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Abstract

In reality, we find assets traded in the transparent centralized market and opaque

decentralized market. To explain the traders’ choices of venues, we develop a model

of dynamic learning and dynamic market choice between the centralized market and

decentralized markets. We find that when traders’ value correlation is moderately het-

erogeneous, and asset values are insensitive to shocks to fundamentals or shocks are

predictable, switching between centralized and decentralized markets can be the op-

timal market choice. When asset values are sensitive to volatile fundamentals, assets

are traded only in the centralized market. We provide empirical evidence in support

of the model predictions. The model allows us to explore the impact of introducing

transparency designs in the opaque decentralized market on traders’ market choices

and welfare. We find that post-trade transparency makes the choice of a decentral-

ized market persistent. Regardless of its impact on market structure, post-trade trans-

parency improves welfare. Surprisingly, pre-trade transparency may decrease welfare

as it increases traders’ incentives to choose a decentralized market earlier and hurts

centralized market welfare.
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1 Introduction

In reality, we find assets traded in the transparent centralized and opaque decentralized

market. For example, equities can be traded in lit exchanges such as Nasdaq or NYSE,

and at the same time they can be traded in over 30 dark pools.1 We also find that the

proportion of assets traded in the decentralized market fluctuates over time. For example,

the transaction volume of equities traded in the dark pools versus that in the exchanges

is found to be lower during volatile times.2 The existence of the opaque decentralized

market, in particular the dark pools, has raised policy concerns on market fragmentation

and its lack of transparency. The policy concern motivates us to explore the following

question: What determines traders’ market choices? To answer this question, this paper

develops a dynamic model to study traders’ endogenous market choices, and explores the

impact of transparency policies in the decentralized market on market choices and welfare.

The model features short-lived traders arriving each period to trade a risky asset. Be-

fore trading, the traders choose between a centralized market with all traders or a decen-

tralized market where traders are matched and trade bilaterally. Traders have heteroge-

neous correlations in their values. Traders can learn from the centralized market prices in

past periods when they trade. In the baseline model, we assume the decentralized market

is opaque, i.e. traders cannot see past decentralized market prices.

We find that different dynamic market choices can arise endogenously as a result of

learning from price history. We show that the impact of past market choices on the cur-

rent market choice can be summarized with a single sufficient statistic, the price history

informativeness. It measures how much the traders can learn from price history. Higher

price history informativeness improves liquidity and increases expected utility for traders.

Such improvement is higher in the decentralized market. Therefore, traders have higher

incentives to choose the decentralized market as centralized price history accumulates.

However, once they’ve chosen the decentralized market, given its opaque nature, the price

history informativeness decays as the price history gradually becomes stale and uninfor-

mative. As the price history informativeness decreases, the decentralized market becomes

illiquid. This can push traders back to the centralized market. The evolution of price

1A dark pool is a type of alternative trading system (ATS) that allows institutional investors to trade
securities without publicly revealing their intentions during the search for a buyer or seller. They emerged
in the 1980s when the Securities and Exchange Commission (SEC) allowed brokers to transact large blocks
of shares. See https://www.investopedia.com/terms/d/dark-pool.asp.

2See Investors Flee Dark Pools As Market Volatility Erupts, The Wall Street Journal, Sept. 2, 2011, and
“Dark Pools” Draw More Trading Amid Low Volatility, The Wall Street Journal, May 3, 2019.
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history informativeness leads to dynamic market choices.

The threshold of price history informativeness for traders to choose the decentralized

market over the centralized market depends on traders’ correlation heterogeneity. The

growing and decay rate of price history informativeness depends on the asset properties.

We will discuss these two types of determinants sequentially.

We find that when trader value correlations are sufficiently homogeneous or heteroge-

neous, traders will choose a constant market structure; otherwise, alternating between cen-

tralized and decentralized markets can be the optimal dynamic market structure. Specifi-

cally, if trader value correlations are sufficiently heterogeneous, traders will always choose

the decentralized market. This is because each trader can benefit significantly from match-

ing bilaterally with a counterparty that has the lowest correlation and therefore, the lowest

adverse selection. This decrease in adverse selection dominates the loss of liquidity in a

decentralized market. If trader value correlations are sufficiently homogeneous, traders

will always choose the centralized market. Intuitively, when correlations are similar across

traders, traders don’t avoid much adverse selection in the decentralized market, so traders

prefer the greater liquidity of the centralized market. For intermediate levels of correla-

tion heterogeneity, traders can potentially alternate between the lit centralized market and

opaque decentralized market depending on the asset properties.

We highlight two asset properties that affect the dynamic market choice. The first one

is asset sensitivity to fundamentals. When the asset is insensitive to the fundamentals,

its value changes less across time, making price history more informative and decaying

slower. Therefore traders switch between the centralized and decentralized market or

even stay in the decentralized market after one round in the centralized market if the sen-

sitivity is sufficiently low. When the asset is more sensitive to fundamentals, its value

changes more across rounds with the shocks to fundamentals. The price history informa-

tiveness is low and traders will stay in the centralized market.

The second asset property is the predictability of the fundamentals measured by au-

tocorrelation of the shocks to fundamentals. When the predictability of the fundamentals

is high, the past prices are more informative and traders tend to alternate between the

centralized market and the decentralized market, or even stay in the decentralized market

since the second round. When the predictability of the fundamentals is low, past prices

are not informative and traders will stay in the centralized market.

These results are consistent with our real-life observations. Securities that are designed

to be insensitive to issuers’ fundamentals, like bonds, are firstly traded in the centralized

primary market and then in the secondary over-the-counter market. Securities that are
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relatively more sensitive to issuers’ fundamentals, like equities, are mostly traded in the

centralized market, sometimes traded in dark pools. Securities that by design are most

sensitive to issuers’ fundamentals, like options, are predominantly traded in the central-

ized market.

So far we’ve assumed that the decentralized market operates in opacity. We may won-

der if market choices change as we introduce transparency in the decentralized market.

Discussing the effects of transparency on market structures is of policy interest. In prac-

tice, certain decentralized markets provide post-trade transparency—examples include

TRACE in the bond market and blockchain technology in the crypto market. Some mar-

kets offer pre-trade transparency like request-for-quotes (RFQ). However, some decentral-

ized markets, like dark pools for equities, remain relatively opaque. The lack of trans-

parency in dark pools has sparked criticism and policy attention. Yet, the consequences of

introducing trade transparency to dark pools are unclear. Our dynamic model enables us

to investigate how transparency design affects traders’ market choices and welfare.

We find that with post-trade transparency, traders stay in the decentralized market

once they’ve chosen it. This contrasts with the alternating market structures without trans-

parency. With an opaque decentralized market, the price informativeness decays, and

traders opt for the centralized market once the price history becomes stale. In contrast,

transparency makes decentralized market prices available to future traders, increases the

price history informativeness, and therefore improves decentralized market liquidity. It

attracts traders to remain in the decentralized market. We also find that regardless of its

impact on market choices, post-trade transparency is shown to weakly increase overall

welfare.

Surprisingly, pre-trade transparency does not necessarily improve welfare. Even though

pre-trade transparency leads to higher utility in the decentralized market, there’s a trade-

off – the informativeness of price history may decrease because traders are more inclined

to opt for the decentralized market earlier. In scenarios where the number of rounds is

large and the asset value remains stable due to low sensitivity or high shock predictability

(autocorrelation), the persistent and long-term effect of low price history informativeness

becomes significant. Under these conditions, the loss in price history informativeness out-

weighs the utility gain in the decentralized market, ultimately leading to a decrease in

welfare with pre-trade transparency.

In the last part of the paper, we empirically tested the model predictions of the re-

lationship between value autocorrelation and market choices in the U.S. equity market.

We collected data for equities traded in exchanges, alternative trading systems (ATS),
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and over-the-counter(OTC) markets during 2019-2022 from FINRA and Wharton Research

Data Service(WRDS). We classify the lit exchanges such as Nasdaq and NYSE as central-

ized markets, and ATS/OTC as decentralized markets. As lower autocorrelation implies

higher volatility in asset values, we use the price volatility in the last 100 trading days as a

proxy for the value autocorrelation. We find a negative correlation between price volatility

and the proportion of transaction volume traded in the ATS and OTC. There is a concern

that the market choices may affect the price volatility and cause reverse causality. To ad-

dress the concern, we use the price volatility from 200 trading days to 100 trading days

ago as an instrumental variable. 2SLS regression results show a more significant negative

impact of volatility on decentralized market share than the OLS regression results.

Literature: This paper is most closely related to the literature studying endogenous market

choice between the decentralized market and the centralized market. Some studies delve

into factors like search frictions (Pagano, 1989; Rust and Hall, 2003; Vogel, 2019) or limited

trading capacity (Dugast et al., 2022) within OTC markets. Some papers examine cream

skimming driven by price discrimination (Seppi, 1990; Desgranges and Foucault, 2005;

Bolton et al., 2016; Lee and Wang, 2018). The papers most closely related to our paper

focus on the trade-off between liquidity and adverse selection (Yoon, 2017). This paper

extends the static set-up in Yoon (2017) to a dynamic model. While Yoon (2017) focuses

on the heterogeneity of traders’ value correlation and private signal precision, this paper

highlights the impact of learning from price history on traders’ market choices. We show

that price history informativeness related to asset properties is a new mechanism for the

decentralized market to emerge.

Second, this paper is related to the literature on decentralized trading mechanisms in a

dynamic setting. Most literature concentrates on dark pools and size-discovery sessions.

Zhu (2014) presents a two-period model of a dark pool, and shows that adding a dark

pool alongside an exchange enhances price discovery in the centralized exchange. Duffie

and Zhu (2017) show that starting with a work-up trading session and then moving to

a price-discovery market improves welfare. However, Antill and Duffie (2021) find that

allowing size-discovery sessions over time alongside continuous price discovery harms

welfare. A more recent paper by Blonien (2023) shows whether the size discovery is bene-

ficial or not depends on trading frequency. Existing literature takes the market structure as

given, assuming the exogenous arrival rate of the decentralized trading mechanism, and

discusses its impact on welfare. This paper contributes to the literature by relaxing such

assumptions. The arrival of the decentralized market is endogenous and can give traders
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the highest welfare.

Finally, this paper is related to papers on transparency designs (Duffie et al., 2017; As-

riyan et al., 2017; Ollar et al., 2021; Back et al., 2020; Kakhbod and Song, 2020, 2022; Glebkin

et al., 2023; Cespa and Vives, 2023; Vairo and Dworczak, 2023). Existing literature consid-

ers the impact of transparency designs given exogenous market structure. We contribute

to the literature by allowing traders to choose the venue as a response to transparency de-

signs. Our model allows us to discuss the transparency designs on both dynamic market

choice and welfare.

2 Model

Market Structure Consider a market of one divisible risky asset and one risk-free asset as a

numéraire. The market has T rounds, and I ≥ 4 even number of short-lived traders arrive

each round. In each round before they trade, traders first choose the market structure M =

{CM,DM} that gives them the higher expected utility conditional on the price history

traders observe.3 The market structure can either be a centralized market (CM) where all

traders participate in the same exchange. The traders can also choose a decentralized market

(DM) where traders are matched with a counterparty according to an algorithm a la Irving

(1985). The matching is pairwise stable in the sense that no traders want to leave the

current counterparties and form a new pair. We assume that the traders will choose CM if

the DM and CM give them the same utility. This assumption ensures our following results

of dynamic market structure do not arise from the indeterminacy of the tie-breaking rule.

Traders choose DM only when they strictly prefer DM. 4

Information structure Each trader i’s value of the risky asset is θi,t ≡ dt+ei,t. The common

value part dt = u + ξft, where ft comes from the shocks to the asset fundamentals, u

comes from macro-level risks unrelated to the asset fundamentals such as interest rate

risk, and ξ measures the asset’s value sensitivity to the asset fundamentals relative to the

macro-level risks. The higher ξ, the more sensitive the security to shocks to the asset

fundamentals. Without loss of generality we normalized dt to have a standard normal

3Please refer to the information structure for the details of the price history.
4This assumption also simplifies the analysis by avoiding the coexistence of both CM and DM. The

coexistence of both market structures can be studied in this paper by having CM and DM coexist if traders
in one market structure are worse off shifting to the other. See Section 7 for a discussion.
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distribution, dt ∼ N (0, 1), u ∼ N (0, 1
1+ξ2

) and ft ∼ N (0, 1
1+ξ2

).5 ft is time-varying given the

growth of the underlying asset, e.g. firm issuers. It follows an AR(1) process ft = κft−1+yt,

where κ ∈ [0, 1], yt ∼ N (0, (1−κ2) 1
1+ξ2

) is the innovation independent of any other random

variables. κ measures the autocorrelation of the shocks across rounds. ei,t ∼ N (0, ϵ2)

captures the heterogeneity of traders’ value. ei,t is independent of u and ft. By assumption

the mean of θi,t is normalized as E[θi,t] = 0. Denote the variance of θi,t as σ2
θ ≡ 1 + ϵ2. We

allow ei,t to be correlated across traders, such that {θi,t}i has the joint correlation matrix at

round t,

Ct ≡


1 ρ1,2,t . . . ρ1,I,t

ρ2,1,t 1 . . . ρ2,I,t
...

... . . . ...

ρI,1,t ρI,2,t . . . 1

 .

To simplify the analysis, we assume that for any trader i, there is only one trader j ̸= i

whose value correlates ρℓ with trader i, and any other traders k ̸= j, i has value correlation

ρi,k > ρℓ with trader i. Later in Section 3, we will see that this assumption ensures unique

pairwise matching a la Irving (1985).

Following Rostek and Weretka (2012), the market is equicommonal by assumption,

i.e. the average correlation between any trader i and the residual market is the same,
1

I−1

∑
j ̸=i ρi,j,t = ρ̄t.

Traders are uncertain about the asset value θi,t and cannot observe u, {ft}t and {ei,t}i,t.
After they choose the market structure and before their trading, each trader observes a

private noisy signal about his true value θi,t, si,t = θi,t + εi,t, where εi,t ∼ (0, σ2σ2
θ). σ2

measures the relative importance of noise in the signal. Assume σ is sufficiently large,

σ ≥ ((2(I−1)
I

)1/3 − 1)−1/2.6

Traders can observe the current market price and submit demand contingent on that.

Besides the private signals and the current market price, traders can also observe the prices

in the CM in the past rounds. Traders cannot observe prices in the DM other than the price

in their current pair. We define the observed price history at round t as Ht ≡ {pCM
s }s<t.

5This normalization just ensures the comparative statics with ξ does not change anything else other than
the relative sensitivity with respect to two risks. In particular, it does not change the traders’ value variances.
The normalization is to ensure the comparative analysis is rigorous, but is not necessary to generate all the
results in the paper.

