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Abstract

In the option pricing literature, closed-form pricing formulas offer many advantages, but very

few solutions are available. Among models that can incorporate the critically important stylized

fact of stochastic volatility, the only known reliable solution for European options is the square

root model in Heston (1993). Heston and Nandi (2000) offer a discrete-time alternative, but this

is a GARCH-type model which does not feature stochastic volatility. We propose a new closed-

form discrete-time option pricing model with stochastic volatility. The model is straightforward

to implement. We estimate it using (jointly) a long historical time series of index returns and

large option panels with various moneyness and maturities. The model vastly outperforms the

existing discrete-time Heston-Nandi benchmark and slightly improves on the continuous-time

benchmark. The model-implied pricing kernel and risk premiums are very plausible. The newly

proposed pricing formula can be used to implement various extensions of the model.
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1 Introduction

Arguably the most important innovation to the seminal Black and Scholes (1973) model is to allow

for time-varying volatility of the underlying asset. In stochastic volatility models, this time-varying

volatility contains an innovation to volatility that is independent of the return innovation. Heston

(1993) proposes a stochastic volatility dynamic that has two appealing properties: 1) It allows for

nonzero correlation between the innovations to the return and the variance; and 2) It results in

a (quasi) closed-form price for a European call option. This model is usually referred to as the

square-root model. Despite the obvious appeal of closed-form solutions for option prices, it remains

the only stochastic volatility dynamic that allows for a closed-form solution and that is relatively

straightforward to implement.1 Partly because of the lack of alternatives, the Heston (1993) square-

root dynamic has been used as a building block in richer models with multiple square-root factors

and/or jumps in returns and volatility.2 These models provide a better fit to the cross-section and

time-series of option prices.

GARCH option pricing models (Duan, 1995) provide an interesting alternative to stochastic

volatility option pricing models. Heston and Nandi (2000) adapt the dynamic of the GARCH

model in order to allow for a (quasi) closed-form price for a European call option, similar to the

solution in the Heston (1993) model. These GARCH models are formulated in discrete time and

therefore do not require discretization. They are also easier to implement and estimate compared to

the Heston (1993) model. However, it is well understood that these advantages in implementation

directly result from the simpler structure of the GARCH model, specifically from the assumption

that the variance can be modeled as a deterministic function of (squared) lagged return innovations.

Consequently, while an extensive literature estimates GARCH models using the underlying returns,

1See Lewis (2000) and Heston (1997) on the so-called 3/2 model, which also allows for a quasi closed-form solution,
but which is much harder to implement.

2For examples of such studies, see Bakshi, Cao, and Chen (1997), Bates (2000, 2006, 2019), Chernov and Ghysels
(2000), Duffie, Pan, and Singleton (2000), Pan (2002), Chernov (2003), Eraker, Johannes, and Polson (2003), Eraker
(2004), Broadie, Chernov, and Johannes (2007), Christoffersen, Jacobs, and Mimouni (2010), Andersen, Fusari,
and Todorov (2015a,b, 2017), Hurn, Lindsay, and McClelland (2015), Bardgett, Gourier, and Leippold (2019), and
Aı̈t-Sahalia, Karaman, and Mancini (2020). See Bates (2022) for an overview of this literature.
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it is often argued that the GARCH functional form may pose problems for option pricing, because

it prevents the implied volatility surface from evolving independently from the underlying returns.

However, to the best of our knowledge there is no evidence in the literature that quantifies the

importance of (relaxing) this assumption.

This paper bridges these different literatures by proposing a new discrete-time stochastic volatil-

ity model. The model allows for quasi closed form prices for European call options, like the Heston

(1993) and Heston and Nandi (2000) models. It is closely related to the existing discrete-time op-

tion pricing literature, because it nests the Heston and Nandi (2000) model, which can be obtained

by restricting the parameter that scales the independent volatility innovation. It is also closely

related to the continuous-time Heston (1993) model, because it allows the innovations to returns

and volatility to be less than perfectly correlated. The model is straightforward to implement. We

estimate it using (jointly) a long historical time series of index returns and large option panels

with various moneyness and maturities. We first compare its performance to that of the nested

Heston and Nandi (2000) model, as well as that of the model of Christoffersen, Heston, and Jacobs

(2013), which allows for a more general pricing kernel that is more closely related to the kernel in

our new discrete-time stochastic volatility model. The new model vastly outperforms the existing

discrete-time benchmarks in terms of option fit. These findings confirm the intuition that the in-

dependent volatility shock in stochastic volatility models ought to lead to improved option pricing

performance. Moreover, the properties of the pricing kernel implied by the new model are more

plausible than the kernels implied by the existing models.

We next compare the empirical performance of the new discrete-time stochastic volatility option

pricing model with that of the continuous-time Heston (1993) model. We find that the new model

outperforms the continuous-time benchmark, but the mechanics of both models are similar, and

the difference in performance mainly results from the different constraints that need to be imposed

in both models to keep the variance positive. The level, term structure, and time series properties

of the equity and variance risk premiums in the discrete-time model are similar to those in the

continuous-time model, and more plausible than the risk premiums implied by the GARCH models.
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It is important to note that throughout, we focus on the simplest possible volatility model, in

the sense that we implement a model with a single volatility factor. As discussed above, it is well

known that adding additional (volatility) factors will improve empirical performance, but our focus

on a single factor allows for the clearest and most insightful comparison of the different modeling

choices. While we do not pursue extensions in this paper, it is straightforward to use the newly

proposed pricing formula as a building block for models with multiple volatility factors, similar

to what the literature does with the Heston (1993) pricing formula. We show that, similar to a

GARCH model, the new model can also be extended by incorporating additional lags; this type of

extension is not available in a continuous-time setup.

The paper proceeds as follows. Section 2 presents the new discrete-time stochastic volatility

model and discusses competing models and benchmarks. Section 3 discusses the data and the

estimation approach. Section 4 compares the empirical performance of the new model with that of

existing GARCH models. Section 5 provides a comparison with the continuous-time Heston (1993)

model. Section 6 concludes. Technical material is collected in an Appendix.

2 A New Discrete-Time Stochastic Volatility Model

This section presents the new option pricing model. We first discuss the simplest version of the

SV dynamic, which by analogy to the GARCH literature we refer to as the SV(1,1) dynamic. We

show that it yields a closed-form solution for the conditional moment-generating function of the

log stock price, which in turn leads to a closed-form pricing formula for European options. We

characterize the pricing kernel that is consistent with the existence of this functional form for the

dynamic under the physical and risk-neutral measures. We show that our results can be extended

to more general models with additional lags. We show that the stochastic volatility (SV) dynamic

nests the Heston and Nandi (2000) GARCH option pricing model and discuss the relation between

the SV(1,1) version of the new dynamic and the (Euler discretization of the) Heston (1993) model.
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2.1 The Discrete-Time SV(1,1) Dynamics

We start by characterizing the simplest and most parsimonious model in the new class of models

we consider. By analogy to the GARCH nomenclature of models, we refer to this dynamic as the

SV(1,1) model. This initial focus on the simplest model is primarily motivated by ease of exposition.

It makes it easier to illustrate the relation to the GARCH(1,1) class of option pricing models, which

is popular in the empirical literature. The use of the SV(1,1) model also clarifies the relation to

continuous-time stochastic volatility models, which we discuss below, and it is straightforward to

generalize the model in this section by adding additional volatility factors.

The new model can be thought of as extending the Heston and Nandi (2000) discrete-time

GARCH model by allowing for stochastic volatility, inspired by the mechanics of the Heston (1993)

stochastic volatility model. For option pricing, we require the risk-neutral stock price dynamic.

The SV(1,1) version of the new model specifies the risk-neutral dynamics of the spot index S(t)

and its stochastic variance v∗(t) as follows:

ln(S(t+ 1)) = ln(S(t)) +

(
r − 1

2
v∗(t)

)
+
√
v∗(t)z∗1(t+ 1), (1)

v∗(t+ 1) = ω∗ + β∗v∗(t) + (α∗
1z

∗
1(t+ 1) + α∗

2z
∗
2(t+ 1)− λ∗

√
v∗(t))2,

where each time interval is one day, r is the risk-free rate, and z∗1(t) and z
∗
2(t) follow independent

standard normal distributions under the risk-neutral measure. Note that the notation is a bit

different from the one typically used in the GARCH literature; specifically, v∗(t), the conditional

daily variance of the subsequent compound stock return, is known at time t. We motivate this

notational convention below. From a modeling perspective, the model’s essential difference with

GARCH models is that due to the existence of the independent innovation z∗2(t), the variance

cannot be filtered from the path of stock returns only.

Consistent with most of the existing option pricing literature, we focus on a physical dynamic
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that has the same functional form as the risk-neutral dynamic:

ln(S(t+ 1)) = ln(S(t)) +

(
r +

(
µ− 1

2

)
v(t)

)
+
√
v(t)z1(t+ 1), (2)

v(t+ 1) = ω + βv(t) + (α1z1(t+ 1) + α2z2(t+ 1)− λ
√
v(t))2,

where µ is the parameter that identifies the equity premium, and where z1(t) and z2(t) follow

independent standard normal distributions under the physical measure. We analyze the mapping

between the physical and risk-neutral dynamics below in our discussion of (the) pricing kernel(s).

The discrete-time dynamics in equation (2) implies the following moments of the return and

the stochastic variance:

E(logR) = r +

(
µ− 1

2

)
E(v), (3)

E(v) =
ω + α2

1 + α2
2

1− (β + λ2)
, (4)

V ar(v) = E(V art(v(t+ 1))) + V ar(Et(v(t+ 1)))

=
2(α2

1 + α2
2)(α

2
1 + α2

2 + 2λ2E(v))

1− (β + λ2)2
, (5)

AR1(v) = β + λ2, (6)

Corrt(logR(t+ 1), v(t+ 1)) =
−2α1λv(t)√

v(t)
√

2(α4
1 + α4

2) + 4λ2(α2
1 + α2

2)v(t) + 4α2
1α

2
2

, (7)

The moments in equations (3)-(7) are for the physical dynamic, but they are of course the same

for the risk-neutral dynamic subject to the required change of parameters, including µ = 0.

