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1 Introduction

Access to information stands as a cornerstone for fostering economic development (Stiglitz

(2000)). For instance, frictions that impede access to information can force economic agents

to base decisions on imperfect knowledge leading to sub-optimal outcomes. Technology,

particularly the widespread availability of high-speed internet, has revolutionized the way we

access and consume information. The seamless flow of data facilitated by high-speed internet

can alleviate frictions to information access and bridge gaps in knowledge dissemination.

The existing research has focused on the impact of digital infrastructure on labor market

outcomes, political economy outcomes, financial inclusion, and credit market outcomes.1

However, we still have scarce direct empirical evidence on – (1) whether high-speed internet

can affect productivity, (2) the role of high-speed internet in mitigating information frictions as

a mechanism influencing productivity, and (3) the conditions under which high-speed internet

effectively alleviates information frictions.

In this paper, we aim to fill this gap by studying the impact of the introduction of 4G

based high-speed internet on agricultural productivity and the underlying mechanism. We

investigate this question in the context of agriculture, which is well suited for a number of

reasons. First, lack of information access can be detrimental in economic settings plagued

by uncertainty. Agriculture in developing countries is often marked by weather-induced un-

certainty (Deaton (1990), Townsend (1994)) and lack of stable insurance markets (Mobarak

and Rosenzweig (2013), Cole and Xiong (2017)) making access to information an important

determinant of the output and input choice (Rosenzweig and Udry (2013)). Second, existing

research indicates minimal impact on agricultural productivity through traditional approaches

(Fabregas, Kremer and Schilbach (2019)).2 These traditional approaches suffer from several

frictions such as lack of trust (Cole and Sharma (2017)), linguistic barriers (Gupta, Ponticelli

and Tesei (2023b)), and timeliness (Anderson and Feder (2004)). High-speed internet through

4G has the potential to overcome these barriers by enhancing real-time information accessi-

bility for farmers that is user-friendly and engaging (Fabregas, Kremer and Schilbach (2019)).

Third, numerous governments are striving to enhance farmers’ information access through

1See, labor market outcomes (Akerman, Gaarder and Mogstad (2015), Hjort and Poulsen (2019), Zuo (2021)), political
mobilization (Manacorda and Tesei (2020)), corruption (Andersen et al. (2011), Gonzalez (2021)), confidence in governments
(Guriev, Melnikov and Zhuravskaya (2021)), financial inclusion (Aker and Mbiti (2010), Suri and Jack (2016), Suri (2017),
Batista and Vicente (2023)), and credit markets (DAndrea and Limodio (2023), Gupta, Ponticelli and Tesei (2023a)).

2In the absence of the internet, information is disbursed via traditional means including television, radio, phone calls, texts,
extension workers or other informal means including word of mouth within communities. The relative advantage of 4G
is that it improves access to high-speed internet, whereas 2G and 3G primarily improve access to texts, calls and slow
internet.
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the internet (Mehrabi et al. (2021)). Therefore, from a policy perspective, it is crucial to com-

prehend the specific conditions under which such investments are likely to yield significant

returns.

We attempt to answer this question in the context of a developing economy where

information frictions are acute and a majority of households rely on agriculture for their

livelihood. Particularly, we focus on India where more than 40% of the population is engaged

in agriculture and there is an unmet need for information. As per the 2005 National Sample

Survey, 60% of Indian farmers indicated a lack of access to any information source to support

their farming practices. Moreover, the Indian context provides an ideal natural experiment

that allows us to disentangle the effect of the 4G based high-speed internet on agricultural

productivity from other confounding variables.

We begin by exploiting the staggered introduction of 4G towers in a difference-in-

differences (DiD) framework to estimate the effect of 4G on agricultural productivity. However,

the exercise poses a key challenge as geographic coverage of a 4G tower is limited to a rela-

tively small area around the tower whereas measures of agricultural productivity are typically

available at a more aggregated level such as districts. Therefore, using administrative units

as a unit of analysis violates the assumption of homogeneous treatment within treated units.

We address this concern by employing a two-step approach. First, we divide the map of India

into hexagons, each approximating the coverage area of a 4G tower. Subsequently, we use

remote-sensing satellite data to create hexagon-level measures of agricultural productivity,

specifically aggregating 8-day Enhanced Vegetation Index (EVI) composites to this level. Ad-

ditionally, we integrate various economic, demographic, and agricultural variables into this

dataset. Therefore, a key contribution of this paper is creating a granular database that can

be employed in future research; his database links telecom coverage with several economic,

agricultural, and demographic variables.

Our heterogeneity-robust Callaway and Sant‘Anna (2021) DiD estimates exploiting the

staggered introduction of 4G towers imply that six years after 4G introduction, EVI implied

yield increases by 0.035 units. This increase is equivalent to 12.5% of the mean value of

EVI implied yield. Economically the effect on EVI implied yield is equivalent to – (1) 1.06%

increase in agricultural yields of cereal crops, (2) a 4.28% increase in the production value of

cereal crops, and (3) a 3.21% increase in the production value of all crops. We estimate that six

years after the introduction of 4G internet, the annual income of agricultural households grew

by 14.5%. To put these numbers in context, as per the Situation Assessment Survey of India

the income of agricultural households grew by 59.01% over the period from 2014 until 2021.
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Our back of the envelope calculations suggest that 24.56% of the income growth of agricultural

households over this period can be explained by the introduction of high-speed 4G internet.

Our empirical strategy exploits the variation across treated and not-yet-treated hexagonal

units. Specifically, we compare hexagonal units that have already experienced the introduction

of 4G towers with units that are slated for introduction at a later stage. A concern is that

early treated units are different from units that are treated later. However, as long as these

differences are time-invariant, this selection is fully accounted for by unit fixed effects. Thus,

our specification does not require that the introduction of 4G BTS was randomly allocated,

nor does it require that units must have the same pre-treatment characteristics. Rather our

estimate would be unbiased if the treated units would have evolved the same way as the

not-yet-treated units in the absence of the treatment. We substantiate this assumption by

presenting the pre-trend analysis in all our empirical assessments.

There may still be concerns associated with the endogeneity in the spatial introduction

of 4G towers. Prior literature has employed lightning as an instrument for the introduction

of 2G/3G towers. However, lightning plays an important role in the nitrogen cycle and can

contribute to the availability of nitrogen for plant growth. Therefore, such an instrument

is likely to violate the exclusion restriction as the intensity of lightning can directly affect

agricultural output and other economic variables in an agrarian economy.

We circumvent this issue by exploiting a plausibly exogenous variation in the roll-out of

4G technology due to the staggered state-level introduction of Rights of Way (RoW) policies.

RoW policies were adopted at the state level with the intention to promote the growth of

telecom infrastructure by streamlining rules and reducing the regulatory burden on telecom

infrastructure companies. We first establish that the enactment of the RoW rules had a positive

effect on the construction of 4G towers in those states. Specifically, the number of towers

within a district increased by 600 within six quarters of the adoption of the policy. Next, we

document an increase in agricultural productivity following the adoption of RoW policy. The

two results indicate that the RoW policies lead to an increase in the number of 4G towers as

well as agricultural productivity. Furthermore, the introduction of 4G due to RoW policies is

associated with increased fertilizer consumption, a convergence towards optimal N:P:K ratios,

and a higher uptake of credit.

Our results are robust across various measures of agricultural productivity, employing

dynamic two-way fixed effects estimation, alternative estimators suggested by Borusyak,

Jaravel and Spiess (2022) and de Chaisemartin and D’Haultfuille (2020), and a falsification test

employing a sub-sample of non-cropland hexagons.
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Next, we investigate the improvement in access to information as a mechanism driv-

ing the increase in agricultural productivity following the introduction of 4G technology.

While the introduction of 4G improves access to a wide variety of information, we focus on

weather information for two reasons. First, agricultural output and returns heavily depend

on weather shocks, particularly rainfall shocks (Townsend (1994), Jayachandran (2006), Kaur

(2019), Rosenzweig and Udry (2013)). Second, the availability of data on weather information

and its spatial distribution allows us to more credibly identify the underlying mechanism.

We start by assessing the importance of the accuracy of weather information by using

the distance of a hexagon to the nearest official weather station as a proxy for the accuracy

of forecasts. Almost all of the weather information and forecasts in India are sourced from

the instruments located at the official weather stations. However, weather shocks, especially

rainfall, exhibit low geospatial correlation (Cole and Xiong (2017)). Therefore, the distance of

a hexagon to the nearest official weather station provides a proxy for the accuracy of weather

information and forecasts. Specifically, as the distance to the nearest official weather station

increases, the accuracy of the forecast decreases, thereby decreasing the accuracy or reliability

of the information. We find that hexagons closest to the weather stations exhibit the highest

treatment effect of increased agricultural productivity after the introduction of high-speed

4G internet compared to the statistically insignificant and economically negligible effects for

hexagonal units far from the weather stations.

Furthermore, we refine our understanding of the mechanism by examining the hetero-

geneity in the treatment effects due to the potential value of information. We use historical

rainfall volatility as a proxy for the value of information. The intuition behind this test is

that farmers operating in regions of high rainfall uncertainty stand to gain the most from

rainfall forecasts and, thus, value reliable weather information the most. Our results indicate

that hexagons located closer to weather stations that are prone to greater rainfall variability

are more likely to experience gains in agricultural productivity due to the introduction of 4G

towers. However, the introduction of 4G towers has a small post-treatment effect for hexagons

that experience low rainfall volatility.

We further supplement our results on the value of information by examining the hetero-

geneity in the treatment effects due to exposure to predictable and difficult-to-predict weather

shocks. The reasoning behind this assertion is that weather information from a nearby weather

station will be of little value to farmers in regions prone to weather shocks that are difficult to

predict as forecasts will likely be less accurate. Our results indicate that treatment effects are

positive, statistically significant, and economically meaningful for units that are located close
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to the weather stations and are susceptible to predictable shocks.

These results have two key takeaways. First, it sheds light on the mechanism, i.e., the

improvement in agricultural production due to the introduction of 4G towers is related to

improved access to information. Second, the introduction of infrastructure to support high-

speed internet in isolation might not be adequate, i.e., it acts as a complement to existing

technology. The positive effect of such infrastructure development that improves access to

information crucially relies on the reliability and value of the underlying information.

Next, we examine the importance of 4G technology relative to earlier versions of telecom-

munications technology, such as 2G and 3G. High-speed internet in the form of 4G presents

several key advantages over traditional modes of information dissemination including tele-

vision, radio, phone calls, texts, and slow-speed internet. For instance, Fabregas, Kremer and

Schilbach (2019) argue in their review article that internet-based platforms may be an effective

tool for disseminating information in a user-friendly and engaging manner by employing

videos and graphics. Moreover, 4G significantly enhances real-time and fast information

accessibility for farmers through high-speed internet which is crucial for the impact of infor-

mation dissemination on agricultural productivity (Anderson and Feder (2004)). We examine

this conjecture by comparing the effects of the introduction of 3G and 4G on agricultural

productivity. We do not find any economically or statistically significant improvement in agri-

cultural productivity following the introduction of 3G, a generation that provides access to

low-speed internet. Similarly, we do not find evidence of a positive effect of the introduction

of 2G on agricultural productivity. Overall, these results suggest that 4G technology may

possess distinct advantages in improving information access for farmers.

We investigate a particular channel that potentially makes information access through

high-speed 4G internet special – role of trust. Information dissemination through traditional

modes such as text messages, call centres, hotlines, etc. is often directly controlled by the state

and its agents. Moreover, local governing bodies known as village panchayats often act as

the central node for information dissemination by the government. Therefore, a lack of trust

in local and state authorities can hinder effective communication and engagement through

these traditional methods (Fabregas, Kremer and Schilbach (2019)). For instance, Cole and

Sharma (2017) document that nearly 70% of Indian farmers distrust information provided by

extension workers. On the contrary, the internet, being a more decentralized platform, may

not encounter the same issues related to trust. For instance, a user of a weather application

may not realize that the weather information on the app is sourced from government weather

stations. Consequently, the introduction of 4G internet may have greater effects in regions
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where trust in state institutions is diminished.

Using India Human Development Survey (IHDS) responses to questions on the level of

trust in local village panchayats and state governments, we compare changes in agricultural

productivity following 4G introduction in areas with pre-treatment high and low trust levels.

Our findings suggest that regions characterized by low trust in village panchayats or the

state exhibit a notable increase in agricultural production following the introduction of 4G. In

contrast, the impact of introducing 4G technology is economically small and lacks statistical

significance in areas with a high level of trust in local village panchayats. These results imply

that the advancement of high-speed internet through 4G infrastructure can mitigate the effect

of human frictions, like mistrust in local institutions and the state.

Lastly, we provide evidence on technology adoption by farmers. Most of our analysis is

focused on the availability of 4G technology through the introduction of 4G towers. However,

the uptake of 4G technology by farmers - once it is accessible through 4G towers - is of

first-order importance for information-related mechanisms to drive agricultural productivity

growth. Moreover, the kind of information accessed by farmers may play a significant role

in shaping productivity growth. We address these questions using a proprietary dataset

of geocoded and time-stamped mobile application ("app") installations from Krishify – an

Indian firm which runs one of the largest social networks and commerce platforms for more

than ten million farmers. Our DiD estimates indicate that app installations increase after the

introduction of 4G. This result makes explicit what has been implicit in our analysis till now

– availability of 4G is associated with 4G adoption, as proxied through the installation of the

Krishify app.

We also examine the type of information farmers access on the internet using detailed

browsing and activity data of farmers on the Krishify app. The foremost four topics collectively

constitute about 70% of farmer interactions on the platform. Notably, information about

government programs ranks highest, contributing to 21.3% of all interactions, followed by

agricultural news at 16.6%, information about farm machinery (e.g., tractors) at 16.1%, and

weather information at 14.2%. Furthermore, farmers also utilize the platform to seek advice

specific to animal (9.1%) and crop (8.18%) management. Interactions related to inputs like

fertilizers, seeds, finance, and other miscellaneous inputs collectively make up 11.4% of all

farmer engagements on the platform. The detailed activity data of farmers suggests that

farmers may be using internet-based platforms extensively for gathering information on a

wide variety of agri-related activities.

Related Literature: This paper contributes to four strands of literature. First, we contribute
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to the literature examining the effect of communications technology on agricultural yields.

This literature has primarily focused on examining the effects of face-to-face, text-based, and

voice-based information dissemination mechanisms on agricultural yield. Fabregas, Kremer

and Schilbach (2019) presents a detailed review of the effects of extension workers, phone calls

and SMS-based information programs on agricultural yields. Most prior work does not find

long-run effect of such traditional communications interventions on agricultural yields.3 We

contribute to this literature in two ways. First, we document that 4G infrastructure plays a

crucial role in enhancing information access through high-speed internet. Second, we show

that the dissemination of information through high-speed internet yields positive effects on

yields. Lastly, we complement this literature by presenting statistically insignificant results

associated with the introduction of 2G and 3G technologies – which improve voice and text-

based information dissemination – on yields.

The second contribution of this paper is documenting that the dissemination of infor-

mation through high-speed internet may dominate conventional approaches to improving

information access as it can mitigate certain frictions associated with traditional methods.

The prior literature has documented that traditional approaches to information dissemination

suffer from several frictions such as lack of trust (Cole and Sharma (2017)), linguistic barriers

(Gupta, Ponticelli and Tesei (2023b)), and timeliness (Anderson and Feder (2004), Duflo, Kre-

mer and Robinson (2011)). Particularly, the prior literature has conjectured that a lack of trust

in local and state authorities can hinder effective communication and engagement through

these traditional methods (Fabregas, Kremer and Schilbach (2019)). For instance, Cole and

Sharma (2017) document that nearly 70% of Indian farmers distrust information provided

by extension workers. We contribute to this literature in two ways. First, we document

that internet based information dissemination dominates traditional modes of information

dissemination. Second, we show that internet based information dissemination through 4G

alleviates human frictions associated with a lack of trust in the state.