6This assumption is a sufficient but not necessary condition to generate all the results in the paper. This
is to avoid the nonmonotonicity of utility to σ and to simplify the proof of Lemma 3. It ensures the utility
decreases with noise σ. (See Vives (2011) for a discussion of the nonmonotonic impact of σ.) Numerically,
σ ≥ 2.63 is sufficient for any I ≥ 4. The bound can shrink significantly with large I and appropriate choice
of ρ̄ and ρℓ. We are working on decreasing the bound for σ in later versions of this paper.
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Given the symmetric market assumption, if the optimal market choice of all traders at

round t is CM, then the price history Ht+1 = Ht ∪ {pt}, otherwise, Ht+1 = Ht.

Preferences: The market is a double auction in a linear-normal setting. After the traders

choose the market structure, they submit a demand schedule qi,t, to maximize the payoffs

conditioning on the history of past round price information Ht, current round signal si,t,

and the current round price pt,

E[Ui,t|Ht, si,t, pt] = E[θi,tqi,t −
α

2
(qi,t)

2 − ptqi,t|Ht, si,t, pt].

The linear-quadratic utility function form follows the literature(Kyle, 1989; Rostek and

Weretka, 2012; Yoon, 2017), where α is trader’s risk aversion.

The centralized market clears with pt when
∑

i qi,t(pt) = 0. In the decentralized market,

after the traders are matched bilaterally in N = I
2

pairs, each pair n ∈ N clears indepen-

dently with pt,n when
∑

i∈I(n) qi,t(pt,n) = 0. This set-up of decentralized market structure

has a close mapping to markets in real life. In terms of the bond market, we use this de-

centralized trading mechanism to model the bilateral trade in the over-the-counter(OTC)

market. In terms of the stock market, we use this decentralized market trading mechanism

to model the dark pools operating as continuous non-displayed limit order books. This is

the type of dark pool with the largest market share (around 70%) of total U.S. dark pool

volumes in 2011 according to Tabb Group (2011). It includes many dark pools owned by

major broker-dealers. 7.

Timing: We summarize the timing of each round with Figure 1.

Figure 1: Timing

t
choose Mt

if Mt = DM ,
match with a counterparty

si,t realizes submit qi,t(·)
and market clears

t+1

3 Equilibrium

As the traders are short-lived, trading is static with a time-varying information set.

Therefore, we are subject to solving the model round by round forwardly given price his-

7There are other two types of dark pools, one derives price from the lit venues, and the other acts like
fast electronic market maker (Tabb Group, 2011; Zhu, 2014).
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tory Ht. In each round, the problem is solved with backward induction. First, we solve the

trading strategy given the market structure. Then, we solve each trader’s optimal market

structure choice, by comparing each trader’s expected utility in CM and DM. We apply

the tie-breaking rule of choosing CM when CM and DM give the trader the same utility.

By symmetry, each trader will have the same market choice and ex-ante expected utility.

Given the optimal market choice, we can determine the evolution of the price history.

3.1 Second Stage Trading Equilibrium

Denote the chosen market structure as M∗. By symmetry, choosing the market struc-

ture is equivalent to choosing the number of traders in the venue It,M∗ and the average

correlation across traders ρt,M∗ . It is easy to see that M∗ = CM , the number of traders in

the exchange is It,M∗ = It with an average correlation between any trader and the residual

market ρt,M∗ = ρ̄. If M∗ = DM , the number of traders in each pair is It,M∗ = 2 and every

pair clears independently. Without solving the ex-ante expected utility, we will not be able

to know each trader’s choice of counterparty. For now, let’s assume that the correlation

within each pair (i, j) is ρt,M∗ = ρi,j and solve the bilateral equilibrium. With the equilib-

rium strategy solved in the second stage, we can write the ex-ante utility as a function of

ρi,j in the first stage, and the trader j ̸= i that gives the trader i the highest ex-ante utility

will be the trader i’s counterparty.

Given the market structure M∗
t , at round t, traders submit a demand schedule qi,t to

maximize the utility

max
qi,t

E[θi,tqi,t −
α

2
(qi,t)

2 − ptqi,t|Ht, si,t, pt]

By taking first order condition with respect to qi,t, we can solve the trader i’s demand

schedule,

qi,t =
E[θi,t|Ht, si,t, pt]− pt

α + λi,t

(1)

where λi,t ≡ dpt
dqi,t

is the price impact. By symmetry, the price impacts are the same for

all traders in the same round λi,t = λt,∀i ∈ It,M∗ . We can parameterize E[θi,t|Ht, si,t, pt] =

cH,i,tHt+cs,i,tsi,t+cp,i,tpt. By symmetry, the inference coefficients are the same for all traders

in the same round, cH,i,t = cH,t, cs,i,t = cs,t and cp,i,t = cp,t.

In equilibrium, by market clearing condition, λt is equal to the inverse of the slope of

the residual demand,

λt = (−
∑
j ̸=i

dqj,t
dpt

) =
α + λt

(It,M∗ − 1)(1− cp,t)
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Given the parameterization, the equilibrium price is,

pt = (1− cp,t)
−1(cH,tHt + cs,ts̄t) (2)

where s̄t = 1
It,M∗

∑
i si,t is the average signal in the exchange (for DM, it’s the average

signal in each pair).

The trader i’s value θi,t, the equilibrium price pt given equation (2), the history Ht

and the private signal si,t are joint normally distributed. By projection theorem, the in-

ference coefficients cH,t, cs,t, and cp,t can be determined given the joint distribution of

(θi,t, si,t,Ht, pt).

We focus on linear Bayesian Nash equilibrium.

Theorem 1 (Trading Equilibrium). Given the price history Ht and the market structure M∗
t , the

equilibrium at round t can be characterized by a fixed point of inference coefficients,

cs,t =
1− ρt,M∗

1− ρt,M∗ + σ2

cH,t =
(1− ρt,M∗)σ2

(1− ρt,M∗ + σ2) (1 + (It,M∗ − 1)ρt,M∗ − It,M∗ηt)
τ ′
tΥ

−1
t

cp,t =
It,M∗(ρt,M∗ − ηt)σ

2

(1− ρt,M∗ + σ2) (1 + (It,M∗ − 1)ρt,M∗ − It,M∗ηt)

where ηt =
var(θi,t)−var(θi,t|Ht)

var(θi,t)
=

τ ′
t(Υt)−1τ t

σ2
θ

, τ t ≡ cov(Ht, θi,t) ∈ R|H|, and Υt ≡ cov(Ht,H′
t) ∈

R|H|×|H|.

The equilibrium price impact is

λt =
α

(It,M∗ − 1)(1− cp,t)− 1
, ∀i

The utility conditional on Ht for trader i is

E[UM∗

i,t |Ht] =
α + 2λt

2(α + λt)2
E[(E[θi,t|Ht, si,t, pt]−pt)

2|Ht] =
α + 2λt

2(α + λt)2
It,M∗ − 1

It,M∗

(1− ρt,M∗)2

1− ρt,M∗ + σ2
, ∀i

3.2 First Stage Market Choice

Given the trading equilibrium in Theorem 1, we can obtain the ex-ante utility of the

traders. By comparing the ex-ante utility of traders in DM and CM, we can determine the

optimal market choice.
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Ex-ante Utility in CM: If the market structure is CM, the ex-ante utility for trader i is

E[UCM
i,t |Ht] =

α + 2λCM
t

2(α + λCM
t )2

I − 1

I

(1− ρ̄)2

1− ρ̄+ σ2
∀i ∈ I (3)

where λCM
t = α

(It−1)(1−cp,t)−1
, cp,t =

It(ρ̄−ηt)σ2

(1−ρ̄+σ2)(1+(It−1)ρ̄−Itηt)
.

Ex-ante Utility in DM: For traders in the DM, we will need to first determine the trader

i’s counterparty a la Irving (1985). The trader j that gives trader i the highest utility is

matched with trader i. Given that the traders j ̸= i are ex-ante identical except for their

correlation with trader i, equivalently, this optimal choice of counterparty can be framed

as the optimal choice of ρi,j among the pairwise correlations {ρi,j}j ̸=i,

max
ρi,j |j∈I,j ̸=i

E[UDM
i,t (ρi,j)|Ht]

Lemma 1 (Ex-ante Utility With Respect to Correlation Across Traders). Keep everything else

constant, the ex-ante utility E[UM
i,t (ρ)|Ht] is decreasing in the correlation ρ.

By Lemma 1, the trader j with lowest correlation with i is matched as i’s counterparty.

By assumption, only one trader j has the lowest correlation ρℓ with trader i, so the algo-

rithm a la Irving (1985) generates a unique matching result. Given the matching result,

trader i’s ex-ante utility in DM is

E[UDM
i,t |Ht] =

α + 2λDM
t

4(α + λDM
t )2

(1− ρℓ)
2

1− ρℓ + σ2
∀i ∈ I (4)

where λDM
t = α

−cp,t
, cp,t =

2(ρℓ−ηt)σ2

(1−ρℓ+σ2)(1+ρℓ−2ηt)
.

3.3 Dynamic Equilibrium

Given the expected utility in DM and CM characterized by equations (3) and (4), if

E[UCM
i,t |Ht] ≥ E[UDM

i,t |Ht], then the optimal market choice at round t is CM and the price

history Ht+1 = Ht ∪ {pt}, otherwise, the optimal market choice at round t is DM and

Ht+1 = Ht. We have the following recursive algorithm to generate the equilibrium of

dynamic market choice through updates of Ht,

Theorem 2 (Algorithm for Dynamic Market Choice Equilibrium). The Bayesian Nash equi-

librium is a set of price history {Ht}t, a sequence of market choice {M∗
t}t, and a set of inference

coefficients {cs,t, cp,t, cH,t} that characterized forwardly recursively.
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1. Initialize with t = 1, H1 = ∅.

2. Given Ht, the equilibrium inference coefficients {cs,t, cp,t, cH,t} is characterized in Theorem

1 with ρt,M∗ = ρℓ It,M∗ = 2 if M∗ = DM , and ρt,M∗ = ρ̄ It,M∗ = I if M∗ = CM .

3. Given inference coefficients {cs,t, cp,t, cH,t}, If α+2λCM
t

2(α+λCM
t )2

It−1
It

(1−ρ̄t)2

1−ρ̄t+σ2 ≥ α+2λDM
t

4(α+λDM
t )2

(1−ρℓ)
2

1−ρℓ+σ2 ,

then M∗
t = CM , Ht+1 = Ht ∪ {pt}; otherwise, M∗

t = DM , Ht+1 = Ht. Repeat Steps 2-3

with the next t, until t=T.

The proof of Theorem 2 is immediate from the above analysis.

3.4 Price History Informativeness

One observation from Theorem 1 and Theorem 2 is that, the impact of the price history

Ht on the market choice can be summarized by a sufficient statistic, the informativeness

of the price history to the traders, ηt =
var(θi,t)−var(θi,t|Ht)

var(θi,t)
.8 It measures how much the price

history reduces the variance of each trader’s value. When the history has lower variance

or higher covariance with θi,t, ηt is higher.

Another observation is that the price history affects the current round utility only

through price impact. This is because, as all traders equally have access to the same price

history, their expected value updates by the same amount. The difference in the expected

value and the price will stay constant with any price history. The price impact will be the

only channel that the price history affects the current round demand schedule and utility.

Given the above observation that the price history informativeness ηt governs the im-

pact of past market choice on the current market choice, we will first discuss the impact of

ηt on the market choice before we analyze the dynamics. We have the following compara-

tive statics results for ηt.

Lemma 2 (Comparative Statics With Price History Informativeness η). Keeping everything

else constant, when η increases, the price impact λt decreases; and the ex-ante expected utility for

any trader i increases.

Lemma 2 shows the higher η improves liquidity and utility. When the price history

is more informative, the trader values the price history by more and the current price by

less. The residual market (the counterparty for the DM) requires a lower price increase to

8When Ht is a scalar, ηt is the square of the correlation between the price history Ht and any trader i’s
value θi,t.
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sell an additional unit to the trader given a more informative price history to calibrate the

asset value, i.e. price impact decreases. Utility increases with lower price impact.

When the price history is sufficiently informative and the traders’ value correlation is

sufficiently heterogeneous, the traders’ expected utility can be higher in the DM than in

the CM.

Lemma 3 (Optimal Market Choice at Round t). Given Ht, at round t,

1. E[uCM
i,t |Ht]− E[uDM

i,t |Ht] is decreasing in ηt;

2. if ρ̄ ≤ ρ̄∗ (I, ρℓ, σ
2), then any trader i will choose CM;

3. if ρ̄ > ρ̄∗ (I, ρℓ, σ
2), there exists η̃ (I, ρ̄, ρℓ, σ2) the any trader i will choose CM if ηt ≤ η̃, and

otherwise if ηt > η̃.

Figure 2 serves as an example to Lemma 3. It shows the comparison of current round

utility in CM versus DM with respect to trader value correlation and past price informa-

tiveness. We can see that when ρ̄ is low, the utility in CM is always higher than DM.

When ρ̄ is high, there exists η̃ such that DM gives the traders higher utility than CM. As η

increases, the utility difference between CM and DM decreases.

To understand the intuition of Lemma 3, we can decompose the trader i’s utility into

two parts, the liquidity effect and the learning-relative-to-market effect,

E[UM∗

i,t |Ht] =
α + 2λt

2(α + λt)2︸ ︷︷ ︸
liquidity effect

E[(E[θi,t|Ht, si,t, pt]− pt)
2|Ht]︸ ︷︷ ︸

learning-relative-to-market

The liquidity effect is inversely related to the price impacts. CM always has a higher

liquidity effect than the bilateral DM given a larger market size. 9 The learning-relative-

to-market effect is the ex-ante variance of the difference between the trader’s expected

value and the market price. It captures how much the trader’s value differs from the

market price, taking into account the adverse selection due to the learning of the residual

market (or the counterparty in the DM) from the price. Hereafter for simplicity, we call

it the learning effect. The learning effect decreases with the trader i’s correlation with the

9People may mistakenly take liquidity here as the transaction volume. We want to clarify that the liq-
uidity effect in this paper refers merely to the effect due to price impact but not the transaction volume.
Equation (1) implies that the transaction volume is determined by both liquidity and learning-relative-to-
market effect. Ex-ante, the variance of the transaction volume can be higher in DM than in CM when the
learning-relative-to-market effect is sufficiently large. Therefore, we may see higher transaction volume ex-
post with lower liquidity (high price impact) in the DM than in the CM.
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Figure 2: Utility in CM v.s. DM With Trader Value Correlation and Price History Informa-
tiveness

residual market. When the correlation is low, the trader i’s value is less correlated with the

residual market, the residual market will not increase the price by much due to adverse

selection, and therefore the learning effect is higher. When the correlation is sufficiently

low, the learning effect is higher in the DM.