2.2 Option Pricing

Given the risk-neutral dynamic in equation (1), the price of a call option with strike price K and

time to maturity τ can be obtained in (quasi) closed form (up to a numerical integration). Our

implementation uses the fast Fourier technique of Carr and Madan (1999):
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Ct(S(t), v
∗(t), k, τ) =

e−αk

π

∫ ∞

0
Re
[
e−iukψ(u)

]
du, (8)

where k is the natural log of K. The function ψ(u) is the Fourier transform of the modified call

price, which is the call price multiplied by eαk for α > 0. We found that α = 4 works well. The

function ψ(u) is given by:

ψ(u) =
e−rτfMG

τ ((α+ 1) + iu|S(t), v∗(t))
(α+ iu)(α+ 1 + iu)

,

where i is the imaginary unit, and fMG
τ (ϕ|S(t), v∗(t)) = E∗

t

[
S(t+ τ)ϕ

]
is the risk-neutral condi-

tional moment generating function (MGF) of logS(t+τ). The closed-form expression of fMG
τ (ϕ|S(t), v∗(t))

is given by the following recursive formula:

Et

[
S(T )ϕ

]
= S(t)ϕ exp (A(t) +B(t)v(t)) , (9)

A(t) = A(t+ 1) + ϕr + ωB(t+ 1)− 1

2
log
(
1− 2

(
α2
1 + α2

2

)
B(t+ 1)

)
,

B(t) = ϕ

(
µ− 1

2

)
+ βB(t+ 1) +

2λ2B(t+ 1)− 4α1λϕB(t+ 1) + ϕ2(1− 2α2
2B(t+ 1))

2− 4(α2
1 + α2

2)B(t+ 1)
,

A(T ) = B(T ) = 0,

where T = t+ τ . See Appendix A.1 for a detailed derivation.3 The price of a put option with the

same strike price and maturity can be obtained through put-call parity. The option pricing formula

in equation (8) does not account for dividends. We follow the existing literature and adjust the

index price for the future dividend. Specifically, we use S(t)e−qτ , where q is the dividend yield at

time t.

3Equation (9) provides the MGF under the physical measure. Note that µ = 0 under the risk-neutral dynamics.
The MGF formula also applies to the GARCH dynamics when α2 = 0. The MGF for the continuous-time SV
dynamics is given in Heston (1993).
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2.3 The Pricing Kernel

To link the risk-neutral and physical dynamics in equations (1) and (2), we characterize a class

of exponential-affine pricing kernels that are a function of S(t) and the historical path of v(t).

Appendix B shows that the following class of variance-dependent pricing kernels is consistent with

these dynamics:

M(t) =M(0)

(
S(t)

S(0)

)−γ
exp

(
δt+ η

t−1∑
s=0

v(s) + ξ(v(t)− v(0))

)
, (10)

where γ and ξ are the index level and variance preference parameters. Note that the logarithm of

the pricing kernel (10) is linear in logS(t) and (the path of) v(t). Henceforth, we therefore refer to

equation (10) as the exponential-affine pricing kernel.

The γ and ξ parameters in the pricing kernel are economic parameters for which we have very

clear priors. Economies with higher index returns and lower variance indicate good times, in which

marginal utility decreases. We therefore expect γ > 0 and ξ > 0. Appendix B shows that given

the pricing kernel (10), the risk-neutral and physical dynamics in equations (1) and (2) are linked

as follows:

ω∗ =
1− 2ξα2

2

1− 2(α2
1 + α2

2)ξ
ω, (11)

β∗ = β, (12)

α∗
1 =

α1

1− 2(α2
1 + α2

2)ξ
, (13)

α∗
2 =

α2√
1− 2(α2

1 + α2
2)ξ

, (14)

λ∗ =

(
α1µ+ λ

1− 2ξα2
2

+
α3
1ξ

(1− 2ξα2
2)(1− 2(α2

1 + α2
2)ξ)

)
, (15)

v∗(t) = ζv(t), (16)

where ζ =
1−2ξα2

2

1−2(α2
1+α

2
2)ξ

. The index level and variance preference parameters γ and ξ can be expressed
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as functions of the SV(1,1) parameters:

γ = µ− α1ξ(2α1µ− α1 + 2λ)

1− 2α2
2ξ

, (17)

ξ =
ζ − 1

2ζ(α2
1 + α2

2)− 2α2
2

. (18)

Equation (10) contains two other parameters, δ and η. We refer to δ as the time-preference

parameter and to η as the path-dependence parameter, respectively. Using the fact that ertM(t)

is a martingale and that the drift term of a martingale process has to be zero, Appendix B shows

that δ and η are given by:

δ = (γ − 1)r − ξω +
1

2
log
(
1− 2

(
α2
1 + α2

2

)
ξ
)
, (19)

η =

(
µ− 1

2

)
γ + ξ(1− β)− −2λ2ξ − 4α1λγξ + γ2(−1 + 2α2

2ξ)

−2 + 4(α2
1 + α2

2)ξ
. (20)

2.4 The Benchmark GARCH Model

Our empirical strategy demonstrates the benefits of the new model by comparing its performance

with that of existing models. We first compare the model’s performance with that of discrete-time

models. The new discrete-time SV model nests the well-known GARCH option pricing models by

Heston and Nandi (2000) and Christoffersen, Heston, and Jacobs (2013) (henceforth HN and CHJ

respectively). In particular, the risk-neutral GARCH dynamics in both these models correspond

to imposing the restriction α2 = 0 in equation (1):

ln(S(t+ 1)) = ln(S(t)) +

(
r − 1

2
v∗(t)

)
+
√
v∗(t)z∗1(t+ 1), (21)

v∗(t+ 1) = ω∗ + β∗v∗(t) + (α∗
1z

∗
1(t+ 1)− λ∗

√
v∗(t))2.

As mentioned above, the notation in equation (21) slightly differs from the notation in Heston and

8



Nandi (2000) and the GARCH literature (Engle, 1982; Bollerslev, 1986), which is as follows:

ln(S(t+ 1)) = ln(S(t)) +

(
r − 1

2
v∗(t+ 1)

)
+
√
v∗(t+ 1)z∗1(t+ 1), (22)

v∗(t+ 1) = ω∗ + β∗v∗(t) + α̃∗
1(z

∗
1(t)− λ̃∗

√
v∗(t))2.

Our notation in equation (21) facilitates the comparison with the continuous-time benchmark in

the next section. Despite the difference in notation, the mechanics in equations (21) and (22) are

the same. The variance v∗(t) is known at time t in the former, whereas v∗(t + 1) is known at

time t in the latter. The one-to-one correspondence between the two sets of parameters is defined

by α∗
1 =

√
α̃∗
1 and λ∗ =

√
α̃∗
1(λ̃

∗)2. The essence in both notations is that volatility is no longer

stochastic in equations (21) and (22), and the volatility path is entirely determined by (lagged)

return shocks.

We investigate two GARCH models. When α2 = 0 is the only restriction, the model corresponds

to the CHJ model, together with the variance-dependent pricing kernel. The HN model is obtained

by additionally imposing ξ = 0, or equivalently ζ = 1. This clarifies that the CHJ and HN model

only differ in their specification of the pricing kernel.

2.5 The SV(p,q) Dynamics

One of the advantages of a discrete-time approach is that it does not require additional assumptions

on discretization. Another advantage is that the model can be extended in a very straightforward

way by generalizing the autoregressive or moving average structure of the variance dynamic. Ap-

pendix A.2 shows that the following extension leads to a closed-form option price:

ln(S(t+ 1)) = ln(S(t)) +

(
r +

(
µ− 1

2

)
v(t)

)
+
√
v(t)z1(t+ 1), (23)

v(t+ 1) = ω +

p∑
i=1

βiv(t+ 1− i)

+

q∑
i=1

ki

(
α1z1(t+ 2− i) + α2z2(t+ 2− i)− λi

√
v(t+ 1− i)

)2
,
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where k1 = 1. This SV(p,q) dynamics nests the GARCH(p,q) dynamics in Heston and Nandi

(2000) and Christoffersen, Jacobs, and Ornthanalai (2013), again with the slight difference in

notation as discussed in Section 2.4; specifically, when α2 = 0, the SV(p,q) model corresponds to

the GARCH(p,q) dynamic. We do not pursue an empirical investigation of this more general model

here, but leave it for later work.

2.6 The Benchmark Continuous-Time Dynamics

Our main empirical contribution is the comparison between the new SV model and existing

GARCH models. However, a natural question is how the new discrete-time SV model compares

to continuous-time SV models. We therefore also provide results for the Heston (1993) SV model,

which specifies the risk-neutral dynamics of the spot price S(t) and its stochastic variance v(t) as

follows:

d lnS(t) =

(
r − 1

2
v(t)

)
dt+

√
v(t)dz∗1(t), (24)

dv(t) = κ∗(θ∗ − v(t))dt+ σ
√
v(t)dz∗2(t),

where dz∗1 and dz∗2 are Wiener processes with correlation coefficient ρ. We again consider a physical

dynamic that has the same functional form as the risk-neutral dynamic.

d lnS(t) =

(
r +

(
µ− 1

2

)
v(t)

)
dt+

√
v(t)dz1(t), (25)

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dz2(t).

The physical and risk-neutral dynamics are linked by the following variance-dependent pricing

kernel:

M(t) =M(0)

(
S(t)

S(0)

)−γ
exp

(
δt+ η

∫ t

0
v(s)ds+ ξ(v(t)− v(0))

)
. (26)

It is straightforward to see that this pricing kernel is a continuous-time counterpart of the discrete-

time pricing kernel in equation (10).
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To see the relation with the discrete-time SV model in equations (1) and (2), it is useful to

consider the implementation of these continuous-time dynamics using the Euler discretization.

Under the physical measure, we have:

ln(S(t+ 1)) = ln(S(t)) +

(
r +

(
µ− 1

2

)
v(t)

)
+
√
v(t)z1(t+ 1), (27)

v(t+ 1) = κθ + (1− κ)v(t) + σ
√
v(t)z2(t+ 1).

The similarities with equation (2) are clear, but there are some subtle differences. Due to

technical restrictions, the continuous-time risk-neutral and physical dynamics rely on the same

variance path v(t); moreover, the parameters σ and ρ are identical under both measures.

3 Data and Estimation

We first discuss the return and option data. Then we present the likelihood functions and discuss

our estimation approach.

3.1 Data

Our empirical analysis uses out-of-the-money (OTM) S&P 500 call and put options with maturities

between 14 and 365 days. The sample period is from January 1996 to December 2021. We obtain

option data from OptionMetrics. We apply the following filters:

1. Discard options with implied volatility smaller than 5% or greater than 150%.

2. Discard options with volume or open interest less than ten contracts.

3. Discard options with mid price less than $0.50 or bid price less than $0.375 to avoid low-valued
options.

4. Discard options with data errors – when bid price exceeds offer price, or when a negative
price is implied through put-call parity.

5. Discard options with moneyness less than 0.75 or greater than 1.25.
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We include options that expire on the third Friday or the Saturday following the third Friday of

the current month, the next month, and the following March, June, September, and December

(consistent with standard option contracts).4 We keep the six most actively traded strike prices

for each available maturity. It is important to use as long a time period as possible, in order to be

able to identify key aspects of the model including volatility persistence (Broadie, Chernov, and

Johannes, 2007). On the other hand, estimation using large option panels and long time series

is very time-intensive. Rather than using a short(er) time series of daily option data, we use an

extended time period, but we select option contracts for one day per week only. Following several

existing studies (see, e.g., Heston and Nandi, 2000; Christoffersen, Heston, and Jacobs, 2013), we

use Wednesday data because it is the day of the week least likely to be a holiday. It is also less

likely than other days to be affected by day-of-the-week effects. These steps result in a dataset

with 40,226 option contracts. Table 1 presents descriptive statistics.