Our paper also contributes to the literature examining the effect of infrastructure devel-

opment on yields. Prior work has documented limited effects of infrastructure development

on yields or production. These studies include examining the effects of the construction of
3Cole and Fernando (2021) find no systematic impact on yields on the treated farmers in the Indian state of Gujarat that
randomly received access to a hotline for agricultural advice. Gupta, Ponticelli and Tesei (2023b) show that a large-scale 2G
expansion in India had no significant effect on agricultural yields. Additionally, experiments by Fafchamps and Minten
(2012) that sent Indian farmers price and weather information via text messages found no evidence of value addition.
document similar results among Colombian farmers. Other studies documenting null results of traditional information
dissemination mechanism on yields include Camacho and Conover (2010), Van Campenhout, Spielman and Lecoutere
(2021), Udry et al. (2019), among others. A notable exception is Casaburi et al. (2014). They document a positive effects
on yields of a text message based agricultural advice experiment among small sugarcane farmers in Kenya. However, a
follow-up trial of the same intervention has no significant impact on yields.
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rural roads in India (Asher and Novosad (2020)), bridges in Nicaragua (Brooks and Donovan

(2020)), and kisan call centers in India (Gupta, Ponticelli and Tesei (2023b)). We contribute

to this literature by showing that 4G infrastructure can improve information dissemination

among farmers and improve yields. However, our results also suggest that the introduction of

infrastructure to support high-speed internet in isolation might not be adequate, i.e., it acts as

a complement to existing technology. Specifically, we show that when 4G infrastructure isn’t

coupled with the provision of reliable and valuable information, its potential to boost output

may be constrained.

Additionally, we are related to the literature examining the effect of digital infrastructure

on labor market outcomes (Akerman, Gaarder and Mogstad (2015), Hjort and Poulsen (2019),

Zuo (2021)), political mobilization (Manacorda and Tesei (2020)), corruption (Andersen et al.

(2011), Gonzalez (2021)), confidence in governments (Guriev, Melnikov and Zhuravskaya

(2021)), financial inclusion (Aker and Mbiti (2010), Suri and Jack (2016), Suri (2017), Batista

and Vicente (2023)), and credit markets (DAndrea and Limodio (2023), Gupta, Ponticelli and

Tesei (2023a)). We differ in two ways. First, while the extant literature examines the effect of

2G and 3G technology, we focus on the effect of 4G technology. Second, we examine the effect

of such a technology on agricultural yields. Focusing on yields as a real economic variable is of

immense interest as around 26% of the global workforce was employed in agriculture in 2019.

Furthermore, enhancing agricultural productivity is essential for alleviating global poverty

and addressing increasing food demands in the context of climate change, particularly for the

two billion individuals residing in smallholder farming households in the developing world.

(Fabregas, Kremer and Schilbach (2019)). Therefore, our results are informative for policy

makers as they highlight mechanisms under which improving internet-based information

access can improve the productivity of small agricultural enterprises in a developing economy,

a sector grappling with stagnation.

This paper proceeds as follows. Section 2 describes the data. Section 3 delineates the

empirical strategy. Section 4 presents the baseline effect of the introduction of 4G on agri-

cultural productivity. Section 5 documents the underlying mechanisms. Section 6 examines

the importance of the introduction of 4G relative to earlier versions of telecommunications

technology, such as 2G and 3G. Section 7 presents the effect of 4G introduction on the adoption

of 4G specific agricultural technology. Section 8 concludes.
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2 Data

This section discusses the various datasets employed in the analysis. Our primary datasets

include Base Transceiver Stations (BTS) geolocation data and remote sensing data on agricul-

tural yields, croplands, and nightlights. We use the BTS data to identify the timing of the

treatment and the remote sensing data to construct our key dependent variables. We also map

several other economic, demographic, and agricultural variables to this dataset. Therefore, a

key contribution of this paper is creating a granular database that links telecom coverage with

several economic, agricultural, and demographic variables that can be employed in future

research.

2.1 BTS Data

We collect a novel dataset from the Ministry of Telecom, which provides detailed information

on the geolocations of all Base Transceiver Stations (BTS) in India. A BTS serves as a commu-

nication link between user devices, such as mobile phones or computers, and the network.

The dataset includes an exhaustive list of all BTSs in India, which were deployed at various

points in time from 1995 to 2022.

The data contains information on precise geographic coordinates of each BTS, the as-

sociated technology (e.g., 2G/3G/4G), and the date of start of operation. In total, our dataset

comprises information on 2.35 million unique BTS across 717,764 towers. We restrict our

sample to the subset of 1.2 million BTS that were the first-operational-BTS-by-technology at

that geolocation. Figure 1 presents the spatial evolution of 4G coverage for the years 2014,

2016, 2018, and 2020. Similarly, Appendix Figure A.1 presents the evolution of 3G coverage

for the years 2014, 2016, 2018, and 2020.

2.1.1 Hexagonal Tessellation

A key challenge in working with the BTS data is deciding on the appropriate unit of analysis.

Particularly, it is challenging to use conventional administrative units, such as a district or

block, as the unit of analysis due to two reasons. First, the geographic coverage of BTS is

typically limited around the tower. Second, BTS are activated on multiple towers within close

vicinity over time. As a result, the usage of large administrative units as the unit of analysis

violates the assumption of homogeneous treatment within treated units, as multiple locations

within a unit receive unequal treatment over time.
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We address this concern, by dividing the map of India into a grid of hexagons or hexag-

onal tessellation, with each hexagon representing a unit of analysis. We choose hexagonal

tessellation because it is the most efficient arrangement of equal circles that fills a plane with-

out any overlaps or gaps (Birch, Oom and Beecham (2007)). Specifically, we draw hexagons

with a distance of 0.1-degree latitude between their opposite ends, which is roughly equivalent

to a distance of 11 km. These hexagons can be thought of as circles with a radius of 5.5 km,

with approximate area of 95 sq. km. This size is reasonable considering that the range of a 4G

cell tower is typically between 3-6.5 km (2-4 miles).4 By using this hexagonal tessellation, we

ensure that each location within our analysis unit receives nearly equal treatment.

We overlay the geographic coordinates of the BTS onto the tessellated map to assign

each first-operational-BTS-by-technology to a unique hexagon. Appendix Figures A.2 and

A.3 present the tessellated map of India showing all hexagons included in our sample. Figure

2 plots the number of hexagons first treated by BTS of different technologies from 1995 until

2022. We identify the date of treatment for each hexagon, i.e., the date on which a hexagon first

saw the introduction of a 4G BTS, by using the date of operation for 4G BTS. Figure 3 presents

the evolution of the treatment across hexagons over time for 4G BTSs. Similarly, Appendix

Figure A.4 presents the evolution of the treatment across hexagons over time for 3G BTSs.

2.2 Remote-sensing data on Agricultural Production

We use remote-sensing data to construct measures of unit-level (hexagon-level) agricultural

production, as no such granular agricultural production data exists for India. This data comes

from NASA’s Earth Observation Satellite - Landsat 8. Specifically, we use Enhanced Vegetation

Index (EVI) to construct our unit-level measures of agricultural production.

EVI is a chlorophyll-sensitive composite measure of plant matter generated by NASA’s

Earth Observation satellite – Landsat 8. The composites are created from all the scenes in

each 8-day period beginning from the first day of the year and continuing to the 360th day of

the year. Each pixel value is optimized considering cloud cover obstruction, the influence of

background vegetation, image quality, and viewing geometry. We direct the readers to Huete

et al. (2002) for details on the construction of an earlier version of EVI and the usage of this

earlier version – 16-day EVI composites – in economics research by Asher and Novosad (2020).

Our sample period extends from 2013 until 2021 as the 8-day EVI composites are available

from April of 2013 until January of 2022. We query EVI values over this period for our desired

4See here.
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micro-regions, hexagonal units, by supplying the geometry of the micro-region to the Google

Earth Engines API. EVI values obtained from each pixel are spatially averaged over the

hexagon to obtain a time-series of EVI values with an 8-day interval. Appendix Figure A.5a

plots the evolution of average, the 25th percentile, and the 75th percentile EVI value for all

hexagons in our sample.

Following the methodology outlined in Asher and Novosad (2020) and Ghosh and Vats

(2022), we construct hexagon-level measures of agricultural yields for the primary growing

season of kharif that begins in June and ends in October of each year. We construct two

measures using the 8-day composite based EVI values. Our preferred measure – EVI implied

agricultural yield – is constructed by subtracting the average value of EVI during the initial

weeks of kharif season from the maximum EVI value during the season. Appendix Figure

A.5a shows that the EVI value increases with the start of the kharif season and reaches its

highest value around the kharif harvest time. Therefore, the difference measure effectively

measures production per unit of pixel during the season. Moreover, the difference measure

implicitly controls for differences in non-crop vegetation, such as perennial non-crop green

cover, that maybe captured by EVI composites. Our second measure – maximum EVI – uses

the maximum EVI value for the kharif season. Panel A of Table 1 presents the summary

statistics for the two measures. The two measures are highly correlated with a correlation

coefficient of 0.53 (see appendix Figure A.5b).

An assumption that justifies the usage of these measures is that they exhibit significant

correlation with both agricultural productivity measures and real production measures. We

verify this assumption in Appendix B for our preferred measure of agricultural production

based on 8-day composite exhibits. We find that the EVI implied yield based on 8-day EVI

composites exhibit significant correlation with real production measures such as yield and

production value measured in USD.5

2.3 Other datasets

This section describes a range of other datasets used in our analysis.

Other Remote Sensing Data: We use two other remote-sensing datasets – cropland extent

and nightlights. Cropland extent data comes from the Global Food Security-Support Analysis

Data (GFSAD) and identifies cropland at the resolution of 1 km for the year 2010.6 We map the
5Asher and Novosad (2020) note that the agricultural production measures based on 18-day composite measures also
exhibit significant correlation with both agricultural productivity measures and real production measures.

6GFSAD is a NASA funded project providing high-resolution global cropland data. Data documentation of can be found
here.
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cropland extent data to our hexagons and remove all hexagons that do not have any cropland

to focus attention on agrarian units.

Weather Station Data: Data on geo-locations of weather stations and the daily weather records

at these stations comes from the Indian Meteorological Department. The weather records in

this data include daily rainfall and daily incidence of variety of other weather conditions,

such as haze, sand/dust storm, fog, squall, gale, thunderstorm, hailstorm, fog, squall, frost,

dew, and snow or sleet. This data spans from 2001 until 2019. We use this data until 2012 to

construct weather related variables before the onset of the treatment.

Agricultural Production Potential: Agricultural production potential is measured using two

measures provided in Advancing Research on Nutrition and Agricultures (ARENA) Demo-

graphic and Health Surveys (DHS)-GIS Database. Our measures of agricultural production

from the ARENA-DHA database is based on exogenous characteristics such as soil character-

istics and water availability in the area. The first measure provides the combined suitability

of currently available land for pasture and rainfed crops. The second measure provides the

combined suitability of the global land area for pasture and rainfed crops. Survey clusters in

the DHS data are mapped to hexagons based on the minimum distance between centroids of

hexagons and geo-coordinates of survey clusters. These measures are calculated as of 2014.

Trust in Village Panchayats & State Government: The data on trust in village panchayat and

state government comes for the India Human Development Survey (IHDS-II) conducted in

2011, which includes a question that queries respondents about the level of trust they have

in their local village panchayats and state government. The exact questions are: "How much

trust do you place in the ability of your village panchayat to implement public projects?" and

"How much trust do you place in the ability of the state government to take care of people?"

The response options consist of three choices: a) A great deal of confidence, b) Only some

confidence, and c) Hardly any confidence at all. To quantify these responses, we assign a

numerical value of 1 to option (a), 0.33 to option (b), and 0 to option (c). We take the average

of this measure across all households within a district based on their weights. This allows us

to compute a continuous measure of confidence in village panchayats and state government

at the district level. We use the response to this question to construct a district-level proxy for

confidence in village panchayats and divide the districts into two subsets based on the median

response value. Districts with confidence levels above the median are categorized as "high

confidence" districts, while those below the median are classified as "low confidence" districts.

We then link this measure to the hexagonal grids situated within the districts.

Fertilizer Consumption data: We collect district-level data on consumption of total fertiliz-
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ers, fertilizer by nutrient type, and gross sown area from the States of India (SoIdx) database

maintained by the Center for Monitoring the Indian Economy (CMIE). This data spans from

2000 until 2020. We map hexagons in our dataset to districts based on the extent of overlap,

i.e., if a hexagon falls in multiple districts it is mapped to the district with the maximum area

of overlap.

Agricultural Credit data: We obtain quarterly branch level data from one of the largest

state owned bank in India. The data spans 2013-2021 and contains information about total

agricultural credit disbursed by the branch during the period.

Krishify app installations data: Krishify is an Indian company aimed at connecting farmers

on a social network where they can discuss agriculture related issues.7 We obtain a propri-

etary, geolocated and time-stamped dataset of their app installations for the years 2019-2021.

We superimpose the coordinates of app installations over our hexagonal grid to identify the

number of app downloads at the hexagonal level. Additionally, we also get a 10% random

sample of all farmers in the Krishify database along with their detailed search, browsing, likes,

and comment history.

Table 1 presents the summary statistics of the key variables used in the analysis. The

average value of our preferred measure of agricultural productivity, EVI implied yield, is 0.27

with a standard deviation of 0.14. The hexagons, on average, are located 40km away from the

nearest weather station. Rainfall exhibits significant variability, as indicated by the coefficient

of variation, which ranges from 0.127 to 1.414.

3 Empirical Strategy

Our objective is to estimate the effect of high-speed internet on agricultural productivity. We

estimate this effect by employing a difference-in-differences (DiD) framework that leverages

the staggered rollout of Broadband Transmission Stations (BTSs) within hexagons. Particularly,

our empirical strategy examines the effect on agricultural productivity in hexagons around

the time when BTSs first become operational in the treated hexagons relative to the agricultural

productivity in control hexagons which are not-yet-treated.

7Link to their official website can be found here. Appendix section D.1 presents more details about the company and our
data.
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3.1 TWFE Dynamic Specification

We begin by estimating a dynamic specification 1 in relative time, which allows for non-

parametric changes in treatment effects over time. Borusyak, Jaravel and Spiess (2022) argue

that we need to exclude at least two relative period indicators when there are no never treated

units with a panel balanced in calendar time.8 Therefore, we exclude two relative time periods

corresponding to t ∈ {−8,−1} to address potential multi-collinearity concerns.

YEVI
i,t = αi + λt +

y=8∑
y=−8,

y,−1,−8

βy1(t − t∗i = y) + εi,t (1)

where Yi,t denotes the EVI-implied agricultural yield for the Kharif season in year (t) and

hexagon (i). Indicator variables 1(t − t∗i = y) measure time relative to the year hexagon i first

got treated (t∗i ). αi and λt denote hexagon and time fixed effects, respectively. Standard errors

are clustered at the district level.

Appendix Figure C.1 presents the sequence of dynamic coefficients {βy} estimated us-

ing equation 1. These estimates can be interpreted as causal under the assumptions of no-

anticipation of the treatment, treatment effect homogeneity, and parallel trends. Negative

and statistically significant coefficients for relative time periods t = −3 and t = −4 suggest

meaningful pre-trends and thus, a possible violation of parallel trends assumption. However,

Sun and Abraham (2021) show that testing for parallel trends using pre-treatment leads from

a dynamic TWFE specification can be problematic as pre-treatment leads can be contaminated

with treatment effects from other relative time periods, including post-treatment lagged effects.

Therefore, a rejection of parallel trends based on significant pre-treatment leads necessarily

assumes treatment effect homogeneity.

3.1.1 Treatment effect homogeneity

We begin by evaluating the plausibility of the assumption of treatment effect homogeneity in

our context. Treatment effect homogeneity imposes the condition of homogeneous treatment

effects across cohorts, i.e., farmers gaining access to 4G services in 2014 experience similar

productivity gains as farmers that gain 4G access in 2021. Intuitively, the assumption of

treatment effect homogeneity may be violated due to a variety of reasons, such as changes
8There are two sources of multi-collinearity. First, relative period indicators sum to one for every unit. Second, the presence
of a linear relationship between two-way fixed effects and the relative period indicators.
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in forecasting skills over time, mergers and acquisitions among telecom service providers,

and variation across cohorts due to calendar time-varying macroeconomic conditions could

govern the effects on outcomes across cohorts.

We formally diagnose the source and extent of contamination of the pre-treatment leads

in our dynamic TWFE specification using the methodology outlined in Sun and Abraham

(2021). The estimate for β−3 can be decomposed as follows:

β−3 =

2021∑
e=2013

ω−3
e,−3CATTe,−3 +

∑
l∈{−7,−6,...,0,...,6,7}

2021∑
e=2013

ω−3
e,l CATTe,l +

∑
l′∈{−8,−1}

2021∑
e=2013

ω−3
e,l′CATTe,l′ (2)

where CATTe,l refers to average treatment effect for cohort e in relative time period l. For

instance, CATT2015,−2 is the average treatment effect for the relative time period t = −2 for the

cohort that got treated in the year 2015. The first term captures the true parameter of interest

associated with t = −3. The third term reduces to zero under the no anticipation assumption.

The second term reduces to zero under the assumption of treatment effect homogeneity. Sun

and Abraham (2021) show that if treatment effects are heterogeneous, dynamic effects of 4G

introduction across different cohorts will affect the TWFE estimates of β−3 making it a function

of post-treatment CATTe,l≥0. Therefore, a test of pre-trends using the statistical significance of

pre-treatment coefficients becomes invalid even in the absence of pre-trends.