The intuition for DM to be the optimal market choice with sufficiently high η and ρ is as

follows. The price history can decrease price impact both in the CM and DM. However, the

improvement in the DM is larger than the CM, as the price impact is already very low in

the CM, leaving less room for improvement. With sufficiently heterogeneous correlation,

i.e., ρ̄ > ρ̄∗ (I, ρℓ, σ
2), the enhancement in the learning effect becomes substantial. With

high enough price history informativeness η, the loss of liquidity is marginal. In such

instances, traders are inclined to opt for DM, prioritizing the valuable learning effect, even

if it entails a sacrifice in liquidity.

Lemma 3 implies that, given heterogeneous value correlation and sufficiently informa-

tive price history, the traders have incentives to shift to DM. When traders stay in CM for

a while, they may accumulate a long price history that has a high enough η for them to

shift to DM in the next round. But when the traders stay in the DM for a while, given the

opacity of DM, the price history informativeness η decays, incentivizing the traders to go

14



back to CM.

Lemma 2 and Lemma 3 will be useful later in analyzing the dynamic market choice

with respect to trader value correlations and asset properties.

4 Dynamic Market Choice

In this section, we will explore how market choices evolve dynamically. In particular,

we are interested in how trader value correlations and asset properties affect the dynamic

market choice.

4.1 Constant Market Choice

In this part, we discuss sufficient conditions for traders to choose only one market

structure in all rounds.

Homogeneous Correlation: First, let’s consider a simple case where the traders’ value

correlations are homogeneous. In this case, traders will always choose CM.

Proposition 1 (Homogeneous Correlation). When the traders value correlations are sufficiently

homogeneous ρ̄ ≤ ρ̄∗ (I, ρℓ, σ
2), traders will always stay in the CM.

The proof of Proposition 1 directly follows from Lemma 3, as no price history informa-

tiveness η will allow traders to choose DM . When the lowest correlation and the corre-

lation with all other traders are similar, the benefit of trading with one counterparty with

lower adverse selection in the DM is dominated by the loss of lower liquidity, regardless

of the price history. Thus the traders have no incentive to choose DM in any rounds. This

result is consistent with Yoon (2017), where the traders’ heterogeneous value correlation is

crucial for DM to exist.

Sufficiently Heterogeneous Correlation: On the opposite side, when the traders’ value

correlation is sufficiently heterogeneous, traders will always choose DM. If traders choose

DM in the first round, they will choose DM for all rounds.

Lemma 4 (DM persisitency). Keep everything else constant, if M∗
1 = DM , then M∗

t = DM for

all t.

Proof. Suppose traders choose DM over CM in round 1. Easy to see that η1 = 0. Given that

in each round primitives (I, ρ̄, ρℓ, σ
2) are the same, this means they prefer DM over CM if

ηt = 0. As DM is opaque, if ηt = 0 and traders choose DM at round t, then ηt+1 = 0. This

implies traders will always choose DM by forward induction. ■

15



Given Lemma 4, if we find sufficiently heterogeneous correlation makes traders choose

DM in the first round, then they will stay in DM for all rounds.

Proposition 2 (Sufficiently Heterogeneous Correlation). There exists ρ
ℓ
< 0 and ¯̄ρ > ρ̄∗ such

that for any ρℓ < ρ
ℓ

and ρ̄ > ¯̄ρ, traders will stay in the DM for all rounds.

4.2 Alternating Market Choices

The equilibrium becomes more interesting when we the traders’ value correlations are

neither too homogenous nor too heterogeneous. Alternating between CM and DM can

emerge endogenously as the optimal market choice. It’s also worth mentioning that the

optimal market choice generates the overall highest welfare, and Pareto dominates other

market choices. We find that the asset properties, including asset sensitivity to shocks to

fundamentals ξ, and the fundamental value predictability measured by autocorrelation κ,

are crucial for the market choices.

Proposition 3 (Heterogeneous Correlation and Asset Sensitivity). With heterogeneous cor-

relation ρ̄ > ρ̄∗ (I, ρℓ, σ
2), ρℓ ≥ 0, ϵ < ϵ̄(σ2, I), 3 ≤ T < T̄ (σ2, I, ϵ), and κ < κ̄(σ2, I, ϵ), there

exists ξ and ξ̄ such that such that traders will choose CM in the first round, and

1. When the asset sensitivity to shocks to fundamentals is sufficiently low ξ ∈ [0, ξ), the traders

shift to DM in the second round and stay there.

2. When the asset sensitivity to shocks to fundamentals is intermediate ξ ∈ [ξ, ξ̄), the traders

will alternate between CM and DM.

3. When the asset sensitivity to shocks to fundamentals is sufficiently high ξ ∈ [ξ̄,∞), the

traders will always stay in the CM.

Intuitively, when traders’ value correlations are heterogeneous, i.e., when ρ̄ and ρ̄ℓ are

sufficiently different, the traders have incentives to shift to DM by our previous analy-

sis. To further understand this result with respect to asset sensitivity, let’s consider the

following three-round example.

Example 1 (Three-round Market). We consider a market with T = 3. Assume that ρℓ > 0, such

that in the 1st round the DM does not exist and the traders will always choose CM. And any pair

of traders that don’t have correlation ρℓ have value correlation ρh > ρℓ.

Figure 3 shows the market choice of the traders in the 2nd and 3rd round. In the Appendix, we

also provided the price history informativeness in the 2nd and 3rd rounds with respect to ξ.
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Figure 3: Dynamic Market Choice With Respect to Asset Sensitivity ξ in T = 3 Market

Note: The black solid line plots the difference between the ex-ante expected utility of DM and that of CM
in the 2nd round, and the black dotted line plots that difference in the 3rd round. The red dashed line is a
reference line of 0. When the black solid(dotted) line is above the reference line, then the traders choose DM
in the 2nd round(3rd round), and if it is below the reference line, the traders choose CM in the 2nd round(3rd
round). The jump in the difference of utility in CM v.s. DM in the third round comes from the difference in
the second-round choice.
In region A, i.e. ξ ∈ [0, ξ), traders choose DM in both 2nd and 3rd round. In region B, i.e. ξ ∈ (ξ, ξ̄] and in the
lower partition, traders choose DM in the 2nd round and CM in the 3rd round. In region C, ξ ∈ (ξ, ξ̄] and in
the higher partition, traders choose CM in the 2nd round and DM in the 3rd round. In region D, ξ ∈ (ξ̄, 1],
traders choose CM in both the 2nd round and the 3rd round.
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Region A: When the asset sensitivity is low, this implies the asset value is less susceptible to shocks

to fundamentals and more correlated across rounds. This also implies that the price history is

more informative to the traders. A more informative price history can lower the price impact and

increase liquidity effect and utility. Such an increase is higher for DM than CM, as CM is already

very liquid thus leaving less room for liquidity improvement. The higher liquidity improvement

in DM can decrease the loss of liquidity effect for choosing DM and be dominated by the gain in

learning effect. This gives rise to a shift to DM in the 2nd round.

When the asset sensitivity is sufficiently low, ξ ∈ [0, ξ), traders will continue to stay in DM in

the 3rd round, as the 1st round price is still informative enough for them to enjoy a higher learning

effect at just a bit higher price impact in DM.

Region B: However, when the asset sensitivity is not sufficiently low, i.e., ξ ∈ [ξ, ξ̄), traders will

alternate between DM and CM. traders will choose DM in the second round and choose CM in

the 3rd round. As the asset value is not that stable across time and traders don’t know the DM

price, the price in the 1st round becomes stale and not informative enough for the 3rd round values.

The liquidity difference in CM and DM again becomes large, making traders shift back to CM for

liquidity improvement at a loss of learning effect.

Region C: When the asset sensitivity is high but not high enough, i.e., ξ ∈ [ξ, ξ̄) and higher than

that in Case 2, traders will still alternate between DM and CM. Traders will choose CM in the first

two rounds and shift to DM in the last round. This is because the asset sensitivity is not low such

that traders will choose CM in the second round for higher liquidity. However, the asset sensitivity

is not sufficiently high, given traders’ access to both the 1st round and 2nd round price in CM, the

price history is sufficiently informative for the liquidity in the DM to be close enough to CM in

the 3rd round. The traders shift to DM in the 3rd round for a better learning effect at a bit cost of

liquidity effect.

Region D: When the asset sensitivity is sufficiently high, i.e., ξ ∈ [ξ̄,∞), traders will stay in

the CM for both the 2nd and 3rd round. This is because the value of assets changes frequently

across time, making price history not informative enough to largely boost the liquidity in the DM.

Therefore, the liquidity difference between the DM and CM remains large, preventing the traders

from choosing DM for the benefit of the learning effect.

To summarize, Example 1 shows how the asset sensitivity affects the informativeness

of the price history η, and then affects the liquidity effect and therefore current market

choice. Past prices in the CM increase η and lower price impact. A high learning effect

(lower adverse selection) pushes traders to the DM. However, DM opacity can lower η

and push traders back to the CM. These intuitions from Example 1 can be extended to
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more than 3 rounds. Figure 4 shows the evolution of price history informativeness and

market choice with T = 10 with respect to different levels of asset sensitivities. When the

marker is above(below) the reference line η̃ which is defined by Lemma 3 and calculated

according to trader value correlations, then traders choose DM(CM).

Figure 4: Evolution of Price History Informativeness For Different Asset Sensitivities

Note: This figure shows the evolution of price history informativeness for different level of asset sensitivity ξ
for T = 10. The black dashed line is a reference line of threshold η̃. When the marker is above the reference
line, then the history informativeness in that round is higher than η̃ and traders choose DM. If the marker is
below the reference line, then the history informativeness in that round is lower than η̃ and traders choose
CM.

We would like to clarify that the mechanism for alternating market choice does not

come from the tie-breaking rule which we do not impose any indeterminacy. It also differs

from the mechanism as in Yoon (2017) where (i) traders in the DM do not access CM

price; and (ii) marginal trader’s (weak) indifference between DM and CM gives rise to

coexistence. In this paper, traders choose DM when DM gives them a strictly higher utility

than CM. DM emerges endogenously as a result of learning from price history, and fades

endogenously when the price history becomes uninformative.

Proposition 3 is consistent with our real life observations. Securities that are designed
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to be insensitive to issuers’ fundamentals, like bonds, are firstly traded in the centralized

primary market and then mostly traded in the secondary over-the-counter market. Secu-

rities that are relatively more sensitive to issuers’ fundamentals, like equities, are mostly

traded in the centralized market, sometimes traded in dark pools. Securities that by design

are most sensitive to issuers’ fundamentals, like options, are only traded in the centralized

market.

Proposition 4 (Heterogeneous Correlation and Autocorrelation). With heterogeneous corre-

lation ρ̄ > ρ̄∗ (I, ρℓ, σ
2), ϵ < ϵ̄(σ2, I), 3 ≤ T < T̄ (σ2, I, ϵ), and ξ > ξ(σ2, I, ϵ), there exists κ and

κ̄ such that traders will choose CM in the first round, and

1. When the autocorrelation is sufficiently low κ ∈ [0, κ], the traders will always stay in the

CM.

2. When the autocorrelation is intermediate κ ∈ (κ, κ̄], the traders will alternate between CM

and DM.

3. When the autocorrelation is sufficiently high κ ∈ (κ̄, 1], the traders will choose DM over CM

in the second round and never choose CM again.

Figure 5 shows the market choice of the traders in the 2nd and 3rd round in Example

1 with respect to autocorrelation κ. In the Appendix, we also provided the price history

informativeness in the 2nd and 3rd rounds with respect to κ. Similar to the analysis of

Proposition 3, the intuition for Proposition 4 also works through the dynamics of the price

history informativeness η. The price history informativeness η is increasing in autocor-

relation κ. When autocorrelation is higher, this means the values are more stable across

rounds, the price history is more informative, and the traders are more likely to shift to

DM. The intuition of Example 1 also applies to a market with more rounds. Figure 6 shows

the evolution of price history informativeness and market choice for a T = 10 round mar-

ket with respect to different levels of autocorrelation. When the marker is above(below)

the reference line η̃ which is defined by Lemma 3 and calculated according to trader value

correlations, then traders choose DM(CM).

The autocorrelation κ captures the predictability of the fundamentals. Proposition 4

implies that when the shocks are more predictable, i.e. high κ, then the traders are more

likely to trade in DM. The implication of Proposition 4 is consistent with some existing

empirical literature. Both Menkveld et al. (2017) and Buti et al. (2022) find that the market

share of the dark pools (corresponding to DM in our model) relative to the lit venues

(corresponding to CM in our model) decreases when the market is more volatile.
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Figure 5: Dynamic Market Choices With Respect to Autocorrelation κ in T = 3 Market

Note: The black solid line plots the difference between the ex-ante expected utility of DM and that of CM
in the 2nd round, and the black dotted line plots that difference in the 3rd round. The red dashed line is a
reference line of 0. When the black solid(dotted) line is above the reference line, then the traders choose DM
in the 2nd round(3rd round), and if it is below the reference line, the traders choose CM in the 2nd round(3rd
round). The jump in the difference of utility in CM v.s. DM in the third round comes from the difference in
the second-round choice.
In region E, i.e. κ ∈ [0, κ], traders choose CM in both 2nd and 3rd round. In region F, i.e. κ ∈ (κ, κ̄] and in the
lower partition, traders choose CM in the 2nd round and DM in the 3rd round. In region G, κ ∈ (κ, κ̄] and in
the higher partition, traders choose DM in the 2nd round and CM in the 3rd round. In region H, κ ∈ (κ̄, 1],
traders choose DM in both the 2nd round and the 3rd round.
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Figure 6: Evolution of Price History Informativeness For Different Autocorrelations

Note: This figure shows the evolution of price history informativeness for different levels of autocorrelation
κ for T = 10. The black dashed line is a reference line of threshold η̃. When the marker is above the reference
line, then the history informativeness in that round is higher than η̃ and traders choose DM. If the marker is
below the reference line, then the history informativeness in that round is lower than η̃ and traders choose
CM.
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We also want to clarify the difference between asset sensitivity and value predictabil-

ity. Even if the issuer’s value has low predictability, it is possible for the issuer to design

securities that have low asset sensitivity to be traded in the DM.

4.3 Proportion of Time in CM

Figure 7 shows the proportion of time when traders choose CM with respect to asset

sensitivity ξ and autocorrelation (or shock predictability) κ. Unsurprisingly, we find that

the proportion of time in CM increases with ξ, and decreases with κ. The patterns are

consistent with our intuition for Propositions 3 and 4.