We obtain S&P 500 index returns from CRSP. We use data for January 1990 to December

2021. This sample period is longer than the option sample to help with the identification of the

return parameters under the physical measure, as in Christoffersen, Heston, and Jacobs (2013). We

also use data on the VIX from January 1990 to December 2021, which we obtain from the Federal

Reserve Bank of St. Louis Economic Database. The time series for the risk-free rate is proxied by

the one-month Treasury Bill rates obtained from CRSP. Following the standard implementation in

the literature, options are valued using a maturity-specific risk-free rate. We apply a cubic spline

interpolation to the risk-free rates obtained from OptionMetrics.

3.2 The Stochastic Model Variance and the VIX

In the new model as well as in the Heston (1993) model and its many generalizations studied in

the literature, the stochastic variance is unknown. This latency is typically addressed in estimation

by using filtering- or simulation-based techniques (see, e.g., Eraker, Johannes, and Polson, 2003;

4Until January 2015, standard option contracts expired on the Saturday following the third Friday of the expiration
month. Standard options listed after August 2013 and expiring after January 2015 expire on the third Friday of the
month.
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Eraker, 2004; Bates, 2006; Christoffersen, Jacobs, and Mimouni, 2010). It is well known that the

implementation of such techniques is computationally very demanding, especially when using long

time series and large cross-sections of option prices in estimation.

To alleviate the computational burden, we use the fact that the daily stochastic variance v∗(t)

can be represented as a linear function of VIX2
d(t), where VIXd represents the daily VIX.5 This

directly follows from the model specification. When v(t) follows the dynamic in equation (1),

VIX2
d(t) is a linear function of v∗(t). Specifically, the model-implied VIX2

d(t) can be written as:

VIX2
d(t) = ψ0 + ψ1v

∗(t) (28)

where ψ0 = θv(1−ψ1)
1−ρv , ψ1 = ρv(1−ρnv )

n(1−ρv) , θv = ω∗ + (α∗
1)

2 + (α∗
2)

2, ρv = β∗ + (λ∗)2, and n = 21 is the

number of trading days per month. Appendix C provides a detailed derivation.

Using equation (28) and an assumption on the measurement error, we obtain a measurement

equation which can be used to filter the latent state variable. Jones (2003), Cheung (2008), and

Chernov, Graveline, and Zviadadze (2018) use this measurement equation and a Bayesian frame-

work with Markov Chain Monte Carlo methods to estimate option pricing models. We further

simplify the setup and instead use:

v∗(t) = η0 + η1VIX
2
d(t). (29)

This implementation follows Aı̈t-Sahalia and Kimmel (2007), who use it in a sample that con-

tains a single short-maturity at-the-money option at each time t. However, we experienced some

identification problems with equation (29) and therefore assume:

v∗(t) = η1VIX
2
d(t). (30)

We then use equation (30) in the valuation formula for all options in the sample.

5See Bates (2000) and Andersen, Fusari, and Todorov (2015a) for other approaches.
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3.3 The Return-Based Likelihood

In the previous subsection, we use the fact that the risk-neutral stochastic variance is an affine

function of VIX to alleviate the high computational burden when the model is implemented on

option data. This assumption also has implications for the return-based estimation. In most

existing studies, the variance is filtered from the underlying returns, and the VIX is not used in

the return-based estimation. However, if the physical stochastic variance is proportional to the

risk-neutral stochastic variance, which is the case for the class of pricing kernels in Section 2.3, we

can formulate the joint likelihood function of the return and the VIX2
d data to estimate the physical

parameters, since we observe the total return on the stock index and the VIX at each time t. We

obtain the likelihood function by rearranging equation (2) as follows:

logR(t+ 1) = r +

(
µ− 1

2

)
v(t) +

√
v(t)z1(t+ 1),

v(t+ 1) = ω + βv(t) + (α1z1(t+ 1) + α2z2(t+ 1)− λ
√
v(t))2,

where R(t + 1) = S(t + 1)/S(t) represents the gross return. Bayes’ rule implies the following

log-likelihood function:

logLR =
T−1∑
t=1

log f
(
logR(t+ 1),VIX2

d(t+ 1)|VIX2
d(t)

)
=

T−1∑
t=1

log [f(logR(t+ 1)|v(t))× f(v(t+ 1)| logR(t+ 1), v(t))× Jv(t+ 1)] , (31)

where f(logR(t+ 1)|v(t)) is the probability density of logR(t+ 1), f(v(t+ 1)| logR(t+ 1), v(t)) is

the probability density of v(t+1) conditional on logR(t+1), and Jv(t+1) is the Jacobian between

VIX2
d(t+ 1) and v(t+ 1).

Note that f(R(t+1)|v(t)) follows a normal distribution governed by z1. Because
(
α1
α2
z1 + z2 − λ

α2

√
v
)

follows a normal distribution with a nonzero mean, conditional on z1 and v, f(v(t + 1)|R(t +

1), v(t)) follows a non-central chi-squared distribution. For expositional purposes, we denote
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y(t + 1) ≡ v(t+1)−ω−βv(t)
α2
2

=
(
α1
α2
z1(t+ 1) + z2(t+ 1)− λ

α2

√
v(t)

)2
. The log-likelihood function

in equation (31) can therefore be expressed as:

logLR = logLRr + logLRv , (32)

where

logLRr =
T−1∑
t=1

−1

2
log(2πv(t))− z1(t+ 1)2

2v(t)
,

logLRv =
T−1∑
t=1

log
1

2
− y(t+ 1) + χ(t+ 1)

2
− 1

4
log

y(t+ 1)

χ(t+ 1)
+ log I(− 1

2
)

(√
χ(t+ 1)y(t+ 1)

)
+ log η1 − 2 logα2,

and where χ(t+1) =
(
α1
α2
z1(t+ 1)− λ

α2

√
v(t)

)2
and I(p) is a p-th order modified Bessel function of

the first kind.6 The log likelihood in the continuous-time SV model also has these two components,

but the functional form is slightly different. See Heston, Jacobs, and Kim (2023) for details.

GARCH models do not contain separate shocks to variance, and thus the log-likelihood function

consists of only logLRr . See Christoffersen and Jacobs (2004) and Christoffersen, Heston, and

Jacobs (2013) for details.

3.4 The Option-Based Likelihood

We use vega-weighted option pricing errors. Let OMkt
i denote the market price of the ith option

and OMod
i the model price computed using the method in Section 2.2. OMkt

i and OMod
i represent

call option prices if F/K < 1 and put option prices if F/K > 1, where F = Se(r−q)τ denotes the

6The log-likelihood function consists of two components: one based on the return dynamics and the other based on
the variance dynamics. The model has two state variables, R(t) and v(t). Although v(t) is unobservable, we assume
it is a function of the observable VIX2(t). We can therefore express the joint likelihood of the two state variables
with the aid of a Jacobian. If we instead assume that the stochastic variance is latent, we cannot directly obtain its
transition likelihood and we have to rely on filtering to obtain the next-period variance, using Markov Chain Monte
Carlo or particle filtering techniques for example. For additional discussion, see Aı̈t-Sahalia and Kimmel (2007).
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implied futures price. The vega-weighted option pricing errors are defined as

ϵo,i =
OMkt
i −OMod

i

νMkt
i

,

where νMkt
i is the Black-Scholes vega of option i. Vega-weighted errors have advantages that are

similar to implied volatilities, i.e. the magnitudes are more similar across options compared to the

option prices, but they also offer a computational advantage. See for example Carr and Wu (2007),

Trolle and Schwartz (2009), and Christoffersen, Heston, and Jacobs (2013) for a discussion.

Maximum likelihood estimation requires a distributional assumption on the errors. Following

most of the existing literature, we assume that ϵo,i follows a normal distribution, i.e. ϵo,i ∼ N(0, s2o),

where s2o is the sample variance of the errors. With the additional assumption that the option

valuation errors are independently and identically distributed (i.i.d.), the log-likelihood function

logLO is given by:

logLO = −N
2
log(2π)− N

2
log s2o −

1

2s2o

N∑
i=1

ϵ2o,i, (33)

where N is the number of option contracts in the sample.

3.5 Joint Estimation Using Index Returns and Options

We jointly estimate the risk-neutral and physical dynamics based on a joint likelihood for options

and the underlying returns, imposing the relation between the physical and the risk-neutral param-

eters in equations (11)-(16). This joint estimation identifies the pricing kernel and risk premiums,

and is helpful to detect model misspecification (Bates, 2003). The number of observations in the

option and return datasets is very different. To assign equal weights to each datapoint, we impose

an ad-hoc assumption and standardize the return-based and option-based log-likelihoods by T − 1

and N , respectively. Hence, we solve the following optimization problem:

max
Θ

(T − 1) +N

2

(
1

T − 1
logLR +

1

N
logLO

)
, (34)
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where Θ = {β, α1, α2, λ, η1, ζ} for the discrete-time SV(1,1) model. For the HN GARCH model,

Θ = {β, α1, λ} because α2 = 0 and ζ = 1 (and η1 = 0). For the CHJ GARCH model, we have

Θ = {β, α1, λ, ζ}, and for the continuous-time SV model, we have Θ = {κ, θ, σ, ρ, η1, ξ}. Note

that in the discrete-time models, we impose ω = 0 to ensure positive variances. We discuss this

further below. In the continuous-time model, we impose the Feller (1951) condition. We use mean

targeting to capture the level of the unconditional equity premium in all models. That is, we fix

the value of µ at (Ê(R)− Ê(r))/Ê(v), where Ê(R) and Ê(v) are the sample mean and variance of

the return, respectively, and Ê(r) is the sample mean of the risk-free rate.

4 Discrete-Time Stochastic Volatility vs GARCH Option Pricing

We discuss parameter estimates for the HN GARCH, CHJ GARCH and discrete-time SV option

pricing models, based on maximization of the joint likelihood of returns and options in Section 3.5.

We compare option fit in these three models, document and compare the economic properties of

the models, and discuss the implied estimates of the pricing kernel and risk premiums.