Appendix Figures C.2a and C.2b respectively illustrate the decomposition of weights,

as described in equation 2, for the pre-treatment leads at t = −3 and t = −4 in specification

1. Weights associated with CATT2015,1 and CATT2017,1 receive the highest absolute weights

of magnitudes of 0.079 and −0.056, respectively. If treatment effects for relative time period

t = 1 are different across these cohorts, the interaction of non-zero weights and heterogeneous

treatment effects for these cohorts will contaminate the estimates of β−3. Thus, under treatment

effect heterogeneity, β−3 becomes a function of post-treatment CATTe,l≥0. making any test for

pre-trends using the statistical significance of pre-treatment coefficients invalid.

3.2 DiD estimator

We address the issue of violation of the treatment effect homogeneity assumption by pre-

senting our event-time DiD estimates using the Callaway and Sant‘Anna (2021) estimator We

choose this estimator for two reasons discussed in Roth et al. (2023). First, this approach

provides sensible estimands even under arbitrary heterogeneity of treatment effects. Second,

this approach makes transparent which units are being used as a control group to infer the
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unobserved potential outcomes. Specifically, we use the set of not-yet-treated cohorts as the

control group because the no-never-treated group is minuscule in our design. For robust-

ness, we also present our event-time DiD estimates using the estimators outlined in Borusyak,

Jaravel and Spiess (2022) and De Chaisemartin and d‘Haultfoeuille (2020).

The Callaway and Sant‘Anna (2021) framework is based on causal parameters referred

to as group-time average treatment effects. These effects represent the average treatment effect

for units (hexagons) that belong to a specific group g at a particular time period t, i.e., group

of hexagons treated in 2014, 2015,... etc.:

ATT(g, t) = E[Yt(g) − Yt(0)|Gg = 1] (3)

where Yt(g) is the outcome variable for treated group g at time t, Yt(0) is the untreated potential

outcome for group g at time t, and Gg is a binary variable that equals one for units belonging

to group g, i.e., group first treated in period g.

Most importantly, the construction of these ATT(g, t)’s does not rely on the assumption

of treatment effect homogeneity across groups or across time. These ATT(g, t)’s are then

aggregated across groups to arrive at event-time parameters analogous to coefficients in a

dynamic TWFE specification as in equation 1 while avoiding the pitfalls associated with such

specifications.

3.2.1 Identifying Assumption

Our empirical strategy exploits the variation across treated and not-yet-treated hexagonal units

(hexagons). Therefore, one natural concern is that early treated units are different from units

that are treated later. However, as long as these differences are time-invariant, this selection

is fully accounted for by unit fixed effects. Thus, our specification does not require that the

introduction of high-speed 4G BTS was randomly allocated, nor does it require that units must

have the same pre-treatment characteristics. Rather our estimate would be unbiased if the

treated units would have evolved the same way as the not-yet-treated units in the absence of

the treatment.

Our identifying assumption implies that unit-level trends in agricultural production

would have been the same in treated and not-yet-treated in the absence of the policy. While

this assumption is untestable, we present parallel pre-trends for all our analysis to provide

supporting evidence to our identifying assumption.
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4 Results

This section presents the effect of 4G introduction on agricultural yields. We use the heterogeneity-

robust, dynamic difference-in-differences estimator outlined in Callaway and Sant‘Anna (2021)

that exploits the staggered introduction of 4G across hexagons in our sample.

Figure 4 presents the results using the Callaway and Sant‘Anna (2021) estimator.9 The

dependent variable is standardized to mean zero and standard deviation of one. Our sample

consists of all hexagons that received the 4G treatment at some point between 2013 and 2021,

thus comparing treated units with not-yet-treated units. Our sample is a balanced panel of

hexagons from 2013 until 2021. We restrict our sample to agrarian units by removing hexagons

that did not contain any cropland within its boundaries as identified by the GFSAD data on

cropland extent. The outcome variable is the EVI implied yield, constructed by subtracting

the average value of EVI during the initial weeks of the kharif season from the maximum EVI

value over the entire season. Each plotted coefficient measures the average treatment effect on

the treated in event-time e constructed by aggregating over event-time coefficients for groups

treated in each year, i.e., ATT(g, g + e)’s.

There are two key takeaways from Figure 4. First, we do not observe significant pre-

trends in EVI implied yields in the event-time leading up to the treatment. Second, we

observe an increase in EVI implied yield following the introduction of high-speed 4G internet.

Specifically, we observe that the treatment effect increases gradually after treatment. We

find that six years after the treatment EVI implied yield increases by 0.24 times the standard

deviation or 0.035 unit increase in EVI. This increase is equivalent to the 12.5% of the mean

value of EVI implied yield.

4.1 Discussion of the Magnitude of Estimate

We translate the estimates of 4G introduction on EVI implied yield to the effect on real agri-

cultural yield and production value. Appendix B presents the detailed calculations. Our

estimates imply that the introduction of high-speed 4G internet is associated with a – (1) 1.06%

increase in agricultural yields of cereal crops, (2) a 4.28% increase in the production value of

cereal crops, and (3) a 3.21% increase in the production value of all crops. Overall, we find

that six years after the introduction of 4G internet, the annual income of agricultural house-

9As pointed out in Roth (2024), the default pre-treatment plots for the Callaway and Sant‘Anna (2021) estimator in Stata
do not have the same interpretation as those of the traditional TWFE event-study plots. We correct for this difference by
including the long2 option in our Stata specification for the Callaway and Sant‘Anna (2021) estimator. The results are
presented in Figure C.3.
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holds grew by 14.5%.10 According to the Situation Assessment Survey of India, the income

of agricultural households grew by 59.01% over the period from 2014 until 2021. Our simple

calculations suggest that 24.56% of this income growth of agricultural households over this

period can be explained by the introduction of high-speed 4G internet.

We compare our estimate of the increase in yield with the effects of climate change,

infrastructure developments, and other interventions on agricultural yields. Guiteras (2009)

estimates that projected climate change in India will reduce major crop yields by 4.5-9% over

the period 2010-2039. Our estimate of increase in yield of 1.02% for major cereal crops, six

years after the introduction of high-speed 4G internet, may be sufficient to offset this projected

climate change impact on agricultural yield in India.

Next, we compare our estimates to the documented effects of other infrastructure de-

velopment on agricultural yields. Asher and Novosad (2020) study the development of rural

road infrastructure in India, and do not find any significant effect on agricultural income four

years after road construction. Similarly, Brooks and Donovan (2020) do not find a statistically

significant effect of construction of bridges in Nicaragua on agricultural production of maize

and beans. Gupta, Ponticelli and Tesei (2023b) examine the effect of introduction of kisan call

centers in India and do not find any significant effect on agricultural yields, six years after

their introduction. In contrast, our estimate indicates a 1.02% increase in agricultural yield,

five years after the introduction of high-speed 4G internet.

Our estimate is smaller when compared to other agricultural interventions that reduce

risk or directly increase productivity. Emerick et al. (2016) conduct a randomized controlled

trial in India that involves distribution of a new rice variety that reduces downside risk

by providing flood tolerance. They document that this intervention has positive effects on

adoption of a more labor-intensive planting methods, area under cultivation, fertilizer usage,

and credit utilization translating to improvement in productivity. Their most conservative

estimate indicates that productivity increases by 6%. Our estimate of increase in yield is

roughly one-sixth of the estimate reported in Emerick et al. (2016). Beaman et al. (2013)

document that yield increases by 31% and 16.6% when farmers in Mali receive fertilizers equal

to the recommended quantity and half the recommended quantity, respectively.

10We direct readers to Appendix B.1 for the detailed calculations.
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4.2 Overall Effects of Treatment

We also provide estimates of the overall effects of treatment. We characterize the overall

treatment effect using three different estimators outlined in Callaway and Sant‘Anna (2021)

that aggregate ATT(g, t)’s into a single estimate of the aggregate average treatment effect.

First, in simple aggregation, the aggregate ATT is defined as the weighted average of all

group-time average treatment effects. Second, in group-specific aggregation, the aggregate

ATT is defined as the average of partially aggregated group-specific ATT’s across all groups.

Third, in event-time aggregation, the aggregate ATT is defined as the average of partially

aggregated event-time ATT’s across all lengths of post-treatment exposure.

Table 2 presents the three measures of aggregate ATT. The last column of Table 2 presents

our estimates of the average effect of 4G introduction on agricultural yields. The estimates

indicate that the introduction of high-speed 4G internet significantly increased agricultural

yields across all three measures of aggregate ATT.

4.3 Robustness

This section investigates the validity of our empirical design and the robustness of our primary

results. We conduct a falsification and a sanity test that exploits heterogeneity in the treatment

effect by agricultural production potential to provide confidence in our empirical design and

our hypothesized effect. Lastly, we present the robustness of our results across two dimensions

– an alternative measure of agricultural production and alternative estimation methodologies.

Falsification Test: First, we present a falsification test using a sub-sample of hexagons that do

not contain any cropland within its boundaries as of 2010. The objective of this test is to show

that our empirical design is valid, the results are unlikely to be driven by spurious factors,

and our results represent an actual increase in agricultural production. The falsification sub-

sample contains no cropland. Therefore, we should not observe any change in agricultural

production in these units. Appendix Figure C.4 presents these results. We do not find any

economically or statistically significant effect on agricultural production for these units.

Heterogeneity by Agricultural Production Potential: Second, we present a sanity check for

our results by exploiting the heterogeneity in agricultural production potential. Intuitively,

if high-speed internet increases agricultural production, we should document a greater effect

in areas with high potential for agricultural production. Appendix Figure C.5 presents these

results for two measures of agricultural production measured as of 2014. Our measure of

agricultural production from the ARENA-DHA database is based on exogenous characteristics
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such as soil characteristics and water availability, rather than actual agricultural production.

We find that the effect of the introduction of high-speed 4G internet is higher in areas with

high agricultural production potential (shown in red) relative to areas with low agricultural

production potential (shown in blue). Quantitatively, the effect in areas with high agricultural

production potential is twice as high as the effect in areas with low agricultural production

potential.

Alternative Measure: Third, we demonstrate the robustness of our results using an alternative

measure of agricultural production. We use the maximum EVI value during the kharif season

as our dependent variable. Appendix Figure C.6 presents these results and documents results

similar to our baseline results.

Alternative Estimation Methodology: Fourth, we test the robustness of our results using

alternative estimators proposed in Borusyak, Jaravel and Spiess (2022) and de Chaisemartin

and D’Haultfuille (2020).11 Figure 5 presents the dynamic event-time coefficients obtained

from these estimators, with our baseline measure of agricultural production — EVI implied

yield – as the dependent variable. For reference, we also show the dynamic TWFE estimator

and our baseline estimator of Callaway and Sant‘Anna (2021). Lastly, we repeat this exercise

using maximum EVI as the dependent variable, shown in Appendix Figure C.7. The tests

employing alternative estimation methodologies echo our baseline results.12

4.4 Alternative Identification Strategy

So far, our estimation strategy has relied on the staggered roll-out of 4G technology throughout

the country. While our identification strategy does not require that the early and later treated

units have the same pre-treatment characteristics, there may still be concerns associated with

the endogeneity in the spatial introduction of 4G technology. We address such concerns by

exploiting plausibly exogenous variation in the roll-out of 4G technology due to the staggered

adoption of a policy meant to promote the growth of telecom infrastructure at the state level.

Specifically, we exploit the staggered adoption of Rights of Way (RoW) policies by different

states between 2015 and 2019 to capture plausibly exogenous variation in the establishment

of 4G telecom towers.

11We do not use the Sun and Abraham (2021) estimator as it uses the set of never treated units as the control group, which
is very small in our setting. Therefore, the Sun and Abraham (2021) estimator is inappropriate in our setting.

12The standard errors in the pre-period for the Borusyak, Jaravel and Spiess (2022) estimator are large. This issue of the
large standard errors is consistent with the discussion on standard error estimation in Borusyak, Jaravel and Spiess (2022)
and Braghieri, Levy and Makarin (2022). Similar to Braghieri, Levy and Makarin (2022), we also find that the standard
errors increase dramatically as we increase the number of pre-periods.
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4.4.1 Details of the RoW policy

Laying of optical fibers and installing telecom towers requires significant digging and trench-

ing work on public lands (GSMA (2020)). As such, access to public Rights of Way ("RoW")

forms an essential part of deploying telecom infrastructure at a large scale. The permissions

required for such RoW are the jurisdiction of states and local municipalities.

However, the telecom industry often faced strong opposition from local bodies and

the public due to issues related to estate taxes and concerns over electromagnetic frequency

emissions that allegedly cause cancer. For instance, the Cellular Operators Association of

India (COAI), the key lobby group for the major telecom operators in the country, presented

its grievances to the telecom regulator, saying, “State bodies continue to initiate actions such

as disconnecting electricity, sealing the premises and even dismantling of tower sites without

any prior notice, leading to coverage disruptions and network congestion.”13

In order to standardize rules across the country and reduce the regulatory burden on

telecom infrastructure companies, the federal government laid down a framework to regulate

the establishment and maintenance of telecom infrastructure to coordinate policies at the

national level. This effort led to the introduction of the Indian Telegraph Right of Ways Rules

on 15th November 2016. The policy provides a blueprint for rules to be followed by telecom

companies and local administrative bodies. Anecdotal evidence suggests that the blueprint

was inspired by the RoW policy implemented in the state of Jharkhand in December 2015

following a joint pilot between the Telecom Regulatory Authority of India (TRAI) and the

government of Jharkhand.14

These rules were designed to streamline the process by which companies apply for

approvals and resolve disputes related to telecom infrastructure. Moreover, the rules required

the establishment of specific timeframes. For example, the policy dictates that the state

authority must respond to applications within 60 days from the date of submission, either

by granting or denying the application. If the state authority fails to respond within this

timeframe, permission is automatically granted, and the authority cannot reject the application

without first giving the company an opportunity to be heard and providing a written reason

for the rejection.

While the policy was drafted by the federal government as a blueprint, its adoption was

left to the discretion of individual states. Consequently, different states implemented the RoW

framework at various times between 2015 and 2019. Appendix Table C.2 presents the specific

13See here for more details.
14See here for details.
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adoption dates of the RoW framework by different states. Sixteen states had adopted the

framework by December 2019.

The policy was perceived as a positive development by the telecom industry. For in-

stance, Rajan Matthews, director general of the COAI, noted, “It is a great move to assist the

industry with improving the quality of service experience of customers...This will provide a

great fillip to expanding cell site coverage as well as fiber implementation to support broad-

band services.”15 Overall, the passage of a state-wide RoW policy significantly reduced the

regulatory and operational burden on telecom companies.

4.4.2 Identifying Assumption

The selection of states into the adoption of RoW policies could be endogenously linked to

agricultural productivity.16 We address this concern in two ways. First, we use the set of

adopters, i.e., states that eventually adopted RoW policy by 2020. Second, we include unit

and time-fixed effects in our empirical specification. As before, we use a heterogeneity-robust

Callaway and Sant‘Anna (2021) estimator. Therefore, our empirical strategy exploits variation

across treated and not-yet-treated states. Moreover, our estimation strategy fully accounts

for selection concerns as long as the differences across states that lead to the adoption of

RoW policies are time-invariant. Under this identifying assumption, the date of adoption of

RoW policies is likely to be random or unlikely to be driven by pre-existing differences across

adopters.

4.4.3 First Stage – Effect of RoW Adoption on Installation of 4G Telecom Towers

We quantitatively establish the effect of the staggered adoption of the RoW rules across states

on the installation of telecom towers. Figure 6 plots the dynamic event-time coefficients using

the Callaway and Sant‘Anna (2021) estimator. The unit of analysis is at the district level. The

outcome variable is the number of operational 4G BTSs in districts measured at the quarterly

frequency from 2013 Q1 to 2021 Q4.17 For robustness, we report results without any controls

as well as after controlling for the natural logarithm of the area of the district. Our results

indicate that the adoption of RoW policy lead to a significant increase in the number of 4G

15See here for more details.
16For instance, states with a proactive executive and bureaucratic branch are more likely to be early adopters of a high-

impact policy like RoW policy. The proactive nature of the state machinery might have effects in other policy domains
related to agriculture and, thus, be correlated with agricultural productivity at the state level.

17We exploit the granular information on set up of 4G BTSs in our dataset to move our analysis a step finer, up to the
quarterly frequency. The annual frequency of our analysis so far has been dictated by the annual frequency of the
EVI-implied agricultural yield.
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tower installations. Specifically, the number of towers within a district increased by 600 within

six quarters of the adoption of the policy, and the effect tapers off thereafter. The increase in

the number of operational 4G towers after the adoption of RoW policy is consistent with the

anecdotal evidence that the RoW policy significantly reduced the regulatory and operational

burden on telecom companies.

