
2006:01 to 2022:12.
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Figure 5: Distribution of option bounds
Each panel depicts the distribution of the realized market excess return and the option bound as indicated in
the panel heading over the out-of-sample period from 2006:01 to 2022:12. The vertical dotted line denotes
the mean market excess return.
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Figure 6: Martin (2017) bound versus generalized bounds
Each panel depicts the bar plot of Martin (2017) bound and the generalized bound based on a state variable
indicated in the panel heading over the out-of-sample period from 2006:01 to 2022:12.
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Figure 7: The adjustment factor
Each panel displays the dynamism of the adjustment factor, k(xt) = exp(α +βxt) (blue solid line) where xt

is indicated in the panel heading, and {α,β} are estimated recursively with data up to time t. The red dotted
line plots the economic news sentiment index by Shapiro, Sudhof, and Wilson (2022).

47



Figure 8: CBOE VIX and SVIX (in percent)
This figure displays the CBOE VIX index and Martin (2017) SVIX index (both expressed as percentages).
Vertical lines are used to indicate NBER-dated business-cycle peaks (P) and troughs (T).
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