4.1 Parameter Estimates

Table 2 presents the parameter estimates for the three discrete-time models. Columns (1) and (2)

report on the HN and CHJ GARCH models, respectively. Recall that the difference between the

two models is the existence of variance risk aversion in the CHJ GARCH, which is absent in the HN

model. The parameter estimates are reasonable. The mean µ is set to 2.879 by mean targeting, as

discussed in Section 3.5. The estimates of λ and λ∗ are positive in both columns, consistent with

negative skewness under the physical and risk-neutral measures. The ζ parameter identifies the

wedge between the physical and risk-neutral variances, see equation (16). For the HN model, zero

variance risk aversion results in the absence of a wedge, which means that ζ is fixed at one. The

estimates indicate a sizable wedge (1.084) for the CHJ model. This is smaller than the estimate

in Christoffersen, Heston, and Jacobs (2013). We verified that this difference is due to the sample

period. Another implication of (the absence of) variance risk aversion is the relation between the

17



α1 and α∗
1 parameters. In the HN model, α1 = α∗

1, whereas the CHJ model has different values for

α1 and α∗
1.

The parameter estimates for the discrete-time SV model in column (3) are also reasonable. Note

that α1 and α2 scale the shocks that drive the (conditional) volatility of variance. In the GARCH

model, there is a single variance shock; in the SV model, the variance is driven by the return shock

and an independent variance shock. The estimates of α1 and α2 are therefore smaller than the level

of α1 in the two GARCH models. Interestingly, the estimate of the wedge (ζ) parameter is much

smaller than in the CHJ GARCH model, but it exceeds one and is statistically different from one,

implying the existence of variance risk aversion.

We impose ω = ω∗ = 0 in implementation for the two GARCH models and the SV model. A

nonnegativity restriction on these parameters is necessary to ensure positivity of the conditional

variance, and we verified that these restrictions are binding. This finding is consistent with existing

estimates for GARCH models from options in Christoffersen, Heston, and Jacobs (2013), and it is

well known that this is due to the affine structure of the dynamic.

4.2 Model-Implied Moments

Panel A of Table 3 presents the statistical moments of the log return and variance based on

equations (3)-(7). These expressions highlight the role of the various parameters in the model

and clarify how the parameters are identified. The variance autocorrelation is determined by β

and λ. Given this autocorrelation, the long-run variance (E(v)) is determined by α1 and α2 (recall

that we impose ω = ω∗ = 0). Furthermore, α1 and α2 are important in anchoring the variance of

variance and the conditional correlation between the log return and variance; α1 is directly linked

to the return shock. This ensures that α1 and α2 can be separately identified. Finally, λ affects

the variance of variance and the conditional correlation. This identifies λ, and in turn, β can be

determined from the variance autocorrelation.

Because we use mean-targeting, we match the expected log return with its data counterpart

in all models. Panel C of Table 1 shows the annualized sample mean is equal to 0.102. The
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annualized physical long-run variance for the models in columns (1)-(3) of Table 3 ranges from

0.0306 to 0.0349, implying a long-run annualized volatility between 0.175 and 0.187, close to the

sample volatility of 0.181. The risk-neutral long-run variance exceeds the physical variance due to

the presence of the variance risk premium. The annualized physical long-run volatility of variance

is 0.449 for the HN model, 0.389 for the CHJ model, and 0.746 for the SV model. For comparison,

the sample volatility of the annualized VIX2
d, which is 0.76. Based on this, the SV model captures

the volatility of variance more precisely than the two GARCH models, but this comparison is

a bit tenuous since VIX itself represents a risk-neutral volatility. The autocorrelation of daily

variance is approximately 0.99 in all cases; consistent with the existing literature, the risk-neutral

autocorrelation slightly exceeds the physical autocorrelation because λ∗ > λ.

The most critical difference between the models is the conditional correlation between the

log return and the variance.7 The signs of λ and α1 imply that Corrt(logR(t + 1), v(t + 1)) is

negative, indicating negative physical conditional skewness, and a similar remark holds for risk-

neutral conditional skewness. However, in the GARCH models, both the physical and risk-neutral

correlations are very close to minus one, while the correlation is −0.785 (−0.786) under the physical

(risk-neutral) measure in the SV model. In other words, in the GARCH models, returns and

variance almost always move in opposite directions. This finding suggests that it is challenging to

separately identify return and variance risk in the GARCH models based on the dynamics of the

stock return and variance. Because returns and variances sometimes move in the same direction,

imperfect correlation is required to match the data.

4.3 Option Pricing

We optimize the joint likelihood of options and returns in all models, but we cannot directly compare

the total likelihoods of the discrete-time SV and GARCH models, because the return likelihood

of the SV model contains an additional component that originates in the independent volatility

shock (see equation (32)). However, we can compare the option component logLO, and Table 2

7We compute this correlation assuming that the conditional variance v(t) is equal to its long-run mean.
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indicates that the SV model outperforms both GARCH models. The improvement in overall option

fit is also evident from the vega-weighted root mean squared errors (RMSE) of option prices. The

vega-weighted RMSE for the SV model is 0.0231, a 37.9% improvement over the 0.0372 RMSE for

the GARCH models.8

Table 4 reports option fit by moneyness and maturity. We present the vega-weighted RMSEs

as well as the implied volatility (IV) RMSEs to provide more intuition. The SV model outperforms

the GARCH model across all moneyness and maturity buckets, with the most significant improve-

ments observed for near-the-money options and deep out-of-the-money put options in moneyness

dimension, and for short- and mid-term maturity options (less than 120 days to expiration). The

RMSE patterns are mostly similar across models, except for the maturity pattern in the RMSEs

of the GARCH model.

4.4 Pricing Kernels

We start our investigation of the pricing kernels with the model-implied risk preference parameters,

based on equations (17)-(18). The definition of ζ indicates that ζ > 1 is equivalent to a positive

variance risk aversion parameter ξ. From equation (17), the index level risk aversion parameter

γ is a function of the equity premium parameter µ, but it also depends on ξ. The HN model in

column (1) assumes ξ = 0, and therefore γ is exclusively determined by µ and is positive. The CHJ

model in column (2) does not impose restrictions on the signs of the risk preference parameters.

The model estimates in Panel A of Table 3 show that ξ is very large and positive while γ is very

large and negative, which is inconsistent with economic intuition. A possible explanation is that ξ

does not exclusively capture variance risk aversion due to identification problems resulting from the

correlation between the index return and variance. This intuition is confirmed by the HN GARCH

estimates, where γ is positive. The parameter estimates for the discrete-time SV model in column

(3) imply positive estimates of both γ and ξ, which is economically plausible.

8The HN and CHJ GARCH models have the same risk-neutral dynamic. However, their option fit can differ when
maximizing the joint likelihood due to the different mapping between the two measures. The RMSEs indicate that
these differences in option fit are on average negligible.

20



Next, we go beyond the sign of pricing kernel parameters, and we investigate if the estimates

of the variance risk aversion parameter ξ are plausible. Consider a one-day increase in (annual-

ized) volatility from 20% to 22%.9 For simplicity, assume that the one-day return is 0%. Under

this assumption, the pricing kernel is primarily influenced by the variance aversion component,

exp(ξ(v(t + 1) − v(t))), because the sum of the time-preference and the path-dependence compo-

nents is very small in both the CHJ and the SV models. In the CHJ model (ξ = 26, 625.97), this

results in a daily pricing kernel of 2.429 for this parameterization. For the SV model (ξ = 347.95),

the kernel value is 1.012. The former seems excessively large, while the latter value of the kernel is

plausible. We conclude that identifying variance risk is difficult in the CHJ GARCH model, which

is related to our findings on the conditional correlation between the log return and the variance in

Section 4.2.

We now further explore the economic implications of these parameter estimates. Panels A, B,

and C of Figure 1 plot daily log pricing kernels as a function of return and variance. The HN

GARCH model does not consider variance risk aversion, and the pricing kernel is therefore a simple

decreasing function of the return. The kernel with variance risk aversion is economically plausible

for the SV model in Panel C, but in the CHJ GARCH model in Panel B, the pricing kernel increases

with the return (conditional on the variance level), which reflects the implausible sign of the index

level risk aversion parameter γ. The problems with the kernel in Panel B are also evident from

inspecting its range. The log pricing kernel ranges between -5 to 15, which means that the pricing

kernel ranges from 0.01 to 3,269,017.37, unrealistic values for a daily discount factor.

Panels A, B, and C of Figure 2 plot the time series of the realized log pricing kernel over the

sample period.10 The time series of the HN kernel in Panel A and that of the SV kernel in Panel

C appear plausible, exhibiting large fluctuations in crisis periods such as the 2008-2009 financial

crisis and the Covid-19 pandemic period. Once again, the time series of the CHJ GARCH kernel

in Panel B seems implausible. It contains many outliers during relatively calm periods, and these

9In daily units, from v(t) = 1.587E − 04 to v(t+ 1) = 1.921E − 04.
10See Chernov (2003) and Ghosh, Julliard, and Taylor (2017) for other estimates of the time series of the pricing

kernel.

21



outliers are excessively large.11 Moreover, it exclusively contains large positive outliers. These

positive spikes in the CHJ GARCH kernel are directly related to the combination of negative γ and

positive ξ estimates. We frequently observe a joint occurrence of (large) positive index returns and

changes in variance. In these instances, the negative γ and positive ξ estimates mechanically imply

large positive spikes in the pricing kernel. To illustrate this more clearly, consider the back-of-the-

envelope calculation above, but now assume a daily return of 1%. For the CHJ model, the value

of the resulting pricing kernel is 3.379 (1.218 for the log pricing kernel), which is clearly extreme.

However, Panel B in Figures 1 and 2 shows that such positive spikes are often attained.

4.5 Conditional Risk Premiums

4.5.1 The Risk Premium Level

Based on the closed-form solution for the moment generating function in equation (9) and the

quadratic variation (in Appendix C), we can compute conditional moment conditions for the τ -

horizon index return by inserting S(t) = 1. We define the τ -horizon integrated equity and variance

risk premiums as follows:

ERPt(τ) = Et [R(t+ τ)]− E∗
t [R(t+ τ)] (35)

VRPt(τ) = Et

[
τ∑
s=1

v(t+ s)

]
− E∗

t

[
τ∑
s=1

v∗(t+ s)

]
.

To annualize both risk premiums, we multiply the above expressions by 252/τ .

Panel B of Table 3 reports the one-month conditional first and second moments of returns under

both the physical and risk-neutral measures, along with the corresponding risk premiums. Note

that the conditional equity and variance risk premiums in equation (35) are functions of the time-t

variance, which we obtain from our estimation. Using the variance data, we compute the time

series of the integrated conditional moments and compute the time-series averages. In columns

(1)-(3), the (annualized) average equity premium closely matches the sample average (0.0942).

11The scale in Panels A and C of Figure 2 is the same as in Panel B to facilitate comparisons.
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The average risk-neutral second moments exceed the average physical second moments, resulting

in negative variance risk premiums for all three models.

Figure 4 plots the time series of the (annualized) integrated one-month conditional equity and

variance risk premiums. Panels A and B of Figure 5 plot the corresponding distributions computed

using kernel density estimation.12 The time series of the one-month equity premium in the two

GARCH models and the discrete-time SV model display a lot of similarities. As expected, it is

consistently positive over time and spikes up during economic downturns such as the 2008-2009

financial crisis and the 2020 Covid-19 crisis. One interesting difference is that the equity risk

premium in the SV model (Panel E of Figure 4) displays greater volatility and more pronounced

spikes during crisis periods compared to the variance in the GARCH models (Panels A and C).