Figure 7 also shows the proportion of time when traders in CM with respect to rounds

T . Numerically, we find that alternating market choice between DM and CM is in general

more prevalent as trading round T increases. Note that with a small probability the pro-

portion of time in CM with smaller T can be lower than that with larger T , this is because

the last round can end at different stages of an alternating cycle.

Intuitively, with longer T the price history informativeness η increases as its length

accumulates, and it is more likely for traders to choose DM over CM. This implies assets

with shorter terms are more likely to be traded in the centralized market, e.g. most options

are less than 90 days. Assets with the longer term are more likely to be traded in the

decentralized market or alternating market structure, e.g. bonds have maturities as long

as 30 years, and equities usually don’t have maturity.

Figure 7: Proportion of Time in CM

(a) Asset sensitivity ξ (b) Autocorrelation κ
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5 Transparency and Dynamic Market Choice

So far, we have assumed that DM is opaque, i.e. future traders cannot see prices in

DM and traders in DM cannot see prices in other pairs. In this section, we will consider

introducing transparency designs in DM.

It is of policy interest to discuss the impact of transparency on the market structures

and welfare. In reality, traders have post-trade transparency in some decentralized mar-

kets, e.g. TRACE in the bond market, and blockchain technology in the crypto market.

Some decentralized trading mechanism allows pre-trade transparency, e.g. request-for-

quote. However, some decentralized markets are relatively opaque, e.g. dark pools for

equities. The lack of transparency in dark pools has received critique and policy attention.

However, the impact of introducing transparency to dark pools remains unclear. Our dy-

namic model allows us to explore the impact of transparency designs on traders’ market

choices and welfare.

5.1 Post-trade Transparency

In this section, we will consider introducing post-trade transparency to DM, i.e., prices

in DM will enter the price history and affect future market choices.

It is easy to see that Theorem 1 still applies to equilibrium with post-trade transparency.

Denote the number of trading pairs in the DM as N = I
2
, and each trading pair as n. We can

slightly modify the price updating rule in Theorem 2 to characterize the new equilibrium.

Theorem 3 (Algorithm for Dynamic Market Choice Equilibrium with Post-trade Trans-

parency). The Bayesian Nash equilibrium is a set of price history {Ht}t, a sequence of market

choice {M∗
t}t, and a set of inference coefficients {cs,t, cp,t, cH,t} that characterized forwardly recur-

sively.

1. Initialize with t = 1, H1 = ∅.

2. Given Ht, the equilibrium inference coefficients {cs,t, cp,t, cH,t} is characterized in Theorem

1 with ρt,M∗ = ρℓ It,M∗ = 2 if M∗ = DM , and ρt,M∗ = ρ̄ It,M∗ = I if M∗ = CM .

3. Given inference coefficients {cs,t, cp,t, cH,t}, If α+2λCM
t

2(α+λCM
t )2

It−1
It

(1−ρ̄t)2

1−ρ̄t+σ2 ≥ α+2λDM
t

4(α+λDM
t )2

(1−ρℓ)
2

1−ρℓ+σ2 ,

then M∗
t = CM , Ht+1 = Ht ∪ {pt}; otherwise, M∗

t = DM , Ht+1 = Ht ∪ {pn,t}n, where

pn,t is the equilibrium price of bilateral trading pair n. Repeat Steps 2-3 with the next t, until

t=T.
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The proof of Theorem 3 follows the analysis in Section 3.

First, we explore the impact of post-trade transparency on traders’ optimal market

choice. Perhaps surprisingly, we find that with post-trade transparency, traders will stay

in DM once they have chosen it. This is because the price history informativeness η never

decays, attracting traders to stay in DM.

Proposition 5 (Post-trade Transparency: Once DM, Always DM). With post-trade trans-

parency, if M∗
t = DM , then M∗

τ = DM , ∀τ ≥ t.

By Proposition 5, the potential dynamic market choices will be (i) choosing DM for all

rounds; (ii) choosing CM at first and DM thereafter; and (iii) choosing CM for all rounds.

Alternating back and forth between DM and CM is no longer an optimal dynamic market

choice. Note that this result is different from Lemma 4 which only describes one possible

market choice, i.e., DM persists when traders choose DM in the first round. Proposition 5

implies, if we introduce post-trade transparency in dark pools, the traders will not return

to the centralized market.

Still, regardless of its impact on the market choice, post-trade transparency in DM

weakly increases the overall welfare.

Proposition 6 (Post-trade Transparency Improves Welfare). Post-trade transparency weakly

improves welfare regardless of market choices.

Post-trade transparency in DM does not affect the utility of traders when they choose

CM, but can weakly increase welfare when they choose DM. The intuition is as follows.

ηpostt with post-trade transparency will always be weakly higher than ηt without post-trade

transparency, as the DM prices are informationally equivalent to the average signal of each

bilateral pair, which is at least as informative as the centralized market price in the same

round if traders choose CM without post-trade transparency. Given ηpostt ≥ ηt, any market

choice without post-trade transparency will not give traders higher utility than DM with

post-trade transparency. Given that traders are ex-ante identical, the welfare improvement

is Pareto.

5.2 Pre-trade Transparency

In this section, we will consider introducing pre-trade transparency in DM. We allow

traders in each pair to not only submit demand schedules contingent on their price but also

the prices in other pairs. Their demand schedule in DM at round t will be qi,t(pt) : RN → R,
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where pt ∈ RN is the vector all prices in all pairs whose nth element is the price in pair n at

round t, pn,t. For tractability, besides that each trader will have a correlation ρℓ with only

one trader, we further assume that each trader has a correlation ρh with all other traders

in the same round.

5.2.1 Equilibrium Characterization with Pre-trade Transparency

It’s easy to see that given history Hi,t, the trading equilibrium in CM will not be affected

by the pre-trade transparency in DM. We can still apply Theorem 1 to characterize CM

equilibrium. We need to solve for the new trading equilibrium for DM.

With pre-trade transparency, traders in the DM will have access to prices from other

pairs and submit demand schedules contingent on them. Trader i ∈ I(n) submit demand

schedule qi,t(pt) : RN → R to maximize the expected utility conditional on the history Ht,

private signal si,t, and

max
qi,t(pt)

E[θi,tqi,t −
1

2
αq2i,t − pn,tqt|pt,Ht, si,t]

trader i ’s first-order condition as

qi (pt) =
E[θi,t|pt,Ht, si,t]− pn,t

α + λi,t

where λi,t is the trader i’s price impact within pair n. Trader i also has cross-pair price

impact as traders from other pairs will change their bids when price pn changes with i’s

bid. Trader i’s price impact over all pairs can be described with a price impact matrix

Λi,t = ( dp
dqi,t

) ∈ RN×N , where the nth diagonal elements is λi,t. Each trader i ’s price impact

matrix is equal to the transpose of the Jacobian of trader i’s inverse residual supply:

(Λi,t)
′ =

(
−
∑
j ̸=i

dqj,t

dpt

)−1

We can parameterize E[θi,t|pt,Ht, si,t] = cH,i,tHt+ cs,i,tsi,t+cp,i,tpt. cH,i,t ∈ R1×|Ht|, cs,i,t ∈ R,

and cp,i,t ∈ R1×N . Given symmetry within each pair, cH,i,t = cH,n,t, cs,i,t = cc,n,t, cp,i,t = cp,n,t

and λi,t = λn,t.

Given the market clearing condition,
∑

i∈I(n) qi,t(pt) = 0, and trader symmetry within
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exchanges, we have the equilibrium price in all pairs in vector form,

pt = (Id−Cp,t)
−1 (CH,tHt +Cs,ts̄t) ,

where Cs,t = diag (cs,n,t)n ∈ RN×N ,CH,t = (cH,n,t)n ∈ RN×|Ht|,Cp,t = (cp,n,t)n ∈ RN×N .

s̄t ∈ RN is the average signals for all pairs, where the nth element is the average signal in

pair n.

Given that value θi,t, private signal si,t, prices pt, and price history Ht are jointly nor-

mally distributed, we can solve the inference coefficients through projection theorem.

Theorem 4 (DM Trading Equilibrium with Pre-trade Transparency). The equilibrium in DM

with pre-trade transparency can be characterized by the inference coefficients Cs,t = diag (cs,n,t)n ∈
RN×N ,CH,t = (cH,n,t)n ∈ RN×|Ht|,Cp,t = (cp,n,t)n ∈ RN×N ,

Cs,t = diag

(
1− ρn,t

1− ρn,t + σ2

)
n

CH,t = diag

(
(1− ρn,t)σ

2

2(1− ρn,t + σ2)

)
n

(C̄t − 11′η)−11τ ′
tΥ

−1
t

Cp,t = diag

(
σ2

1− ρn,t + σ2

)
n

(
Id− diag

(
1− ρn,t

2

)
(C̄ − 11′η)−1

)

ηt =
τ ′
tΥ

−1
t τ t

σ2
θ

is price history informativeness. C̄ = cov(θ̄t,θ̄
′
t)

σ2
θ

∈ RN×N is the correlation of pairwise

average values across all pairs, where θ̄t ∈ RN is the vector of average value per trading pair where

the nth value is θ̄n,t =
∑

i∈I(n) θi,t.

The price impact for trader i in pair n is

λn,t =
(((

(Id−Cp,t)
−1)

nn

)−1 − 1
)−1

α.

where (A)nn is an operator that gives the nth diagonal element of matrix A.

The expect utility for trader i in pair n conditional on the price history is

E[UDM
i,t |Ht] =

α + 2λt

2(α + λt)2
E[(E[θi,t|Ht, si,t,pt]− pt,n)

2|Ht] =
α + 2λn,t

2(α + λn,t)2
1

2

(1− ρn,t)
2

1− ρn,t + σ2

Thoerem 4 shows that the price history’s impact on the current round utility is still

through price impact, and can be summarized by the sufficient statistic, price history in-

formativeness ηt.

Our next question is, will pre-trade transparency change the matching results in DM?
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We find that the expected utility is still monotonic in the correlation ρn,t (see Lemma 5).

Therefore, each trader will be matched with the counterparty that has the lowest correla-

tion ρℓ, same as the matching results in Section 3.

Lemma 5 (Monotonicity of Utility with Pre-trade Transparency). With pre-trade transparency,

E[UDM
i,t |Ht] is monotonically decreasing in ρn,t.

Given that introducing pre-trade transparency does not change the matching results in

DM, and the price history update rule remains the same, we can still apply Theorem 2 to

characterize the equilibrium.

5.2.2 Pre-trade Transprarency’s Impact on Market Choice and Welfare

With the equilibrium characterization, we would be able to discuss the impact of pre-

trade transparency on market choice and welfare.

First, we find that given price history Ht, introducing pre-trade transparency always

weakly increases the utility for all traders in DM.

Lemma 6 (Pre-trade Transparency Increases DM Utility). Given price history Ht, introducing

pre-trade transparency weakly increases the utility for all traders in DM.

Given Lemma 6, it’s intuitive that everything else constant, it’s more likely for traders

to choose DM over CM as the threshold history informativeness η̃ for traders to opt for

DM is weakly lower.

Proposition 7 (Pre-trade Transparency Precipitates DM). With pre-trade transparency, (i)

the first time for traders to choose DM is no later than without transparency; (ii) if the round

traders firstly choose DM is the same as the round traders firstly choose DM without pre-trade

transparency, then they stay in DM for weakly longer.

The fact that pre-trade transparency can make traders choose DM earlier creates nu-

ances in terms of welfare. By Lemma 6 we know that transparency increases utility for

traders in DM given the price history. However, choosing DM earlier and staying longer

can potentially decrease the price history informativness and welfare in later rounds. Pre-

trade transparency can bring down welfare when the loss of history informativeness dom-

inates the benefit in DM.

Proposition 8 (Pre-trade Transparency and Welfare). 1. For sufficiently heterogeneous trader

value ρℓ < ρ
ℓ
< 0 and ρ̄ > ¯̄ρ , pre-trade transparency weakly improves welfare.
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2. For sufficiently homogenous trader value, ρ̄ < ρ̄∗,pre(I, ρℓ, σ
2), pre-trade transparency does

not change welfare.

3. When traders’ value correlations are neither sufficiently heterogeneous nor sufficiently ho-

mogenous, pre-trade transparency can decrease welfare when the number of rounds T is

sufficiently large, asset sensitivity ξ is low, or autocorrelation κ is high.

Intuitively, Proposition 8.1 corresponds to the constant DM choices both with and with-

out pre-trade transparency, and given Lemma 6, pre-trade transparency should always

weakly increase welfare. Proposition 8.2 corresponds to the constant CM choices both

with and without pre-trade transparency. As traders don’t choose DM, pre-trade trans-

parency does not change welfare.

The impact of pre-trade transparency on welfare is ambiguous when traders’ value

correlation heterogeneity is of intermediate level (Proposition 8.3). This is when traders

can have alternating market choices in the benchmark model. Despite that DM utility is

higher with pre-trade transparency, price history informativeness may be lower as traders

are more likely to choose DM earlier with pre-trade transparency. Figure 8 shows the dif-

ference between welfare with pre-trade transparency and welfare with opaque DM with

respect to asset sensitivity ξ, autocorrelation κ and the number of rounds T . When the

number of rounds T is large, and the asset value is stable either due to low sensitivity ξ or

high shock predictability (autocorrelation) κ, low price history informativeness has a per-

sistent and long-run impact. With these conditions, the loss of price history informative-

ness dominates the utility gain in DM, making pre-trade transparency welfare-decreasing.

This welfare result contrasts Vairo and Dworczak (2023) where they find pre-trade

transparency always improves welfare. The key difference is that they focus on the impact

of transparency given the decentralized market structure, but we endogenize the impact

of pre-trade transparency on dynamic market choice and highlight the loss in price history

informativeness.