4.4.4 Effect of RoW Adoption on Agricultural Production

Next, we examine the effect of the adoption of the RoW policy on agricultural production. Fig-

ure 7 plots the dynamic event-study coefficients using our preferred Callaway and Sant‘Anna

(2021) estimator. There are two key takeaways from Figure 7. First, we do not observe signifi-

cant pre-trends in EVI implied yields in the event time leading to the treatment. Second, we

observe an increase in EVI implied yield following the adoption of RoW policy. Specifically,

we observe that agricultural production increases by 0.8 times the standard deviation or 0.11

unit increase in EVI implied yield two years after the adoption of the RoW policy. This increase

is equivalent to the 39.1% of the mean value of EVI implied yield. For robustness, we also

supplement Figure 7 with OLS TWFE estimator, Borusyak, Jaravel and Spiess (2022) estimator,

and de Chaisemartin and D’Haultfuille (2020) estimator. Overall, our results using the alter-

native identification strategy of staggered adoption of RoW policy indicate that our baseline

results are unlikely to be driven by spatial endogeneity associated with the installation of 4G

towers.

4.4.5 Effect on Operational Inputs – Fertilizers

This section documents that the relationship between telecom entry on usage of agricultural

inputs such as fertilizers. The intuition behind this analysis is that the dissemination of

information through 4G can decrease uncertainty, ultimately encouraging higher levels of

investment (Bloom (2009)). Specifically, the introduction of 4G towers, which increases access

to information about upcoming weather shocks, is expected to lead to higher usage of inputs

as farmers are more well-equipped to navigate these shocks (Rosenzweig and Udry (2013)).

We use the annual district-level data on fertilizer usage to test the association between

4G penetration and fertilizer consumption. Specifically, fertilizer consumption is measured

as the natural logarithm of the amount of consumption of total fertilizers (NPK), nitrogen

(N), phosphate (P), and potash (K) fertilizers per unit of gross sown area. We map our

hexagons to districts and construct the fraction of hexagons with at least one 4G tower in
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that year as a district-level measure of 4G penetration. Appendix Figure C.8 presents the

local-polynomial plot between 4G penetration and fertilizer consumption. The figure presents

preliminary evidence indicating a positive relationship between fertilizer consumption and

4G penetration.

We further refine the analysis using a regression setup that includes district and year fixed

effects. Appendix Table C.1 presents the results. Consistent with the preliminary evidence

presented in appendix Figure C.8, we find a positive association between 4G penetration and

fertilizer consumption. Results in column (1) indicate a 10% increase in 4G penetration is

associated with a 1.8% increase in total fertilizer consumption per unit of gross sown area.

Similarly, results in column (2), (3), and (4) indicate that an increase in 4G penetration is

associated with an increase in consumption of nitrogen, phosphorus, and potassium fertilizer

consumption per unit of gross sown area, respectively.

We further strengthen our argument by examining the effect of staggered adoption of

Rights of Way (RoW) rules across states on fertilizer consumption. Figure 8 presents the

results. We document an increase in the total fertilizer consumption after the adoption of

Rights of Way rules that lead to the rapid introduction of 4G towers. Moreover, the increase

in fertilizer consumption does not seem to be driven by pre-trends. Specifically, we find that

the total fertilizer consumption is driven by an increase in the consumption of phosphate and

potash based fertilizers. Meanwhile, the consumption of nitrogen based fertilizers does not

increase to a similar extent. Specifically, we find that the total fertilizer consumption per unit

of gross sown area increased by 21.88% after the adoption of Rights of Way rules. While the

consumption of nitrogen based fertilizers increased by 8.6%, the consumption of phosphate

and potash based fertilizers increased by 72.72% and 89.54%.

This is not surprising given that nitrogen based fertilizers are extensively used in Indian

agriculture whereas the usage of potash and phosphate based fertilizers is very limited. For

instance, Panel C of Table 1 indicates that on average 101,102 kg of Nitrogen based fertilizers

are used per hectare of gross sown area. In contrast, only 39,230 kg of phosphate and 14,230

kg of potash-based fertilizers are used per hectare of gross sown area. In fact, the ratio of

nitrogen to phosphate to potash (N:P:K) is 7.10:2.76:1.00. This observed NPK ratio is quite

different from the recommended optimal ratio of 4:2:1.
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4.4.6 Effect on N:P:K Mix

An increase in the consumption of phosphate and potash based fertilizers, while keeping the

nitrogen consumption fixed, could be a positive outcome if the N:P:K ratio moves closer to the

optimal ratio of 4:2:1. This section examines the effect of RoW rules adoption on the optimal

ratio. Intuitively, if the adoption of RoW rules leads to improved 4G coverage, which in turn

enhances access to information, we expect that the distance of N:P:K consumption ratio from

the optimal ratio in treated areas will either converge to zero or at least decrease. To put it

more directly, when farmers have better access to information about agricultural production

practices, they are more likely to shift from an inefficient fertilizer mix to a more optimal one.

To this end, we compute the Euclidean distance of the consumption of N:P:K ratio from

the optimal ratio of 4:2:1 using the following measure:

Distance =

√( N
N + P + K

− 4
7

)2
+
( P
N + P + K

− 2
7

)2
+
( K
N + P + K

− 1
7

)2
(4)

On average, the NPK ratio deviates from the optimal ratio by 0.17, which indicates a significant

difference from zero.18 If fertilizer usage adhered perfectly to the optimal ratio rule, the value

of this distance measure would be zero.

Figure 9 presents the results. We observe that the N:P:K distance, as calculated using

equation 4, decreases for the treatment units compared to the control units after the adoption

of RoW rules. Specifically, if the ratio is moving closer to the optimal rule, the decline should

be around 0.16, as indicated by the maroon dashed line. Figure 9 suggests that the extent of

decline in the relative distance for the treatment group is approximately equal to the average

distance from the optimal ratio before the treatment. Furthermore, these results do not seem

to be driven by pre-trends. In summary, our findings indicate that the N:P:K ratio tends to

approach the optimal ratio for these essential nutrients following the adoption of RoW rules.

4.4.7 Effect on Financial Input – Credit

This section examines the impact of 4G introduction on agricultural credit using branch-level

data from one of the largest public-sector banks in India. Apart from the productivity shock at

the farmer level, greater awareness, better monitoring, and reduced information asymmetry

fostered by the introduction of 4G can lead to greater demand and supply for agricultural

credit.
18The t-statistic associated with a test to examine the difference of the distance measure from 0 is 158.03.
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We combine the branch-level quarterly credit data with the dates of adoption of RoW

policies by various states to examine the effect of 4G introduction on agricultural credit. Figure

10 presents the results using the Callaway and Sant‘Anna (2021) estimator. The results suggest

that agricultural credit experiences a 20% increase one year after the implementation of the

Right of Way (RoW) laws and maintains a stable level thereafter.

Moreover, we aggregate the branch-level credit data at the zip code level. This aggrega-

tion at the zip code level allows us to examine the effect of the actual introduction of 4G BTS.

Appendix Figure C.9 presents the results examining the impact of the staggered introduction

of 4G BTS on agricultural bank credit. Our results are qualitatively similar to the results

reported in Figure 10 and indicate an increase in bank credit following the introduction of 4G

BTS in the zip codes.

5 Mechanism

This section investigates the mechanism driving the increase in agricultural productivity

following the introduction of 4G technology. Specifically, we document the significance of

enhanced access to timely information due to the availability of high-speed 4G internet con-

nectivity. Moreover, we show that high-speed internet in isolation might not be adequate to

improve output. The ultimate impact of improved information accessibility on agricultural

output hinges on factors such as the reliability, accuracy, and value of the information. There-

fore, infrastructure development improving high-speed internet is likely to be a complement.

For the majority of this section, we will focus on weather information as agricultural

output and returns heavily depend on weather shocks, particularly rainfall shocks.19 As

such, access to information about the season’s impending weather shocks could change the

agricultural output. Specifically, access to the forecast of the season’s weather shocks can

allow farmers to choose inputs more appropriately leading to significant improvement in

agricultural productivity (Rosenzweig and Udry (2013)).20 Additionally, information about

the timing and the quantity of rainfall plays a crucial role in choosing the timing of plowing,

planting, cultivating, fertilizing, and harvesting crops.

19Prior work has documented that rainfall fluctuations can have a significant impact on aggregate consumption in village
economies and agricultural productivity (Townsend (1994), Jayachandran (2006), Kaur (2019), among others).

20For instance, Rosenzweig and Udry (2013) find if rainfall were at the mean of the observed historical rainfall distribution
in India, |10,000 increase in planting-stage investments would lead to an increase in profits of about |20,000 (over a base
of |33,000). Similarly, if rainfall were at the 75th percentile, the same increase in plantingstage investment would generate
an additional profit of |40,000.
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5.1 Reliability of Information

We posit that the introduction of high-speed 4G internet increases agricultural productivity

by improving access to weather information for farmers. We test this claim by exploiting the

heterogeneity in the distance to the nearest official weather station. Specifically, as the distance

to the nearest official weather station increases, the accuracy of the forecast decreases, thereby

decreasing the accuracy or reliability of the information.

The distance of a hexagon to the nearest official weather station provides a proxy for

the accuracy of forecasts for three reasons. First, almost all of the weather information and

forecasts in India are sourced from the official weather stations maintained by the Indian Me-

teorological Department (IMD). IMD has been issuing annual forecasts of the monsoon across

the subcontinent since 1895, and farmers appear to respond to these forecasts (Rosenzweig

and Udry (2013)). Second, weather shocks, especially rainfall, exhibit low geo-spatial corre-

lation. This fact has been widely discussed in the context of demand for weather insurance

contracts, wherein the distance from the nearest weather station increases basis risk due to low

geo-spatial correlation (Cole and Xiong (2017), Robles et al. (2021), Ghosh and Vats (2022)).21

Third, farmers seem to be aware of the issues due to the distance to the nearest weather station.

Using primary data from India, Cole, Giné and Vickery (2017) document that farmers view

basis risk due to the distance to the nearest weather station as a significant drawback of an

insurance product.

India has a network of 476 official weather stations distributed across its expanse. We

map each hexagonal unit to a unique weather station that is geographically closest. On

average, each station is connected to approximately 60 hexagonal units. The average distance

between hexagons and their closest weather station is approximately 40 km, with a standard

deviation of 19 km. Notably, there exists significant variability in the distances to the closest

weather station: the 25th percentile value stands at 26 km, while the 75th percentile value

reaches 52 km. We divide the hexagonal units into three distinct sub-samples based on their

proximity to the nearest weather station. The first sub-sample, termed low, encompasses

hexagons with distances below the 25th percentile value. The second sub-sample, medium,

comprises hexagons with distances greater than or equal to the 25th percentile value but

less than or equal to the 75th percentile value. Lastly, the third sub-sample, high, includes

hexagons with distances above the 75th percentile value.

21Hill, Robles and Ceballos (2016) document that doubling the distance to a reference weather station increases basis risk
and decreases insurance demand in India by 18%. Mobarak and Rosenzweig (2013) estimate that for every kilometer
increase in the (perceived) distance of the weather station for a farmer without any informal risk protection, there is a
drop-off in demand for formal index insurance of 6.4 percent.
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Figure 11 presents the DiD estimates for the three sub-samples. As before, we do

not observe significant pre-trends in EVI implied yields in the event time leading to the

treatment. The most significant takeaway from this figure is the heterogeneity in the treatment

effect across the three sub-samples. Hexagons closest to the weather stations exhibit the

highest treatment effect of increased agricultural output after the introduction of high-speed

4G internet. Whereas hexagonal units far from the weather stations observe statistically

insignificant and economically negligible increase in agricultural productivity. Specifically, the

treatment effect decreases when weather information becomes less reliable, i.e., the distance

to the official weather station increases.

5.2 Value of Information

We refine our understanding of the underlying mechanism by examining the heterogeneity in

the treatment effects due to the potential value of information. We begin by using historical

rainfall volatility as a proxy for the value of information. The intuition of this assertion is that

farmers operating in regions of high rainfall uncertainty stand to gain the most from rainfall

forecasts and, thus, value reliable weather information the most.

We use historical rainfall recorded at the official weather station from 2001 until 2012, one

year before the start of the DID sample, to compute rainfall volatility. Specifically, we compute

the coefficient of variation (CV) for monsoon rainfall and divide stations into two distinct

sub-samples based on their CV value. The first sub-sample, termed low rainfall variability,

includes stations with CV values below the median. The second sub-sample, termed high

rainfall variability, comprises stations with CV values greater than the median. Furthermore,

we split the hexagons into two sub-samples based on the distance to the nearest weather

station. We consider a weather station as valuable if the history of monsoon rainfall recorded

at that station exhibits high volatility, i.e., the rainfall forecasts are likely to be most valuable

for hexagonal units that have a history of high rainfall volatility and are located closer to the

weather stations.

Figure 12 presents the results. Panels 12a and 12b report the results for stations with

low and high rainfall volatility. Results in Figure 12a indicate that the introduction of 4G

towers has a small post-treatment effect for hexagons that experience low rainfall volatility.

Figure 12b shows that hexagons located closer to weather stations that are prone to greater

rainfall variability are more likely to experience gains in agricultural productivity due to the

introduction of 4G towers. Meanwhile, we do not find statistically significant or economically
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meaningful treatment effects for hexagons far from the weather stations (blue diamonds in

Figure 12b).

5.3 Accuracy of Forecasts

We further supplement our results on the value of information by examining the heterogeneity

in the treatment effects due to exposure to predictable and difficult-to-predict weather shocks.

Some regions are prone to weather shocks that are difficult to predict. Reliable weather

information from a close-by weather station will be of little value to farmers in such regions

as forecasts will likely be less accurate. Whereas reliable information from a close-by weather

station is likely to be valuable for farmers operating in regions exposed to predictable weather

shocks as forecasts are likely to be more accurate. Overall, the intuition of this test is that

predictable weather shocks are likely to be associated with better forecasts. Specifically,

Rosenzweig and Udry (2013) note that more accurate forecasts allow farmers to make optimal

input choices ex-ante and significantly increase yields and returns for the season.

Predictable weather shocks include mist, drizzle, and rainfall.22 We define a unit as

susceptible to predictable weather shock if the probability of the event occurring, based on

daily historical data of the occurrence from 2001 until 2012, is below the sample median value.

We use units below the median value as the low incidence of these events is associated with

decreased agricultural production. Difficult-to-predict weather shocks include haze, sand or

dust storm, fog, squall, gale, and hailstorms. We define a unit to be susceptible to difficult-to-

predict weather shock if the probability of the event occurring, based on daily historical data of

the occurrence of these events from 2001 until 2012, is above the median value for the sample.

We use units above the median value as the high incidence of these events is adversely related

to agricultural production.

Figure 13 presents the results. Specifically, panels 13a and 13b present the results from

the sub-sample of units with high exposure to predictable and difficult-to-predict weather

shocks, respectively. Figure 13a shows that dynamic treatment effects are positive, statisti-

cally significant, and economically meaningful for units located close to the weather stations

and are susceptible to predictable shocks. However, we do not find evidence of improved

agricultural productivity after the introduction of 4G towers for units located farther away

from weather stations. Meanwhile, Figure 13b shows that the treatment effects are statistically

22We want the readers to note that we are not arguing that these weather shocks can be perfectly predicted. We simply
mean that these weather shocks are relatively easier to predict than difficult-to-predict weather shocks.
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insignificant and economically small for units more exposed to difficult-to-predict weather

shocks, regardless of their distance to weather stations.

Overall there are two key takeaways from the analysis in this section. First, the results

suggest that one channel through which high-speed 4G internet increases agricultural output

is through increased information accessibility. Second, in cases where the internet isn’t coupled

with the provision of reliable and valuable information, its potential to boost output may be

constrained. Specifically, high-speed internet serves as the conduit for information, but the

actual yield stems from the information. The positive effect of such infrastructure development

that improves access to information crucially relies on the availability of reliable and valuable

information. Therefore, the introduction of infrastructure to support high-speed internet in

isolation might not be adequate, i.e., it acts as a complement to existing technology.

6 Is High-Speed Internet Special?

This section examines the importance of the introduction of 4G relative to earlier versions of

telecommunications technology, such as 2G and 3G. The intuition for comparing the different

technologies arises from the commonality that all have the potential to enhance access to in-

formation. However, 4G presents several key advantages over 3G and other earlier versions.