This is due to the independent volatility shock in the SV model, which induces higher volatility of

return variance, as confirmed by Panel A of Table 3.13

A comparison of the variance risk premiums in Panels B, D, and F of Figure 4 shows that the

time series of the VRP in the discrete-time SV model in Panel F is highly correlated with the CHJ

VRP in Panel D. However, the CHJ VRP is more volatile and more negative compared to the SV

model during low-volatility periods (1999-2002), whereas the latter is slightly more negative during

economically adverse periods. The VRP time series in the HN GARCH model is much less volatile

than the VRPs in the two other models, due to the absence of a variance risk aversion parameter.

Panel B of Figure 5 clearly highlights these differences between the models. Comparing Panels A

and B shows that the VRP levels differ much more between models than the ERP levels.

4.5.2 The Risk Premium Term Structure

Panels A, C, and E of Figure 6 plot the difference between the 1-month and 6-month equity

risk premiums. Panel C of Figure 5 plots the corresponding distributions computed using kernel

12We use a Gaussian kernel with Scott’s (1992) rule-of-thumb bandwidth, 1.06σ̂dn
−1/5
d , where σ̂d is the sample

standard deviation of observations and nd is the number of observations.
13This finding may also be due to our estimation method, because we assume that the stochastic variance is

proportional to the VIX in the implementation of the SV model, and the VIX fluctuates more than GARCH-filtered
volatility.
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density estimation. The distributions in Figure 5 suggest that, like the 1-month ERP levels, the

average ERP term structure is also rather similar across the three models. The models also have

similar implications for the relation between the sign of the term structure and the economic

regime. In bad times, the 1-month risk premium exceeds the 6-month premium. However, in calm

period, the sign reverses. The models capture the important stylized fact that when volatility is

high, investors demand a higher compensation for equity risk over short horizons than over long

horizons.14 However, the time series in Figure 6 highlight some interesting differences between

the models. Notably, when volatility spikes, the difference between the short- and long maturity

premiums (the inverse of the term structure slope) is larger in the discrete-time SV model than in

the GARCH models.

Panels B, D, and F of Figure 6 plot the difference between the 1-month and 6-month VRPs, and

Panel D of Figure 5 plots the corresponding distributions. Note that since the VRP is negative, a

positive value indicates that the longer maturity VRP is more negative than the shorter-maturity

VRP. As with the levels, the VRP term structure differs more across models than the ERP term

structure. Consistent with the findings of Li and Zinna (2018) and Aı̈t-Sahalia, Karaman, and

Mancini (2020), the (absolute value of the) longer-maturity VRPs exceeds the short-maturity VRP

in all models. However, the slope of the term structure during downturns is much steeper in the

SV model in Panel F compared to the GARCH models in Panels B and D. In the CHJ GARCH

model, the term structure slope in downturns is also flatter compared to the HN model. This is

due to the combination of mean-reverting variance and the large variance risk aversion parameter

ξ.

Figure 7 provides additional evidence by plotting the average (unconditional) term structure

of annualized equity and variance risk premiums in Panels A and B, respectively, for maturities

up to one year. In Panel A, the annualized equity premium is relatively flat across horizons, and

the estimates are very plausible.15 In Panel B, the variance risk premium is downward sloping

14The same finding obtains when using longer horizons, up to 12 months. Panel E of Figure 5 plots the distributions
of the 1-month minus 12-month ERPs.

15A related literature computes the equity premium term structure based on the information in short-term and
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for all models. At short horizons, the VRPs are quite similar across models, but the discrete-time

SV model has a steeper term structure. Regarding the magnitudes of the VRPs, Aı̈t-Sahalia,

Karaman, and Mancini (2020) report average premiums of -0.006 for the 2-month horizon, -0.012

for the 6-month horizon, and -0.016 for the 12-month horizon. Even though our sample period is

different and we consider simple one-factor models, our estimates are similar. Panel C of Figure 7

highlights the most important stylized fact of the equity premium term structure. In all models,

the 1-month risk premium is (much) more volatile than the longer-horizon risk premiums. This

is due to the changes in the conditional equity term structure across economic regimes discussed

above. In contrast, Panel D of Figure 7 shows that the VRP is more volatile at longer maturities

for all models.

5 SV Option Pricing in Discrete and Continuous Time

An often-mentioned advantage of continuous-time models is their analytical tractability. Indeed,

while our discrete-time SV model allows for a closed-form option price, it requires solving a dif-

ference equation, while the affine square-root model in Heston (1993) does not face a similar re-

quirement. As discussed above, the discrete-time approach also provides distinct advantages. It

does not require additional assumptions on discretization. Moreover, we have relatively few tools

available to extend or generalize the Heston (1993) model. The most often used approach is to

add a second and possibly a third volatility factor, and/or an additional factor with a different

structure, such as a return or variance jump.16 There are natural counterparts to these extensions

that can be used in a discrete-time framework, but the discrete-time model can also be extended

in other straightforward ways, for instance, by generalizing the autoregressive or moving average

structure of the variance dynamic as in Section 2.5.

We now compare the option pricing performance and economic implications of the one-factor

long-term dividend strips. See for instance Binsbergen, Brandt, and Koijen (2012), Binsbergen and Koijen (2017),
and Gormsen (2021).

16Another alternative is a “rough” volatility factor with long memory, see for instance Bayer, Friz, and Gatheral
(2016), Euch and Rosenbaum (2018), and Garnier and Sølna (2018).
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discrete-time and continuous-time option pricing models. While both models have an affine struc-

ture, we found the comparison is more complex than anticipated. Column (4) in Table 2 presents

physical and risk-neutral parameter estimates for the Heston (1993) square root model, as well as

the log-likelihood and vega-weighted RMSE. The model parameter estimates are consistent with

the literature. The log likelihood and RMSE can be directly compared to the discrete-time SV

results in column (3). Both indicate that the continuous-time model slightly underperforms the

discrete-time SV model. We found that most of this difference results from imposing (binding)

positivity restrictions on the variance processes. These restrictions are by design very different

in these two models. In the discrete-time model, we impose positivity of the variance by setting

ω = ω∗ = 0. In the continuous-time model, we impose the Feller condition under both the P and

Q measures, i.e., 2κθ = 2κ∗θ∗ > σ2. If we do not impose these positivity restrictions, the RMSEs

improve modestly in both models and are roughly equal. We therefore conclude that from the

perspective of option fit, the performance of both modeling approaches is rather similar, but that

the positivity restrictions are critical.

The similarities between the discrete- and continuous-time SV models are confirmed by the

model-implied physical and risk-neutral properties in Panel A of Table 3, as well as the kernels in

Figures 1 and 2. However, it is worth mentioning that both the bivariate log pricing kernel and the

time path of the realized log pricing kernel for the continuous-time model in Panel D of both figures

exhibit more variability than the ones in Panel C. This difference can be interpreted through the

lens of the implied risk preference parameters. In Column (4) of Table 3, the equity level aversion

parameter γ is 0.704, and the variance aversion parameter ξ is 1,544.21. The former (latter) is

smaller (larger) than the one in column (3) for the discrete-time SV model. The relatively greater

variability of the continuous-time pricing kernel is therefore due to the higher ξ.

As for risk premiums, the time paths of the conditional 1-month equity and variance risk

premiums in Figure 4 are similar for the two SV models, but the 1-month ERP is higher in the

discrete-time model during crises. Figure 6 indicates that the inverse slope of the equity premium

term structure during crises is higher in the continuous-time model, but the time series of the slopes
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in the two models are very highly correlated. Although the correlation between the time series of

the VRP slopes for the two models is also high, when volatility is high the slopes are significantly

larger in the discrete-time model. The CHJ GARCH model implies a level of the VRP premium

(in Figure 4) that is similar to the SV model, but it generates a very different VRP term structure.

6 Conclusion

We contribute to the option pricing literature by proposing a new discrete-time stochastic volatility

model. The model allows for quasi closed form prices for European call options, like the Heston

(1993) and Heston and Nandi (2000) models. It is closely related to the existing discrete-time

option pricing literature, because it nests the Heston and Nandi (2000) model. It is also closely

related to the continuous-time Heston (1993) model, because it contains a second innovation to

volatility that can be correlated with the return innovation.

We implement the model based on a joint likelihood consisting of index option data and the

underlying index returns. The new model vastly outperforms the existing discrete-time benchmark

in terms of option fit. Moreover, the pricing kernel implied by the new model is more plausible

than the kernels implied by existing discrete-time models, and the new model generates reasonable

risk premiums. The new model’s improved performance is due to the fact that when incorporating

variance aversion into the pricing kernel in a GARCH model, it is difficult to separately identify

equity and variance risk. The new model also outperforms the continuous-time benchmark, but

the mechanics of both models are similar and the difference in performance mainly results from the

different constraints that need to be imposed in both models to keep the variance positive.

In future work, we plan to investigate how option fit can be improved by including additional

volatility factors, and to study how the performance of the resulting model compares with that of

a model that includes additional lags in the volatility dynamic.
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Table 2: Parameter Estimates

HN
GARCH

CHJ
GARCH

DT SV CT SV

(1) (2) (3) (4)

P-parameters

µ 2.8785 2.8785 2.8785 µ 2.8785

ω × 104 0 0 0

β 0.6668 0.6751 0.0125 κ 0.0133

(0.0005) (0.0005) (0.0003) (0.0002)

α1 × 102 0.1305 0.1204 0.0850 θ × 102 0.0129

(0.0037) (0.0049) (0.0012) (0.0002)

α2 × 102 0 0 0.0667 σ 0.0019

(0.0009) (0.0001)

λ 0.5664 0.5594 0.9893 ρ -0.7609

(0.0005) (0.0011) (0.0002) (0.0078)

η1 0.7717 0.7321

(0.0035) (0.0035)

Q-parameters

ω∗ × 104 0 0 0 κ∗ 0.0070

β∗ 0.6668 0.6751 0.0125 θ∗ × 102 0.0244

α∗
1 × 102 0.1305 0.1305 0.0851

α∗
2 × 102 0 0 0.0667

λ∗ 0.5702 0.5629 0.9921

P-Q wedge

ζ 1 1.0837 1.0005 ξ 1544.21

(0.0235) (0.0002) (149.38)