6 Empirical Evidence

The model provides us with testable predictions. It shows that a higher asset auto-

correlation can lead to market fragmentation (Proposition 4). To test this prediction, we

collected data for equities traded in exchanges, alternative trading systems (ATS), and

over-the-counter(OTC) markets.
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Figure 8: The Difference Between Welfare With Pre-trade Transparency and Welfare With
Opaque DM

(a) Asset sensitivity ξ

(b) Autocorrelation κ

Note: Each black line plots the welfare with pre-trade transparency minus the welfare with opaque DM. The
red dash line is a reference line of 0. If the black line is higher than (or at) the reference line, then pre-trade
transparency (weakly) improves welfare, otherwise, it decreases welfare.
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We obtain the ATS weekly summary of transaction volumes from FINRA and Ex-

change and OTC equity prices and transaction volumes from Wharton Research Data Ser-

vice(WRDS). Our sample period is 2019-2022. We classify the lit exchanges as CM, e.g.,

Nasdaq, and NYSE. We classify ATS (e.g., Credit Suisse Crossfinder, Instinet) and OTC as

DM.10 We consider two samples for the regression and construct variables for each sam-

ple respectively. The first sample is the full sample that includes all equities traded in

all venues. There is a concern that some equities may be restricted to be traded only in

CM or DM due to regulations, preventing traders from changing their venues as the mo-

del assumption. To mitigate the influence of the venue restrictions on our identification,

we consider another sample, which includes those equities that have ever been traded in

both CM and DM during 2019-2022. We drop singleton observations of equities with only

one-week transaction in both samples.

We construct the dependent variable DMsharei,t, which is the transaction volume of

equity i in DM as a proportion of the total transaction volume of equity i in all venues in

week t. Given that lower κ implies higher volatility in values, we use the price volatility

in the last 100 days V olatility[d−100,d] as a proxy for κ, which is constructed as follows.

We first calculate the standard deviation of the close price pi,d in the last 100 trading days

[d−100, d], and then take the weekly average of it for each equity i and week t.11 We winsor

the top and bottom 1% to avoid the impact of extreme values.

We use the following regression to test the model prediction in Proposition 4 with both

the full sample and a smaller sample of equities traded in both DM and CM,

DMsharei,t = βV olatility
[d−100,d]
i,t + δi + γt + εi,t (5)

where δi are equity fixed effects, γt are week fixed effects, and εi,t are robust standard

errors.

One concern is that traders’ market choices may affect the price fluctuations. It can

cause reverse causality and weaken our identification results. Therefore, we construct the

lagged price volatility V olatility
[d−200,d−101]
i,t as an instrumental variable (IV). V olatility

[d−200,d−101]
i,t

is the weekly average of the standard deviation of the close price pi,d between trading day

[d − 200, d − 101] for each equity i in week t. We winsor the top and bottom 1% to avoid

the extreme value.

10Please refer to FINRA equity ATS Firms and SEC Form ATS-N Filings and Information for a complete
list and more detailed information of current and past ATS for equities.

11As some OTC equities are not traded frequently, not all trading days have close prices. We use the
midpoint of the best bid and ask prices on each trading day as the close price.
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Table 1 shows the summary of statistics of the variables. The average proportion traded

in DM is 57.27% over the full sample and 10.94% for equities ever traded in both DM and

CM. The price volatility and its IV on average are 4.190 and 4.164 respectively for the full

sample. For equities traded in both DM and CM, the price volatility and its IV on average

4.652 and 4.709 respectively.

Figure 9 shows the average price volatility and DM share weighted by each equity’s

total transaction volume in 2019-2022. We find that the proportion of volume traded in

DM is inversely related to the volatility.

Figure 10 shows the average price volatility for each equity by their DM share. We can

see that the average volatility is the highest for equities only traded in CM, lower for the

equities traded in both DM and CM, and lowest for equities traded in DM only.

Table 2 shows the regression results of equation (5). Panel A shows the OLS regression

results, where we can see that for both the full sample and the restricted sample with eq-

uities traded in CM and DM, the volatility is negatively correlated with the proportion of

transaction volume in DM. Panel B-D shows the two-stage least-square (2SLS) regression

results using the V olatility[d−200,d−101] as an IV. Panel B shows the reduced-form results

with the IV as the independent variable. Panel C shows the first stage of 2SLS regression

which indicates the IV is strongly correlated with V olatility[d−100,d]. Panel D shows the

second stage of 2SLS regression. We find that the volatility significantly decreases the pro-

portion of transaction volume in DM, and the magnitude is larger than the OLS regression

results.

Table 1: Summary of Statistics

Full Sample
Variable Obs Mean Std. Dev. Min Max
DMshare(%) 3,451,675 57.27 45.39 0 100
V olatility[d−100,d] 3,451,675 4.190 13.20 6.70e-05 111.7
V olatility[d−200,d−101] 3,451,675 4.164 12.65 4.61e-05 105.0

Equities Traded in CM & DM
Variable Obs Mean Std. Dev. Min Max
DMshare(%) 1,651,680 10.94 12.83 0 100
V olatility[d−100,d] 1,651,680 4.652 9.033 6.70e-05 111.7
V olatility[d−200,d−101] 1,651,680 4.709 9.038 4.61e-05 105.0
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Figure 9: Volatility and DM Share in 2019-2022

Note: This figure shows the average volatility and weekly DM share (ATS+OTC transaction volume share)
weighted by each equity’s total transaction volume in CM and DM during 2019-2022.
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Figure 10: Volatility of Each Equity by DM Share

Note: This figure shows the average volatility for each equity during 2019-2022 by their average DM share.
We classified the lit exchanges as CM, and ATS or OTC as DM. The dark box plots the volatility between
[t − 100, t]. The lighter box plots the IV, volatility between [t − 200, t − 100]. The lower and the upper end
of the box are values at 25% and 75% percentile. The white line in the box indicates median value. And the
lower and upper end of whiskers are lower and upper adjacent values.
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Table 2: The Impact of Equity Volatility on DM Volume Share

Panel A. OLS
Dependent Variable: DMshare Full CM&DM

V olatility[t−100,t] -0.00372*** -0.0172***
(0.000397) (0.00189)

Week FE Yes Yes
Equity FE Yes Yes
Observations 3,451,675 1,651,680
R-squared 0.982 0.546

Panel B. Reduced
Dependent Variable: DMShare Full CM&DM

V olatility[t−200,t−101] -0.00291*** -0.0129***
(0.000419) (0.00173)

Week FE Yes Yes
Equity FE Yes Yes
Observations 3,451,675 1,651,680
R-squared 0.982 0.546

Panel C. First Stage of 2SLS
Dependent Variable: V olatility[t−100,t] Full CM&DM

V olatility[t−200,t−101] 0.154*** 0.290***
(0.00277) (0.00344)

Week FE Yes Yes
Equity FE Yes Yes
Observations 3,451,675 1,651,680
R-squared 0.743 0.775

Panel D. Second Stage of 2SLS
Dependent Variable: DMshare Full CM&DM

V olatility[t−100,t] -0.0189*** -0.0447***
(0.00274) (0.00599)

Week FE Yes Yes
Equity FE Yes Yes
Observations 3,451,675 1,651,680
R-squared 0.982 0.546
Cragg-Donald Wald F statistic 3100 7097

Note: This table shows the impact of equity volatility on the proportion of volume traded in the DM versus
CM. Robust standard errors are included in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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7 Conclusion and Discussions

This paper presents a model examining the dynamic market choice between central-

ized and decentralized markets, where arriving traders must decide between a centralized

market and a bilaterally matched decentralized market in each period. The emergence

of dynamic market choice is observed as a consequence of learning from the centralized

market price history. Optimal market choices, influenced by asset properties, include

switching between centralized and decentralized markets when traders’ value correla-

tion is moderately heterogeneous. In cases where asset values are insensitive to shocks or

shocks are predictable, traders alternate between centralized and decentralized markets or

remain in the decentralized market after one round in the centralized market. Conversely,

when asset values are sensitive to unpredictable fundamentals, traders choose to stay in

the centralized market.

Additionally, we explore the impact of introducing transparency in the opaque de-

centralized market on traders’ market choices. Our findings indicate that post-trade trans-

parency encourages traders to stick with the decentralized market once chosen. Despite its

influence on market choices, post-trade transparency improves welfare. We find that pre-

trade transparency will make the traders choose DM earlier. However, the welfare effect

is ambiguous. Pre-trade transparency can decrease welfare when the number of rounds is

large and when the asset value is stable due to insensitivity or high predictability of the

shocks.

In this paper, we do not allow for the coexistence of DM and CM in the same round.

However, coexistence can be studied by revising the tie-breaking rule. If we allow the

traders to choose DM or CM until they don’t want to deviate to the other venue, we will

have coexistence and endogenous CM size when the DM and CM utility are close enough

to each other.12 Note that with coexistence, price history informativeness η can still de-

cay. Either η decays immediately after coexistence as the coexisted CM price has a larger

variance with a smaller CM size. Or with an appropriate choice of parameters price in-

formativeness may increase but it will disappear soon as higher η makes traders strictly

prefer DM and coexistence is no longer possible. And then η starts to decay as DM is

opaque. However, price history informativeness decays at a lower rate as traders in future

rounds see coexisted CM prices. The intuitions from this paper still apply, but we may see

DM with coexistence persist longer than DM without coexistence.

12See Yoon (2017) for a discussion of coexistence of CM and DM.
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It is interesting to see that learning from price history alone generates rich dynamic

market choices. It is also important to recognize that we abstract away from the inventory

held by traders by assuming short-lived traders. Adding dynamic inventory significantly

reduces tractability in the linear-quadratic double auction setting like this paper. Inventory

management across rounds is also an important aspect of trading strategies. We believe

dynamic market choice with both dynamic inventory and learning effect warrants future

research.
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Appendices

A Additional Figures

Figure 11: Price History Informativeness With Respect to Asset Sensitivity ξ in T = 3
Market

Note: η1 = 0. The black solid line plots η2, and the black dotted line plots η3. The red dashed line is a
reference line of η̃. When the black solid(dotted) line is above the reference line, then the traders choose DM
in the 2nd round(3rd round), and if it is below the reference line, the traders choose CM in the 2nd round(3rd
round). The jump in the difference of utility in CM v.s. DM in the third round comes from the difference in
the second-round choice.
In region A, i.e. ξ ∈ [0, ξ), traders choose DM in both 2nd and 3rd round. In region B, i.e. ξ ∈ (ξ, ξ̄] and in the
lower partition, traders choose DM in the 2nd round and CM in the 3rd round. In region C, ξ ∈ (ξ, ξ̄] and in
the higher partition, traders choose CM in the 2nd round and DM in the 3rd round. In region D, ξ ∈ (ξ̄, 1],
traders choose CM in both the 2nd round and the 3rd round.
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Figure 12: Price History Informativeness With Respect to Autocorrelation κ in T = 3 Mar-
ket

Note: η1 = 0. The black solid line plots η2, and the black dotted line plots η3. The red dashed line is a
reference line of η̃. When the black solid(dotted) line is above the reference line, then the traders choose DM
in the 2nd round(3rd round), and if it is below the reference line, the traders choose CM in the 2nd round(3rd
round). The jump in the difference of utility in CM v.s. DM in the third round comes from the difference in
the second-round choice.
In region E, i.e. κ ∈ [0, κ], traders choose CM in both 2nd and 3rd round. In region F, i.e. κ ∈ (κ, κ̄] and in the
lower partition, traders choose CM in the 2nd round and DM in the 3rd round. In region G, κ ∈ (κ, κ̄] and in
the higher partition, traders choose DM in the 2nd round and CM in the 3rd round. In region H, κ ∈ (κ̄, 1],
traders choose DM in both the 2nd round and the 3rd round.
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B Proofs

Proof of Theorem 1. Given the market structure M∗, at round t, traders submit a demand

schedule qi,t to maximize the utility

max
qi,t

E[θi,tqi,t −
α

2
(qi,t)

2 − ptqi,t|Ht, si,t, pt]

By taking first order condition with respect to qi,t, we can solve the trader i’s demand

schedule,

qi,t =
E[θi,t|Ht, si,t, pt]− pt

α + λi,t

where λi,t ≡ dpt
dqi,t

is the price impact. By symmetry, the price impacts are the same for all

traders in the same round λi,t = λt, ∀i ∈ It,M∗ . We can parameterize E[θi,t|Ht, si,t, pt] =

cH,i,tHt + cs,i,tsi,t + cp,i,tpt, where cH,i,t ∈ R1×|Ht|, cs,i,t ∈ R, and cp,i,t ∈ R. By symmetry, the

inference coefficients are the same for all traders in the same round, cH,i,t = cH,t, cs,i,t = cs,t

and cp,i,t = cp,t.

In equilibrium, by market clearing condition, λt is equal to the inverse of the slope of

the residual demand,

λt = (−
∑
j ̸=i

dqj,t
dpt

) =
α

(It − 1)(1− cp,t)− 1

Given the parameterization, the equilibrium price is,

pt = (1− cp,t)
−1(cH,tHt + cs,ts̄t) (6)

where s̄t =
1
It

∑
i si,t is the average signal in the exchange (for DM, it’s the average signal

in each pair).

(Step 1: Inference Coefficients) The trader i’s value θi,t, the equilibrium price pt given

equation (6), the history Ht and the private signal si,t are joint normally distributed. By

projection theorem, the inference coefficients cH,t, cs,t, and cp,t can be determined given the

joint distribution of (θi,t, si,t,Ht, pt),
θi,t

si,t

Ht

pt

 ∼ N




E[θ]
E[θ]
E[θ]
E[θ]

 ,


var(θi,t) cov(θi,t, si,t) cov(θi,t,H′

t) cov (θi,t, p
′
t)

cov(si,t, θi,t) var(si,t) cov(si,t,H′
t) cov (si,t, p

′
t)

cov (Ht, θi,t) cov (Ht, si,t) cov (Ht,H′
t) cov (Ht, p

′
t)

cov (pt, θi,t) cov (pt, si,t) cov (pt,H′
t) cov (pt, p

′
t)
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where

cov (pt, θi,t) = (1− cp,t)
−1 (cs,tcov (s̄t, θi,t) + cH,tcov(Ht, θi,t))

cov (pt, si,t) = (1− cp,t)
−1 (cs,tcov (s̄t, si,t) + cH,tcov(Ht, si,t))

cov(pt,H′
t) = (1− cp,t)

−1 (cs,tcov (s̄t,H′
t) + cH,tcov(Ht,H′

t)

cov (pt, p
′
t) = (1− cp,t)

−1 (cs,tvar(s̄t) + cs,tcov (s̄t,H′
t) c

′
H,t + cHcov(Ht,H′

t

)
c′H)

By projection theorem, we have

[cs,t, cH,t, cp,t]


cov(si,t) cov(si,t,H′

t) cov (si,t, pt)

cov (Ht, si,t) cov (Ht,H′
t) cov (Ht, pt)

cov (pt, si,t) cov (pt,H′
t) cov (pt, p

′
t)

 = [cov(θi,t, si,t), cov(θi,t,H′
t), cov(θi,t, pt)]

(7)

From equation (20), we have the following equations,

cov(cs,tsi,t + cH,tHt + cp,tpt, si,t) = cov(θi,t, si,t) (8)

cov(cs,tsi,t + cHt,tHt + cp,tpt,H′
t) = cov(θi,t,H′

t) (9)

cov(cs,tsi,t + cHt,tHt + cp,tpt, p
′
t) = cov(θi,t, pt) (10)

Given that pt = (1−cp,t)
−1(cH,tHt+cs,ts̄t), subtracting cH times equation (22) from equation

(23) gives us

cov(cs,tsi,t + cH,tHt + cp,tpt, s̄t) = cov(θi,t, s̄t) (11)

Averaging equation (21) over i in the same exchange gives

cs,t(1 + σ2)σ2
θ + cov(cH,tHt + cp,tpt, s̄t) = σ2

θ (12)

Comparing equation (24) and (25), we have

cs,t =
cov(θi,t, s̄t)− σ2

θ

cov(si,t, s̄t)− (1 + σ2)σ2
θ

=
1− ρt,M∗

1− ρt,M∗ + σ2
(13)

where ρt,M∗ is the correlation of traders given market structure M∗.

