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Abstract

We propose that public investors react differently to patent issuance news depending

on its novelty, and this misreaction exerts real impact on the firms’ future innovation.

Using textual analyses of patent documents to measure patent novelty, we find that in-

vestors under-react to the issuance of path-breaking innovations while overreact to the

trend-following ones. We rationalize the empirical patterns with a bounded-rationality

model where investors cannot figure out the true novelty of a patent at issuance due to

cognitive limits. We verify the key model mechanism by showing that firms which re-

ceive noisier signals (firms with more retail traders) exhibit stronger misreaction. This

misreaction is economically significant because novel patents bring higher economic

value to the firm and have higher social value than non-novel patents. We also find

that firms, on average, follow up less on their novel technology and issue fewer future

novel patents, after an issuance of novel innovation. Using price pressure from mutual

fund redemptions as an instrument, we present causal evidence that novel firms change

innovation directions from novelty-seeking to copycat innovations following disappoint-

ing returns. The findings highlight that investor misreaction to patent novelty has a

real impact on future innovation directions by steering firms away from higher-valued,

groundbreaking research.

Keywords: stock market misvaluation, innovation novelty, behavioral finance, market effi-

ciency, innovation direction
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1 Introduction

Technological development has been one of the critical drivers of economic growth over

the past centuries. Not only is the amount of technological innovation important, but the

direction of technology also matters (Acemoglu (2023)). The direction of technological ad-

vancements attracts more than just the attention of economists. Investors are also drawn

to news about new technology. For example, during the COVID-19 outbreak, we saw large

swings in stock prices when pharmaceutical companies released vaccines and for firms pro-

viding work-from-home technologies. We have also witnessed the recent excitement about

blockchain technology (Cheng et al. (2019)). How do investors react to news about techno-

logical innovation? More importantly, this raises some fundamental questions: can investors’

reactions to technological innovation affect future innovation directions?

To address these questions, in this paper, we investigate the stock price movements and

firm innovation output after the news of patent issuance. Using novelty measures constructed

from patent text, we find that investors under-react to the issuance of novel technologies while

overreacting to non-novel ones. We show that such mispricing can be explained by a model

where investors have imprecise signals about patent novelty due to cognitive limits and, there-

fore, shrink their perception of novelty to an intermediate prior level. We further argue that

this misreaction is economically meaningful because novel patents provide higher economic

value to the firms that issue them and more importantly, bring higher social value to the

economy. Moreover, we demonstrate that investor reactions to patent novelty change firms’

decisions on the direction of future innovation. Firms that issue novel patents (“novel firms”

thereafter) do not follow up on their original technology, nor do they conduct other novel

innovations, which suggests that firms shift away from novel inventions and instead pursue

overpriced, non-novel technologies. Using hypothetical trades from mutual fund fire sales as

an instrument, we provide causal evidence suggesting that firm managers are influenced by

return reactions to patents when deciding on future innovation directions.

Our paper documents a new channel through which financial markets can influence tech-
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nological change. Rather than focusing on conventional channels such as financial frictions

and external financing costs, we explore how investors’ irrational behavior affects firms’ real

decisions. To our knowledge, we are the first to show that investor biases can impact firms’

future decisions regarding innovation strategy. We argue that investors under-react to novel

patents, which creates an underpricing in novel firms’ stock prices. If firm managers care

about the short-term fluctuations of firm market value, this creates a disincentive for them

to continue pursuing novel R&D. On the other hand, investors get over-excited about less

novel technology and overprice the stock of less novel firms, which then encourages managers

to over-invest in existing technologies.

The key challenge to studying the differential reaction to patent novelty is constructing a

precise measure of patent novelty. We measure patent novelty using a comprehensive textual

analysis of patent text following the methodology introduced by Kelly, Papanikolaou, Seru

and Taddy (2021). They compute pairwise textual similarities between patents to quantify

the commonality of each pair of patents. They identify breakthrough patents as patents that

are distinct from previous innovations but that are strongly related to subsequent innovations.

For our purpose, we are primarily interested in an ex-ante measure of novelty. Therefore, we

modify the Kelly et al. (2021) definition as follows: we define a patent as novel if it has the

lowest aggregate textual similarities to all other patents filed five years before its filing year.

At the same time, we identify non-novel inventions as those most similar to prior innovations.

To approximate patent quality and measure patent economic value to the firm, we use the

measure from Kogan, Papanikolaou, Seru and Stoffman (2017), which, they show, predicts

forward citations and future output and profitability with a positive sign. To quantify patent

social value and explore the future impact of patents, we create a patent-pairwise citation

network so that for each patent, we observe every prior invention it builds on and all of its

future citations.

With the data and measures in hand, we document three main findings. First, investors

under-react to novel patents but overreact to non-novel patents. We run impulse response

functions of firm-level subsequent returns on patent issuance of different novelty levels. The
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impulse response gives us firms’ stock return reaction following the issuance of novel patents

versus non-novel patents. Suppose investors under-react to novelty. In that case, following

the issuance of a novel patent, investors may react positively to this news and push up the

firm’s stock price, but they do not push up the price sufficiently to fully reflect the value

of the innovation. Consequently, on average, the stock price will continue going up after

the novelty shock, exhibiting positive predictability of novel patent issuance. Conversely, if

investors overreact to non-novel technology, they will immediately overprice the firm’s stock

following the patent issuance. Over time, this overpricing will be corrected as investors

learn about the limited value of non-novel inventions, so non-novel patents, on average, will

negatively predict returns. Our findings precisely match these hypotheses: we document

a persistent positive (negative) predictability of returns for around two years following the

issuance of novelty (non-novelty) patents.

We propose a bounded-rationality model of investors to explain these mispricing patterns.

When a patent is issued, since the novelty is defined only with ex-ante information, it can

in principle be computed by investors. However, due to cognitive limits, it is likely that

investors will be unsure about the true novelty of the patent at its issuance. Instead, they

receive noisy but unbiased signals of patent novelty. Such signals shrink their posterior

mean to an intermediate prior level, which lends them to under-estimate the novelty of novel

patents and over-estimate the novelty of non-novel patents. With novel patents having higher

expected value, the model predicts the following short-term and long-term response in the

firm’s stock price. In the short term, return responses are insignificantly different across

novelty. In the long run, however, the model predicts significant return predictability as

the firm market value converges to the rational response of patent issuance. These model

predictions exactly match the empirical patterns of short-term and long-term average returns

in the data. The model also predicts stronger mis-reaction and slower convergence with

noisier signals. We verify this key model mechanism by empirically showing that firms with

lower institutional holdings have more significant misreactions than those held primarily by

institutional investors, as retail investors tend to receive noisier signals.

3



In our second main analysis, we argue that this mispricing of patent novelty is important

because novel patents bring significant value to innovators and society. To see how the value

that patents create for firms varies by novelty, we compute the private economic value of

patents following Kogan et al. (2017) (Henceforth, KPSS values). We find a monotonically

increasing relationship between the patent’s KPSS value and novelty. The most novel patents

create around $10 million more value for the firm than the most non-novel patents. Besides

value creation within the firm, we also analyze the positive externalities created by novel

patents, quantified by the patent’s “social value.” Conditional on a patent’s private value, a

novel patent, on average, has a higher number of future citations. Moreover, patents citing

novel patents also bring higher economic value for their respective innovators than those

citing non-novel inventions. These results suggest that novel patents bring additional value

to other firms by improving their future technological innovation and, hence, have higher

social value.

Third, we characterize firms’ future innovation trajectories following the issuance of novel

patents. We find that for a 1% increase in the fraction of novel patents among all issued

patents, the firm produces 1% fewer follow-up patents on the original novel technology.1

Moreover, we find that novel firms, on average, decrease the fraction of novel patents (novel

intensity) in future issuances: a 10% higher novel intensity predicts a 5.8% contraction in

future novel intensity. Taken together, these two pieces of evidence suggest that, since the

market is not enthusiastic enough about novel innovations, novel firms are discouraged and

redirect their innovation endeavors toward existing technology that investors, if anything, are

too excited about.

To establish a causal interpretation of the results above – that market reactions affect

firms’ future innovation directions – we employ a plausibly exogenous variation in stock

returns around patent issuance. Specifically, we use the hypothetical trades from mutual

fund fire sales as an instrument (Edmans, Goldstein and Jiang (2012)). They construct a

1In a robustness check, we show that this negative correlation with future follow-up patents persists
when we focus only on high-impact novel patents, suggesting that the effect is not driven purely by novel
innovations with low impact.
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flow-induced trading measure at the firm level, driven by sudden large outflows from mutual

fund investors. Since the trades are allocated to each stock using ex-ante holdings (not the

actual trades), this is likely to create an exogenous variation in stock price that is unrelated

to firms’ future innovation directions through other channels. Using the instrument, we

document that, following an exogenous 1% drop in returns, high-novelty firms issue 0.01

fewer patents that cite their own patents in the next 5 years and 0.04 fewer patents in all

future years. This suggests that firms are less likely to follow up on their existing technologies

if they deliver disappointing returns. We also show that a 1% drop in returns results in novel

firms contributing 0.3% fewer novel patents in the next three years, suggesting a decrease

in novelty-seeking activities. The two pieces of evidence combined suggest that managers

of novel firms shift innovation direction to “copycat” type non-novel technologies. We find

evidence of this in the data. A 1% return drop leads to a 0.14% increase in non-novel

patent issuance in the next three years. We propose and discuss several channels through

which firm managers take into account their firms’ near-term stock price when making real

decisions (Stein (1989)) for future study.

Literature Review

Our paper contributes to three strands of literature.

First, we contribute to the literature on investor reactions to innovation news. We are

most closely related to Hirshleifer et al. (2018) who document that firms’ innovative originality

positively predict stock returns, but have important distinctions empirically and theoretically.

Empirically, our measure which bases on textual similarity more directly measures how a

patent is distinctive to previous patents, than citing a wide set of technologies. We also

not only find positive predictability for novel patents, but also negative predictability for

non-novel patents, which provides a new fact that investors overreact to existing technology.