Model fit

logLR 26,312.18 26,329.24 103,460.60 102,971.15

logLRr 26,312.18 26,329.24 26,529.77 26,573.26

logLRv 76,930.83 76,397.89

logLO 75,332.45 75,305.84 94,561.60 89,224.82

Weighted logL 124,007.45 124,042.57 366,568.68 361,899.78

Vega-weighted RMSE 0.0372 0.0372 0.0231 0.0263

Notes: We report parameter estimates for the HN GARCH, CHJ GARCH, discrete-time (DT)
SV, and continuous-time (CT) SV models. All models are estimated using the joint likelihood
of underlying returns and option prices. Robust standard errors are in parentheses. The option
sample period is from January 1996 to December 2021; the return sample starts in January 1990.
logLR = logLRr + logLRv , where logLRr and logLRv account for the transition probabilities of daily
returns and variances, respectively.
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Table 3: Model Properties

HN
GARCH

CHJ
GARCH

DT SV CT SV

(1) (2) (3) (4)

Panel A: Preference Parameters and Model-Implied Moments

Risk preference parameters

γ 2.8785 -33.1800 2.2919 0.7043

ξ 0 26,625.97 347.95 1,544.21

Physical properties

Annualized expected log return 0.1074 0.0972 0.1039 0.1017

Annualized long-run variance 0.0349 0.0306 0.0334 0.0325

Annualized long-run volatility of variance 0.4490 0.3890 0.7458 0.5156

Autocorrelation of daily variance 0.9877 0.9881 0.9912 0.9867

Conditional correlation (logR(t+ 1), v(t+ 1)) -0.9905 -0.9906 -0.7851 -0.7609

Risk-neutral properties

Annualized long-run variance 0.0534 0.0536 0.0882 0.0616

Annualized long-run volatility of variance 0.6890 0.6835 1.9670 0.9777

Autocorrelation of daily variance 0.9920 0.9920 0.9967 0.9930

Conditional correlation (logR(t+ 1), v∗(t+ 1)) -0.9939 -0.9937 -0.7863 -0.7609

Panel B: Integrated Means, Variances, and Risk Premiums (One-Month Horizon)

Annualized conditional physical moments

Mean 0.1188 0.1111 0.1223 0.1176

Variance 0.0330 0.0302 0.0342 0.0325

Annualized conditional risk-neutral moments

Mean 0.0245 0.0245 0.0245 0.0245

Variance 0.0344 0.0344 0.0362 0.0345

Annualized conditional risk premia

Equity premium 0.0943 0.0866 0.0978 0.0931

Variance premium -0.0015 -0.0042 -0.0020 -0.0020

Notes: Panel A reports model properties for the HN GARCH, CHJ GARCH, discrete-time (DT)
SV, and continuous-time (CT) SV models, under both the physical and risk-neutral measures.
Panel B reports descriptive statistics for the model-implied mean and variance of returns, as well
as the equity and variance risk premiums.
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Figure 1: Bivariate Daily Log Pricing Kernels

Panel A: HN GARCH Panel B: CHJ GARCH

Panel C: DT SV Panel D: CT SV

Notes: We plot the log pricing kernel as a function of the index return and variance for four models.
The calculations are based on the parameters in Table 2. In the HN GARCH model, the kernel
does not depend on the variance.
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Figure 4: Time Series of the One-Month Conditional Equity and Variance Risk Premiums

Panel A: HN GARCH ERP Panel B: HN GARCH VRP

Panel C: CHJ GARCH ERP Panel D: CHJ GARCH VRP

Panel E: DT SV ERP Panel F: DT SV VRP

Panel G: CT SV ERP Panel H: CT SV VRP

Notes: We plot the annualized time series of the one-month equity risk premium (ERP) and variance
risk premium (VRP) for four models. The calculations are based on the parameters in Table 2.
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Figure 5: Distribution of the Level and Term Structure of the Risk Premiums

Panel A: 1-Month ERP Panel B: 1-Month VRP

Panel C: 1-Month minus 6-Month ERP Panel D: 1-Month minus 6-Month VRP

Panel E: 1-Month minus 12-Month ERP Panel F: 1-Month minus 12-Month VRP

Notes: We plot the empirical distributions of the annualized one-month equity and variance risk
premiums as well as the difference between the one-month and either the six-month or the twelve-
month risk premiums. The empirical distributions are computed using kernel density estimation
with the Gaussian kernel and Scott’s (1992) rule-of-thumb bandwidth.

40



Figure 6: Time Series of One-Month Minus Six-Month Equity and Variance Risk Premiums

Panel A: HN GARCH ERP Panel B: HN GARCH VRP

Panel C: CHJ GARCH ERP Panel D: CHJ GARCH VRP

Panel E: DT SV ERP Panel F: DT SV VRP

Panel G: CT SV ERP Panel H: CT SV VRP

Notes: We plot the annualized time series of the (inverted) term structure of the equity risk premium
(ERP) and variance risk premium (VRP) for four models. We plot the one-month ERP minus the
six-month ERP, as well as the one-month VRP minus the six-month VRP. The calculations are
based on the parameters in Table 2.
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Figure 7: Unconditional Term Structure of Annualized Risk Premiums

Panel A: Average ERP Panel B: Average VRP

Panel C: Volatility of ERP Panel D: Volatility of VRP

Notes: We plot the annualized average and standard deviation of the time series of the term
structure of the equity and variance risk premiums for maturities between one month and one year.
The calculations are based on the parameters in Table 2.
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Appendix

A Closed-Form Expressions for the Moment Generating Function

A.1 The SV(1,1) Dynamics

Assume that the conditional moment generating function (MGF) has the following form:

fMG(ϕ) = Et

[
S(T )ϕ

]
= S(t)ϕ exp (A(t) +B(t)v(t)) .

Let x(t) = log(S(t)). We need to find A(t) and B(t) in

fMG(ϕ) = exp (ϕx(t) +A(t) +B(t)v(t))

with a terminal condition A(T ) = B(T ) = 0. By the Law of Iterated Expectations,

fMG(t;ϕ) = Et
[
fMG(t+ 1;ϕ)

]
= Et [exp (ϕx(t+ 1) +A(t+ 1) +B(t+ 1)v(t+ 1))] (A.1)

Substituting the dynamics of x(t) and v(t) into the above equation,

fMG(t;ϕ) = Et

[
exp

(
ϕ

(
x(t) +

(
r +

(
µ− 1

2

)
v(t)

)
+
√
v(t)z1(t+ 1)

)
+A(t+ 1) +B(t+ 1)

(
ω + βv(t) +

(
α1z1(t+ 1) + α2z2(t+ 1)− λ

√
v(t)

)2))]
= exp

(
ϕ

(
x(t) +

(
r +

(
µ− 1

2

)
v(t)

))
+A(t+ 1) +B(t+ 1)(ω + βv(t))

)
×Et

[
exp

(
ϕ
√
v(t)z1(t+ 1) +B(t+ 1)

(
α1z1(t+ 1) + α2z2(t+ 1)− λ

√
v(t)

)2)]
︸ ︷︷ ︸

(∗)

,(A.2)
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where (∗) can be written as:

(∗) =
exp

[
(−2λ2B(t+1)+4α1λϕB(t+1)+ϕ2(−1+2α2

2B(t+1)))v(t)
−2+4(α2

1+α
2
2)B(t+1)

]
√

1− 2
(
α2
1 + α2

2

)
B(t+ 1)

.

since

E
[
a
√
vz1 + ψ

(
b1z1 + b2z2 − c

√
v
)2]

=
exp

[
(−2c2ψ+4b1caψ+a2(−1+2b22ψ))v

−2+4(b21+b
2
2)ψ

]
√
1− 2(b21 + b22)ψ

. (A.3)

By equating equations (A.1) and (A.2), we obtain the following recursive coefficients:

Et

[
S(T )ϕ

]
= S(t)ϕ exp (A(t) +B(t)v(t)) ,

A(t) = A(t+ 1) + ϕr + ωB(t+ 1)− 1

2
log
(
1− 2

(
α2
1 + α2

2

)
B(t+ 1)

)
B(t) = ϕ

(
µ− 1

2

)
+ βB(t+ 1) +

2λ2B(t+ 1)− 4α1λϕB(t+ 1) + ϕ2(1− 2α2
2B(t+ 1))

2− 4(α2
1 + α2

2)B(t+ 1)
,

A(T ) = B(T ) = 0.

A.2 The SV(p,q) Dynamics

This section presents the MGF for the SV(p,q) dynamics. The discrete-time SV(p,q) dynamic is

as follows:

ln(S(t+ 1)) = ln(S(t)) +

(
r +

(
µ− 1

2

)
v(t)

)
+
√
v(t)z1(t+ 1), (A.4)

v(t+ 1) = ω +

p∑
i=1

βiv(t+ 1− i)

+

q∑
i=1

ki

(
α1z1(t+ 2− i) + α2z2(t+ 2− i)− λi

√
v(t+ 1− i)

)2
,

where k1 = 1. This SV(p,q) dynamics nest the GARCH(p,q) dynamics in Heston and Nandi

(2000) and Christoffersen, Jacobs, and Ornthanalai (2013) with the slight difference in notation as

discussed in Section 2.4; specifically, when α2 = 0, the SV(p,q) model exactly corresponds to the

GARCH(p,q) dynamic.
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To find the conditional MGF of the stock price, we conjecture

fMG(t;ϕ) = exp

ϕx(t) +A(t) +

p∑
i=1

Bi(t)v(t+ 1− i) +
∑
i+j≤q

Ci,j(t)Zi,j(t)

 , (A.5)

where Zi,j(t) =
(
α1z1(t+ 1− i) + α2z2(t+ 1− i)− λi+j

√
v(t− i)

)2
. Proceeding similarly to the

SV(1,1) case in Appendix A.1,

fMG(t;ϕ) = Et
[
fMG(t+ 1;ϕ)

]
= Et

exp
ϕx(t+ 1) +A(t+ 1) +

p∑
i=1

Bi(t+ 1)v(t+ 2− i) +
∑
i+j≤q

Ci,j(t+ 1)Zi,j(t+ 1)


fMG(t;ϕ) = exp

(
ϕ(x(t) + r) +A(t+ 1) +B1(t+ 1)ω +

(
ϕ

(
µ− 1

2

)
+B1(t+ 1)β1 +B2(t+ 1)

)
v(t)

+

p∑
i=2

(B1(t+ 1)βi +Bi+1(t+ 1)) v(t+ 1− i)

+

q−1∑
i=1

B1(t+ 1)kiZi,1(t) +

q−1∑
i=2

∑
j≤q−i

Ci,j(t+ 1)Zi−1,j+1(t)


× Et

[
exp

(
ϕ
√
v(t)z1(t+ 1) +B1(t+ 1)k1

(
α1z1(t+ 1) + α2z2(t+ 1)− λ1

√
v(t)

)2
+

∑
1≤j≤q−1

C1,j(t+ 1)
(
α1z1(t+ 1) + α2z2(t+ 1)− λ1+j

√
v(t)

)2
︸ ︷︷ ︸

(∗∗)

. (A.6)
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The exponent component inside the expectation (∗∗) can be rearranged as

ϕ
√
v(t)z1(t+ 1) +

B1(t+ 1)k1 +
∑

1≤j≤q−1

C1,j(t+ 1)


×

α1z1(t+ 1) + α2z2(t+ 1)−
B1(t+ 1)k1λ1 +

∑
1≤j≤q−1

C1,j(t+ 1)λ1+j

B1(t+ 1)k1 +
∑

1≤j≤q−1
C1,j(t+ 1)

√
v(t)


2

−


(
B1(t+ 1)k1λ1 +

∑
1≤j≤q−1

C1,j(t+ 1)λ1+j

)2

(
B1(t+ 1)k1 +

∑
1≤j≤q−1

C1,j(t+ 1)

) −

B1(t+ 1)k1λ
2
1 +

∑
1≤j≤q−1

C1,j(t+ 1)λ21+j


 v(t).