Given equation (26), we can rewrite equation (22) as

(1− cp,t)
−1 (cs,tcov(si,t,H′

t) + cH,tcov(Ht,H′
t)) = cov(θi,t,H′

t) (14)
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and equation (24) as

(1− cp,t)
−1 (cs,tvar(s̄t) + cHcov(Ht, s̄t)) = cov(θi,t, s̄t) (15)

Given that cov(H, θi) = cov(H, si) = cov(H, sj), ∀j ̸= i, and cs in equation (26) , we can

solve the term cH,t and cp,t by equation (14) and equation (15),

cH,t =
(1− ρt,M∗)σ2

(1− ρt,M∗ + σ2) (1 + (It,M∗ − 1)ρt,M∗ − It,M∗η)
τ ′
tΥ

−1
t

cp,t =
It,M∗(ρt,M∗ − η)σ2

(1− ρt,M∗ + σ2) (1 + (It,M∗ − 1)ρt,M∗ − It,M∗η)

where η = τ ′
t(Υt)

−1τ t, τ t ≡ cov(Ht,θi,t)

σ2
θ

∈ R|H|, and Υt ≡ cov(Ht,H′
t)

σ2
θ

∈ R|H|×|H|.

The eqilibirum price impact is

λt =
α

(It,M∗ − 1)(1− cp,t)− 1
, ∀i

The ex-ante utility for trader i is

E[Ui,t|Ht] =
α + 2λt

2(α + λt)2
E[(E[θi,t|Ht, si,t, pt]−pt)

2|Ht] =
α + 2λt

2(α + λt)2
It,M∗ − 1

It,M∗

(1− ρt,M∗)2

1− ρt,M∗ + σ2
, ∀i

■

Proof of Lemma 1. We leave out the subscripts t and M∗ to ease the notation. Taking the

derivative of welfare over ρ, we have

dE[Ui|H]

dρ
= − α + 2λ

2(α + λ)2
I − 1

I

(1− ρ) (1− ρ+ 2σ2)

(1− ρ+ σ2)2
− λ

(α + λ)3
I − 1

I

(1− ρ)2

1− ρ+ σ2

dλ

dρ
< 0.

Keep everything else constant,

dλ

dρ
= λ2

I σ2 (I − 1)
(
I(η − (I−1)ρ+1

I
)2 + I−1

I
(1− ρ)2 + (1− η)σ2

)
α (1− ρ+ σ2)2 (1 + (I − 1)ρ− Iη)2

> 0.

Thus dE[Ui|H]
dρ

< 0. The traders’ welfare decreases with trader value correlation ρ. ■

Proof of Lemma 2. We leave out the subscripts t and M∗ to ease the notation. Keep every-
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thing else constant,

dλ

dη
= −λ2 I σ2 (I − 1) (1− ρ)

α (1− ρ+ σ2) (1 + (I − 1)ρ− Iη)2
< 0.

Therefore the price impact decreases with price history informativeness η.

The expected utility of any trader i is

E[Ui|H] =
α + 2λ

2(α + λ)2
I − 1

I

(1− ρ̄)2

1− ρ̄+ σ2
.

Taking the derivative of welfare over η, we have

dE[Ui|H]

dη
=

σ2

α

(1− ρ+ σ2) (1 + (I − 1)ρ− I η)

(I − 1) (1 + (I − 1)ρ+ σ2 − I η)3
> 0.

Therefore the traders’ welfare increases with price history informativeness η. ■

Proof of Lemma 3. We leave out the subscript t to ease the notation.

Monotonicity: The difference between trader i’s utility in the CM and DM is

E[UCM
i |H]− E[UDM

i |H] =
α + 2λCM

2(α + λCM)2
I − 1

I

(1− ρ̄)2

1− ρ̄+ σ2
− α + 2λDM

2(α + λDM)2
1

2

(1− ρℓ)
2

1− ρℓ + σ2
.

Taking its derivative over the public informativeness η, we have

d(E[UCM
i |H]− E[UDM

i |H])

dη
=

σ2

α

(
(1− ρ̄+ σ2) (1 + (I − 1)ρ̄− I η)

(I − 1) (1 + (I − 1)ρ̄+ σ2 − I η)3
− (1− ρℓ + σ2) (1 + ρℓ − 2 η)

(1 + ρℓ + σ2 − 2 η)3

)
< 0.

given that σ ≥ ((2(I−1)
I

)1/3 − 1)−1/2, ρ̄ > ρℓ, and η ≤ 1+(I−1)ρ̄
I

≤ 1+ρℓ
2

, for the joint correlation

matrix of values to be positive semidefinite.

CM v.s. DM: The lowest possible η is ρℓ for equilibrium existence in the DM. limη→ρℓ λ
DM =

∞ and limη→ρℓ E[UDM
i |H] = 0, therefore

lim
η→ρℓ

(E[UCM
i |H]− E[UDM

i |H]) = lim
η→ρℓ

E[UCM
i |H] > 0. (16)

Given (ρℓ+1)
2

− 1+(I−1)ρ̄
I

≥ 0 for the joint correlation matrix of values to be positive
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semidefinite, the maximum η is 1+(I−1)ρ̄
I

,

lim
η→ 1+(I−1)ρ̄

I

(E[UCM
i |H]−E[UDM

i |H]) =
1

2α

I − 1

I

(1− ρ̄)2

1− ρ̄+ σ2
−

α + 2 lim
η→ 1+(I−1)ρ̄

I

λn

4(α + lim
η→ 1+(I−1)ρ̄

I

λn)2
(1− ρℓ)

2

1− ρℓ + σ2
.

(17)

where lim
η→ 1+(I−1)ρ̄

I

λn =
α(1−ρℓ+σ2)( 1+ρℓ

2
− 1+(I−1)ρ̄

I
)

(ρℓ− 1+(I−1)ρ̄
I

)σ2
. There exists unique ρ̄∗ as a function of

(I, ρℓ, σ
2) such that lim

η→ 1+(I−1)ρ̄
I

(E[UCM
i |H]− E[UDM

i |H]) = 0 if ρ̄ = ρ̄∗(I, ρℓ, σ
2). If ρ̄ > ρ̄∗,

lim
η→ 1+(I−1)ρ̄

I

(E[UCM
i |H]− E[UDM

i |H]) < 0. (18)

Given that the difference between the ex-ante utility of the centralized market and that

of the decentralized market is continuous and monotonically decreasing in η, by equations

(16) and (18), if ρ̄ > ρ̄∗(I, ρℓ, σ
2), there exist η̃(I, ρ̄, ρℓ, σ2) such that the centralized market

has equal welfare as the decentralized market if η = η̃, the centralized market has higher

welfare than the decentralized market if η < η̃, and otherwise if η ≥ η̃.

If ρ̄ ≤ ρ̄∗(I, ρℓ, σ
2),

lim
η→ 1+(I−1)ρ̄

I

(E[UCM
i |H]− E[UDM

i |H]) > 0. (19)

Given that the difference between the utility of the centralized market and that of the

decentralized market is continuous and monotonically decreasing in η, by equation (19)

the utility in the centralized market is always higher than the utility in the decentralized

market regardless of η. ■

Proof of Proposition 1. The proof of Proposition 1 directly follows from Lemma 3, as no

price history informativeness η will allow traders to choose DM . ■

Proof of Proposition 2. By Lemma 1, the expected utility E[UCM
i |H] decreases with ρ̄, E[UDM

i |H]

decreases with ρℓ, if E[UCM
i (¯̄ρ)|H]− E[UDM

i (ρ
ℓ
)|H] < 0, then E[UCM

i (ρ̄)|H]− E[UDM
i (ρℓ)|H]

for any ρℓ < ρ
ℓ

and ρ̄ > ¯̄ρ.

By Lemma 4 we are subject to find ρ
ℓ

and ¯̄ρ that makes E[UCM
i (¯̄ρ)|H]−E[UDM

i (ρ
ℓ
)|H] < 0

when η = 0. It’s easy to see ρ
ℓ
< 0 for DM to exist. And by Lemma 3, ¯̄ρ > ρ̄∗ given there

exists η for traders to choose DM over CM.

When η = 0, the trader’s utility in the CM is

E[UCM
i |H] =

α + 2λCM

2(α + λCM)2
I − 1

I

(1− ρ̄)2

1− ρ̄+ σ2
∀i ∈ I
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where λCM = α
(I−1)(1−cp)−1

, cp = Iρ̄σ2

(1−ρ̄+σ2)(1+(I−1)ρ̄)
.

The trader’s utility in the DM is

E[UDM
i |H] =

α + 2λDM

4(α + λDM
1 )2

(1− ρℓ)
2

1− ρℓ + σ2
∀i ∈ I

where λDM = α
−cp

, cp = 2ρℓσ
2

(1−ρℓ+σ2)(1+ρℓ)
.

For the correlation matrix to be well-defined (positive-semidefinite), the maximum ρ̄

as a function of ρℓ is
I(1+ρℓ)

2
−1

I−1
.

lim
ρℓ→−1

lim

ρ̄→
I(1+ρℓ)

2 −1

I−1

E[UDM
i |H]− E[UCM

i |H] =
1

α(2 + σ2)
− 1

2α

I

(I + (I − 1)σ2)
> 0

Given E[UCM
i |H] decreases with ρ̄, E[UDM

i |H] decreases with ρℓ, and E[UDM
i |H]−E[UCM

i,1 |H]

is continuous in ρ̄ and ρℓ, there exists ρ
ℓ
< 0 and ¯̄ρ > ρ̄∗ such that for any ρℓ < ρ

ℓ
and ρ̄ > ¯̄ρ,

E[UDM
i |H]− E[UCM

i |H] > 0. ■

Proof of Proposition 3. With ρℓ ≥ 0, the DM equilibrium does not exist due to extreme ad-

verse selection. Traders will choose CM in the first round.

Step 1. Less (More) history, lower (higher) ηt: ηt =
var(θi,t)−var(θi,t|Ht)

var(θi,t)
. To see this point,

consider η̃t derived from H̃t. H̃t is a strict subset of the price history H̃t ⊂ Ht. η̃t =
var(θi,t)−var(θi,t|H̃t)

var(θi,t)
. As H̃t is a sub-sigma-algebra of Ht, var(θi,t|Ht) ≤ var(θi,t|H̃t). Thus

η̃t ≤ ηt. This result tells us to keep everything else including the market choices in other

rounds constant, if the trader chooses DM(CM) instead at round t, the informativeness in

any round τ > t decreases(increases).

Step 2. Higher ξ, lower ηt: With symmetric market assumption, the price history is a linear

combination of the past average signals in the CM. Let Ht = Ls̄CM
τ<t , where s̄CM

τ<t ∈ R|Ht| is

the vector of the average signals in past rounds where CM is the optimal market choice,

and L ∈ R|Ht|×|Ht| is a linear operator. We have the following equivalence:

ηt =
cov(θi,t,Ht)cov(Ht,H′

t)
−1cov(Ht, θi,t)

σ2
θ

=
cov(θi,t,L

′(s̄CM
τ<t )

′)cov(Ls̄CM
τ<t , (s̄

CM
τ<t )

′L′)−1cov(Ls̄CM
τ<t , θi,t)

σ2
θ

=
cov(θi,t, (s̄

CM
τ<t )

′)cov(s̄CM
τ<t , (s̄

CM
τ<t )

′)−1cov(s̄CM
τ<t , θi,t)

σ2
θ

We only need to compute the joint distribution of {s̄τ}τ<t and {θi,t}i to obtain the ηt
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given the above equivalence.

Given the primitive, we have cov(s̄CM
τ , s̄CM

τ ) = 1+(I−1)ρ̄+σ2

I
σ2
θ , cov(s̄CM

τ , s̄CM
t ) = 1+ξ2κt−τ

(1+ξ2)(1+ϵ2)
σ2
θ ,

cov(s̄CM
τ , θi,t) =

1+ξ2κt−τ

(1+ξ2)(1+ϵ2)
σ2
θ for τ < t. Fixing the past market choice, we have the follow-

ing comparative static:
dηt
dξ

< 0

which means, the price history informativeness is decreasing in asset sensitivity ξ given

past market choice.

Step 3. Existence of ξ: By Lemma 3, to show the existence of ξ, we will need to check if

there exists ξ that ηt ≥ η̃, ∀t. By Step 1 the lowest possible ηt over t and all possible market

choices is the η
T

with price history set including only pCM
1 . Given dηt

dξ
< 0, we are subject

to check if the smallest ξ makes η
T
≥ η̃.

lim
ξ→0

η
T
=

1

(1 + ϵ2)2
I

1 + (I − 1)ρ̄+ σ2

To show that η
T
≥ η̃, we are subject to show limξ→0 E[UCM

i (η
T
)|H]−E[UDM

i (η
T
)|H] < 0.

lim
ξ→0

E[UCM
i (η

T
)|H]−E[UDM

i (η
T
)|H] =

α + 2λCM

2(α + λCM)2
I − 1

I

(1− ρ̄)2

1− ρ̄+ σ2
− α + 2λDM

2(α + λDM)2
1

2

(1− ρℓ)
2

1− ρℓ + σ2
.

d limξ→0 E[UCM
i (η

T
)|H]−E[UDM

i (η
T
)|H]

dϵ
< 0. There exist ϵ̄(σ2, I) such that for any ϵ < ϵ̄(σ2, I),

limξ→0 E[UCM
i (η

T
)|H] − E[UDM

i (η
T
)|H] < 0. Given dηt

dξ
< 0 and ηt is continuous in ξ, and

ϵ < ϵ̄(σ2, I), there exists ξ, such that for any ξ ∈ [0, ξ), traders will stay in the DM since the

2nd round.