Theoretically, we provide a model that can jointly explain under- and over-reaction, while

an inattention model can only explain the under-reaction to originality. Inattention models

also explain other underpricing of innovation, e.g. Hirshleifer et al. (2013) on innovation
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efficiency, Cohen et al. (2013) on R&D success, Fitzgerald et al. (2021) on innovation search

strategy, Chemmanur et al. (2022) on grant news, etc. Despite the popularity of limited

attention models, our paper offers a new framework to jointly understand both the under-

and overpricing of technology which we then verify in the data. Therefore, we also add to

the recent studies trying to reconcile the co-existence of under- and over-reaction2. In a way

that is new to the literature, we reconcile the co-existence of under- and over-reaction to the

same type of news, patent issuance. Investors have an imprecise representation of patent

novelty and thus form posterior beliefs close to an intermediate level.

Second, the paper suggests a novel, important channel by which financial markets exert

real economic impact. There is a growing literature studying the effect of the secondary

market on firm decisions through learning from prices. Chen, Goldstein and Jiang (2007)

suggest that firm managers learn from private information in stock prices to make investment

decisions. Price informativeness is also essential in other firm decisions, such as takeover ac-

tivity (Edmans, Goldstein and Jiang (2012)) and R&D investments (Kang and Kim (2017)).

Unlike the traditional learning from prices channel, we propose that investors’ behavioral

biases, which lead to mispricing, can also affect firms’ future investment decisions. Moreover,

the research on the effect of financial markets on firms’ innovation strategies has focused

primarily on the primary market. Bernstein (2015)) studies the effect of going public on

innovation quality, Lerner, Sorensen and Strömberg (2011) discuss the effects of LBO on

innovation output, and Babina, Bernstein and Mezzanotti (2022) show the effect of local

exposure to financial crises on local innovation players. These papers demonstrate the im-

portance of financial frictions and the cost of external financing. We instead explore the

possibility that behavioral forces in the secondary market could also contribute to the shift

in innovation behavior. On this front, Dong et al. (2021) document that stock overreaction

affect innovative inventiveness and output with a positive sign. They find that general over-

pricing affects innovation, while we focus on both under- and over-reaction around patent

2Bordalo, Gennaioli, Ma and Shleifer (2020) argue that individuals often overreact while the consensus
opinion often underreacts. Wang (2021) proposes that investors under-react to persistent processes but
overreact to random processes. Kwon and Tang (2021) demonstrate that investors under-react to less extreme
events while overreacting to extreme news.
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issuance and argue that managers care about short-term stock value created by patent when

deciding future innovation strategy. Moreover, while they study the amount of future inno-

vation, we are interested in the direction of innovation: managers pivot from novel to copycat

innovations due to observed reactions.

Finally, we speak to the economic growth literature on heterogeneous innovation and in-

novation directions. In a 2023 AEA lecture, Acemoglu (2023) proposes two channels that

can distort the direction of technology. The first one is differential externalities. If the nega-

tive externality is not priced in, technology will be directed towards the areas with negative

externalities. Secondly, innovation is driven towards industries with a higher markup. For

example, curative technologies usually have higher markup in healthcare, thus fostering more

innovation. We study innovation direction at a more granular level. Instead of focusing on

across industries, we study how firms choose their innovation directions. Akcigit and Kerr

(2018) also study this question at the firm level. They are interested in whether firm man-

agers choose internal (improving existing products) versus external innovations (acquiring a

new product line). They find that large firms prefer internal innovation, and thus, major

innovations tend to happen in small firms. In their model, innovation direction shifts as the

firm scales up, while in our paper, conditional on firm size, innovation direction can also shift

due to investors’ reactions.

The paper proceeds as follows. We describe our data sources and key measures in Section

2. In Section 3, we present results regarding investors’ misreaction to patent novelty. We

then develop a theoretical framework to explain the misreaction and verify its predictions

in our data. Section 4 compares the patent private economic value and social value across

patent novelty. In Section 5, we show results on the future innovation direction of novel

firms and how misreaction slows novel technology advancements in novel firms. Section 6

concludes by discussing the implications of our results for future research.
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2 Data and Measurement

One of our main objectives is to empirically examine how investors react to a particular

type of news – patent issuance by public firms, but across different novelty levels of granted

patents. Furthermore, we aim to explore how investors’ reactions to patents’ novelty im-

pact the associated firms’ future innovation directions. To establish these facts, we combine

information from patent data with firms’ stock price movements and financial statements.

2.1 Patent Data

Our study’s first substantial data source involves the patent records filed with the United

States Patent and Trademark Office (USPTO). Over a period of nearly a century (from 1926

to 2021) and covering around 3.6 million patents, this extensive dataset provides valuable in-

sights into technological advancements and innovation activity across various industries. The

dataset includes information on a patent’s filing and issuance date, inventors and assignees,

classification codes, citation patterns, and the patent’s full text, enabling us to construct dif-

ferent measures of innovation. For example, we construct patent-pairwise citation networks

and estimate each patent’s private value, social value, novelty, and impact. We elaborate on

the methodologies and definitions of these measures later in this section.

2.2 Firm-level Financial Data

To test the market reactions to the news of patent issuance, we match the patent data with

firm-level stock returns from the Center for Research in Security Prices (CRSP) database.

Our focus is on the stock market reactions after the official announcement of patent is-

suances. Following the methodology introduced by Kogan et al. (2017), we link the patents

to publicly-traded firms by using the assignee names as the key matching criterion. We

use daily returns and prices, and construct market capitalization, share and dollar volume,

reversal and momentum from CRSP following standard procedure in the literature.
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2.3 Other Firm-level Data

After linking patents to their issuing companies, we aggregate our patent data at the firm-

year level and derive several innovation measures, including, but not limited to, the number

of patents, total citations, total private values of patents, and novel intensity of patents. We

aim to use these measures to capture firms’ technological innovation landscape. We also

combine these innovation measures with other firm-level outcomes such as output, profits,

capital stock, and the number of employees, all extracted from the Compustat database.

This enriched panel dataset allows us to explore the connections between firms’ innovation

capabilities and their actual economic performance.

2.4 Innovation Novelty, Impact, and Value

2.4.1 Measurement of Patent Novelty and Impact

The conceptual framework of our study is grounded in a nuanced understanding of patent

novelty, which can be described as the degree to which an invention presents a unique, innova-

tive idea compared to prior work. To quantify this feature, we opt for a text-based measure,

which enables a data-driven examination of a patent’s content. By analyzing the textual con-

tent of patent documents, one can extract distinctive patterns, themes, and terminologies,

allowing for a relatively objective assessment of a patent’s novelty.

More specifically, our measure of patent novelty derives its core principles from Kelly et

al. (2021). Their innovative framework defined the importance of a patent by examining

its contextual positioning within the broader patent ecosystem. Specifically, they proposed

an indicator of patent importance, denoted as q10j for patent j, as the ratio of its forward

similarity FS10
j , to its backward similarity, BS5

j :

q10j =
FS10

j

BS5
j

, where BS5
j︸︷︷︸

Novelty

=
∑
i∈Bj,5

ρj,i, FS10
j︸ ︷︷ ︸

Impact

=
∑

i∈Fj,10

ρj,i

Delving deeper into each component, the backward similarity (BS5
j ) represents the nov-
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elty aspect of the patent. It is computed by summing the pairwise similarities, ρj,i, of patent

j to all patents filed in the five years preceding j’s filing date. These preceding patents are

captured in the set Bj,5. This measure aims to understand how closely patent j resembles

or diverges from previous innovations. On the other hand, the forward similarity (FS10
j ),

capturing the impact dimension, is the summation of the pairwise similarities of patent j to

all subsequent patents filed in the decade following j’s filing date, represented as a set Fj,10.

This measure provides insight into the influence of patent j on subsequent innovations.

Our primary focus is the novelty aspect of each patent. As noted above, a patent with a

lower similarity to preceding patents (lower BS5
j ) would indicate a higher degree of creativity.

Such a metric is essential and intuitive, as it helps us approximate ex-ante whether an

invention is groundbreaking or merely a marginal improvement upon prior art. One should

note that not all novel patents necessarily represent technological breakthroughs. Under such

circumstances, we take advantage of the forward similarity metric FS10
j , which captures the

ex-post impact of a patent, to separate the patent with the same novelty levels further into

high or low-impact groups.

2.4.2 Measurement of Patent Private Value

It is plausible that a patent with high novelty introduces something distinct, potentially

game-changing, to its respective field. However, this does not automatically guarantee that

such a patent will have significant private value to the firm. High novelty could indicate

some technological advancement, but its economic value might remain limited without the

corresponding market demand or feasibility for commercial application. Therefore, evaluating

how the market reacts to such novelty and how the market reaction impacts firms’ future

innovation requires controlling for how much economic value patents could bring to firms.

To measure a patent’s economic value effectively, we take the off-the-shelf KPSS mea-

sure – a benchmark method based on short-term market reactions after the patent grant,

as outlined by Kogan et al. (2017). One of the primary strengths of the KPSS measure is

its ability to robustly predict forward citations, an indicator of a patent’s “scientific value”.
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Besides, the positive correlation between a firm’s aggregate KPSS values across patents and

future capital, labor, output, and profit growth suggests that the value of its patents can

offer significant insights into its potential success in the innovation-driven product market.

Moreover, aggregate KPSS values are associated with aggregate growth and Total Factor

Productivity (TFP). They can also identify known periods of pronounced technological ad-

vancement on a macro scale. Given these reasons, we also use the KPSS value as a proxy for

patent quality. This proxy for innovation quality is particularly essential when we examine

how a firm decides its future innovation strategy, contingent on its existing innovations.

2.4.3 Measurement of Innovation Diffusion

We construct a pairwise patent citation network to capture the breadth and depth of

technological diffusion. This methodology is built on observing each patent’s subsequent

citations, ensuring a comprehensive mapping of the flow of knowledge and firms’ innovation

directions. Our data consist of 43 million patent citation pairs, specifically covering patents

whose assignees are publicly-traded firms available in the CRSP database. We employ it

as a tool for exploring the dynamics of firms’ innovation directions. Specifically, we can

infer whether firms are more willing to innovate further upon their original novel patents

or opt to follow prevailing trends by referencing patents from other entities. Moreover,

the citation network allows us to create two proxies for evaluating a patent’s social value.