Substituting into equation (A.3) and then equating equations (A.5) and (A.6), we obtain the

following recursions for the MGF coefficients:

A(t) = A(t+ 1) + ϕr + ωB1(t+ 1)− 1

2
log

1− 2
(
α2
1,1 + α2

2,1

)B1(t+ 1)k1 +
∑

1≤j≤q−1

C1,j(t+ 1)



B1(t) = ϕ

(
µ− 1

2

)
+ β1B1(t+ 1) +

ϕ2

(
1
2 − α2

2

(
B1(t+ 1)k1 +

∑
1≤j≤q−1

C1,j(t+ 1)

))

1− 2
(
α2
1 + α2

2

)(
B1(t+ 1)k1 +

∑
1≤j≤q−1

C1,j(t+ 1)

)

+

2
(
α2
1 + α2

2

)(
B1(t+ 1)k1λ1 +

∑
1≤j≤q−1

C1,j(t+ 1)λ1+j

)2

1− 2
(
α2
1 + α2

2

)(
B1(t+ 1)k1 +

∑
1≤j≤q−1

C1,j(t+ 1)

)

+

−2α1

(
B1(t+ 1)k1λ1 +

∑
1≤j≤q−1

C1,j(t+ 1)λ1+j

)
ϕ

1− 2
(
α2
1 + α2

2

)(
B1(t+ 1)k1 +

∑
1≤j≤q−1

C1,j(t+ 1)

)
+ B1(t+ 1)k1λ

2
1 +

∑
1≤j≤q−1

C1,j(t+ 1)λ21+j ,
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Bi(t) = βiB1(t+ 1) +Bi+1(t+ 1) for 2 ≤ i ≤ p− 1,

Bp(t) = βpB1(t+ 1),

Ci,j(t) =


ki+1B1(t+ 1) if j = 1 and i+ j ≤ q,

Ci+1,j−1(t+ 1) if j ̸= 1 and i+ j ≤ q,

0 otherwise,

A(T ) = Bi(T ) = Ci,j(T ) = 0.

As a special case, when α2 = 0, this solution for the MGF coefficients exactly matches the formula

in Appendix C of Christoffersen, Jacobs, and Ornthanalai (2013) for the GARCH(p,q) model.

B No-Arbitrage Restrictions for the Exponential-Affine Pricing Kernel

B.1 The Pricing Kernel

We re-write the pricing kernel in equation (10) as follows:

M(t+ 1)

M(t)
=

(
S(t+ 1)

S(t)

)−γ
exp(δ + ηv(t) + ξ(v(t+ 1)− v(t))), (B.1)

where time is expressed in days. From equation (2), we have

S(t+ 1)

S(t)
= exp

(
r +

(
µ− 1

2

)
v(t) +

√
v(t)z1(t+ 1)

)
,

v(t+ 1)− v(t) = ω + (β − 1)v(t) +
(
α1z1(t+ 1) + α2z2(t+ 1)− λ

√
v(t)

)2
. (B.2)

Substituting equation (B.2) into equation (B.1), we obtain:

M(t+ 1)

M(t)
= exp

[
−γr − γ

(
µ− 1

2

)
v − γ

√
vz1 + δ + ηv + ξω + ξ(β − 1)v + ξ

(
α1z1 + α2z2 − λ

√
v
)2]

= exp

[
−γr + δ + ξω −

(
γ

(
µ− 1

2

)
− η − ξ(β − 1)

)
v − γ

√
vz1 + ξ

(
α1z1 + α2z2 − λ

√
v
)2]
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The no-arbitrage condition implies Et

[
M(t+1)
M(t)

]
= exp(−r). The conditional expectation of the

pricing kernel becomes

Et

[
M(t+ 1)

M(t)

]
= exp

[
−γr + δ + ξω +

(
−γ
(
µ− 1

2

)
+ η + ξ(β − 1)

)
v

]
×Et

[
exp

(
−γ

√
vz1 + ξ

(
α1z1 + α2z2 − λ

√
v
)2)]

= exp

[
−γr + δ + ξω +

(
−γ
(
µ− 1

2

)
+ η + ξ(β − 1)

)
v

]

×
exp

[
(−2λ2ξ−4α1λγξ+γ2(−1+2α2

2ξ))v

−2+4(α2
1+α

2
2)ξ

]
√
1− 2(α2

1 + α2
2)ξ

by equation (A.3)

= exp

[
−γr + δ + ξω − 1

2
log
(
1− 2

(
α2
1 + α2

2

)
ξ
)

+

(
−γ
(
µ− 1

2

)
+ η + ξ(β − 1) +

−2λ2ξ − 4α1λγξ + γ2(−1 + 2α2
2ξ)

−2 + 4(α2
1 + α2

2)ξ

)
v

]
.(B.3)

By equating equation (B.3) to e−r, we get:

(−γ + 1)r + δ + ξω − 1

2
log
(
1− 2

(
α2
1 + α2

2

)
ξ
)
= 0,

−γ
(
µ− 1

2

)
+ η + ξ(β − 1) +

−2λ2ξ − 4α1λγξ + γ2(−1 + 2α2
2ξ)

−2 + 4(α2
1 + α2

2)ξ
= 0.

Rearranging, we obtain

δ = (γ − 1)r − ξω +
1

2
log
(
1− 2

(
α2
1 + α2

2

)
ξ
)
, (B.4)

η =

(
µ− 1

2

)
γ + ξ(1− β)− −2λ2ξ − 4α1λγξ + γ2(−1 + 2α2

2ξ)

−2 + 4(α2
1 + α2

2)ξ
. (B.5)

Proceeding in a similar fashion starting with Et

[
S(t+1)
(St)

M(t+1)
M(t)

]
= 1, we get:

1 = exp

[
(1− γ)r + δ + ξω − 1

2
log
(
1− 2

(
α2
1 + α2

2

)
ξ
)

+

(
(1− γ)

(
µ− 1

2

)
+ η + ξ(β − 1) +

−2λ2ξ + 4α1λ(1− γ)ξ + (1− γ)2(−1 + 2α2
2ξ)

−2 + 4(α2
1 + α2

2)ξ

)
v

]
. (B.6)
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Substituting equations (B.4) and (B.5) in equation (B.6), we get:

(
µ− 1

2

)
+

4α1λξ + (1− 2γ)(−1 + 2α2
2ξ)

−2 + 4(α2
1 + α2

2)ξ
= 0.

By rearranging the above equation, γ is given by

γ = µ− α1ξ(2α1µ− α1 + 2λ)

1− 2α2
2ξ

. (B.7)

B.2 The Risk-Neutral Probability Distribution

The physical and risk-neutral probability distributions are related as follows:

f∗t (S(t+ 1), v(t+ 1)) =
ft(S(t+ 1), v(t+ 1))M(t+ 1)

Et(M(t+ 1))

= ft(S(t+ 1), v(t+ 1))×
S−γ(t+ 1) exp

(
δ × (t+ 1) + η

∑t
s=0 v(s) + ξv(t+ 1)

)
Et
[
S−γ(t+ 1) exp

(
δ × (t+ 1) + η

∑t
s=0 v(s) + ξv(t+ 1)

)] .
(B.8)

Equation (2) implies

S−γ(t+ 1) = S−γ(t) exp

(
−γr − γ

(
µ− 1

2

)
v(t)− γ

√
v(t)z1(t+ 1)

)
,

v(t+ 1) = ω + βv(t) +
(
α1z1(t+ 1) + α2z2(t+ 1)− λ

√
v(t)

)2
,

Equation (B.8) can then be expressed as

f∗t (S(t+1), v(t+1)) = ft(S(t+1), v(t+1))×
exp

(
−γ

√
vz1 + ξ (α1z1 + α2z2 − λ

√
v)

2
)

Et

[
exp

(
−γ

√
vz1 + ξ (α1z1 + α2z2 − λ

√
v)

2
)] , (B.9)
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where we have simplified the notation as follows: z1 = z1(t+ 1), z2 = z2(t+ 1), and v = v(t), and

we can calculate the expectation in the denominator by using equation (A.3):

Et

[
exp

(
−γ

√
vz1 + ξ

(
α1z1 + α2z2 − λ

√
v
)2)]

=
1√

1− 2(α2
1 + α2

2)ξ
exp

[
(−2λ2ξ − 4α1λγξ + γ2(−1 + 2α2

2ξ))v

−2 + 4(α2
1 + α2

2)ξ

]
.

To find the joint distribution ft(S(t+ 1), v(t+ 1)), we use Bayes’ rule:

ft(S(t+ 1), v(t+ 1)) = ft(v(t+ 1)|S(t+ 1))ft(S(t+ 1)).

Note that ft(S(t + 1)) follows a normal distribution, governed by z1, and that ft(v(t + 1)|S(t +

1)) follows a non-central chi-squared distribution because
(
α1
α2
z1 + z2 − λ

α2

√
v
)

follows a normal

distribution with nonzero mean, conditional on z1 and v. Since ft(S(t + 1), v(t + 1)) can be

obtained from ft(z1, y) with the help of a Jacobian, where y ≡
(
α1
α2
z1 + z2 − λ

α2

√
v
)2

, we simply

focus on ft(z1, y).