Step 4. Existence of ξ̄: By Lemma 3, to show the existence of ξ̄, we will need to check

if there exists ξ that ηt ≤ η̃, ∀t. By Step 1 the highest possible ηt over t and all possible

market choices is η̄T when all past market choices are CMs and all past prices are available.

Therefore, we are subject to check a hypothetical η̄T that is generated with the history of

all past CM prices. Given Step 2, dηt
dξ

< 0 and ηt is continuous in ξ, we are subject to check

if the highest ξ makes η̄T ≤ η̃.

lim
ξ→∞

η̄T < (
κ

1 + ϵ2
)2

I(T − 1)

1 + (I − 1)ρ̄+ σ2

There exists κ̄ such that for κ < κ̄(σ2, I, ϵ), 3 ≤ T < T̄ (σ2, I, ϵ), d limξ→0 E[UCM
i (η̄T )|H]−E[UDM

i (η̄T )|H]

dI
>

0. Given dηt
dξ

< 0, ηt is continuous in ξ, and κ < κ̄(σ2, I, ϵ), there exist ξ̄, for any ξ ∈ [ξ̄,∞),

traders will stay in the CM.
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Step 5. Summarize: Given 3 ≤ T < T̄ (σ2, I, ϵ), ϵ < ϵ̄(σ2, I) and κ < κ̄(σ2, I, ϵ), there exists

ξ and ξ̄ such that traders will choose CM in the first round, and

1. When the asset sensitivity to shocks to fundamentals is sufficiently low ξ ∈ [0, ξ), the

traders shift to DM in the second round and stay there.

2. When the asset sensitivity to shocks to fundamentals is intermediate ξ ∈ [ξ, ξ̄), the

traders will alternate between CM and DM. This is because, for ξ ∈ [ξ, ξ̄), there exists

t such that ηt > η̃, and there also exists t such that ηt < η̃.

3. When the asset sensitivity to shocks to fundamentals is sufficiently high ξ ∈ [ξ̄,∞),

the traders will always stay in the CM.

■

Proof of Proposition 4. With ρℓ ≥ 0, the DM equilibrium does not exist due to extreme ad-

verse selection. Traders will choose CM in the first round.

Step 1. Less (More) history, lower (higher) ηt: See proof of Proposition 3.

Step 2. Higher ξ, lower ηt: The derivation of η as a function of the joint distribution of

signals and values follows from the proof of Proposition 3. Fixing the past market choice,

we have the following comparative static:

dηt
dκ

> 0

which means, the price history informativeness is decreasing in autocorrelation κ given

past market choice.

Step 3. Existence of κ̄: By Lemma 3, to show the existence of κ̄, we will need to check if

there exists κ that ηt ≥ η̃, ∀t. By Step 1 the lowest possible ηt over t and all possible market

choices is the η
T

with price history set including only pCM
1 . Given dηt

dκ
> 0, we are subject

to check if the highest κ makes η
T
≥ η̃.

lim
κ→1

η
T
=

1

(1 + ϵ2)2
I

1 + (I − 1)ρ̄+ σ2

There exist ϵ̄(σ2, I) such that for any ϵ < ϵ̄(σ2, I), limκ→0 E[UCM
i (η

T
)|H]−E[UDM

i (η
T
)|H] <

0. Given dηt
dκ

> 0 and ηt is continuous in κ, and ϵ < ϵ̄(σ2, I), there exists κ̄, such that for any

κ ∈ (κ̄, 1], traders will stay in the DM since the 2nd round.

Step 4. Existence of κ: By Lemma 3, to show the existence of κ, we will need to check if

there exists κ that ηt ≤ η̃, ∀t. By Step 1 the highest possible ηt over t and all possible market
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choices is the η̄T when all past market choices are CMs and all past prices are available.

Therefore, we are subject to check a hypothetical η̄T that is generated with the history of

all past CM prices. Given Step 2, dηt
dκ

> 0 and ηt is continuous in κ, we are subject to check

if the highest κ makes η̄T ≤ η̃.

lim
κ→0

η̄T < (
1

(1 + ξ2)(1 + ϵ2)
)2

I(T − 1)

1 + (I − 1)ρ̄+ σ2

There exists ξ such that for ξ > ξ(σ2, I, ϵ), 3 ≤ T < T̄ (σ2, I, ϵ), d limξ→0 E[UCM
i (η̄T )|H]−E[UDM

i (η̄T )|H]

dI
>

0. Given dηt
dκ

> 0, ηt is continuous in κ, and 3 ≤ T < T̄ (σ2, I, ϵ), ξ > ξ(σ2, I, ϵ), there exist κ,

for any κ ∈ [0, κ], traders will stay in the CM.

Step 5. Summarize: Given ϵ < ϵ̄(σ2, I) and ξ > ξ(σ2, I, ϵ), 3 ≤ T < T̄ (σ2, I, ϵ), there exists

κ and κ̄ such that traders will choose CM in the first round, and

1. When the autocorrelation is sufficiently low κ ∈ [0, κ], the traders will always stay in

the CM.

2. When the autocorrelation is intermediate κ ∈ (κ, κ̄], the traders will alternate be-

tween CM and DM, as there exists t such that ηt > η̃, and there also exists t such that

ηt < η̃.

3. When the autocorrelation is sufficiently high κ ∈ (κ̄, 1], the traders will choose DM

over CM in the second round and never choose CM again.

■

Proof of Proposition 5. The proof of Proposition 5 is simple and intuitive. By the first mono-

tonicity result in Lemma 3, if M∗
t = DM for ηt, and price history informativeness increases

ηt+1 ≥ ηt, then M∗
t+1 = DM . We are subject to show that ηt+1 ≥ ηt if traders choose DM at

round t. ηt =
var(θi)−var(θi|Ht)

var(θi)
. If traders choose DM at round t, then Ht+1 = Ht∪{pn,t}n, and

ηt+1 = var(θi)−var(θi|Ht+1)
var(θi)

. Given that Ht ⊂ Ht+1, var(θi|Ht+1) ≤ var(θi|Ht), and therefore

ηt+1 ≥ ηt. ■

Proof of Proposition 6. If traders always stay in CM. Post-trade transparency has no impact

on welfare.

If traders have ever chosen DM, denote the round that traders first choose DM as t∗.

For t ≤ t∗, post-trade transparency has no impact on traders’ utility. For t > t∗, denote the

price history informativeness as ηpostt =
var(θi)−var(θi|Hpost

t )

var(θi)
. By symmetry, the price history
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is a linear combination of the average signal in the market and is informationally equiv-

alent to the average signal per exchange. Thus ηpostt =
var(θi)−var(θi|Spost

t )

var(θi)
, where Spost

t ≡
{s̄τ}τ<t∗ , {s̄n,τ}n,t∗≤τ<t). Without post-trade transparency in DM, ηt =

var(θi)−var(θi|St)
var(θi)

, where

St ⊂ {s̄τ}τ<t. filtration generated by St is a sub σ-algebra of filtration generated by Spost
t ,

therefore, var(θi|Spost
t ) ≤ var(θi|St), and ηpostt ≥ ηt, ∀t.

If the traders choose DM at round t without post trade transparency, given that ηpostt ≥
ηt, E[UDM,post

i,t |Hpost
t ] ≥ E[UDM

i,t |Ht].

If the traders choose CM at round t without post-trade transparency, E[UDM,post
i,t ] >

E[UCM,post
i,t |Hpost

t ] ≥ E[UCM
i,t |Ht], the first inequality follows from the fact that traders prefer

DM over CM at round t given proof of Proposition 5, the second equality follows from

ηpostt > ηt. ■

Proof of Theorem 4. (Step 1: Optimization) Let the cross pair price information be pt ∈ RN ,

whose nth element is the price in pair n at round t, pn,t. Trader i ∈ I(n) submit demand

schedule qi,t(pt) : RN → R to maximize the expected utility conditional on the history Ht,

private signal si,t, and

max
qi,t(pt)

E[θi,tqi,t −
1

2
αq2i,t − pn,tqt|pt,Ht, si,t]

trader i ’s first-order condition as

qi (pt) =
E[θi,t|pt,Ht, si,t]− pn,t

α + λi,t

where λi,t is the trader i’s price impact within pair n. Trader i also have cross-pair price

impact as traders from other pairs will change their bids when price pn change with i’s

bid. Trader i’s price impact over all pairs can be describe with a price impact matrix Λi,t =

( dp
dqi,t

) ∈ RN×N , where the nth diagonal elements is λi,t. Each trader i ’s price impact matrix

is equal to the transpose of the Jacobian of trader i ’s inverse residual supply:

(Λi,t)
′ =

(
−
∑
j ̸=i

dqj,t

dpt

)−1

We can parameterize E[θi,t|pt,Ht, si,t] = cH,i,tHt+ cs,i,tsi,t+cp,i,tpt. cH,i,t ∈ R1×|Ht|, cs,i,t ∈ R,

and cp,i,t ∈ R1×N . Given symmetry within each pair, cH,i,t = cH,n,t, cs,i,t = cc,n,t, cp,i,t = cp,n,t

and λi,t = λn,t.

Given the market clearing condition,
∑

i∈I(n) qi,t(pt) = 0, and trader symmetry within
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exchanges, we have the equilibrium price in all pairs in vector form,

pt = (Id−Cp,t)
−1 (CH,tHt +Cs,ts̄t) ,

where Cs,t = diag (cs,n,t)n ∈ RN×N ,CH,t = (cH,n,t)n ∈ RN×|Ht|,Cp,t = (cp,n,t)n ∈ RN×N .

s̄t ∈ RN is the average signals for all pairs, where the nth element is the average signal in

pair n.

(Step 2: Inference Coefficients) We determine the inference coefficients as a function of

the primitives (and in closed form). Random vector (θi,t, si,t,Ht,pt) is jointly normally

distributed:
θi,t

si,t

Ht

pt

 ∼ N




E[θ]
E[θ]
E[θ]
E[θ]

 ,


var(θi,t) cov(θi,t, si,t) cov(θi,t,H′

t) cov (θi,t,p
′
t)

cov(si,t, θi,t) var(si,t) cov(si,t,H′
t) cov (si,t,p

′
t)

cov (Ht, θi,t) cov (Ht, si,t) cov (Ht,H′
t) cov (Ht,p

′
t)

cov (pt, θi,t) cov (pt, si,t) cov (pt,H′
t) cov (pt,p

′
t)




where

cov (pt, θi,t) = (Id−Cp,t)
−1 (Cs,tcov (s̄t, θi,t) +CH,tcov(Ht, θi,t))

cov (pt, si,t) = (Id−Cp,t)
−1 (Cs,tcov (s̄t, si,t) +CH,tcov(Ht, si,t))

cov(pt,H′
t) = (Id−Cp,t)

−1 (Cs,tcov (s̄t,H′
t) +CH,tcov(Ht,H′

t))

cov (pt,p
′
t) = (Id−Cp,t)

−1 (Cs,tcov (s̄t, s̄
′
t) (Cs,t)

′ +CH,tcov(Ht,H′
t)C

′
H,t +CH,tcov(Ht, s̄

′
t)C

′
s,t

+Cs,tcov(s̄t,H′
t)C

′
H,t

) (
(Id−Cp,t)

−1)′
By projection theorem, we have

[cs,n,t, cH,n,t, cp,n,t]


var(si,t) cov(si,t,H′

t) cov (si,t,p
′
t)

cov (Ht, si,t) cov (Ht,H′
t) cov (Ht,p

′
t)

cov (pt, si,t) cov (pt,H′
t) cov (pt,p

′
t)

 = [cov(θi,t, si,t), cov(θi,t,H′
t), cov (θi,t,p

′
t)]

(20)

From equation (20), we have the following equations,

cov(cs,n,tsi,t + cH,n,tHt + cp,n,tpt, si,t) = σ2
θ (21)

cov(cs,n,tsi,t + cH,n,tHt + cp,n,tpt,Ht) = cov(θi,t,H′
t) (22)

cov(cs,n,tsi,t + cH,n,tHt + cp,n,tpt,p
′
t) = cov(θi,t,p

′
t) (23)
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Given that pt = (Id−Cp,t)
−1 (CH,tH +Cs,ts̄t), subtracting CH,t times equation (22)

from equation (23) gives us

cov(cs,n,tsi,t + cH,n,tHt + cp,n,tpt, s̄
′
t) = cov(θi,t, s̄

′
t). (24)

Averaging equation (21) over i ∈ I(n) gives

cs,n,t(1 + σ2)σ2
θ + cov(cH,n,tHt + cp,n,tpt, s̄n) = σ2

θ , ∀n. (25)

Comparing equation (24) and (25), we have

cs,n,t =
cov(θi,t, s̄n)− σ2

θ

cov(si,t, s̄n)− (1 + σ2)σ2
θ

=
1− ρn,t

1− ρn,t + σ2
. (26)

where ρn,t is the correlation for traders in pair n.

Given Cs,t = diag(cs,n,t) solved in equation (26), we can rewrite equation (22) in matrix

form,

(Id−Cp,t)
−1 (Cs,t1τ

′
t +CH,tΥt) = 1τ ′

t. (27)

and equation (24) as

(Id−Cp,t)
−1 (Cs,tcov(s̄t, s̄

′
t) +CH,tτ t1

′) = cov(θ̄t, s̄
′
t) (28)

where τ t = cov(Ht, θi,t), Υt = cov(Ht,H′
t).

We can solve the term CH,t and Cp,t by the above two equations,

Cp,t = Id−Cs,t −Cs,t diag
(

σ2

In

)
n
(C̄ − 11′ηt)

−1 = diag
(

σ2

1−ρn,t+σ2

)
n

(
Id− diag

(
1−ρn,t

2

)
(C̄ − 11′ηt)

−1
)

CH,t = (Id−Cp,t −Cs,t)1τ
′
tΥ

−1
t = diag

(
(1− ρn,t)σ

2

2(1− ρn,t + σ2)

)
n

(C̄ − 11′ηt)
−11τ ′

tΥ
−1
t

ηt =
τ ′
tΥ

−1
t τ t

σ2
θ

is price history informativeness. C̄ = cov(θ̄t,θ̄
′
t)

σ2
θ

∈ RN×N is the correlation of

pairwise average values across all pairs, where θ̄t ∈ RN is the vector of average value per

trading pair where the nth value is θ̄n,t =
∑

i∈I(n) θi,t.