The first is the total citations a patent receives, indicating its influence and acceptance in

the broader community; the second is the aggregated private values of a patent’s follow-up

patents (in other words, the future patents that cite the original patent). The latter captures

the downstream economic value a patent introduces into the innovation ecosystem. Both

metrics give us a reasonable estimate of a patent’s social value.3.

3Our proxies represent a lower bound on a patent’s social value, given that a patent can bring significant
value to society in ways not measured by the citation network.
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3 Market Reactions to Novelty

In recent years, there has been a growing interest in understanding how financial mar-

kets react to various types of news. Investors’ reactions to innovations, in particular, have

become a pivotal area of exploration. In light of this, our study assesses investors’ differen-

tial responses to news of patent issuance by public firms, explicitly distinguishing between

patents with high novelty and those that are more conventional. By integrating patent data

with stock returns, we systematically estimate the predictability of firms’ returns after the

announcements of patent issuances. This exercise seeks to illustrate whether investors under-

react or overreact to such news. We also aim to shed light on what drives the potentially

different market reactions to different levels of patent novelty.

3.1 Empirical Strategy

In the empirical asset pricing literature that studies investors’ reactions to news, a preva-

lent methodology is to examine whether news predicts firms’ future returns. Such an approach

offers a framework for gauging the extent of the market’s misreaction to information. The

logic of this empirical paradigm is as follows: Suppose investors rationally respond to the

information in the news. Then the firm’s stock price should jump immediately to the correct

level that incorporates the new information; future stock returns should therefore be unpre-

dictable. If, instead, the revelation of news leads to positive predictability in future returns,

we can infer that investors did not take account of all the information when it was initially

released. This means that investors under-react to news. Conversely, negative predictability

can be seen as an indication of overreaction, where investors give an overly high valuation to

the news upon its release.

Using this framework, we aim to compare investor reactions, or potential mis-reactions, to

patents that are categorized as novel versus non-novel. In particular, we estimate the degree

to which future returns can be predicted by the issuance of novel and non-novel patents,

conditional on the issuance of other types of patents.
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We adopt the following empirical strategy. First, for each firm, we collate all patents

granted in each month and categorize them into ten deciles based on their novelty levels.

To prevent lookahead bias, we assign decile bins by comparing the novelty measure of the

patents issued in each month with the decile cutoffs from the previous month. As mentioned

earlier, our classification uses patent backward similarity (BS5
j ) as the primary determinant

of novelty. As such, patent novelty is constructed using only ex-ante information that is

potentially knowable to investors.

With the indicators for patent novelty in hand, we compute local projections to examine

how firm-month returns are predicted by their innovation novelty indicators. More concretely,

our empirical model is:

ri,t+τ = αt + αind +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ

In this equation, ri,t+τ is the return of firm i in month t + τ . The term αt represents

year-month fixed effects (FEs) that control for unobservable time-specific factors, such as

macro trends, that could influence the returns. αind are industry fixed effects, capturing the

unobserved factors driving the differences in industry risk premia.

The main variables of interest are the dummy variables, 1{i ∈ Novelty Deciled,t}, which

are equal to 1 if firm i is granted a patent in novelty decile d at time t. The coefficients,

βτ,d, thus inform us whether the issuance of (non-)novel patents predicts future returns,

conditional on the fact that firms can issue patents of other levels of novelty at the same

time.

We also control for an extensive list of firm characteristics, Xi,t, that are widely docu-

mented in the empirical asset pricing literature as robust predictors of future stock returns.

They include firm size, book-to-market ratio, profitability, investment, earnings, market beta,

short-term reversal, and medium-term momentum.

To study the dynamics of return predictability by firms’ novelty intensity over time, we

generate a cumulative impulse response function (IRF), focusing on the horizon τ from 1 to
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60 months. The IRF is a graphical representation of how a unit shock to the (non-)novel

intensity translates to cumulative returns over the period. If we see a persistent increase in

the cumulative IRF, this indicates that investors are gradually correcting their underreaction

to the positive news. If we see a persistent decrease, this suggests that investors are gradually

correcting their initial overreaction to the news. When the function goes flat, the misreaction

is fully corrected.

3.2 Results

Following the empirical strategy laid out above, we investigate how the market reacts

differently to issuances of novel versus non-novel patents. Our results paint a comprehensive

picture of how investors respond to different levels of innovation novelty.

3.2.1 Main Result

The centerpiece of our analysis is the cumulative impulse response function (IRF), denoted

mathematically as
∑T

τ=1 βτ,d, plotted over T ∈ [1, 60]. This function illustrates how returns

accumulate after novel and non-novel patent issuance across a five-year window.

As shown in Figure 1, we see two distinct patterns. The black solid line represents the

cumulative IRF associated with the novel patent issuance, βτ,1, while the red dashed line

tracks the trajectory for the non-novel patent issuance, βτ,10. The two lines represent the

market’s differential responses to innovative breakthroughs versus incremental or imitative

patents.

A significant observation from the figure is the upward trajectory of the black solid line.

We see that novel intensity positively predicts returns for around two years and no fur-

ther. This pattern provides compelling evidence that investors, in their assessment of novel

patents, tend to exhibit under-reaction. The full value of groundbreaking innovations is not

immediately priced in, leading to a lag in the adjustment of the firm’s stock price. This

lagged reaction is consistent with parts of the broader literature on behavioral finance, where

14



cognitive limits often result in delayed or incomplete processing of new information. In terms

of magnitude, the issuance of novel patents leads to cumulative returns of 1.5%. Given the

rarity of novel patents, this effect is economically significant.

By contrast, the red dash line, shows that non-novel issuance predicts persistently negative

future returns. This negative relationship implies that investors tend to overreact to patents

that follow existing technologies. Such overreaction to non-novelty may reflect a market bias

towards the familiar and tried-and-true, often overvaluing incremental advancements at the

expense of truly pioneering innovations. After the initial overreaction, investors gradually

correct for this bias, leading to a persistent negative impact on future returns.

In summary, our main results show that groundbreaking innovations are initially met

with under-reaction, while those that conform to existing technological paradigms elicit an

exaggerated initial response, only to see a correction in subsequent periods.

3.2.2 Robustness Checks

To further support our main finding that investors under-react to novel innovations while

over-reacting to non-novel innovations, we conduct several robustness checks.

Short-term return on patent issuance: While our primary analysis estimates the long-

term market reactions, understanding the immediate return response post-patent issuance

is crucial to establish the empirical fact of investor mis-reaction. For example, if investors

overreact to non-novel patents, we should see an immediate return jump followed by a neg-

ative predictability. To test this, we run a firm-day level regression of 3-day returns on the

patent issuance dummy, controlling for industry and date fixed effects, and the same set of

firm characteristics as in our main results:

Rt,t+2 = αt + αind + βPatent Issuance Dummyi,t + γ′Xit + εi,t.

We find that both novel and non-novel patent issuance trigger sizable short-term returns.
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As shown in Table A.1, the individual coefficients of the novel-patent and non-novel-patent

issuance dummies, when analyzed separately, are both positive and statistically significant.

If we include both dummies, and an additional patent issuance dummy in the regression, only

the patent issuance dummy is significant. This suggest that, while patent issuance invariably

sparks immediate responses, these responses may not differ by patent novelty.

The short-term return jumps combined with long-term return predictability give a com-

prehensive summary of misreaction to patent novelty. For a novel patent, although the stock

price jumps up immediately following the patent news, the jump does not fully capture the

value of the patent, so the price keeps going up subsequently, suggesting an under-reaction.

On the other hand, for a non-novel patent, initially, we again see a positive jump, but part

of it is due to investor over-excitement. Following the news, returns are gradually corrected

downward, exhibiting negative predictability.

Ruling out a rational risk-based explanation: Return predictability does not always

signify investor misreaction. An alternative (rational) explanation of the positive predictabil-

ity of patent novelty is that novel firms are riskier, and thus investors demand a higher

expected return as compensation. To test this hypothesis, we investigate the relationship

between the issuance of patents with different levels of novelty and firms’ future stock return

volatility.

We do not find support for a risk-based explanation of issuance predictability, for three

different definitions of volatility. In Figure A.1, we run the following local projection regres-

sions:

σi,t+τ = αt + αind +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ ,

where σi,t+τ is the standard deviation of realized daily returns in month t + τ . Specifically,

we run a regression of realized return volatility on dummy variables of patent issuance at

different novelty levels, controlling for firm characteristics including firm size, book-to-market

ratio, profitability, investment, earnings, market beta, short-term reversal, and medium-term
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momentum, and year-month and industry fixed effects.

We plot the impulse response for two deciles, the most novel and the most non-novel

decile of patents, βτ,1 and βτ,10. Firms issuing novel innovations do not have significantly

higher return volatility than firms issuing non-novel innovations. If anything, we see a slightly

higher return volatility for non-novel firms in the long term, contrary to a risk-based story

that novel firms have higher risk.

One may argue that realized total return volatility may not be the correct measure of risk

since not all risks are priced. According to standard asset pricing theory, only systematic risk

should be priced. We therefore test whether there is a significant difference in future beta in

response to the issuance of novel and non-novel patents. We run analogous regressions with

firm’s market beta as the dependent variable:

βi,t+τ = αt + αind +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ .

We estimate monthly beta using daily returns in each month. Figure A.2 shows that non-

novel patent issuance consistently predicts a higher beta than novel patents. If systematic

risk is priced in returns, we should instead expect that novel patents predict higher returns.

The fact that we see the converse pattern in the data suggests that the positive predictability

of novel patents is unlikely to be driven by a risk-based story.

One may also worry that realized volatility is not the volatility that investors perceive at

the time of issuance. To respond to this concern, we estimate the predictability of ex-ante

implied volatility. We obtain daily implied volatility of standardized 30-day at-the-money

(ATM) options from OptionMetrics. Following Kelly et al. (2016), we exclude options with

an implied volatility exceeding 100% per year. We construct a firm-month panel of implied

volatility by averaging the implied volatility reported in each month. We run impulse response

regressions with implied volatility as the dependent variable:

Implied Voli,t+τ = αt + αind +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ
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Figure A.3 shows that non-novel patent issuance consistently predicts higher implied volatility

than novel patents, which infers that investors perceive a higher volatility for non-novel

patents. If we believe that investors think novel patents are riskier, we should instead see a

higher implied volatility for novel patents. On a side note, implied volatility decreases as we

go further away from patent issuance. This is consistent with the idea that uncertainty around

patent issuance gets resolved over time. We will explore more in our model of misreaction.