First, internet access through 4G has the potential to significantly enhance real-time informa-

tion accessibility for farmers. In their review article, Anderson and Feder (2004) argue that the

impact of information dissemination on agricultural productivity hinges on farmers’ timely

access to relevant information. Second, internet-based platforms can provide valuable insights

in a user-friendly and engaging manner by employing videos and graphics. Video-based in-

terventions have been found to improve knowledge and farmers’ practices (Vasilaky et al.

(2015), Van Campenhout, Spielman and Lecoutere (2021)). Third, internet-based platforms

do not face limitations similar to the ones faced by traditional text or call-based information

delivery systems. For example, farmers might encounter challenges in reading text messages

or experiencing delays in connecting with attendants at farmer call centers (Fabregas, Kremer

and Schilbach (2019)). Additionally, interactions based on voice may encounter language

barriers, as highlighted in Gupta, Ponticelli and Tesei (2023b).

We examine this conjecture by comparing the effects of the introduction of 3G and 4G on

agricultural productivity. Figure 14 presents the results examining the effect of 3G introduction

on agricultural productivity. Unlike the results in Figure 4, we do not find any economically or

statistically significant improvement in agricultural productivity following the introduction
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of 3G. For completeness, appendix Figure D.1 presents the results examining the effect of

2G introduction on agricultural productivity. Similar to 3G, we do not find evidence of an

economically or statistically significant improvement in agricultural productivity following

the introduction of 2G.

We also replicate the results examining the introduction of 3G BTS on agricultural bank

credit in Appendix Figure D.2. We note a qualitative increase in agricultural bank credit

following the introduction of 3G BTS, but the results appear to be statistically insignificant.

Moreover, the magnitude of the effect of 3G is smaller relative to the magnitude of the effect

of the introduction of 4G BTS.

The different effects of the introduction of 2G, 3G and 4G indicate that timely informa-

tion access through high-speed internet is special and is associated with improvements in

agricultural productivity. The null effects observed post the introduction of 3G aligns with

prior literature, which has consistently shown scant evidence supporting enhanced agricul-

tural productivity through conventional methods of information dissemination. Anderson

and Feder (2004) and Duflo, Kremer and Robinson (2011) have attributed the lack of timely

and personalized information to farmers for the poor performance of traditional face-to-face

programs. Casaburi et al. (2014) show that sending text messages with agricultural advice to

small sugarcane farmers in Kenya didn’t result in long-term positive effects on yields. In an

experiment in the Indian state of Gujarat, Cole and Fernando (2021) find no systematic impact

on yields on the treated farmers that randomly received access to a hotline for agricultural

advice. Gupta, Ponticelli and Tesei (2023b) show that a large-scale 2G expansion in India

had no significant effect on agricultural yields. Additionally, experiments by Fafchamps and

Minten (2012) that sent Indian farmers price and weather information via text messages found

no evidence of value addition. Similar results were documented by Camacho and Conover

(2010) among Colombian farmers. We direct readers to Fabregas, Kremer and Schilbach (2019)

for a more detailed review of the effects of extension workers, phone calls and SMS-based

information programs on agricultural yields.

These results are consistent with the idea that high-speed internet is special and has the

potential to activate various channels that boost agricultural productivity.

6.1 Why Might High-Speed Internet be Special?: Role of Trust

This section examines a potential channel that may make high-speed internet access, due to

introduction of 4G, an effective tool for information dissemination. Specifically, we examine
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the heterogeneity in the treatment effect of 4G introduction by the trust in local and state

authorities.

Information dissemination through traditional modes such as text messages, call centres,

hotlines, etc. is often directly controlled by the state and its agents. Moreover, local governing

bodies known as village panchayats often act as the central node for information dissemination

by the government. Therefore, a lack of trust in local and state authorities can hinder effective

communication and engagement through these traditional methods (Fabregas, Kremer and

Schilbach (2019)). For instance, Cole and Sharma (2017) document that nearly 70% of Indian

farmers distrust information provided by extension workers. On the contrary, the internet,

being a more decentralized platform, may not encounter the same issues related to trust.23

Consequently, the introduction of 4G internet may have greater effects in regions where trust

in state institutions is diminished,

We investigate this hypothesis by combining the India Human Development Survey

(IHDS) with our dataset. Specifically, we utilize data from IHDS-II, conducted in 2011, which

includes a question that queries respondents about the level of trust they have in their local

village panchayats.24 We use the response to this question to construct a district-level proxy

for confidence in village panchayats and divide the districts into two subsets based on the

median response value. Districts with confidence levels above the median are categorized as

"high confidence" districts, while those below the median are classified as "low confidence"

districts. We then link this measure to the hexagonal grids situated within the districts.

Figure 15a presents the results. The outcomes for districts with low confidence levels

are displayed in red, while the results for districts with high confidence levels are shown

in blue. The findings suggest that regions characterized by low trust in village panchayats

exhibit a notable increase in agricultural production. In contrast, the impact of introducing

4G technology is economically marginal and lacks statistical significance in areas with a high

level of trust in local village panchayats.

We also present results using an alternative measure of trust, i.e., the confidence in the

state government to look after people.25 Similar to before, in regions where trust in state

23For instance, while looking at the Apple Weather App many may not realize that the app ultimately sources all its data
from the National Weather Service, which is part of the National Oceanic and Atmospheric Administration (NOAA), a
scientific and regulatory agency within the United States Department of Commerce, a United States federal government
department.

24The exact question is as follows: "How much trust do you place in the ability of your village panchayat to implement
public projects?" The response options consist of three choices: a) A great deal of confidence, b) Only some confidence,
and c) Hardly any confidence at all. To quantify these responses, we assign a numerical value of 1 to option (a), 0.33 to
option (b), and 0 to option (c). We take the average of this measure across all households within a district based on their
weights. This allows us to compute a continuous measure of confidence in village panchayats at the district level.

25The two variables trust in village panchayat and trust in state government are highly correlated with each other with a
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government is low, the marginal benefit of the introduction of 4G internet for information-

sharing is high. Figure 15b presents the results. The findings suggest that regions characterized

by low trust in state government exhibit a notable increase in agricultural production. In

contrast, the impact of introducing 4G technology is economically marginal and lacks statistical

significance in areas with a high level of trust in state government.

Overall these results imply that the advancement of high-speed internet through 4G

infrastructure can mitigate the effect of human frictions, like mistrust in local institutions.

These barriers typically hinder the dissemination of information through traditional channels.

7 Technology Adoption: Evidence using app downloads

This section examines the effect of 4G introduction on the adoption of 4G specific agricultural

technology. Our proxy for 4G adoption is installation of agricultural applications that improve

information access among farmers. Specifically, we exploit a proprietary dataset of geocoded

and time-stamped mobile application ("app") installations from Krishify – an Indian firm

which runs one of the largest social networks and commerce platforms for farmers. Appendix

section D.1 presents a detailed description of app and the dataset.

Our dataset of Krishify app installation contains geolocations of users along with the

dates on which they installed the app. The earliest date of app installation is May 2019. Thus,

we subset our hexagon-level dataset to keep hexagons which got treated after May 2019 i.e.

received their first 4G BTS after May 2019. We superimpose the geolocations of users’ app

installations on our hexagons and calculate the number of monthly installations at the hexagon

level.

Using dates on which the first 4G BTS became operational as the treatment date, we run

a difference-in-differences regression at the hexagonal level to study the effect of 4G availability

on Krishify app installations. Figure 16 presents the results using the Callaway and Sant‘Anna

(2021) estimator. We observe positive, statistically significant, and persistent growth in the

number of installations starting from the first month after treatment. Moreover, we observe

no significant pre-trends in the months leading up to the treatment. On the extensive margin

we find that app installations increase by 20% two years after the introduction of 4G (see

Figure 16a). The total number of app installations increases to 4 installations per month at the

hexagon level (Figure 16b)). The increase in the number of installations is equivalent to 15

correlation coefficient of 0.632. We think of these two measures as alternative ways to target a similar economic parameter,
i.e., the trust in institutions that are the primary modes of the traditional information dissemination processes.
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times the pre-treatment period monthly average (Figure 16c).26 Lastly, we show in appendix

Figure D.4 that we do not observe a positive significant effect on Krishify app installations

following the introduction of 3G towers. This result makes explicit what has been implicit in

our analysis till now – availability of 4G is associated with 4G adoption, as proxied through

the installation of Krishify app.

7.1 Technology Adoption: What type of information do farmers access?

This section examines the type of information farmers access on the internet using detailed

browsing and activity data of farmers on the Krishify app. The objective of this section is to

present direct evidence suggesting that internet-based app allows farmers to access relevant

information.

We use a 10% random sample of all farmers in Krishify. This random sample includes

over 400,000 farmers and provides details of the browsing, search, likes, and comment history

of all farmers since they joined the application. Additionally, we can also observe information

on their land holdings and their risk-taking tendency. Appendix section D.1 presents a detailed

description of the dataset.

We classify all interactions of these farmers into 13 distinct topics which include – agri-

cultural news, information about government programs, farm machinery, crop management,

weather, animal husbandry, fertilizer, seeds, prices, and other inputs, as well as content that is

recreational and political. Table 3 presents the list of these topics.

The second column of Table 3 presents the percentage of interactions for each topic among

our sample farmers. The foremost four topics collectively constitute about 70% of farmer

interactions on the platform. Notably, government programs rank highest, contributing to

21.3% of all interactions, followed by agricultural news at 16.6%, information about farm

machinery (e.g., tractors) at 16.1%, and weather information at 14.2%. Furthermore, farmers

also utilize the platform to seek advice specific to animal (9.1%) and crop (8.18%) management.

Interactions related to inputs like fertilizers, seeds, finance, and other miscellaneous inputs

collectively make up 11.4% of all farmer engagements on the platform.

Columns (2)-(6) and columns (7)-(8) report numbers for farmers with different land

ownership and risk-taking abilities, respectively, and find that the topic-wise interaction of

farmers is similar across these divisions.

26We find similar results using log(1+# Installations) and inverse hyperbolic sine transformation of the number of installa-
tions. See Appendix Figure D.3.
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The detailed activity data of farmers suggests that farmers may be using internet-based

platforms extensively for gathering information on a wide variety of agri-related activities.

This descriptive analysis, coupled with the findings presented in section 7, reinforces the

confidence in our main finding that the introduction of 4G technology enhanced information

accessibility for farmers.

7.2 What type of farmers are more likely to use such services?

The objective of this section is to discuss some correlations indicating what type of farmers

are more likely to use high-speed internet-powered services. Specifically, we examine the

correlation between the activity on the Krishify app and farmer characteristics such as land-

holding and risk-taking ability. We use three different measures of the level of adoption –

(1) engagement score which measures the total activity of the farmer on the app, (2) direct

measures of active engagement such as likes, comments, and videos posted, and (3) timing of

adoption.

First, we use the engagement score to measure the amount of total activity of the farmer

on the app. Appendix Figure D.8 presents the kernel density of the engagement score. Table 4

presents the results from the Poisson regression using the engagement score as the dependent

variable.27 Two key facts emerge. First, land-owning farmers have greater total engagement

relative to landless or tenant farmers. However, conditional on owning land, small and

medium farmers have a greater engagement relative to large farmers with land above ten

acres. Second, farmers with higher risk-taking ability have greater overall engagement.

Next, we employ the number of likes, comments and videos posted on the application

as a measure of active engagement. Table 5 presents the results from the Poisson regression

using these measures of active engagement on the platform as the dependent variable. All

specifications include cohort × district fixed effects effectively comparing farmers in the same

district that installed the application during the same month. Farmers with higher levels of

risk-taking ability are associated with higher levels of active engagement. Farmers who own

less than two acres of land show lower levels of active engagement compared to landless or

tenant farmers. However, active engagement tends to increase in hold-holding as land holding

size surpasses two acres. This relationship between land-holding and active engagement is

different from the relationship between land-holding and total engagement presented in Table
27Note that we include cohort fixed effects. This allows us to compare engagement scores among farmers who installed

Krishify in the same month. Including this fixed effect is crucial because the engagement score might be mechanically
higher for farmers who have been using the platform for a longer duration. However, for completeness, we present
results both with and without cohort-fixed effects.
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4, indicating that land-holding size may be associated with the type of engagement on internet-

based platforms.

Lastly, we use the time to adoption of the application as a measure of adoption. Time

to adoption is measured as the duration between the installation date of the app by a farmer

and the date of the first app installation in the same district. Appendix Figure D.9 presents the

kernel density of the measure. This measure indicates technology adoption on an extensive

margin, relative to the peers. Table 6 presents the results from the Poisson regression using

the time to adoption as the dependent variable.28 Results indicate that landless or tenant

farmers are faster to adopt relative to land-owning farmers. Moreover, farmers with greater

risk-taking ability take longer to adopt as well.

8 Conclusion

Can high-speed internet boost information access and enhance productivity? We examine this

question in the context of Indian agriculture where information frictions, especially frictions

related to information dissemination, are rampant. Combining granular geographic data

on the introduction of 4G with remote-sensing data on agricultural productivity we show

that the improvement in information dissemination due to the introduction of 4G leads to

improvement in productivity.

Our analysis reveals that the introduction of high-speed 4G internet is associated with

significant improvements in agricultural outcomes, including - (1) a 1.06% increase in the

yields of cereal crops, (2) a 4.28% increase in the production value of cereal crops, and (3)

a 3.21% increase in the production value of all crops. Six years post the introduction of 4G

internet, agricultural households experienced a substantial 14.50% growth in annual income.

Our calculations attribute 24.56% of this income growth from 2014 to 2021 to the improved

accessibility of information. Moreover, we find that 4G introduction leads to increased fertilizer

consumption, convergence towards optimal N:P:K ratios, and greater credit uptake.

Our study indicates that the effectiveness of information dissemination is contingent on

the usefulness, reliability, accuracy, and value of the information. Additionally, areas with

lower trust in local and state institutions, experience a stronger impact from the introduction

of high-speed 4G internet.

Overall our results indicate that while high-speed internet acts as an important tool for

28Note that we are unable to include cohort fixed effects in this analysis as by construction time to adoption is highly
collinear with cohort fixed effects and exhibits little heterogeneity within a cohort.
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information dissemination, our findings underscore the importance of considering the quality

of information. Merely introducing internet infrastructure may not be sufficient; instead,

it should be viewed as a complement to other factors. Thus, comprehensive infrastructure

development that enhances information accessibility along with the availability, reliability,

and accuracy of information holds the key to maximizing the effect.
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Table 1: Summary Statistics

Panel A: Agricultural Productivity Measures
# Obs Min p25 p50 p75 Max Mean SD

EVI Implied Yield 255,330 0.000 0.165 0.267 0.369 0.700 0.270 0.144
Maximum Yield 255,330 0.158 0.511 0.602 0.676 0.896 0.584 0.138

Panel B: Unit (Hexagon) Level Measures
# Obs Min p25 p50 p75 Max Mean SD

Agricultural Landcover 28,370 1.000 4.000 4.000 7.000 8.000 5.064 2.251
Dist. to Weather Station (km) 28,370 4.863 25.770 38.916 52.116 92.391 39.830 18.864
Coef of Var (Monsoon Rainfall) 22,251 0.127 0.269 0.354 0.520 1.414 0.427 0.246
Prob(Predictable Weather) 23,079 0.000 0.000 0.038 0.197 0.604 0.107 0.142
Prob(Difficult-to-predict Weather) 23,079 0.000 0.000 0.000 0.006 0.483 0.023 0.072

Panel C: District Level Measures
# Obs Min p25 p50 p75 Max Mean SD

Trust (Village Panchayat) 382 0.056 0.368 0.447 0.553 0.967 0.463 0.141
Trust (State Government) 382 0.070 0.374 0.451 0.567 0.906 0.468 0.148
LN(Gross Sown Area, GSA in hectares) 5,649 1.723 4.873 5.301 5.808 7.400 5.277 0.780
Total Fertilizer (in ’000 kg)/GSA 5,649 0.189 63.227 124.625 221.007 789.677 155.147 121.657
Nitrogen Fertilizer (in ’000 kg)/GSA 5,649 0.126 37.432 75.876 144.535 515.728 101.102 85.767
Phosphate Fertilizer (in ’000 kg)/GSA 5,649 0.031 17.523 32.564 55.007 232.372 39.230 29.664
Potash Fertilizer (in ’000 kg)/GSA 5,649 0.005 2.126 7.440 17.732 139.473 14.230 18.905
Distance to Optimal NPK Ratio 5,649 0.011 0.108 0.165 0.218 0.454 0.168 0.080

Panel D: Branch-Level Agricultural Credit
# Obs Min p25 p50 p75 Max Mean SD

LN(Agricultural Credit) 133,056 12.2326 16.9629 18.0691 19.0249 20.5999 17.8341 1.5743
This table reports the descriptive statistics for the key variables used in the analysis. Panel A reports the summary statistics for agricultural productivity

variables, and panel B reports the summary statistics for unit (hexagon) level variables. Panel C reports variables measured at the district level. Panel D
reports the summary statistics for branch-level agricultural credit. All variables are winsorized at the 1% level.
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Table 2: Aggregate Average Treatment Effect on the Treated (ATT)