The joint risk-neutral probability distribution of z1 and y is given by:

f∗t (z1, y) = ft(y|z1)ft(z1)×
exp

(
−γ

√
vz1 + ξα2

2y
)

Et
[
exp

(
−γ

√
vz1 + ξα2

2y
)]

= NCχ2
y(1, ψ)

1√
2π

exp

(
−z

2
1

2

)
×

exp (−γ
√
vz1) exp

(
ξα2

2y
)

Et
[
exp

(
−γ

√
vz1 + ξα2

2y
)] , (B.10)

where NCχ2
y(1, χ) is the non-central chi-squared distribution function with degree of freedom 1

and non-centrality parameter χ =
(
α1
α2
z1 − λ

α2

√
v
)2

. ft(y|z1) = NCχ2
y(1, χ) is given as

ft(y|z1) =
1

2
e−

y+χ
2

(
y

χ

)− 1
4

I(− 1
2
) (
√
χy)

=
1

2
√
2πy

[
exp

(
−1

2
(
√
χ+

√
y)2
)
+ exp

(
−1

2
(
√
χ−√

y)2
)]

, (B.11)

where I is a modified Bessel function of first kind.
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We first find f∗t (z1) by integrating f∗t (z1, y) with respect to y over its support. That is,

f∗t (z1) =
1√
2π

exp

(
−z

2
1

2

)
× exp (−γ

√
vz1)

Et
[
exp

(
−γ

√
vz1 + ξα2

2y
)] × ∫ ∞

0
NCχ2

y(1, χ) exp
(
ξα2

2y
)
dy.︸ ︷︷ ︸

(∗)

(B.12)

The integral part (∗) is a moment generating function (MGF) of y. As MGF of a non-central

chi-squared distribution with one degree of freedom is given by E
[
eϕy
]
= exp

(
ϕχ

1−2ϕ

)
/(1− 2ϕ)1/2,

we can rewrite equation (B.12) as the following:

f∗t (z1) =
1√
2π

exp

(
−z

2
1

2

)
× exp (−γ

√
vz1)

Et
[
exp

(
−γ

√
vz1 + ξα2

2y
)] × 1√

1− 2ξα2
2

exp

(
ξα2

2χ

1− 2ξα2
2

)
=

√
1− 2(α2

1 + α2
2)ξ√

1− 2ξα2
2

exp

[
(−2λ2ξ − 4α1λγξ + γ2(−1 + 2α2

2ξ))v

2− 4(α2
1 + α2

2)ξ

]

× 1√
2π

exp

−z
2
1

2
− γ

√
vz1 +

ξα2
2

(
α1
α2
z1 − 1

α2
λ
√
v
)2

1− 2ξα2
2


=

1√
2πσ

exp

[
−(z1 − E∗(z1))

2

2σ2

]
, (B.13)

where E∗(z1) =
((−1+2ξα2

2)γ−2ξα1λ)
√
v

1−2(α2
1+α

2
2)ξ

and σ =

√
1−2ξα2

2√
1−2(α2

1+α
2
2)ξ

. We now show that z1 also follows a

normal distribution under the new measure. Substituting in for γ from equation (B.7):

E∗(z1) =
((−1 + 2ξα2

2)γ − 2ξα1λ)
√
v

1− 2(α2
1 + α2

2)ξ

= −
(
µ+

α2
1ξ

1− 2(α2
1 + α2

2)ξ

)√
v.

We can then define z∗1 , which follows a standard normal distribution under the risk-neutral measure,

i.e. with mean 0 and variance 1, as follows:

z∗1(t+ 1) =

√
1− 2(α2

1 + α2
2)ξ√

1− 2ξα2
2

(
z1(t+ 1) +

(
µ+

α2
1ξ

1− 2(α2
1 + α2

2)ξ

)√
v

)
. (B.14)

Now we focus on f∗t (y|z1) = f∗t (y, z1)/f
∗
t (z1), which follows a non-central chi-squared distribution.
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Using equations (B.10) and (B.13) to obtain the conditional distribution, we get:

f∗t (y|z1) =
√
1− 2ξα2

2 ×NCχ2
y(1, χ)× exp

(
ξα2

2y −
(α1z1 − λ

√
v)

2
ξ

1− 2ξα2
2

)

=
√

1− 2ξα2
2 ×NCχ2

y(1, χ)× exp

(
ξα2

2y −
α2
2χξ

1− 2ξα2
2

)
. (B.15)

Recall that the non-central chi-squared distribution NCχ2
y(1, χ) is given by equation (B.11). Equa-

tion (B.15) is then given by:

f∗t (y|z1) =
√

1− 2ξα2
2

× 1

2
√
2πy

[
exp

(
−1

2
(
√
χ+

√
y)2
)
+ exp

(
−1

2
(
√
χ−√

y)2
)]

exp

(
ξα2

2y −
α2
2χξ

1− 2ξα2
2

)
=

√
1− 2ξα2

2 ×
1

2
√
2πy

[
exp

(
−1

2

(√
(1− 2ξα2

2)y +

√
χ

1− 2ξα2
2

)2
)

+ exp

(
−1

2

(√
(1− 2ξα2

2)y −
√

χ

1− 2ξα2
2

)2
)]

.

Let y∗ = (1− 2ξα2
2)y and χ̃ = χ/(1− 2ξα2

2). By a change of random variable,

f∗t (y
∗|z1) = f∗t (y|z1)× J

=
1

2
√
2πy∗

[
exp

(
−1

2

(√
y∗ +

√
χ̃
)2)

+ exp

(
−1

2

(√
y∗ −

√
χ̃
)2)]

, (B.16)

where the Jacobian J = 1∣∣∣ ∂y∗∂y

∣∣∣ = 1
1−2ξα2

2
. Equation (B.16) defines a non-central chi-squared distri-

bution with one degree of freedom and non-centrality parameter χ̃.

While y is defined as
(
z2 +

√
χ
)2
, it does not follow a non-central chi-squared distribution under

f∗t . Therefore, we would like to find a risk-neutral measure z∗2 such that it follows a standard normal

distribution and y∗ has a form of y∗ =
(
z∗2 +

√
χ̃
)2
. Since y∗ = (1− 2ξα2

2)y, we can eventually find
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a relationship between z∗2 and z2 such that
(
z∗2 +

√
χ̃
)2

= (1− 2ξα2
2)
(
z2 +

√
χ
)2
, namely:

z∗2 = −
√
χ̃+

√
(1− 2ξα2

2)(z2 +
√
χ)2

=
√

1− 2ξα2
2

[
(z2 +

√
χ)−

√
χ

1− 2ξα2
2

]
=

√
1− 2ξα2

2

[
z2 −

2ξα2 (α1z1 − λ
√
v)

1− 2ξα2
2

]
. (B.17)

Using equations (1), (2), (B.14), and (B.17), we obtain the restrictions between the physical and

risk-neutral parameters. First, by rearranging equation (B.14),

lnS(t+ 1) = lnS(t) + r +

(
µ− 1

2

)
v(t) +

√
1− 2ξα2

2

√
v(t)√

1− 2(α2
1 + α2

2)ξ
z∗1(t+ 1)− µv(t)− α2

1ξ

1− 2(α2
1 + α2

2)ξ
v(t)

= lnS(t) + r − 1

2
v∗(t) +

√
v∗(t)z∗1(t+ 1),

where v∗(t) =
1−2ξα2

2

1−2(α2
1+α

2
2)ξ
v(t). As a special case, if ξ = 0, i.e. in the absence of a variance risk

premium, v∗(t) = v(t).

Furthermore, we can find the dynamics of v∗(t) in equation (2) by multiplying by
1−2ξα2

2

1−2(α2
1+α

2
2)ξ

:

v∗(t+ 1) =
1− 2ξα2

2

1− 2(α2
1 + α2

2)ξ
ω + βv∗(t) +

1− 2ξα2
2

1− 2(α2
1 + α2

2)ξ

(
α1z1 + α2z2 − λ

√
v(t)

)2
.

By replacing z1 and z2 with equations (B.14) and (B.17),

v∗(t+ 1) =
1− 2ξα2

2

1− 2(α2
1 + α2

2)ξ
ω + βv∗(t) +

1− 2ξα2
2

1− 2(α2
1 + α2

2)ξ

[
α2√

1− 2ξα2
2

z∗2(t+ 1)

+
α1

1− 2ξα2
2

( √
1− 2ξα2

2√
1− 2(α2

1 + α2
2)ξ

z∗1(t+ 1)−
(
µ+

α2
1ξ

1− 2(α2
1 + α2

2)ξ

)√
v(t)

)
−

λ
√
v(t)

1− 2ξα2
2

]2
= ω∗ + β∗v∗(t) +

(
α∗
1z

∗
1(t+ 1) + α∗

2z
∗
2(t+ 1)− λ∗

√
v∗(t)

)2
,
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where

ω∗ =
1− 2ξα2

2

1− 2(α2
1 + α2

2)ξ
ω, β∗ = β, α∗

1 =
α1

1− 2(α2
1 + α2

2)ξ
, α∗

2 =
α2√

1− 2(α2
1 + α2

2)ξ
,

and λ∗ =

(
α1µ+ λ

1− 2ξα2
2

+
α3
1ξ

(1− 2ξα2
2)(1− 2(α2

1 + α2
2)ξ)

)
. (B.18)

C The Daily Stochastic Variance and the VIX

Recall the following risk-neutral stochastic variance dynamics:

v∗(t+ 1) = ω∗ + β∗v∗(t) +
(
α∗
1z

∗
1(t+ 1) + α∗

2z
∗
2(t+ 1)− λ∗

√
v∗(t)

)2
.

By expanding the squared term, we can rewrite as follows:

v∗(t+ 1) = ω∗ + (α∗
1)

2 + (α∗
2)

2︸ ︷︷ ︸
θv

+
(
β∗ + (λ∗)2

)︸ ︷︷ ︸
ρv

v∗(t)

+
(
(α∗

1z
∗
1)

2 + (α∗
2z

∗
2)

2 − (α∗
1)

2 − (α∗
2)

2 + 2α∗
1α

∗
2z

∗
1z

∗
2 − 2α∗

1λ
∗√v(t)z∗1 − 2α∗

2λ
∗√v(t)z∗2)︸ ︷︷ ︸

ϵ(t+1)

. (C.1)

Since z∗1 and z∗2 are independent random variables following the standard normal distribution,

E∗
t (z

∗
1) = E∗

t (z
∗
2) = 0, E∗

t

(
(z∗1)

2
)
= E∗

t

(
(z∗2)

2
)
= 1, and E∗

t (z
∗
1z

∗
2) = 0. Then, E∗

t (ϵ(t+ 1)) = 0.

By defining VIX2
d(t) =

1
252

(
VIX(t)
100

)2
, we get:

VIX2
d(t) =

1

n

n∑
k=1

E∗
t (v

∗(t+ k))
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where n is the number of trading days per month. Using the law of iterated expectation,

E∗
t (v

∗(t+ k)) = E∗
t (θv + ρvv

∗(t+ (k − 1)) + ϵ(t+ k))

= E∗
t

(
θv + E∗

t+(k−1) (ρvv
∗(t+ (k − 1)) + ϵ(t+ k))

)
= E∗

t (θv + ρvv
∗(t+ (k − 1)))

= · · ·

=
(
θv + ρvθv + · · ·+ ρk−1

v θv

)
+ ρkvv

∗(t)

=
θv
(
1− ρkv

)
1− ρv

+ ρkvv
∗(t).

Thus, VIX2
d(t) can be expressed as:

VIX2
d(t) = ψ0 + ψ1v

∗(t)

where ψ0 =
θv(1−ψ1)
1−ρv and ψ1 =

ρv(1−ρnv )
n(1−ρv) .
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