These disconnects between various definitions of risk and expected returns challenge the

rational story and favor a behavioral story of investor under- and over-reaction. The root

of such misreaction may instead lie in investors’ imprecise perception of groundbreaking

innovations.

Behavioral Misreaction in Earnings Expectations: Given that we see no convincing

evidence of a rational risk-based story, we proceed to investigate a behavioral explanation

of this misreaction to novelty. One natural behavioral mechanism is that investors form

too low expectations about a firm’s future earnings when the firms issue novel versus non-

novel patents. If investors trade based on earnings expectations, the misreaction in earnings

expectations would directly translate into return predictability. To test this mechanism, we

use subjective earnings forecasts before and after patent issuances. The earnings expectations

data come from IBES. We extract the short-term (1-year) earnings expectations and the long-

term earnings growth (LTG) expectations 90 days before and after each patent issuance.

We measure consensus earnings forecasts by taking the median forecast from individual

analyst level forecasts. We winsorize consensus expectations at 1% level to remove anomalous

forecasts. We follow Kwon and Tang (2021) and run Coibion and Gorodnichenko (2015)

(CG) regressions by regressing post-issuance forecast errors on forecast revisions separately

for different novelty deciles:

EPS1,i,t − Epost[EPS1,i,t] = α1 + β1(Epost[EPS1,i,t]− Epre[EPS1,i,t]) + ε1,i,t

∆5ei,t+5year/5− LTGpost,i,t = αLTG + βLTG(LTGpost,i,t − LTGpre,i,t) + εLTG,i,t
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A positive CG coefficient would suggest underreaction since investors revise their expec-

tations insufficiently, so the forecast errors go in the same direction as forecast revisions.

On the other hand, a negative CG coefficient would suggest overreaction since the investors

overshoot when updating their beliefs post-event. In Figure A.4, we report the results for

short-term earnings expectations. Across all ten novelty deciles, we obtain a positive coeffi-

cient for each novelty decile. The positive coefficients are consistent with an underreaction

in short-term earnings expectations that is well documented in the literature (for example

Bouchaud et al. (2019)). Figure A.5 plots the CG coefficients for LTG expectations. Here,

we see negative coefficients across the board. This is again consistent with the overreaction

in LTG in the literature (for example Bordalo et al. (2019)). However, the key finding here is

that the CG coefficients are not significantly different across different levels of novelty in both

short-term earnings and LTG expectations. If misreaction to novelty is reflected in how in-

vestors form earnings expectations, we should expect a more positive CG coefficient for more

novel patent issuance. However, we find no evidence of this, suggesting that the misreaction

to novelty in returns is not because investors form irrational earnings forecasts about the

patent issuer. Therefore, when we write out the theoretical model to explain the misreaction

in Section 3.3, we directly connect misperception of novelty to return expectations.

Firm-level intensity measure as a proxy for novelty: We provide an alternative

definition of the novelty of firms’ innovations. The new measure describes the fraction of

(non-)novel patents among all the patents issued by the firm. In particular, we compute the

“novel patent intensity” for each firm in each month. This metric is defined as:

Novel patent intensityi,t =
# of Novel Patents (Most Novel Decile)i,t

Total # of Patentsi,t

Essentially, it traces the proportion of firm i’s patents that belong to the most novel decile

at month t.

we also introduce its counterpart, the “non-novel patent intensity.” This measure is sim-

ilarly derived but focuses on patents in the least novel decile. The formal definition is:
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Non-novel patent intensityi,t =
# of Non-novel Patents (Least Novel Decile)i,t

Total # of Patentsi,t
.

We run return predictability regressions by replacing the novelty decile dummies with the

(non-)novel intensity measure:

ri,t+τ = αt + αind + βτ (Non-)Novel patent intensityi,t + γ′Xi,t + εi,t+τ .

In Figure A.6, there is a similar divergence in return predictability. Novel intensity positively

predict future returns for around the next two years and non-novel intensity consistently

negatively predicts future returns; this is the same as in our main specification. We lose

some power in this specification because we are conditioning only on the firms that have at

least one patent issuance. But the advantage of this measure is that it is scaled by the number

of patents issued; as such, the return predictability is not driven by one firm issuing many

patents at the same time. Even with less power, we still find significant predictability for

around two years after issuance for novel intensity; the predictability becomes insignificant

in the long term, providing evidence that the mispricing is corrected after two years.

Firm-level multi-valued similarity score as a proxy for novelty: Beyond the mea-

sures of (non-)novel intensity in our primary analysis, we construct an alternative measure:

firm-level multi-valued similarity score. To implement this, we again classify patents within

the same issuance year into decile groups based on their backward similarity. Apart from

aggregating patents to calculate the (non-)novel intensity at the firm level, this classification

also enables us to compute a similarity score at the firm-month level by directly averaging

the firm’s patents’ decile values. Under this measurement scheme, a higher average similarity

score indicates a firm’s inclination towards non-novel innovations.

To validate this measure’s implications, we incorporate the similarity score into a local

projection model akin to our main specification. By retaining the original specification, but
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substituting the (non-)novel intensity with the similarity score in our local projection, we

ensure that our results remain comparable. As shown in Figure A.7, the similarity score

displays a negative predictability of future returns, confirming our findings: markets are

over-reacting to patents that are reminiscent of past innovations and, in contrast, display a

discernible under-reaction to novel innovations.

Dissecting the quality of novel patents: Lastly, we distinguish whether the market’s

under-reaction to novelty is driven only by the issuance of “bad” novel patents. Do investors

display underreaction because they perceive these novel patents as faltering new technological

endeavors?

To address this, we use the 10-year forward similarity metric from Kelly et al. (2021),

segregating patents into “Good Novel” and “Bad Novel” based on their relative impact. A

patent with higher forward similarity is more impactful because it opens up many future

follow-up innovations. We define “good” as being above the median of the 10-year forward

similarity in any given month. Akin to our main empirical strategy, we implement the

subsequent firm-month level regressions:

ri,t+τ = αt + αind + βτGood/Bad (Non-)Novel patent intensityi,t + γ′Xi,t + εi,t+τ .

The corresponding cumulative impulse response function (IRF) plotted in Figure A.8

suggests that the observed market under-reaction to novelty and over-reaction to non-novelty

predominantly stems from the market’s interpretation of “good” patents, both novel and non-

novel.

In summary, our robustness checks, spanning diverse methodologies and dimensions, con-

sistently echo our primary assertion: financial markets, while clearly responsive to patent

announcements, display a systematic under-reaction to pioneering innovations and an over-

reaction to more iterative, non-novel ones.
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3.3 A Model of Misreaction to Novelty

In this section, we present a framework that we can use to understand the return misre-

action to patent novelty and the return dynamics after patent issuance. The model intends

to explain two key empirical facts in Section 3. First, immediately after a patent is issued,

firm’s short-term returns jump up but the jumps are not economically different across differ-

ent levels of patent novelty. Second, in the long term, the impulse response of a novel patent

issuance exhibits positive predictability while a non-novel patent issuance negatively predicts

returns, as investors gradually learn the true value of the patent.

This is a bounded-rationality model where investors do not know the true novelty of a

patent when it is first issued. Instead, they receive unbiased, noisy signals about patent

novelty and are Bayesian learners of the true novelty. It is a bounded-rationality model

because true patent novelty, as we define it, only depends on ex-ante information, and is

therefore knowable to investors when patents come out. However, due to cognitive limits,

investors are not exactly sure about the patent’s novelty immediately after issuance, as new

patents are hard to understand and process. This aside, investors are rational: they update

from the signal in a Bayesian manner. The main prediction of the model is that immediately

after patent issuance, investors’ perception of novelty is close to an intermediate prior; they

therefore over-estimate the novelty of non-novel patents and under-estimate the novelty of

novel patents.

Connecting perceived novelty to patent value, we show that the model makes predictions

about expected returns after the issuance of patents with different levels of novelty, which

we then directly test in the data. First, under- and over-reaction is monotonic across levels

of novelty. The more novel the patents are, the more investors under-react to them. Second,

the more noisy the signals are, the larger the level of mis-reaction and the longer it takes

for the price to converge to the correct level. Third, despite short-term reaction differences

when patents are first issued, these differences are not economically significant. Most of the

differential misreaction shows up in long-term return predictability, which is exactly what we

observe in the data.
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3.3.1 Short-Term Reactions

We first derive the model predictions for the return reactions to patent issuance at the

moment a patent is issued. We denote the true novelty of a patent as x ∈ [0,∞). Investors

have a prior distribution of the patent’s true novelty, which we assume to be lognormally

distributed:

log x ∼ N(µ, σ2). (1)

We assume a lognormal prior to ensure that patent novelty is non-negative while also

maintaining tractability. Woodford (2020) also uses a lognormal prior in a model of cognitive

imprecision; he argues that lognormality is consistent with Fechner’s explanation for Weber’s

law, which states that the subjective sensation of a stimulus is proportional to the logarithm

of stimulus intensity. Our model, however, has a different interpretation from the Woodford

(2020) model. In particular, in a model with cognitive imprecision, agents see the true value

but their perceptual system encodes it imprecisely; by contrast, in our model, agents do not

observe the true value.

When a patent is first issued, a boundedly-rational investor does not know the true novelty

of the patent; instead, he receives an unbiased but noisy signal about the patent novelty:

r ∼ N(log x, ν2). (2)

Then, a Bayesian investor will form the posterior mean of patent novelty as

x̂(r) ≡ E[x|r] = exp

( ν2

σ2 + ν2

)
log x̄+

(
σ2

σ2 + ν2

)
r

 (3)

where x̄ ≡ exp[µ+ 1/2σ2] is the prior mean.

Therefore, for a patent with true novelty x, the investor’s estimate x̂ follows a lognormal
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distribution with mean and variance

e(x) ≡ E[x̂|x] = exp
(
β2ν2/2

)
x̄1−βxβ var[x̂|x] = (exp(β2ν2)− 1)e(x)2 (4)

where β ≡ σ2/(σ2 + ν2) < 1.

In Figure 2, we plot the mean perception of patent novelty, E[x̂|x], against the true

novelty level. We see that for novel patents, the investor underestimates novelty, while for

non-novel patents, she overestimates novelty.