Specification Partially Aggregated ATT

Simple 0.053**
(0.022)

Group-specific g=2014 g=2015 g=2016 g=2017 g=2018 g=2019 g=2020

0.050 0.053* 0.082** 0.078** -0.123** 0.057 -0.105 0.047**
(0.035) (0.032) (0.039) (0.039) (0.054) (0.055) (0.075) (0.022)

Event study e = 0 e = 1 e = 2 e = 3 e = 4 e = 5 e = 6
0.034** -0.033* 0.014 0.090** 0.145*** 0.186*** 0.245*** 0.097***
(0.015) (0.019) (0.028) (0.037) (0.048) (0.057) (0.073) (0.028)

This table reports the aggregate treatment effect parameters with standard errors clustered at the district level shown in
parenthesis. The outcome variable is EVI implied agricultural yield constructed by subtracting the average value of EVI
during the initial weeks of kharif season from the maximum value of EVI during the kharif season. The dependent variable
is standardized to mean zero and standard deviation of one. Row "Simple" reports the weighted average of all group-time
ATT(g, t)’s as defined in Callaway and Sant‘Anna (2021). Rows "Group-specific" and "Event study" list the partially aggregated
group-specific and event-time specific average treatment effects where g indexes the year of treatment of the group and
e indexes event-time. The last column of each row summarizes the aggregate average treatment effect on the treated
(ATT) by taking a weighted average of partially aggregated group-specific and event-time specific average treatment effects
following Callaway and Sant‘Anna (2021). *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 3: Topic-wise Interaction of Farmers on Krishify

Topic Overall By Land Ownership By Risk-Taking Ability
No Land Below 2 Acres 2-5 Acres 5-10 Acres Above 10 Acres Low Medium High

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Government Schemes 21.29% 21.24% 21.98% 20.70% 21.13% 20.52% 21.46% 22.71% 19.60%
Agriculture News 16.65% 15.27% 18.02% 17.76% 18.28% 17.24% 17.64% 15.34% 15.79%
Farm Machinery 16.09% 15.92% 15.05% 16.62% 18.09% 17.85% 18.12% 13.73% 14.03%
Weather Information 14.24% 16.68% 11.76% 11.79% 11.56% 14.35% 16.86% 10.95% 11.82%
Animal Husbandry 9.07% 8.39% 11.78% 8.55% 7.38% 6.84% 5.30% 14.10% 12.27%
Crop Management 8.18% 7.41% 8.23% 9.74% 9.08% 9.16% 7.01% 8.69% 10.15%
Fertilizer 5.15% 5.34% 4.44% 5.69% 5.20% 5.15% 4.96% 4.86% 5.81%
Finance 2.96% 2.67% 3.43% 3.09% 3.08% 2.90% 2.20% 3.99% 3.60%
Seeds 2.02% 2.20% 1.69% 2.06% 1.91% 1.94% 1.98% 1.73% 2.37%
Price Information 1.39% 1.53% 1.08% 1.28% 1.59% 1.46% 1.45% 1.27% 1.36%
Other Inputs 1.31% 1.46% 1.08% 1.27% 1.22% 1.15% 1.27% 1.14% 1.53%
Recreational 0.89% 0.92% 0.84% 0.91% 0.92% 0.73% 0.82% 0.95% 0.97%
Politics 0.77% 0.96% 0.63% 0.54% 0.57% 0.70% 0.91% 0.54% 0.71%

This table presents the percentage of interactions for each topic among our sample farmers. We classify all interactions of these farmers into 13 distinct topics which include –
agricultural news, information about government programs, farm machinery, crop management, weather, animal husbandry, fertilizer, seeds, prices, and other inputs, as well
as content that is recreational and political. Column (1) reports the numbers of all farmers. Columns (2)-(6) present the numbers by different land-ownership buckets. Land
ownership is divided into five buckets no land ownership, land below 2 acres, land between 2 to 5 acres, land between 5 to 10 acres and land above 10 acres. Columns (7)-(9)
reports the numbers for farmers in different buckets of risk-taking ability. Risk-taking ability is divided into three categories of low, medium, and high.
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Table 4: Level of Total Engagement & Farmer Characteristics

Dep Var: Engagement Score (1) (2) (3) (4) (5) (6)

Land, Below 2 Acres 0.2043*** 0.1558*** 0.0696*** 0.0638*** 0.0631***
(0.0037) (0.0036) (0.0037) (0.0037) (0.0037)

Land, 2-5 Acres 0.1986*** 0.1681*** 0.0821*** 0.0779*** 0.0776***
(0.0047) (0.0047) (0.0049) (0.0048) (0.0048)

Land, 5-10 Acres 0.1711*** 0.1524*** 0.0658*** 0.0678*** 0.0677***
(0.0056) (0.0056) (0.0055) (0.0054) (0.0055)

Land, Above 10 Acres 0.1033*** 0.0926*** 0.006 0.0172*** 0.0175***
(0.0062) (0.0059) (0.0061) (0.0059) (0.0060)

Risk-Taking Ability, Medium 0.2516*** 0.2250*** 0.2232*** 0.2173*** 0.2160***
(0.0041) (0.0040) (0.0040) (0.0039) (0.0038)

Risk-Taking Ability, High 0.3615*** 0.3277*** 0.3233*** 0.3108*** 0.3100***
(0.0094) (0.0092) (0.0092) (0.0087) (0.0087)

Cohort FE Yes Yes
District FE Yes
District X Cohort FE Yes
# Obs 405,693 405,693 405,693 405,693 405,693 405,693

This table presents the relationship between farmer-level engagement on the Krishify application and their characteristics. The
dependent variable is the engagement score that is provided by Krishify and measures the total amount of engagement of the
farmer on the platform. Land ownership is divided into five buckets no land ownership, land below 2 acres, land between 2 to 5
acres, land between 5 to 10 acres and land above 10 acres. For land ownership, farmers with no land ownership are the omitted cat-
egory. Risk-taking ability is divided into three categories of low, medium, and high. Low risk-taking ability is the omitted category.
We use Poisson regressions to estimate the relationship. Cohort refers to the cohort of farmers that install the app during the same
month. District refers to the district of farmer location. All variables are winsorized at the 1% level. Standard errors in parentheses
are estimated by clustering at the district level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 5: Level of Active Engagement & Farmer Characteristics

(1) (2) (3)
# Likes # Comments # Videos Posted

Land, Below 2 Acres -0.0415*** -0.0373*** -0.0396
(0.0130) (0.0140) (0.0429)

Land, 2-5 Acres 0.0905*** 0.1006*** 0.0795*
(0.0152) (0.0147) (0.0478)

Land, 5-10 Acres 0.1159*** 0.1225*** 0.2170***
(0.0173) (0.0181) (0.0578)

Land, Above 10 Acres 0.1466*** 0.0474** 0.2648***
(0.0188) (0.0187) (0.0587)

Risk-Taking Ability, Medium 0.7682*** 1.1795*** 1.3651***
(0.0137) (0.0131) (0.0377)

Risk-Taking Ability, High 0.9317*** 1.2855*** 1.4531***
(0.0142) (0.0148) (0.0351)

District X Cohort FE Yes Yes Yes
# Obs 402,828 396,728 276,631
Sample Dep Var Mean 1.6178 0.3676 0.0193
Sample Dep Var SD 4.5000 1.0400 0.1377

This table presents the relationship between farmer-level active engagement on the Krishify
application and their characteristics. The dependent variable is the total number of likes in
column (1), total number of comments in column (2), and total number of videos posted in column
(3). Land ownership is divided into five buckets no land ownership, land below 2 acres, land
between 2 to 5 acres, land between 5 to 10 acres and land above 10 acres. For land ownership,
farmers with no land ownership are the omitted category. Risk-taking ability is divided into
three categories of low, medium, and high. Low risk-taking ability is the omitted category. We
use Poisson regressions to estimate the relationship. Cohort refers to the cohort of farmers that
install the app during the same month. District refers to the district of farmer location. All
variables are winsorized at the 1% level. Standard errors in parentheses are estimated by clustering at
the district level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table 6: Time to Adoption & Farmer Characteristics

Dep Var: Time to Adoption (in days) (1) (2) (3) (4)

Land, Below 2 Acres 0.6358*** 0.6315*** 0.6305***
(0.0033) (0.0032) (0.0030)

Land, 2-5 Acres 0.6295*** 0.6269*** 0.6233***
(0.0034) (0.0034) (0.0033)

Land, 5-10 Acres 0.6331*** 0.6315*** 0.6265***
(0.0036) (0.0035) (0.0039)

Land, Above 10 Acres 0.6335*** 0.6326*** 0.6234***
(0.0040) (0.0040) (0.0042)

Risk-Taking Ability, Medium 0.1165*** 0.0218*** 0.0219***
(0.0043) (0.0027) (0.0026)

Risk-Taking Ability, High 0.1319*** 0.0273*** 0.0308***
(0.0043) (0.0029) (0.0027)

District FE Yes
# Obs 405,717 405,717 405,717 405,717

This table presents the relationship between farmer-level time to adoption of the Krishify application and their
characteristics. The dependent variable, time to adoption, is measured as the duration between the installation
date of the app by a farmer and the date of the first app installation in the same district. Land ownership is
divided into five buckets no land ownership, land below 2 acres, land between 2 to 5 acres, land between
5 to 10 acres and land above 10 acres. For land ownership, farmers with no land ownership are the omitted
category. Risk-taking ability is divided into three categories of low, medium, and high. Low risk-taking ability
is the omitted category. We use Poisson regressions to estimate the relationship. District refers to the district
of farmer location. All variables are winsorized at the 1% level. Standard errors in parentheses are estimated
by clustering at the district level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.
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Figure 1: Evolution of 4G coverage over time

(a) 4G coverage in 2014 (b) 4G coverage in 2016

(c) 4G coverage in 2018 (d) 4G coverage in 2020

This figure plots the evolution of 4G coverage over time based on the Ministry of Telecom data.
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Figure 2: Staggered introduction of BTS by Technology
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This figure presents the staggered introduction of BTs by technology type from 1995 until 2022. The X-axis denotes the
calendar year. The Y-axis denotes the number of units (hexagons) treated by technology type for each year. The three
technology types include 2G, 3G, and 4G.
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Figure 3: Evolution of 4G Treatment Across Hexagons

This figure presented a tessellated heat map of India. Each color denotes the year in which the 4G technology was introduced
in the hexagon for the first time.
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Figure 4: Effect of 4G introduction on EVI implied agricultural yield

-.3

-.2

-.1

0

.1

.2

.3

.4

.5

-5 -4 -3 -2 -1 0 1 2 3 4 5 6

DiD estimates for our baseline measure – EVI implied agricultural yield: This figure plots the event-study dynamic
coefficients estimated using the methodology outlined in Callaway and Sant‘Anna (2021). The outcome variable is EVI
implied agricultural yield constructed by subtracting the average value of EVI during the initial weeks of kharif season
from the maximum value of EVI during the kharif season. The dependent variable is standardized to mean zero and
standard deviation of one. The sample consists of all unique hexagons that saw the introduction of 4G BTS between 2013
and 2021. All measures are winsorized at 1% level. Standard errors for all estimators are clustered at the district level. The
bars represent 95 percent confidence intervals.
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Figure 5: Robustness using alternative DiD estimators: Baseline Measure
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Robustness with multiple DiD estimators for our baseline measure – EVI implied agricultural yield This figure plots
the event-study dynamic coefficients using four different estimators: (1) dynamic TWFE estimator (in orange with hollow
diamond markers), (2) Callaway and Sant‘Anna (2021) estimator (in blue with solid circle markers), (3) Borusyak, Jaravel
and Spiess (2022) estimator (in green with hollow triangle markers), and (4) De Chaisemartin and d‘Haultfoeuille (2020)
estimator (in pink with hollow square markers). The outcome variable is EVI implied agricultural yield constructed by
subtracting the average value of EVI during the initial weeks of Kharif season from the maximum value of EVI during the
Kharif season. The outcome variable is standardized to mean zero and standard deviation of one. The sample consists of
all unique hexagons that saw the introduction of 4G BTS between 2013 and 2021. All measures are winsorized at 1% level.
Standard errors for all estimators are clustered at the district level. The bars represent 95 percent confidence intervals.
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Figure 6: Effect of RoW Adoption on Installation of 4G Telecom Towers
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DiD estimates for the impact of staggered adoption of Rights of Way (RoW) rules across states on number of BTSs
(first-stage results for RoW-policy based identification strategy): This figure plots the event-study dynamic coefficients
estimated using the methodology outlined in Callaway and Sant‘Anna (2021). The outcome variable is the quarterly stock
of the number of 4G BTSs operational at the district-level. Consequently, event-time is measured in quarters. Treatment
timing is constructed using the dates of introduction of RoW rules across different States/Union Territories as listed in C.2.
The sample consists of the districts that fall within States/Union Territories which passed RoW rules from 2015 to 2019.
All measures are winsorized at 1% level. Standard errors are clustered at the state level. The bars represent 95 percent
confidence intervals.
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Figure 7: Effect of RoW Adoption on Agricultural Production
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DiD estimates for the impact of (staggered) passage of Rights of Way (RoW) rules across States on EVI implied
agricultural yields (second-stage results for RoW-policy based identification strategy): This figure plots the event-study
coefficients estimated using four different estimators: (1) dynamic TWFE estimator (in orange with hollow diamond
markers), (2) Callaway and Sant‘Anna (2021) estimator (in blue with solid circle markers), (3) Borusyak, Jaravel and Spiess
(2022) estimator (in green with hollow triangle markers), and (4) De Chaisemartin and d‘Haultfoeuille (2020) estimator (in
pink with hollow square markers). The outcome variable is EVI implied agricultural yield constructed by subtracting the
average value of EVI during the initial weeks of Kharif season from the maximum value of EVI during the Kharif season.
The outcome variable is standardized to mean zero and standard deviation of one. Treatment timing is constructed using
the dates of introduction of RoW rules across different States/Union Territories as listed in C.2. The sample consists of
the subset of hexagons that fall within States/Union Territories which passed RoW rules from 2015 to 2019, and saw the
introduction of 4G BTS between 2013 and 2021. All measures are winsorized at 1% level. Standard errors for all estimators
are clustered at the district level. The bars represent 95 percent confidence intervals.