(Step 3: Price impacts) In equilibrium, each trader i ’s price impact is equal to the trans-

pose of the Jacobian of trader i ’s inverse residual supply:

(Λi,t)
′ =

(
−
∑
j ̸=i

dqj,t

dpt

)−1

= (Id−Cp,t)
−1 diag

(
α + λn,t

2− 1i∈I(n)

)
n

.
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From the last equation, we can solve for the within-exchange price impact for all i ∈ I(n),

λn,t =
(((

(Id−Cp,t)
−1)

nn

)−1 − 1
)−1

α.

where (A)nn is an operator that gives the nth diagonal element of matrix A. Denote the

matrix of within-exchange price impacts by Λ̂t ≡ diag (λn,t)n. In equilibrium,

Λ̂t =
(([

(Id−Cp,t)
−1]

nn

)−1 − Id
)−1

α,

where [A]nn is an operator that gives the diagonal elements of matrix A while setting all

off-diagonal elements to zero.

In this paper, we focus on nonnegative price impacts such that the residual supply

curve is downward-sloping, i.e., λn ≥ 0, for all n. This is satisfied under the following

condition:

((Id−Cp,t)
−1)nn ≤ 1(

(Id−Cp,t)
−1)

nn
= (1 + σ2

1−ρn,t
)
(
1− σ2

2
(1+ρn,t+σ2

2
− ηt − At)

−1
)

, where At = (
cov(θ̄n,t,θ̄

′
−n,t)

σ2
θ

−

1′ηt)(
cov(θ̄−n,t,θ̄

′
−n,t)

σ2
θ

− 11′ηt)
−1( cov(θ̄−n,t,θ̄n,t)

σ2
θ

− 1ηt). Therefore, the following condition are

needed for equilibrium existence,

ηt + At ≥ ρn,t ∀n

The second-order condition for the trader i ’s optimization problem is, λn ≥ −1
2
α, and

is trivially satisfied with nonnegative price impacts.

(Step 4: Utility) Given the inference coefficients and price impacts solved in previous

section, the expected utility conditional on price history is

E[UDM,pre
i,t |Ht] =

α + 2λt

2(α + λt)2
E[(E[θi,t|Ht, si,t,pt]− pt,n)

2|Ht] =
α + 2λn,t

2(α + λn,t)2
1

2

(1− ρn,t)
2

1− ρn,t + σ2

■

Proof of Lemma 5. Taking derivative of UDM
i,t with respect to ρn,t, we have

dE[UDM,pre
i,t |Ht]

ρn,t
= − α + 2λn,t

4(α + λn,t)2
(1− ρn,t)(1− ρn,t + 2σ2)

(1− ρn,t + σ2)2︸ ︷︷ ︸
>0

− λn,t

2(α + λn,t)3
(1− ρn,t)

2

1− ρn,t + σ2︸ ︷︷ ︸
>0

dλn,t

dρn,t

.
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The derivate of price impact to correlation dλn,t

dρn,t
is

dλn,t

dρn,t
=

λ2
n,t

α

((
(Id−Cp,t)

−1)
nn

)−2 d
(
(Id−Cp,t)

−1)
nn

dρn,t

=
λ2
n,t

α
((
(Id−Cp,t)

−1)
nn

)2
(

σ2
(
(Id−Cp,t)

−1)
nn

(1− ρn,t)(1− ρn,t + σ2)
+ (1 +

σ2

1− ρn,t
)
σ2

4
(
1 + ρn,t + σ2

2
− ηt − At)

−2

)
> 0

given that
(
(Id−Cp,t)

−1)
nn

= (1 + σ2

1−ρn,t
)
(
1− σ2

2
(1+ρn,t+σ2

2
− ηt − At)

−1
)

, where At =

(
cov(θ̄n,t,θ̄

′
−n,t)

σ2
θ

− 1′η)(
cov(θ̄−n,t,θ̄

′
−n,t)

σ2
θ

− 11′η)−1( cov(θ̄−n,t,θ̄n,t)

σ2
θ

− 1η), and θ̄−n,t ∈ RN−1 is the vec-

tor of average values in pairs m ̸= n. The last inequalify follows from the fact that
1+ρn,t

2
− ηt − At > 0 give positive-semidefinite joint correlation matrix of θ̄n,t, θ̄−n,t and

history Ht.

Therefore,
dE[UDM

i,t |Ht]

ρn,t
< 0. Expected utility in DM is decreasing in ρn,t. ■

Proof of Lemma 6. To show that given Ht (and therefore given ηt) the utility for any trader

i weakly increases, we are subject to show that the expected utiltity E[UDM,pre
i,t |Ht] ≥

E[UDM
i,t |Ht]. Comparing E[UDM,pre

i,t |Ht] in Theorem 4 and E[UDM
i,t |Ht] in Theorem 1, we

find if and only if λDM,pre
n,t ≤ λDM

n,t , then E[UDM,pre
i,t |Ht] ≥ E[UDM

i,t |Ht].

λDM,pre
n,t ≤ λDM

n,t if and only if

(
(Id−Cp,t)

−1)
nn

≤ 1

1− cDM
p

(29)

Following proof of Lemma 5,
(
(Id−Cp,t)

−1)
nn

= (1+ σ2

1−ρn,t
)
(
1− σ2

2
(1+ρn,t+σ2

2
− ηt − At)

−1
)
≤

(1 + σ2

1−ρn,t
)

1+ρn,t
2

−ηt
1+ρn,t+σ2

2
−ηt

as At = (
cov(θ̄n,t,θ̄

′
−n,t)

σ2
θ

− 1′ηt)(
cov(θ̄−n,t,θ̄

′
−n,t)

σ2
θ

− 11′ηt)
−1( cov(θ̄−n,t,θ̄n,t)

σ2
θ

−

1ηt) ≥ 0 given it has a quardratic form and cov(θ̄
′
−n,t,θ̄

′
−n,t)

σ2
θ

− 11′ηt =
cov(θ̄−n,t,θ̄

′
−n,t|Ht)

σ2
θ

is pos-

itive semidefinite. By Theorem 1, 1
1−cDM

p
= (1 + σ2

1−ρn,t
)

1+ρn,t
2

−ηt
1+ρn,t+σ2

2
−ηt

. Therefore, equation 29

holds, λDM,pre
n,t ≤ λDM

n,t and E[UDM,pre
i,t |Ht] ≥ E[UDM

i,t |Ht]. ■

Proof of Proposition 7. First Time Choosing DM: Let the threshold to choose DM without

pre-trade transparency by η̃ (see Lemma 3), and the threshold to choose DM with pre-trade

transparency by η̃pre. Suppose ρ̄ > ρ̄∗, for any Ht generating ηt ≥ η̃, given results of Lemma

6, E[UDM,pre
i,t |Ht] ≥ E[UDM

i,t |Ht] ≥ E[UCM
i,t |Ht]. This implies (i) the threshold to choose DM

without pre-trade transparency is at least as low as η̃, η̃pre ≤ η̃; (ii) and the first round
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that traders choose DM with pre-trade transparency is no later than without pre-trade

transparency, i.e. if tDM
1 ≡ mint{M∗

t = DM}, then tDM,pre
1 = mint{M∗,pre

t = DM} ≤ tDM
1 .

First Time Stay in DM: If traders choose DM with pre-trade transparency in the same

round as with opaque DM, i.e., tDM
1 = tDM,pre

1 , then the length of stay in DM when traders

first choose DM is (weakly) longer with pre-trade transparency. This is because, given that

they enter the DM at the same round, the evolution of ηt is the same before they firstly

exit the DM after the first time they choose DM. And E[UDM,pre
i,t |Ht] ≥ E[UDM

i,t |Ht] implies,

the first time traders exit DM with pre-trade transparency is no earlier than the first time

when they exit the opaque DM. Thus, the length of stay in DM when traders first choose

DM is (weakly) longer with pre-trade transparency.

We are not sure about the following rounds of choosing DM, as the evolution of ηt will

not be the same with and without pre-trade transparency, except for the η̃ = 0 special case.

If η̃ = 0 then η̃pre = 0, trader will always choose DM.

■

Lemma 7. If A and A + B are invertible, and B has rank 1, then let g = trace (BA−1). Then

g ̸= −1 and

(A+B)−1 = A−1 − 1

1 + g
A−1BA−1.

Proof of Proposition 8. Constant CM regardless of pre-trade transparency: It is trivial that

when traders choose CM for all rounds with or without pre-trade transparency, then pre-

trade transparency should not have any impact on the welfare. Given that E[UDM,pre
i,t |Ht] >

E[UDM
i,t |Ht] for any η, choosing CM constantly implies E[UCM

i,t |Ht] − E[UDM,pre
i,t |Ht] ≥ 0 for

any ηt. We know that if ρ̄ = ρh = ρℓ,

(
(Id−Cp,t)

−1)
nn

= (1 +
σ2

1− ρℓ
)

(
1− σ2

2
(
1 + ρℓ + σ2

2
− ηt − At)

−1

)
>

1

(I − 1)(1− cCM
p,t )

=
1

I − 1
(1 +

σ2

1− ρℓ
)(
1 + (I − 1)ρℓ

I
− ηt)(

1 + (I − 1)ρℓ + σ2

I
− ηt)

−1

where At = (
cov(θ̄n,t,θ̄

′
−n,t)

σ2
θ

− 1′ηt)(
cov(θ̄

′
−n,t,θ̄

′
−n,t)

σ2
θ

− 11′ηt)
−1( cov(θ̄−n,t,θ̄n,t)

σ2
θ

− 1ηt) = (ρh − ηt)
g

1+g
,

g = N ρh−ηt
1+ρℓ

2
−ρh

by Lemma 7, and θ̄−n,t ∈ RN−1 is the vector of average values in pairs m ̸= n.

Therefore, λCM
n,t < λDM,pre

n,t and

E[UCM
i,t |Ht] =

α + 2λCM
n,t

2(α + λCM
n,t )2

I − 1

I

(1− ρℓ)
2

1− ρℓ + σ2
> E[UDM,pre

i,t |Ht] =
α + 2λDM,pre

n,t

4(α + λDM,pre
n,t )2

(1− ρℓ)
2

1− ρℓ + σ2

Given that E[UCM
i,t |Ht] is decreasing in ρ̄, there exists ρ̄∗,pre(ρℓ, I, σ

2) such that if ρ̄ <
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ρ̄∗,pre(ρℓ, I, σ
2), E[UCM

i,t |Ht] − E[UDM,pre
i,t |Ht] ≥ 0 for any η. So if ρ̄ < ρ̄∗,pre(ρℓ, I, σ

2), traders

always choose CM with and without pre-trade transparency.

Transparency changes market choice: Without pre-trade transparency, when traders’ value

correlations are neither sufficiently heterogeneous nor sufficiently homogenous, alternat-

ing market choice can be optimal according to Proposition 3 and Proposition 4. With pre-

trade transparency, as the utility in DM is higher given the same parameters, traders are

more likely to choose DM (weakly) earlier (see Proposition 7). And this can potentially

decrease the price history informativeness and the welfare. We can find a non-trivial set

of parameters such that the pre-trade transparency can decrease welfare. A most intuitive

case is a set of paramters such that (i) traders always choose CM or alternate between CM

and DM with ηt > 0 for t > 1 without pre-trade transparency; (ii) traders always choose

DM with pre-trade transparency, resulting ηt = 0 for all t; (iii) the total welfare over all

rounds is higher without pre-trade transparancy. We provide proof of existence of such

parameters below.

To satisfy condition (i), the traders’ expected utility in CM is higher than the expected

utility in opaque DM when ηt = 0, i.e. E[UCM
i,t |Ht]|ηt=0 ≥ E[UDM

i,t |Ht]|ηt=0.

To satisfy condition (ii), we require the traders in DM with pre-trade transparency to

have higher utility than in CM given ηt = 0. When ηt = 0, the expected utility in CM is

E[UCM
i,t |Ht]|ηt=0 =

α + 2λCM

2(α + λCM)2
I − 1

I

(1− ρ̄)2

1− ρ̄+ σ2
∀i ∈ I

where λCM = α
(I−1)(1−cp)−1

, cp = Iρ̄σ2

(1−ρ̄+σ2)(1+(I−1)ρ̄)
. And when ηt = 0, the expected utility in

DM with pre-trade transparency is

E[UDM,pre
i,t |Ht]|ηt=0 =

α + 2λDM,pre

2(α + λDM,pre)2
1

2

(1− ρℓ)
2

1− ρℓ + σ2

where λDM,pre = (1 + σ2

1−ρℓ
)(1+ρℓ

2
− A0)

(
σ2

2
− ( σ2

1−ρℓ
)(1+ρℓ

2
− A0)

)−1

α,

A0 =
cov(θ̄n,t,θ̄

′
−n,t)cov(θ̄−n,t,θ̄

′
−n,t)

−1cov(θ̄−n,t,θ̄n,t)

σ2
θ

≥ 0.

Given that E[UCM
i,t |Ht]|ηt=0 is decreasing in ρ̄ and E[UDM,pre

i,t |Ht]|ηt=0 is decreasing in ρℓ

given Lemma 1, and E[UDM,pre
i,t |Ht]|ηt=0 > E[UCM

i,t |Ht]|ηt=0 when ρℓ = 0 and ρ̄ =
I
2
−1

I−1
, there

exists 0 ≤ ρℓ < ρ̄ℓ and ρ̄ > ¯̄ρpre (I, ρℓ, σ
2) such that E[UDM,pre

i,t |Ht]|ηt=0 ≥ E[UCM
i,t |Ht]|ηt=0.

To satisfy condition (iii), we require the total welfare over all rounds is higher without

pre-trade transparency than with pre-trade transparency, i.e. W pre ≡ TE[UDM,pre
i,t |Ht]|ηt=0 ≤

W ≡
∑T

t=1 E[UM∗
i,t |Ht]. Given the same market choice, the expected utility weakly in-
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creases with the length of price history, i.e. E[UCM
i,t |Hτ ] ≥ E[UCM

i,t |Ht] for τ > t. For suf-

ficiently small ξ and sufficiently large κ, there exists t, such that ηt is sufficiently large,

E[UCM
i,t |Ht] > E[UDM,pre

i,t |Ht]|ηt=0. Therefore, we can rewrite the difference between wel-

fares without and with pre-trade transparency as

W −W pre =
T∑
t=1

E[UM∗

i,t |Ht]− TE[UDM,pre
i,t |Ht]|ηt=0

≥ (T − t) (E[UCM
i,t |Ht]− E[UDM,pre

i,t |Ht]|ηt=0)︸ ︷︷ ︸
>0

+

t∑
t=1

E[UM∗

i,t |Ht]− tE[UDM,pre
i,t |Ht]|ηt=0︸ ︷︷ ︸

>−tE[UDM,pre
i,t |Ht]|ηt=0

Easy to see W − W pre is increasing in T . Given that the second part is bounded below,

limT→∞W −W pre > 0. This implies we can find sufficiently small ξ and sufficiently large

κ and sufficiently large T , such that condition (iii) is satisfied. ■
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