Connecting Patent Novelty to Returns: For patent novelty misperception to generate

a price effect, we need to relate the investor’s perceived novelty of the patent to the stock

price change in response to patent issuance. Our empirical findings suggest that patent value

is positively correlated with patent novelty. In particular, we show that novel and non-novel

patents have indistinguishable return jumps at issuance, that novel patents show positive

predictability, and that non-novel patents show negative predictability, which suggests that

true patent value is positively correlated with novelty. The exact functional form of the

relationship, however, is unknown. Therefore, we proceed as follows: As in Kogan et al.

(2017), we decompose the return of a given firm around patent issuance as

Rj = vj + εj

We also follow Kogan et al. (2017) in imposing that patent value cannot be negative and that

it has a normal distribution truncated at 0. We also assume that patent value is positively

correlated with the perceived novelty of the patent in a log-linear way. That is,

vj ∼ trunc+(γ0 + γ1 log x̂j + εx,j).

Since the PDF of the sum of a truncated normal variable vj and standard normal variable

εj has no closed-form solution, we simulate 1,000,000 independent draws of the two random
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variables and plot the mean of the simulated joint distribution, E[Rj|xj].

Figure 3 shows that novel patents have issuance returns lower than the rational bench-

mark, thus exhibiting under-reaction, while non-novel patents have issuance returns higher

rational, thus exhibiting overreaction. Moreover, if investors receive very noisy signals, the

returns differences across patent novelty will be economically insignificant. This matches our

empirical findings that the firm’s 3-day returns are positive for both novel and non-novel

patent issuance, but they are not economically different, as presented in Table A.1.

3.3.2 Long-Term Dynamics

In the previous section, we showed that, in a static setting, we can generate under-

reaction to novel patents and overreaction to non-novel patents in short-term issuance returns.

However, the mispricing may not show up prominently in the short term, especially when

the signal is noisy. In the long term, returns will gradually converge to the correct level of

reaction, leading to more pronounced variation in returns. To capture this, we resort to a

dynamic model.

We assume that, after patent issuance, investors receive a noisy signal in each period.

The prior about patent novelty again follows a lognormal distribution:

log x ∼ N(µ, σ2).

Each period, investors receive the same unbiased noisy signal:

rt ∼ N(log x, ν2).

The posterior distribution given the signals also has a lognormal distribution:

log x|r0, ..., rt ∼ N

(t+ 1

ν2
+

1

σ2

)−1

t+ 1

ν2

 1

t+ 1

t+1∑
i=1

ri

+
1

σ2
µ

 ,

(
t+ 1

ν2
+

1

σ2

)−1

 .

(5)
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Denote this conditional mean as µc and conditional variance as σ2
c . Then we define the

posterior mean at time t as E[x|r1, ..., rt] ≡ x̂t and using the properties of the lognormal

distribution, we get

logE[x|r1, ..., rt] ≡ log x̂t = µc +
1

2
σ2
c .

We want to calculate the mean of investors’ novelty perception given the true novelty x.

log et(x) ≡ logE[x̂t|x] = E

[
µc +

1

2
σ2
c

]
+

1

2
var

(
µc +

1

2
σ2
c

)

We calculate the two terms separately:

E

[
µc +

1

2
σ2
c

]
=

(
t+ 1

ν2
+

1

σ2

)−1
t+ 1

ν2
log x+

(
t+ 1

ν2
+

1

σ2

)−1
1

σ2

(
µ+

1

2
σ2

)

var

(
µc +

1

2
σ2
c

)
=

(
t+ 1

ν2
+

1

σ2

)−2(
t+ 1

ν2

)2
ν2

t+ 1
.

Figure 4 plots the dynamic conditional mean of the perception of patent novelty, E[x̂t|x]

for ten levels of true novelty, when the signal is relatively noisy, but not too noisy (ν =

2σ). We can see that, at issuance, similar to the static case, we have differences in novelty

perception across true novelty levels, but which are compressed toward an intermediate prior

level of novelty. As time goes by, when investors receive more signals, they update their

novelty perception toward the correct level of novelty. We also see that, although there are

differences at issuance, a lot of the movement in perceived novelty happens several periods

after the patent is issued.

Once again, we need to relate the misperception of patent novelty to the misreaction in

stock returns. We consider the case where the patent value is distributed as a truncated

normal with a mean that is related to the logarithm of perceived novelty:

vt ∼ trunc+(γ0 + γ1 log x̂t + εx,t).
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With this formulation, we can then write the distribution of patent value, vt, as:

vt ∼ N+

γ0 + γ1

[(
t+ 1

ν2
+

1

σ2

)−1
t+ 1

ν2
log x+

(
t+ 1

ν2
+

1

σ2

)−1
1

σ2

(
µ+

1

2
σ2

)]
(6)

, γ2
1

((
t+ 1

ν2
+

1

σ2

)−2(
t+ 1

ν2

)2
ν2

t+ 1

)
+ σ2

x

 . (7)

We again decompose the cumulative return of a given firm after patent issuance as

Rt = vt + εt, εt ∼ N(0, σ2
ε).

Since vt is distributed as a truncated normal while εt is normally distributed, it is hard

to have a closed-form distribution for patent issuance returns, Rt. Instead, we simulate

1,000,000 independent draws of the two random variables and plot the mean of the simulated

joint distribution, E[Rj|xj].

In Figure 5, we plot the return reaction given 10 novelty levels for 60 periods after the

patent issuance. We see several model implications. First, investors underreact to the novel

patents (large x) and overreact to non-novel patents at issuance, but they converge to the

correct level of returns over time. In the short term, all the returns are compressed towards

a single prior, so the return difference is not significant at issuance. However, we see a

large divergence in return responses across different novelty levels as these return responses

converge to the correct level.

We then study the model’s comparative statics for ν, which determines how noisy the

signals are. A high ν indicates that investors receive a very noisy signal in each period. In

reality, this approximate the case where the investors are mostly retail traders and do not

have precise information on the novelty of firms’ innovation. A low ν corresponds to the

case where firms have a large number of institutional investors with professional knowledge.

Institutional investors should have a better understanding of the technology advances and

innovation strategy of the firms they invest in, and thus receive less noisy signals about patent
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novelty.

Figure 6 plots the return dynamics after the patent issuance. We consider two levels of

signal precision. High precision is the case where ν = σ, the standard deviation of the novelty

prior; low precision is the case where ν = 2σ. For a noisier signal, we see that the initial

reaction is more similar across different novelty levels, indicating more severe misreactions.

We also see that investors take longer to converge to the correct level of reaction.

3.4 Empirical test of the model

In this section, we test three of model’s predictions. We start with the predictions for the

short-term reactions; we then plot the long-term dynamics in the data. Finally, we test the

differential reactions based on the key model parameter, the signal precision.

The model predicts that the return reaction at issuance should not be distinguishable

across different novelty deciles if the signal is noisy. To test this, we run firm-day level panel

regressions of 3-day returns right after patent issuance on ten decile indicators of patent

novelty level. Each dummy is equal to 1 if there are patents with a given novelty level

granted to the firm. If there is no patent issued on the firm-day, all indicators will be 0,

which means that the counterfactual returns are the returns from the firms without patent

issuance that in the same industry and have similar firm observables:

log(Ri,t,t+2) = αm + αind +
10∑
k=1

βk1i∈novelty decile k,t +Xi,t + εi,t,

where αm are month FEs, αind are industry FEs (SIC 2 digits), and Xi,t are size, book-to-

market, profitability, investment, market beta, short-term reversal, and medium-term mo-

mentum.

In Figure 7, on average, we see a significantly positive response for almost all deciles.

However, as the model predicts, the response is not statistically significant across different

novelty deciles. This is consistent with the model implication that at issuance, since investors

are very unsure about patent novelty, they give an average prior valuation to all patents. Only
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some time after the patents are issued, as investors accumulate more information, we see a

much larger response in the sense that different novelty deciles have a divergence in returns

as they converge to the correct response.

We directly test this by generalizing our result in Figure 1 to all ten deciles. The model

predicts that the misreaction to novelty is monotonic across ten deciles of patent novelty. We

should see the strongest positive predictability for the most novel patents and the strongest

negative predictability for the most non-novel patents. We examine this by plotting the

cumulative impulse response of future 5-year monthly returns for the full ten deciles of patent

novelty:

ri,t+τ = αt + αind +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ .

This is the exact same specification as our main result in Figure 1, but instead of plotting

only the most and least novel decile, we explore the behavior of all deciles. Figure 8 shows

that, although in real data the response is noisier, we still see that positive predictability

decreases as we move down the novelty deciles, and we start to see negative predictability

for non-novel deciles. The impulse response differences are large, consistent with the model

predictions.

Finally, in the model, the signal precision is a key parameter that drives the return

response. To test whether this model mechanism is indeed relevant in the real world, we

compare the return predictability for firms with high versus low institutional holdings. Firms

with high institutional holdings should have investors with less noisy signals about patent

novelty, and thus should exhibit weaker misreaction and faster convergence. For this exercise,

we use the institutional holdings data from FactSet and follow the construction of institutional

holding percentage ini Ferreira and Matos (2008). Figure 9 shows the results from the
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following regressions:

log(Ri,m+τ ) = αm +
10∑
k=1

βk,τ,high1i∈novelty decile k,m × 1high inst hold,m+

10∑
k=1

βk,τ,low1i∈novelty decile k,m × 1low inst hold,m +Xi,m + εi,m+τ ,

where we plot only the impulse response, βk,τ,high and βk,τ,low from the top and bottom two

deciles of patent novelty. We see exactly what we predicted: firms with high institutional

holdings tend to have less positive predictability after novel issuance and less negative pre-

dictability after non-novel issuance, suggesting that the misreaction is weaker for firms with

high institutional holdings. We also see that firms with high institutional holdings have zero

return predictability earlier than firms with low institutional holdings, indicating a faster

convergence to the true market value of the patents.

4 The Value of Novelty

After documenting that investors systematically under-react to novel innovations and

over-react to non-novel patents, a critical question arises: should firms’ shareholders, and

their stakeholders more generally, be concerned about the existence of such market mis-

reactions? This question is not merely academic but has profound real-world implications.