54



Figure 8: 4G introduction & Fertilizer Usage
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DiD estimates for impact of (staggered) passage of Rights of Way (R0W) rules across states on fertilizer consumption:
This figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and Sant‘Anna
(2021). The outcome variables are measured as the natural logarithm of the amount of consumption of total fertilizers (NPK,
in blue with solid circle markers), nitrogen (N, in orange with hollow diamond markers), phosphate (P, in green with hollow
triangle markers), and potash (K, in pink with hollow square markers) per unit of gross sown area (GSA). All variables are
measured at the district-year level from 1998 until 2020. Treatment timing is constructed using the dates of introduction
of RoW rules across different States/Union Territories as listed in C.2. All measures are winsorized at 1% level. Standard
errors for all estimators are clustered at the district level. The bars represent 95 percent confidence intervals.
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Figure 9: 4G introduction & Optimal NPK Ratio
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DiD estimates for impact of (staggered) passage of Rights of Way (R0W) rules across states on the optimal NPK ratio: This
figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and Sant‘Anna
(2021). The outcome variables is the distance of the consumption of N:P:K ratio from the optimal ratio of 4:2:1. The distance
is calculated as follows:

Distance =

√
(

N
N + P + K

− 4
7

)2 + (
P

N + P + K
− 2

7
)2 + (

K
N + P + K

− 1
7

)2

All variables are measured at the district-year level from 1998 until 2020. Treatment timing is constructed using the dates of
introduction of RoW rules across different States/Union Territories as listed in C.2. All measures are winsorized at 1% level.
Standard errors for all estimators are clustered at the district level. The bars represent 95 percent confidence intervals.
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Figure 10: 4G Introduction & effect on bank credit
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DiD estimates for impact of (staggered) passage of Rights of Way (R0W) rules across states on the growth of bank
credit: This figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and
Sant‘Anna (2021). The outcome variable is the log of quarterly credit disbursed at the branch level. Treatment timing
is constructed using the dates of introduction of RoW rules across different States/Union Territories as listed in C.2. All
measures are winsorized at 1% level. Standard errors are clustered at the zipcode level. The bars represent 95 percent
confidence intervals. Event-time (X-axis) is measured in quarters.
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Figure 11: Heterogeneous Treatment Effect by Distance to Nearest Weather Station
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DiD estimates for heterogeneous treatment effect by reliability of information (distance to nearest weather station): This
figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and Sant‘Anna
(2021). The outcome variable is EVI implied agricultural yield constructed by subtracting the average value of EVI during
the initial weeks of Kharif season from the maximum value of EVI during the Kharif season. The outcome variable is
standardized to mean zero and standard deviation of one. The sample consists of all unique hexagons that saw the
introduction of 4G BTS between 2013 and 2021. Noise in weather information is measured using the distance of the
centroid of the hexagon to the nearest weather station. We split the hexagons into three sub-samples based on the values
of the distance to the nearest weather station – (1) low, is a sub-sample of hexagons with distance lower than the 25th
percentile value, (2) medium, is a sub-sample of hexagons with distance greater than (or equal to) the 25th percentile value
and less than (or equal to) the 75th percentile value, and (3) high, is a sub-sample of hexagons with distance greater than
the 75th percentile value. Hexagons located closer to the weather station have lower noise in information or a greater
reliability of information. All measures are winsorized at 1% level. Standard errors for all estimators are clustered at the
district level. The bars represent 95 percent confidence intervals.
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Figure 12: Distance to Nearest Weather Station & Rainfall Volatility
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(b) High Rainfall Volatility

DiD estimates for heterogeneous treatment effect by value (rainfall volatility) and reliability (distance to nearest weather
station) of information: This figure plots the event-study dynamic coefficients estimated using the methodology outlined
in Callaway and Sant‘Anna (2021). The outcome variable is EVI implied agricultural yield constructed by subtracting the
average value of EVI during the initial weeks of Kharif season from the maximum value of EVI during the Kharif season.
The outcome variable is standardized to mean zero and standard deviation of one. The sample consists of all unique
hexagons that saw the introduction of 4G BTS between 2013 and 2021. Reliability of weather information is measured using
the distance of the centroid of the hexagon to the nearest weather station. We split the hexagons into two sub-samples
based on the values of the distance to the nearest weather station – (1) low, is a sub-sample of hexagons with distance lower
than the median value (blue), and (2) high, is a sub-sample of hexagons with distance greater than the median value (red).
Hexagons located closer to the weather station have lower noise in information or a greater reliability of information.
Furthermore, we define a weather station to be valuable if the history of monsoon rainfall recorded at that station exhibits
low volatility. Station level rainfall volatility is computed as the coefficient of variation (CV) of rainfall using data during
the monsoon from 2001 until 2012, one year before the start of the DID sample. We split stations into two buckets based
on the CV value – (1) low, is a sub-sample of units (hexagons) for which the monsoon rainfall CV at the nearest weather
station is lower than the median value, and (2) high, is a sub-sample of units for which the monsoon rainfall CV at the
nearest weather station is higher or equal to than the median value. Panel 12a and 12b report results for hexagons with low
and high volatility of rainfall. All measures are winsorized at 1% level. Standard errors for all estimators are clustered at
the district level. The bars represent 95 percent confidence intervals.
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Figure 13: Distance to Nearest Weather Station & Predictability of Weather Shocks
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(a) Predictable Weather Shocks
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(b) Difficult-to-Predict Weather Shocks

DiD estimates for heterogeneous treatment effect by relevance (predictability of weather shocks) and reliability of
information (distance to nearest weather station): This figure plots the event-study dynamic coefficients estimated using
the methodology outlined in Callaway and Sant‘Anna (2021). The outcome variable is EVI implied agricultural yield
constructed by subtracting the average value of EVI during the initial weeks of Kharif season from the maximum value
of EVI during the Kharif season. The outcome variable is standardized to mean zero and standard deviation of one. The
sample consists of all unique hexagons that saw the introduction of 4G BTS between 2013 and 2021. Noise in weather
information is measured using the distance of the centroid of the hexagon to the nearest weather station. We split the
hexagons into two sub-samples based on the values of the distance to the nearest weather station – (1) low, is a sub-sample
of hexagons with distance lower than the 50th percentile value (blue), and (3) high, is a sub-sample of hexagons with
distance greater than or equal to the 50th percentile value (red). Hexagons located closer to the weather station have
lower noise in information or a greater reliability of information. Panel 13a plots the estimates for the hexagons which
are susceptible to predictable weather shocks. Predictable weather shocks include mist, drizzle and rainfall. We define a
unit to be susceptible to predictable weather shock if the probability of the event occurring based on daily historical data of
the occurrence from 2001 until 2012 is below the median value for the entire sample of units. Panel 13b plots the estimates
for the hexagons which are susceptible to difficult to predict weather shocks. Difficult to predict weather shocks include
lightning, haze, sand or dust storm, fog, squall, gale, thunderstorm, an hailstorm. We define a unit to be susceptible to
difficult-to-predict weather shock if the probability of the event occurring based on daily historical data of the occurrence
of these events from 2001 until 2012 is above the median value for the entire sample of units. All measures are winsorized
at 1% level. Standard errors for all estimators are clustered at the district level. The bars represent 95 percent confidence
intervals.
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Figure 14: Effect of 3G introduction on agricultural yield
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DiD estimates for our baseline measures – EVI implied agricultural yield and maximum EVI: This figure plots the event-
study dynamic coefficients estimated using the methodology outlined in Callaway and Sant‘Anna (2021). The outcome
variable is EVI implied agricultural yield (in blue) constructed by subtracting the average value of EVI during the initial
weeks of kharif season from the maximum value of EVI during the kharif season. The second outcome variable is Max
EVI (in maroon) constructed by using the maximum value of EVI during the kharif season. The dependent variables
are standardized to mean zero and standard deviation of one. The sample consists of all unique hexagons that saw the
introduction of 3G BTS. All measures are winsorized at 1% level. Standard errors for all estimators are clustered at the
district level. The bars represent 95 percent confidence intervals.
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Figure 15: Heterogeneous Treatment Effect by Trust
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(a) Trust in Local Village Panchayat
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(b) Trust in State Government

DiD estimates for heterogeneous treatment effect by trust in village panchayat: This figure plots the event-study dynamic
coefficients estimated using the methodology outlined in Callaway and Sant‘Anna (2021). The outcome variable is EVI
implied agricultural yield constructed by subtracting the average value of EVI during the initial weeks of Kharif season
from the maximum value of EVI during the Kharif season. The outcome variable is standardized to mean zero and standard
deviation of one. The sample consists of all unique hexagons that saw the introduction of 4G BTS between 2013 and 2021.
In Figure 15a, we utilize data from India Human Development Survey (IHDS-II), conducted in 2011, which includes a
question that queries respondents about the level of trust they have in their local village panchayats. The exact question
is as follows: "How much trust do you place in the ability of your village panchayat to implement public projects?" The
response options consist of three choices: a) A great deal of confidence, b) Only some confidence, and c) Hardly any
confidence at all. To quantify these responses, we assign a numerical value of 1 to option (a), 0.33 to option (b), and 0
to option (c). We take the average of this measure across all households within a district based on their weights. This
allows us to compute a continuous measure of confidence in village panchayats at the district level. We use the response
to this question to construct a district-level proxy for confidence in village panchayats and divide the districts into two
subsets based on the median response value. Districts with confidence levels above the median are categorized as "high
confidence" districts, while those below the median are classified as "low confidence" districts. We then link this measure
to the hexagonal grids situated within the districts. In Figure 15b, we utilize data from India Human Development Survey
(IHDS-II), conducted in 2011, which includes a question that queries respondents about the level of trust they have in
their local village panchayats. The exact question is as follows: "How much trust do you place in the ability of the state
government to take care of people?" The response options consist of three choices: a) A great deal of confidence, b) Only
some confidence, and c) Hardly any confidence at all. To quantify these responses, we assign a numerical value of 1 to
option (a), 0.33 to option (b), and 0 to option (c). We take the average of this measure across all households within a district
based on their weights. This allows us to compute a continuous measure of confidence in state government at the district
level. We use the response to this question to construct a district-level proxy for confidence in state government and divide
the districts into two subsets based on the median response value. Districts with confidence levels above the median are
categorized as "high confidence" districts, while those below the median are classified as "low confidence" districts. We then
link this measure to the hexagonal grids situated within the districts. All measures are winsorized at 1% level. Standard
errors for all estimators are clustered at the district level. The bars represent 95 percent confidence intervals.
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Figure 16: Effect of 4G Introduction on Krishify App Installations
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(b) # Installations
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DiD estimates for impact of 4G introduction on monthly installations of Krishify mobile application at the hexagon
level: This figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and
Sant‘Anna (2021). Figure 16a uses a binary variable which takes the value of one if total monthly app downloads at the
hexagon level are greater than zero, representing the extensive margin. Figure 16b uses the number of monthly installations
at the hexagon level as the dependent variable. Figure 16c uses the number of monthly installations scaled by pre-period
average number of monthly installations at the hexagon level as the dependent variable. Geolocations and timestamps of
Krishify app downloads by users are superimposed on the hexagons in our sample to calculate monthly downloads at the
hexagon level. Treatment timing in both the figures is the month of introduction of the first 4G BTS inside the boundary of
a hexagon. Standard errors are clustered at the district level. The bars represent 95 percent confidence intervals.
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Online Appendix for:

“Information Access and Local Economic Development: Evidence from

the Introduction of High-Speed Internet”
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Appendix A Data

Figure A.1: Evolution of 3G coverage over time

(a) 3G coverage in 2014 (b) 3G coverage in 2016

(c) 3G coverage in 2018 (d) 3G coverage in 2020

This figure plots the evolution of 3G coverage over time based on the Ministry of Telecom data.
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Figure A.2: Hexagonal Tesselation of the Indian Map

This figure shows the hexagonal units of equal area (≈ 95 sqkm.) drawn on the Indian map with at
least one BTS.

Figure A.3: Hexagonal Tesselation of the Indian Map (zoomed-in)

This figure shows the zoomed-in image of hexagonal units presented in Appendix Figure A.2.
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Figure A.4: Evolution of 3G Treatment Across Hexagons

This figure presented a tessellated heat map of India. Each color denotes the year in which the 3G technology was introduced
in the hexagon for the first time.
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Figure A.5: Properties of Enhanced Vegetation Index (EVI)
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(b) Relationship between EVi Implied Yield and Maximum EVI

Appendix Figure A.5a plots the evolution of average, the 25th percentile, and the 75th percentile EVI value for all hexagons
in our sample. Appendix Figure A.5b presents the binscatter plot of the EVI implied yield measure and the maximum EVI
measure. EVI implied yield is constructed by subtracting the average value of EVI during the initial weeks of kharif season
from the maximum value of EVI during the kharif season. All measures are winsorized at 1% level.
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Appendix B EVI Implied Yields & Agricultural Production

This section discusses the relationship between EVI implied yield and measures of agricultural

production. Administrative data on actual crops yields and production values is not available

beyond the district level. Therefore, we construct hexagon-level measures of actual crop yields

and production values from Advancing Research on Nutrition and Agricultures (ARENA)

Demographic and Health Surveys (DHS)-GIS Database. We map survey clusters in the DHS

data to hexagons based on the minimum distance between the centroids of hexagons and geo-

coordinates of survey clusters. Specifically, we use three measures of agricultural production

available in the ARENA-DHS database. These measures include – (1) Yield of cereal crops,

(2) the total value of produce of all cereal crops in USD, and (3) the total value of produce of

all crops in USD. Cereal crops include a variety of different plants including wheat, rice, oats,

barley, maize, rye, millet, corn, and sorghum. These measures are calculated as of the year

2014. We take a natural logarithm of these three measures.

We start by regressing these three measures against EVI-implied yields at the hexagonal

level for the year 2014. Table B.1 and Figure B.1 report the regression results. Column 1 uses

the natural logarithm of yield for cereal crops as the dependent variable. Yield is measured as

kg of cereal crops per hectare of land. Column 2 uses the natural logarithm of total USD value

of cereal crops as the dependent variable. Column 3 uses the natural logarithm of the total

USD value of all crops as the dependent variable. The estimate of interest is the coefficient

associated with EVI implied yield. Consistent with the findings of Asher and Novosad (2020),

we observe the coefficient of interest is positive and statistically significant across all measures

of agricultural production.

The size of the estimate indicates that a 0.5 unit increase in EVI implied yield is associated

with a 15.1% increase in cereal yield, a 61.2% increase in USD value of cereal production, and

a 45.9% increase in USD value of all crop production.

B.1 Quantifying the Effect of 4G Introduction

Next, we use these estimates to quantify the average impact of 4G introduction on actual

yields and production values. Section 4 documents a 0.035 unit increase in EVI implied yield

six years after the introduction of the 4G network. We use this change in EVI implied yield to

impute the effect on real yields and production value. Specifically, the estimates in Table B.1

imply that the introduction of high-speed 4G internet is associated with a – (1) 1.06% increase
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in agricultural yields of cereal crops, (2) a 4.28% in USD production value of cereal crops, and

(3) a 3.21% increase in the USD production value of all crops.

We further break down the hexagonal-level, dollar increase in production values from

all crops into an estimate of impact on household-level income. Using the 2011 census data on

village-level count of households, we aggregate total number of households at the hexagon-

level. We do this by mapping village shapefiles to our hexagons. On average, 698.86 house-

holds reside in each hexagon. We multiply the average annual income of agricultural house-

holds in 2014 with the average number of households in each hexagon. The average monthly

income for an agricultural household comes from the 2014 Situation Assessment Survey and

is equal to |6,426. The average annual income for an agricultural household is equal to |77,112

(|6,426 X 12). The average annual income for all households in a hexagon is |53,890,793.06

(|77,112 X 698.86) or $ 883,464.31.

Comparing the average increase presented in columns 3 of Table B.1 with the average

annual income for all households in the hexagon, we find that the introduction of 4G internet

led to a 14.5% increase in household income.
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Table B.1: EVI Implied Yield & Agricultural Production

(1) (2) (3)
LN(Yield, Cereals) LN(Value, Cereals) LN(Value, All Crops)

EVI Implied Yield 0.3021*** 1.2232*** 0.9172***
(0.0715) (0.1854) (0.1357)

District FE Yes Yes Yes
# Obs 28,118 28,118 28,118
R2 0.7827 0.7168 0.7104

Coef 0.3021 1.2232 0.9172
∆X 0.035 0.035 0.035
∆Y
Y 1.06% 4.28% 3.21%

Mean (Y) 2,018.54 kg/hectare $ 1,551,215.00 $ 3,989,287.00
Increase (Y) 21.34 kg/hectare $ 66,410.62 $ 128,064.09

This table reports the relationship between EVI implied yield and three measures of agricultural production.
EVI implied agricultural yield is constructed by subtracting the average value of EVI during the initial weeks of
kharif season from the maximum value of EVI during the kharif season. Column 1 uses the natural logarithm
of yield for cereal crops as the dependent variable. Yield is measured as kg of cereal crops per hectare of land.
Column 2 uses the natural logarithm of total USD value of cereal crops as the dependent variable. Column 3
uses the natural logarithm of the total USD value of all crops as the dependent variable. Cereal crops include a
variety of different plants including wheat, rice, oats, barley, maize, rye, millet, corn, and sorghum. All variables
are measured at the hexagon level for the year 2014. The sample consists of all unique hexagons that saw the
introduction of 4G BTS between 2013 and 2021. All variables are winsorized at 1%. Figure B.1 reports the same re-
gressions in graphical format. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Figure B.1: EVI Implied Yield & Agricultural Production
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This figure plots the relationship between EVI implied yield and three measures of agricultural production. Panel B.1a
plots the relationship with the natural logarithm of yield on cereal crops measured in kg per hectare. Panel B.1b plots the
relationship with the natural logarithm of the total USD value of cereal crops. Cereal crops include a variety of different
plants including wheat, rice, oats, barley, maize, rye, millet, corn, and sorghum. Panel B.1c plots the relationship with the
natural logarithm of total USD value of all crops. All variables are winsorized at 1%. All plots include district fixed effects.
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Appendix C Robustness

Figure C.1: Dynamic TWFE specification for baseline EVI measure
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This figure plots the event-study coefficients estimated using the dynamic TWFE specification in Equation 1. The outcome
variable is EVI implied agricultural yield constructed by subtracting the average value of EVI during the initial weeks of
Kharif season from the maximum value of EVI during the Kharif season. The dependent variable is standardized. The
sample consists of all unique hexagons that saw the introduction of 4G BTS between 2013 and 2021. Excluded time periods
are t = −8,−1. All measures are winsorized at 1% level. Standard errors for all estimators are clustered at the district level.
The bars represent 95 percent confidence intervals.
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Figure C.2: Weight underlying pre-treatment coefficients β−3 and β−4
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(a) Weights underlying β−3

-.4
-.2

0
.2

.4
.6

W
ei

gh
t o

n 
TW

FE
 t 

= 
-4

 C
oe

ffi
ci

en
t

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
Relative Time

2013 2014 2015 2016 2017
2018 2019 2020 2021

(b) Weights underlying β−4

This figure plots the magnitude of weights associated with each CATTe,l in the weights decomposition of β−3 and β−4 as
specified in Equation 2. CATTe,l refers to average treatment effect for cohort e in relative time period l. For instance,
CATT2015,−2 is the average treatment effect for the relative time period t = −2 for the cohort that got treated in the year 2015.
The weights are estimated using the methodology outlined in Sun and Abraham (2021). Figures C.2a and C.2b plot the
weights underlying β−3 and β−4, respectively.
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Figure C.3: Callaway and Sant‘Anna (2021) baseline EVI measure with pre-treatment effects
as long differences
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This figure plots the event-study dynamic coefficients estimated using the Callaway and Sant‘Anna (2021) estimator with
pre-treatment effects calculated as long differences. As pointed out in Roth (2024), pre-treatment effects in their default
implementation in Stata do not match those of the traditional TWFE event-study regressions. Using the long2 option in the
Stata implementation of the Callaway and Sant‘Anna (2021) estimator, they can be made comparable to conventional TWFE
plots. The outcome variable is EVI implied agricultural yield constructed by subtracting the average value of EVI during
the initial weeks of Kharif season from the maximum value of EVI during the Kharif season. The dependent variable is
standardized. The sample consists of all unique hexagons that saw the introduction of 4G BTS between 2013 and 2021. All
measures are winsorized at 1% level. Standard errors for all estimators are clustered at the district level. The bars represent
95 percent confidence intervals.