The market’s misalignment with novelty could have substantial economic and social costs,

if both of the following statements are true: (i) novel patents create more value than their

non-novel counterparts; (ii) firms, in response to market mis-reactions, strategically shift

their innovation focus towards existing trends (that investors overreact to) and invest less in

novel patents (that investors under-react to).

In this section, we test the first statement by evaluating whether novel patents are more

valuable than non-novel ones4. Specifically, we examine whether novel patents, despite mar-

ket biases, still have both higher private and social values than their non-novel counterparts.

4Section 5 tests the second statement.
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By bringing empirical evidence to this question, we shed light on the significance of novelty in

the innovation landscape and determine if the market’s misreactions generate real concerns.

4.1 Private Value of Novelty

In the complex world of patent valuations, understanding the economic value that each

patent brings to the firm becomes crucial. We employ the KPSS values, as estimated in

Kogan et al. (2017), to capture of private value of each patent. To assess the relationship

between patent novelty and private value, we run the following patent-level regression:

KPSSi = αyr + αcpc +
10∑
d=1

βd1{Novelty Decilei = d}+ εi

Here, KPSSi represents the private value of patent i. The term 1{Novelty Decilei = d} is a

dummy variable that indicates which novelty decile d patent i belongs to. We also include

both the patent’s grant year and CPC-class fixed effects to ensure that our examination of

the novelty-private value relationship is free from confounding influences.

For comparison purposes, we designate the tenth novelty decile – representing the most

non-novel patents – as our benchmark group. We then plot the coefficient βi for all remaining

decile groups i ∈ [1, 9] in a single figure.

Figure 10 points to a compelling narrative. The coefficient βd shows a monotonic decrease

as d increases. This pattern implies that despite the market’s underreaction, more novel

patents, as indicated by a lower novelty decile, inherently have higher private economic

value. This result emphasizes novelty’s premium in patent valuations and confirms that

novel patents, on average, bring high future economic growth to their inventing firms.

4.2 Social Value of Novelty

A patent’s valuation consists of more than just its private economic value. A crucial aspect

often overlooked is the social value a patent brings to the broader innovation ecosystem. A
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key question we aim to address is whether a patent’s novelty creates unaccounted societal

benefits, such as having a more significant influence on future innovations spanning different

industry fields once we control for its private value. Suppose novel patents have higher social

value than non-novels. In that case, it implies that they not only benefit their inventing

companies but also create “positive externalities” that benefit other firms in society.

We empirically test this question by constructing two proxies that capture a patent’s social

value. The first, widely used by many academic and industry references, focuses on patents’

total forward citations. The rationale is straightforward: a patent that has significantly

influenced subsequent innovations will, by design, be highly cited. The second measure

aggregates the private values (KPSS values) of all patents that cite the original patent. This

metric captures the accumulated economic value of all downstream innovations influenced by

the original patent.

Our empirical strategy employs a patent-level regression framework as follows:

Social Value Proxyi = βBS5
i Decile + γKPSSi + ηXi + εi,

where Social Value Proxyi denotes our proxy for the social value of patent i as defined above.

The term BS5
i Decile represents the novelty decile of the patent, while KPSSi stands for its

private value. The vector Xi includes the following controls that potentially influence the

social value of a patent: (1) firm market capitalization5, given that larger enterprises might

produce more influential patents; (2) firm idiosyncratic volatility, capturing that rapidly ex-

panding entities might exhibit more volatile returns yet produce high-quality patents. We

also control for multiple types of fixed effects in different specifications, including patent

grant-year fixed effects, acknowledging that older patents have had more opportunity to ob-

tain citations; patent’s CPC class-year fixed effects, in recognition that citation patterns may

differ across technology domains and over time; and firm-level fixed effects, controlling for

intangible, firm-specific factors that could affect their patent’s social value. Our most strin-

gent specification also accounts for the potential temporal fluctuations in these unobservable

5We measure the firm’s log market capitalization logMi on the day prior to the patent grant.
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firm fundamentals by including firm-year fixed effects. The standard errors in our analysis

are all clustered at the grant year level.

Our empirical findings point to a compelling narrative. Novel patents, particularly those

at the lower end of the BS5
i novelty spectrum, consistently display enhanced societal value,

whether measured via total forward citations or the economic worth of subsequent citing

patents. Our findings are robust after including different controls, ranging from patent age

and firm-specific metrics to technological domain. The difference between most novel and

non-novel patents, both in citation counts and citing patents’ economic value, persists in all

specifications.

Diving into the economic magnitudes implied by our estimates as shown in Table 1, the

most novel patents (those with BS5
i decile equal to 1) are associated with 0.6 to 2.8 more

citations compared to their most non-novel counterparts (those with BS5
i decile equal to 10),

contingent on the controls implemented. The magnitude becomes even more pronounced

when we transpose this social value to monetary terms, employing the total private economic

values of subsequent citing patents. The most novel patents reflect an incremental social

value of 34 to 67 million 1982-equivalent dollars (deflated using the CPI) over the least

novel ones. This robust economic advantage is not just evidence of the intrinsic worth of

novel patents but an indicator of the spillover effects these novel patents generate. Novel

patents inspire subsequent patents, bringing higher private value to their inventing firms,

thus accumulating a compounded societal and economic advantage. Compared with citation

counts, this monetary metric offers a more tangible, real-world implication of the value of

novel innovations.

To sum up, our results provide direct evidence of the high importance of novelty in

the patent landscape. The results underscore that novel patents benefit the innovator and,

more importantly, promote an ecosystem of subsequent innovations that generate social and

economic advantages spanning decades.
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5 Impact on Future Innovation

In previous sections, we documented a systematic difference in the equity market’s re-

sponse to patents with different novelty: underreaction to novel patents and overreaction to

non-novel patents, despite the empirical evidence that, on average, novel patents hold more

significant economic and social values.

The implications of this discrepancy are profound. It raises a pivotal question about

the essence of innovation: could investors’ reactions translate into real consequences for

firms’ future innovation directions? In this section, we first examine whether a novel firm

(i.e., a firm with a higher intensity in creating novel patents) changes its future innovation

trajectory. After documenting that novel firms not only follow up less on their just-issued

novel technology but issue fewer novel patents in the future, we then explore whether market

reactions could be a factor that cause such changes. Using mutual fund redemptions as an

instrument for firms’ returns on the equity market, we provide causal evidence that market

reactions can distort a firm’s future innovation directions. Return drops on the equity market

after novel patent issuance cause these firms to pivot from dedicating resources to pioneering

research and to instead chase short-term gains by mimicking existing trends. Such a shift

creates lower economic value for the innovating firm and decreases the positive externalities

created by novel patents. Our evidence implies that financial markets could push firms in

sub-optimal innovation directions by exploiting existing technology with low remaining value

and not trying the high-value novel directions.

5.1 Firm Innovation Directions and Dynamics

Firms’ innovation directions are essential for their long-term growth. Strategizing for

innovation directions can enable corporations to provide their customers with continued

value, create new market segments, and even push competitors out of their once-owned

segments. Since firms’ strategies in forming their future innovation trajectories vary signifi-

cantly depending on their idiosyncratic preference and choice sets, documenting firms’ exact

34



decision-making procedures for future innovation directions in some systematical way could

be extremely challenging. However, observing firms’ future patenting behavior provides an

alternative method to measure firms’ innovation trajectories and outcomes.6 Given that our

study mainly focuses on patents’ novelty, we categorize firms’ innovation directions into three

types closely tied to the novelty of firms’ patenting. The first one is sustaining innovation, an

incremental improvement that follows up on the existing technology, in particular, built on

the novel technology developed by the firm. For example, Apple pioneered multi-touch tech-

nology that laid the foundation for the early-generation iPhone and was granted a patent7

for this revolutionary invention. Following up on that, Apple further developed a series of

incremental technologies, from “pinch-to-zoom8,” “slide between user interface9,” to the most

recent “hand-free turn on driving mode”10 technology. Not surprisingly, these later patents

by Apple all cited its original patent on “Multi-touch” technology, and a series of these sus-

taining innovations helped shape the smartphones widely used nowadays. Inspired by this

anecdotal example, we construct a measure - “average number of follow-up patents” to rep-

resent a firm’s sustaining innovation based on the patent pairwise citation network we built

up. More specifically, for firm i at time t, we calculate the average number of patents granted

to firm i between time t + 1 and t + 6 that self-cite firm i’s patents (and particularly novel

patents in some specifications) at time t. A higher number of this firm-level measure suggests

that the firm creates more sustaining innovation following up on their existing technology.

The second type of innovation is “novelty-seeking.” Besides sustaining innovation built on

existing novel technology, firms can continuously seek other novel ideas in their innovation

process. For instance, Apple has always been a “novelty-seeking” innovator. No matter

the invention of “embedding the electronic device to wearable”11 that helped the launch

6One limitation of our measure is that we cannot capture firms’ failed research projects and patent
applications or ongoing long-term planned R&D investment. Despite this, the outcome variables based on
granted patents should provide a valid measurement capturing any realized changes in firms’ innovation
direction.

7The US patent US20060097991A1, titled “Multipoint touchscreen”
8The US patent US9619132B2, titled “Device, method and graphical user interface for zooming in on a

touch-screen display”
9The US patent US9772751B2, titled “Using gestures to slide between user interfaces”

10The US patent US10705794B2, titled “Automatically adapting user interfaces for hands-free interaction”
11The US patent US8787006B2, titled as “Wrist-worn electronic device and methods therefor”
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of Apple Watch eight years ago or the most recent technology in eye and hand tracking12

forming the revolutionary product Apple Vision Pro, they were all very novel relative to other

patents when they came out. To capture firms’ “novelty-seeking” innovation, we construct an

outcome variable, “percentage of novel patents,” which is calculated as the number of novel

patents (i.e., patent with novelty decile equal to one) divided by the total number of patents

granted to firm i at time t. We also exclude firms’ self-citing patents when constructing

the ”novelty-seeking measure” because the sustaining innovations (i.e., the firm’s follow-up

patents that self-cite its existing patents) are less likely to be categorized as novel patents,

which potentially brings bias to our measure of “novelty-seeking” innovation.

The last type of innovation we are interested in is defined as “copycat innovation.” Some-

times, firms could strategically “copy” their competitors’ innovation to push competitors out

of their once-owned segments. Still taking Apple’s innovation direction as an example, Apple

is also producing inventions such as “folding device technology13,” which is a well-known

feature of its competitor- Samsung’s smartphones. Besides, we hypothesize that investors’

underreactions to novel patents and overvaluation of non-novel patents could drive some

firms to follow the market trend and produce more non-novel patents to chase short-term

gains from the equity market. Similar to the measure of “novelty-seeking” innovation, we

construct the variable “percentage of non-novel patents” as a proxy for firms’ “copycat” in-

novation behaviors, calculated as the number of non-novel patents (i.e., patent with novelty

decile equal to ten) divided by the total number of patents granted to firm i at time t. When

constructing this variable, we exclude firms’ self-citing patents from our sample for the same

“bias” concern as before14.

With these measures of firms’ innovation directions, we first examine the following ques-

tion: do novel firms’ future innovation trajectories change? To answer this question, we

employ the “Novel patent intensity” metric, defined as the fraction of a firm’s patents in

12For example, the US patent US10893801B2, titled as “Eye tracking system and method to detect the
dominant eye”

13The US patent application US20230011092A1, titled as “Hybrid coverlay/window structure for flexible
display applications”

14Firms’ follow-up patents are more likely to be categorized as non-novel patents, bringing upward bias
to the measure of “copycat” innovation
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the most novelty decile for a given time, to measure a firm’s novelty. We start by explor-

ing how many sustaining innovations are produced by novel firms following their established

novel technology. A decrease in sustaining innovation implies that novel firms divert their

innovation directions from the areas with their precedent novel technology.

We run the following firm-year level regression:

Avg. Follow-ups on noveltyi,t+1→t+τ = βNovel patent intensityi,t + γ′Zi,t + αt + αind + εi,t

In this specification, as defined earlier, we use the average number of follow-up patents,

particularly following novel patents, to measure a firm’s future sustaining innovation. Consid-

ering that a firm’s tendency to continue innovating in a particular direction is also influenced

by multiple factors ranging from the firm’s innovation quality to external competitive pres-

sures, we include a set of controls Zi,t in the regression as well. Specifically, Zi,t includes the

total KPSS values of all patents issued to firm i at time t, serving as a heuristic for the firm’s

innovation quality. Scaling this with the firm’s book asset value offers a normalized metric

that accounts for firm size, ensuring that larger firms do not overly dominate the analysis

purely because of their scale. Zi,t also controls for a firm’s competitors’ innovation quality,

calculated as the total KPSS values of all patents issued to all other firms in the same indus-

try as firm i (i.e., share the same 3-digit SIC code) scaled by their total book assets. Such

an index captures the competitive pressure and the innovation environment of the industry

faced by firm i. If competitors are innovating rapidly and at high quality, it could incentivize

the firm i to adapt its innovation directions.

Moreover, Zi,t includes the log value of the capital stock and the log number of employees,

acknowledging the foundational role of firm size in its innovation direction. Larger firms, with

their expansive resources, might be more likely to maintain their innovation trajectories.

Lastly, we also control for idiosyncratic volatility because it could be correlated with firms’

future growth opportunities. A firm with high idiosyncratic volatility may have uncertain

future growth opportunities. This uncertainty could influence a firm’s future innovation
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direction. We also include fixed effects for industry and issuance year to absorb industry-

specific heterogeneities and temporal dynamics. We cluster standard errors by both firm and

year.

In Table 2, we document that even after controlling for the quality of the firm’s innovation,

novel firms tend to follow up less on their existing novel patents – both in the immediate

5-year aftermath as well as in the long run. A unit increase in a firm’s novel patent intensity

is correlated with a decrease of 0.39 in the number of sustaining patents following novel

technology in the succeeding five years. This effect is further emphasized over the long run,

with the same unit increase in the firm’s novel intensity leading to roughly 1.1 fewer patents

following up on existing novel patents.

One concern is that such effects merely reflect the firms’ internal assessment of the quality

of their novel patents and strategically stop further investment in novel but low-quality

technologies, even though we control for innovation quality using the total KPSS values of

a firm’s patents. However, the KPSS value might be biased due to investors’ differential

reactions towards patent novelty, as we document in Section 3.

To address this concern, we split the novel patents into high-impact and low-impact

groups based on their ten-year forward similarity measures constructed following Kelly et

al. (2021). We compute an adjusted firm-level metric - high-impact novel patent intensity

as the variable of interest, which captures the dynamics of high-quality novel patents more

precisely.

We follow the same empirical strategy but focus on a firm’s sustaining innovations fol-

lowing the existing high-impact novel patents as our new outcome variable. The results, as

presented in Table A.2, emphasize that firms with a higher fraction of high-impact novel

patents are less likely to follow up on their high-impact novel patents within five years.

This trend, consistent with our earlier findings, offers an even more rigorous affirmation that

novel firms change their future innovation trajectories due to some external factors instead

of internal strategy adjustment.

Nevertheless, the effects fail to report statistical significance as we extend our lens into the
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long run. One potential explanation is that those high-impact novel patents may take time to

gain recognition in the market. Once they finally breach the barriers of market myopia and

become widely acknowledged, the original inventing firms may shift back their innovation

directions and restart some sustaining innovations following their pioneered technologies.

A counter-argument to our findings could be that these novel firms, by their very nature,

are perpetually “novelty-seeking” and looking for the next groundbreaking innovation instead

of focusing extensively on sustaining innovation. To evaluate this perspective, we seek to

explore whether these firms consistently produce more novel patents in subsequent years. We

again employ the ”Novel patent intensity” metric and run the following firm-level regression:

log(
% of Novel Patentsi,t+τ

% of Novel Patentsi,t
) = βτNovel patent intensityi,t + γ′

τZi,t + αt + αind + εi,t+τ

This equation quantifies the relative changes in a firm’s “novelty-seeking” innovations

over time. Here, log(
% of Novel Patentsi,t+τ

% of Novel Patentsi,t
) represents the firm’s growth in “novelty-seeking”

innovation, relative to its original level at time t. Similar to our previous empirical strategy

on firm-level analysis, the vector Zi,t includes a suite of controls, accounting for the firm’s

total innovation quality, competitive landscape, size, and potential growth opportunities. We

also include industry and grant year fixed effects, denoted by αind and αt. Standard errors

are clustered at the firm and year level.

Our empirical results, as presented in Table 3, suggest that controlling for innovation

quality, novel firms display a decrease in the propensity for generating novel patents in

subsequent periods. To be precise, a firm’s present novel patent intensity can significantly

and negatively predict its growth in “novelty-seeking” innovation over a five-year horizon.

The magnitude of this effect is substantial: a 10 percent increase in a firm’s current novel

patent intensity correlates with a 5.8 percent drop in its future “novelty-seeking” innovations.

Summarizing all the findings above, we can answer our earlier question: novel firms do

change their future innovation trajectories. They tend to refrain from intensively following up

on their existing novel technologies nor consistently generating novel patents in subsequent
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periods. The reasons for such pivots could be manifold – ranging from external factors,

such as market recognition, to internal management, including evolving strategic priorities.

Consequentially, we explore one of the most related explanations: could market reactions,

especially the underreactions to novel patents as we document in section 3, cause firms to

change their future innovation directions?

5.2 Could Investors’ Reactions Impact Firm Future Innovation?

To address this question, we consider a model that relates firms’ future innovation directly

with their equity returns:

Future Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αt + αind + εi,t,

where the primary outcome variables of interest Future Innovationi,t+1→t+τ are the mea-

sures for three types of innovation direction defined earlier - sustaining, novelty-seeking, and

copycat innovations. The key explanatory variable is firm i’s total equity returns at time

t, ri,t. Following our firm-level specification described earlier, we employ Zi,t to control for

multiple factors that could affect a firm’s future innovation directions, including firm capital

stock, number of employees, total innovation quality, competitors’ innovation quality, novel

intensity, and idiosyncratic volatility.

Simply estimating an ordinary least squares regression (OLS) for the above model would

give us biased estimates. The reason is that a firm’s future innovation could correlate with

unobserved determinants of the firm’s equity returns. For instance, suppose a firm reorganizes

its research and development department at time t by hiring new technicians, scientists, and

inventors with different expertise. Such news would be priced in by investors in the equity

market and affect the firm’s same-period total returns. The new hiring in the firm’s R&D

department could also likely change the firm’s future innovation directions. As a result, the

biased OLS estimates could not help us identify any causal effect of a firm’s equity return on

its future innovation trajectories.
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To address the endogeneity issue of the returns, we estimate an instrument variable regres-

sion for our model. More specifically, we exploit the “mutual fund redemption” phenomenon

following Edmans et al. (2012) and instrument a firm’s total equity returns ri,t with its id-

iosyncratic mutual fund price pressure MFFlowi,t−1→t. We first run the first-stage regression:

ri,t = βMFFlowi,t−1→t + γ′Zi,t + αt + αind + εi,t

Then, we regress a firm’s future innovation measure on the predicted returns r̂i,t obtained

from the first stage in the second-stage regression:

Future Innovationi,t+1→t+τ = βr̂i,t + γ′Zi,t + αt + αind + εi,t

Our specifications rely on two key identifying assumptions to ensure the estimates from

the above IV regressions correctly capture the causal effects of firms’ equity return on fu-

ture innovation. First, we require mutual fund price pressure MFFlowi,t−1→t to be strongly

associated with the firm’s total return ri,t. Because we only consider mutual funds’ extreme

outflows when constructing the instrument variable, such a redemption type is likely to im-

pact firms’ stock prices. Moreover, the “strong instrument” assumption is empirically testable

through the F-stats from the first-stage regression. We report the related statistics in the

results table later. The second crucial assumption is “exclusion restriction.” This assumption

is not empirically testable. However, considering that the mutual fund “fire sales” are not

induced by any information, especially innovation-related information or any firm fundamen-

tal, but rather by mutual funds’ investor flows, we are confident that our instrument variable

- MFFlowi,t−1→t, can only affect a firm’s future innovation through its impact on the firm’s

equity returns.