75



Figure C.4: Robustness: Falsification using sample of hexagons with no cropland
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This figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and Sant‘Anna
(2021). The outcome variable is the maximum EVI of the kharif season. The dependent variable is standardized to mean
zero and standard deviation of one. We use the maximum EVI measure here instead of EVI implied yield. We do not use
EVI implied yield because it is a difference measure and is mostly centered around zero for non-croplands. This is because,
unlike the cropped areas, the measure does not exhibit significant variation across the kharif season. The sample consists
of all unique hexagons that saw the introduction of 4G BTS between 2013 and 2021 and have zero cropland as of 2010
according to the GFSAD database. All measures are winsorized at 1% level. Standard errors for all estimators are clustered
at the district level. The bars represent 95 percent confidence intervals.
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Figure C.5: Heterogeneous Treatment Effect by Agricultural Production Potential
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(a) Available Land-based measure of production potential
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(b) Global Land-based measure of production potential

This figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and Sant‘Anna
(2021). The outcome variable is EVI implied agricultural yield constructed by subtracting the average value of EVI during
the initial weeks of kharif season from the maximum value of EVI during the kharif season. The dependent variable
is standardized to mean zero and standard deviation of one. The sample consists of all unique hexagons that saw the
introduction of 4G BTS between 2013 and 2021. Agricultural production potential is measured using two measures
provided in Advancing Research on Nutrition and Agriculture’s (ARENA) Demographic and Health Surveys (DHS)-GIS
Database. Measure 1 provides the combined suitability of currently available land for pasture and rainfed crops. Measure
2 provides the combined suitability of the global land area for pasture and rainfed crops. We split the hexagons into two
sub-samples based on the values of agricultural production potential. A hexagon is defined as an area with high agricultural
production potential if it is marked as land well-suited or prime land for rainfed crops, i.e., the CSI (Crop Suitability Index)
is greater than equal to 50; otherwise, the hexagon is classified as low potential area. Panel C.5a and C.5b report result for
measures 1 and 2 based on total available land and total global land, respectively. All measures are winsorized at 1% level.
Standard errors for all estimators are clustered at the district level. The bars represent 95 percent confidence intervals.
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Figure C.6: Alternative Measure: Effect on maximum EVI
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DiD estimates for alternative measure – maximum EVI during the season: This figure plots the event-study dynamic co-
efficients estimated using the methodology outlined in Callaway and Sant‘Anna (2021). The outcome variable is maximum
EVI during the Kharif season. The sample consists of all unique hexagons that saw the introduction of 4g BTS between
2014 and 2022. All measures are winsorized at 1% level. Standard errors for all estimators are clustered at the district level.
The bars represent 95 percent confidence intervals.
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Figure C.7: Robustness using alternative DiD estimators: Maximum EVI
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Robustness with multiple DiD estimators for alternative measure – maximum EVI during the season This figure plots
the event-study dynamic coefficients using four different estimators: (1) dynamic TWFE estimator (in orange with hollow
diamond markers), (2) Callaway and Sant‘Anna (2021) estimator (in blue with solid circle markers), (3) Borusyak, Jaravel
and Spiess (2022) estimator (in green with hollow triangle markers), and (4) De Chaisemartin and d‘Haultfoeuille (2020)
estimator (in pink with hollow square markers). The outcome variable is maximum EVI during the Kharif season. The
outcome variable is standardized to mean zero and standard deviation of one. The sample consists of all unique hexagons
that saw the introduction of 4g BTS between 2013 and 2021. All measures are winsorized at 1% level. Standard errors for
all estimators are clustered at the district level. The bars represent 95 percent confidence intervals.
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Figure C.8: 4G introduction & Fertilizer Usage
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(a) Total Fertilizer Usage (NPK)
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(b) Nitrogen Usage
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(c) Phosphate Usage
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(d) Potash Usage

4G penetration on fertilizer usage: This figure presents the local polynomial plot of fertilizer usage and 4G penetration
at the district-level. Fertilizer consumption is measured as the natural logarithm of the amount of consumption of total
fertilizers (NPK), nitrogen (N), phosphate (P), and potash (K) per unit of gross sown area (GSA). 4G penetration is measured
as the fraction of hexagons within the district that that at least one 4G tower during the year. All variables are measured at
the district-year level from 2014 until 2020. The solid red line denotes the best fit line. The gray shaded region denotes the
95% confidence intervals. The different parametric choices related to kernel, degree, bandwidth and pwidth are reported
next to each figure. All variables are winsorized at 1%.
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Table C.1: 4G Penetration & Fertilizer Consumption

(1) (2) (3) (4)
LN(NPK/GSA) LN(N/GSA) LN(P/GSA) LN(K/GSA)

4G penetration 0.1801*** 0.2061*** 0.1464** 0.2614**
(0.0576) (0.0623) (0.0676) (0.1102)

District FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
# Obs 2,585 2,585 2,585 2,585
R2 0.9563 0.9563 0.9249 0.9247

This table reports the relationship between 4G penetration and fertilizer consumption. Fertilizer
consumption is measured as the natural logarithm of the amount of consumption of total fertilizers
(NPK), nitrogen (N), phosphorus (P), and potassium (K) per unit of gross sown area (GSA). 4G pene-
tration is measured as the fraction of hexagons within the district that that at least one 4G tower during
the year. All variables are measured at the district-year level from 2014 until 2020. All variables are
winsorized at 1%. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table C.2: Rights of Way (RoW) rules status across states

State RoW policy
notified/
approved by
Cabinet

Approval
Date

Draft
Policy
released

Existing
policy under
advance
discussion

No
uniform
policy

1 Jharkhand Yes 2015-12-04 - - -
2 Rajasthan Yes 2017-02-06 - - -
3 Tripura Yes 2017-09-06 - - -
4 Odisha Yes 2017-09-14 - - -
5 Haryana Yes 2017-10-06 - - -
6 Assam Yes 2018-02-16 - - -
7 Maharashtra Yes 2018-02-17 - - -
8 Tamil Nadu Yes 2018-02-18 - - -
9 Arunachal Pradesh Yes 2018-05-10 - - -
10 Uttar Pradesh Yes 2018-06-15 - - -
11 Uttarakhand Yes 2018-09-13 - - -
12 Meghalaya Yes 2018-12-20 - - -
13 Madhya Pradesh Yes 2019-03-08 - - -
14 Karnataka Yes 2019-05-29 - - -
15 Manipur Yes 2019-11-28 - - -
16 Nagaland Yes 2019-12-02 - - -
17 Gujarat No - - Yes -
18 Daman and Diu No - - - Yes
19 Lakshadweep No - - - Yes
20 Dadra and Nagar Haveli No - - - Yes
21 Goa No - - Yes -
22 Jammu and Kashmir No - Yes - -
23 Punjab No - Yes - -
24 Kerala No - Yes - -
25 Puducherry No - - Yes -
26 Himachal Pradesh No - - - -
27 Andhra Pradesh No - - Yes -
28 Chandigarh No - - Yes -
29 NCT of Delhi No - Yes - -
30 Telangana No - - Yes -
31 Chhattisgarh No - - Yes -
32 Bihar No - - Yes -
33 West Bengal No - - - Yes
34 Sikkim No - Yes - -
35 Mizoram No - Yes - -
36 Andaman and Nicobar No - - - Yes

This table lists the status of RoW policies (as of September 2020) across States/Union territories in India as per the GSMA (2020)
report. The report highlights the importance of States’ adoption of Rights of Way rules in line with the Indian Telegraph RoW
Rules, 2016, issued by the Ministry of Telecom, Government of India. These policies were rolled out to promote the expansion of
telecom infrastructure. According to the report, as of September 2020, 16 states had adopted RoW rules. Additionally, 15 states and
union territories were deliberating on the passage of these rules in the state legislature.
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Figure C.9: Effect of 4G introduction on agricultural credit at ZIP code level
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DiD estimates for impact of (staggered) introduction of 4G BTS on the growth of bank credit at the zipcode level: This
figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and Sant‘Anna
(2021). The outcome variable is the log of quarterly agricultural credit disbursed at the zipcode level. The sample consists
of all the zipcodes that saw the introduction of a 4G BTS between 2014 to 2022. Treatment timing is defined as the date on
which the first 4G BTS became operational within a zipcode. Natural log of zipcode area is added as a control. All measures
are winsorized at 1% level. Standard errors are clustered at the district level. The bars represent 95 percent confidence
intervals. Event-time (X-axis) is measured in quarters.
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Appendix D Technology Adoption

Figure D.1: Effect of 2G introduction on agricultural yield
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DiD estimates for our baseline measures – EVI implied agricultural yield and maximum EVI: This figure plots the event-
study dynamic coefficients estimated using the methodology outlined in Callaway and Sant‘Anna (2021). The outcome
variable is EVI implied agricultural yield (in blue) constructed by subtracting the average value of EVI during the initial
weeks of kharif season from the maximum value of EVI during the kharif season. The second outcome variable is Max
EVI (in maroon) constructed by using the maximum value of EVI during the kharif season. The dependent variables
are standardized to mean zero and standard deviation of one. The sample consists of all unique hexagons that saw the
introduction of 2G BTS. All measures are winsorized at 1% level. Standard errors for all estimators are clustered at the
district level. The bars represent 95 percent confidence intervals.
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Figure D.2: Effect of 3G introduction on agricultural credit at ZIP code level
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DiD estimates for impact of (staggered) introduction of 3G BTS on the growth of bank credit at the zipcode level: This
figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and Sant‘Anna
(2021). The outcome variable is the log of quarterly agricultural credit disbursed at the zipcode level. The sample consists
of all the zipcodes that saw the introduction of a 3G BTS between 2014 to 2022. Treatment timing is defined as the date on
which the first 3G BTS became operational within a zipcode. Natural log of zipcode area is added as a control. All measures
are winsorized at 1% level. Standard errors are clustered at the district level. The bars represent 95 percent confidence
intervals. Event-time (X-axis) is measured in quarters.
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Figure D.3: Effect of 4G Introduction on Krishify App Installations
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DiD estimates for impact of 4G introduction on monthly installations of Krishify mobile application at the hexagon
level: This figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and
Sant‘Anna (2021). Figure D.3a uses the natural logarithm of the number of monthly installations at the hexagon level,
respectively, as the dependent variable. Figure D.3b uses the inverse hyperbolic transformation of the number of monthly
installations at the hexagon level as the dependent variable. Geolocations and timestamps of Krishify app downloads by
users are superimposed on the hexagons in our sample to calculate monthly downloads at the hexagon level. Treatment
timing in both the figures is the month of introduction of the first 4G BTS inside the boundary of a hexagon. Standard
errors are clustered at the district level. The bars represent 95 percent confidence intervals.
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Figure D.4: Effect of 3G Introduction on Krishify App Installations

-.3

-.2

-.1

0

.1

.2

.3
-2

4
-2

3
-2

2
-2

1
-2

0
-1

9
-1

8
-1

7
-1

6
-1

5
-1

4
-1

3
-1

2
-1

1
-1

0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (in months)

(a) Extensive Margin

-30

-20

-10

0

10

20

-2
4

-2
3

-2
2

-2
1

-2
0

-1
9

-1
8

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (in months)

(b) # Installations

-10

-5

0

5

-2
4

-2
3

-2
2

-2
1

-2
0

-1
9

-1
8

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (in months)

(c) #Installations
Pre-Period Average

DiD estimates for impact of 3G introduction on monthly installations of Krishify mobile application at the hexagon
level: This figure plots the event-study dynamic coefficients estimated using the methodology outlined in Callaway and
Sant‘Anna (2021). Figure 16a uses a binary variable which takes the value of one if total monthly app downloads at the
hexagon level are greater than zero, representing the extensive margin. Figure 16b uses the number of monthly installations
at the hexagon level as the dependent variable. Figure 16c uses the number of monthly installations scaled by pre-period
average number of monthly installations at the hexagon level as the dependent variable. Geolocations and timestamps of
Krishify app downloads by users are superimposed on the hexagons in our sample to calculate monthly downloads at the
hexagon level. Treatment timing in both the figures is the month of introduction of the first 3G BTS inside the boundary of
a hexagon. Standard errors are clustered at the district level. The bars represent 95 percent confidence intervals.
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D.1 Description of Krishify Data

Krishify is an Indian company aimed at connecting farmers on a social network where they

can discuss agriculture-related issues. Link to their official website can be found here.

Krishify is a mobile application that can be downloaded through the Google play store

with a "vision to democratize the flow of information and scale up economic opportunities

for every farmer in this country". It provides a social network for farmers to connect with

each other and a commerce platform for agri-businesses to connect with a community of more

than 10 million farmers. They help businesses target farmers on their network mainly through

engaging and informative videos. Krishify offers subscription plans to businesses to develop

content for them as well as incentives to farmers and other content creators to upload videos

by allowing them to monetize their content. They have more than 3.1 million daily video

views, 140,000 daily active users, and 500,000 daily business interactions between farmers and

businesses.

We obtain two datasets from Krishify. First, we obtain a proprietary, geolocated and

time-stamped dataset of their app installations from 2019 until 2021. Second, we also obtain

a 10% random sample of farmers in the Krishify database along with their detailed search,

browsing, like, and comment history.

We superimpose the coordinates of app installations over our hexagonal grid to iden-

tify the number of app installations at the hexagonal level. We use this dataset to conduct

a differences-in-differences analysis that examines the effect of 4G introduction on internet

adoption. Therefore, we only keep hexagons where 4G was introduced after January 2019.

Appendix Figure D.5 presents the evolution of monthly app installations in our sample. Ap-

pendix Figure D.6 presents the geographic distribution of total Krishify app installations by

December 2021.

Second, we also obtain a 10% random sample of farmers in the Krishify database along

with their detailed search, browsing, like, and comment history. This section discusses the

aspects of Krishify database. the random sample also provides other information such as the

buckets of land-holdings of the farmers as well as their risk-taking ability. Appendix Figure

D.7 presents the distribution of farmers in our sample by their land-holding buckets and their

risk-taking ability. Appendix Figure D.8 presents the kernel density of the engagement score

that measures the total engagement of the farmer on the platform.
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Figure D.5: Monthly Installations of Krishify App
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This figure presents the total number of monthly installations of the Krishify app for our sample.
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Figure D.6: Geographic distribution of Krishify app installations

This figure plots a heatmap of the number of total Krishify app installations at the pincode level.

90



Figure D.7: Description of Farmers in the Krishify Database
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(b) Risk Taking Ability

This figure presents the descriptives of the characteristics of farmers in the Krishify database. Figure D.7a presents the
distribution of farmers by land-ownership buckets. Figure D.7b presents the distribution of farmers by their risk-taking
ability. The sample comprises of a 10% random sample of farmers in the Krishify database.
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Figure D.8: Kernel Density of Engagement Score
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This figure presents the kernel density of farmer-level engagement score on the Krishify app.

Figure D.9: Kernel Density of Time to Adoption
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This figure presents the kernel density of farmer-level time to adoption of the Krishify app. Time to adoption is measured
as the duration between the installation date of the app by a farmer and the date of the first app installation in the same
district
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