The null hypothesis of this model is that under the Modigliani-Miller theorem, any equity

return changes at the current period that are not led by innovation-related information or firm

fundamentals should have zero predictability for the firm’s future investment or production

decisions, including the innovation directions. We empirically test this hypothesis for each
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type of the three innovation directions defined earlier. Starting from a firm’s future sustaining

innovation, Table 4 presents the IV estimates and the first-stage regression results. Columns

(1) and (3) explore how the firm’s average number of follow-up patents in the immediate 5-

year aftermath and over a more extended period until the end of the sample varies following

its return changes in the equity market respectively, while columns (2) and (4) show the

corresponding first-stage results. Both first-stage results show that the mutual fund price

pressure MFFlowi,t−1→t is a strong instrument for a firm’s total returns in the stock market.

The more mutual fund redemption (i.e., lower value of MFFlowi,t−1→t) induced by investor

flows between time t − 1 and t, the lower total returns for the firm at the end of time t.

Plugging the predicted return changes from the first stage into the second stage regression

as a key explanatory variable, we obtain the IV estimates suggesting that the plausible

exogenous return changes induced by mutual funds’ “fire sales” can predict the firm’s future

sustaining innovation in both the short and long run. More specifically, on average, one unit

decrease in a firm’s total equity returns today can cause a 1.1 percent reduction in the firm’s

sustaining innovation in the next five years and eventually 3.8 percent fewer patents following

up on the firm’s existing technology in the long run.

A more interesting question is whether novel or non-novel firms are more likely to be

affected by market reactions and change their future innovation directions. We hypothesize

that investors’ undervaluations of novel patents could drive novel firms to follow up less on

their existing technology than non-novel firms. To formally examine this, we separate our

sample into high- and low-novel groups by comparing each firm’s average patent novelty with

the industry median and then run the exact IV specification on each subsample, respectively.

Table 5 confirms our hypothesis. The effects of equity return changes on firms’ future

sustaining innovation are only driven by those novel firms. One remaining concern is that

even those novel firms still produce patents with different levels of novelty, including non-

novel patents. How do we know that firm managers attribute return drops to their novel

patents and change their future sustaining innovation as a response? As a robustness check,

we restrict our sample to firms with patents granted in only one novelty decile. Then, we
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run the exact IV specification on ten subsamples, each with a single novelty news. As results

presented in Table A.315, the effects only show up for the most novel decile group, implying

that firms with only novel patents are most likely to reduce their future patents following up

on their novel technology if experiencing return drops on the equity market.

After showing the evidence that market reactions can cause changes in firms’ sustain-

ing innovation directions, we continue to explore how a firm’s other two types of innovation

directions, “novelty-seeking” and “copycat” innovations, are impacted by the firm’s return

changes on the equity market. Running the same IV regressions by only changing the out-

come variables to the measure of “novelty-seek” innovation and “copycat” innovation defined

earlier, we empirically test our hypothesis that investors’ underreactions to novel patents and

overreactions to non-novel patents could drive some firms, especially novel firms to stop the

direction of “novelty-seeking,” and instead start to follow the market trend and produce more

non-novel patents in the future.

We plot the estimates and corresponding 90 percent confidence intervals in Figure 11

and Figure 12. Each figure shows the coefficients estimated from the entire sample and the

high- and low-novel subsamples. The x-axis represents the period of firms’ future innovation

direction, i.e., ranging from one year to three years after they observe their equity returns.

The results confirm our hypothesis: lower total returns from the equity market cause novel

firms to consistently change their future innovation directions in the following three years.

More specifically, a one percent drop in returns leads novel firms (i.e., points in cranberry) to

produce 0.3 percent fewer “novelty-seeking” innovations but create 0.14 percent more non-

novel patents (i.e., “copycat” innovation) in the next three years. However, such effects are

muted for the subsample with non-novel firms (i.e., points in light green).

15for simplicity, we only present the results for the most-novel firm and the most-non-novel subsamples in
the table.
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5.3 Mechanism and Discussion

We provide causal evidence that the total equity return drops could affect novel firms’

future innovation directions: they follow up less on their existing technology, contribute

fewer novel patents, and produce more copycat non-novel innovations. However, it is still

ambiguous through which channel those causal effects occur. One salient mechanism is that

some novel firms might suffer from financial constraints. To give an example, Kodak was

the company that invented the first-ever digit camera back in 1977, and the company was

granted a patent16 for this revolutionary invention. However, such a novel technology did not

grab enough market attention then. As a result, the company executives refused to continue

investing in this digital technology, given Kodak’s financial constraints. Instead, they decided

to follow the market trend and join the innovation race of “medical equipment.”

We hypothesize that financially constrained novel firms are more likely to be affected by

the return drops in the equity market and change their future innovation directions as a

response. To empirically test this mechanism, we first generate firm-level financial constraint

measures based on either firm size or the firm’s size and age index following Hadlock and

Pierce (2010) and identify a firm as financially constrained if its size (size and age index)

below (above) the industry median. We then construct a new key variable of interest by

interacting firms’ financial-constrained indicators with the equity returns. We run our IV

specifications with this new explanatory variable on the high-novel subsample and present

the estimated results in Table A.8 and Table A.9. The results confirm our hypothesis that

financially constrained novel firms change their future innovation directions more than non-

constrained firms.

Besides the financial constraints channel, other channels could also result in the casual

effects we document. For example, agency conflicts between firm managers and shareholders

could be another channel. The firm’s manager has relatively shorter tenures at the firm,

resulting in their myopia and short-termism. Besides, some managers are also compensated

with stock awards, which provide additional incentives for managers to chase short-term

16The US patent 4131919, titled ”Electronic still camera.”
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gains from the stock market. Another example is the learning channel. Competitors’ equity

returns help the firm learn more about the market demand and drive it to change future

innovation directions to maximize its profits strategically. We will consider and empirically

test those channels for future studies.

6 Conclusion

In this paper, we document that investors react differently to patent issuance news based

on patent novelty. They underreact to novel technology but overreact to non-novel technol-

ogy. A bounded-rationality model where investors are cognitively limited and unsure about

true novelty at patent issuance can explain these mispricing patterns.

This type of mis-reaction in financial markets has economic significance. First, we show

that, despite being undervalued, novel patents still provide higher private economic value to

the firm. Second, we show that novel patents also have higher social value. Conducting novel

research benefits the firm, but more importantly, it creates positive externalities that benefit

society. These findings suggest that underreaction to novelty may exert social inefficiencies.

More consequentially, we present causal evidence showing that market reactions could

lead novel firms to change their future innovation directions. We show that return drops in

the equity market around patent issuance can cause novel firms to follow up less on their

existing technology, contribute fewer novel patents, and produce more copycat innovations

in the future. This infers that firm managers care about short-term stock return movements

when deciding on future innovation directions. We argue that the effects are particularly

pronounced for firms that experience financial constraints because constraint firms care more

about cost of capital from external financing.

Our paper provides important policy implications. Misperception of patent value in

financial markets could discourage future innovation in new technology. Firms may instead

prefer to work more on already-established technologies that still garner market enthusiasm

even if they have lower remaining economic value. Over time, we will have fewer novel
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breakthroughs than is optimal, leading to welfare inefficiencies in the economy. Our results

imply that policies facilitating investors’ understanding of patent novelty would improve

welfare. Such policies include more patent novelty disclosure, investor education on the patent

system, and a better understanding of patent classification. We think one promising future

research direction is quantifying the economic welfare loss from the inefficient innovation

directions caused by market misreaction. Another interesting question is to explore how

the misreaction in public markets influences private-market innovation efforts by startup

companies and how it affects the interplay between public and private innovation.
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Figure 1: Cumulative IRF of Firm Returns on (Non-)Novel Issuance

This figure plots the cumulative impulse response of future returns on patent issuance for different

levels of novelty. In particular, we run the following regression for each τ ∈ [1, 60] at the firm-month

level:

ri,t+τ = αt + αind +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ ,

where the ten indicator variables represent that the firm issues at least one patent in a certain

novelty decile. We control for month and industry fixed effects and firm characteristics, including

size, book-to-market, profitability, investment, market beta, short-term reversal, and medium-term

momentum. We plot the cumulative coefficients,
∑t

τ=1 βτ,d, over t ∈ [1, 60] for the most novel

(d = 1) and most non-novel (d = 10) decile. The error bars are 95% confidence intervals with

clustered standard errors at the year-month level.
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Figure 2: Theoretical Predictions of Under- & Over-Perception of Patent Novelty

This figure plots the model-predicted perception of novelty at patent issuance for different levels of

true novelty. For illustration purposes, we pick reasonable numerical values for exogenous model

parameters and compute the model-implied expected novelty. We specify that the prior distribution

of true novelty follows a lognormal distribution with a mean of one and a standard deviation of

one. We further assume that investors’ unbiased signals have a standard deviation of 0.5, 0.8, or

1, ranging from precise to noisy signals. We are interested in the conditional expectation of the

posterior mean of a large cross-section of investors, E[x̂|x], where x̂ = E[x|r], which is the posterior

mean given the signal observed at issuance.
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Figure 3: Theoretical Predictions of Issuance Returns to Novelty

This figure plots the model-predicted expected return of the firm on the day of patent issuance

for different levels of true novelty. We pick reasonable numerical values for the exogenous model

parameters and compute the model implied expected return. We assume that the firm return on

patent issuance follows a normal distribution truncated at zero, whose mean is positively related to

the logarithm of the perceived novelty. We specify that the prior distribution of true novelty follows

a lognormal distribution with a mean of one and a standard deviation of one. We further assume

that investors’ unbiased signals have a standard deviation of 0.5, 0.8, or 1, ranging from precise

to noisy signals. We relate perceived novelty to return response by assuming λ0 = 0, λ1 = 0.1,

σx = 0.1, and σε = 0.12. We are interested in the conditional return expectation, E[R|x], which we

estimate numerically using 1,000,000 random independent draws.
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Figure 4: Theoretical Predictions of Dynamic Novelty Perception

This figure plots the model-predicted dynamic perception of patent novelty for ten values of true

novelty (x ∈ {1, ..., 10}). We pick reasonable numerical values for the exogenous model parameters

and compute the model-implied expected novelty. We specify that the prior distribution of true

novelty follows a lognormal distribution with a mean of one and a standard deviation of one. We

further assume that investors’ unbiased signals have a standard deviation equal to 2. For a large

cross-section of investors, we plot the evolution of the conditional expectation of the posterior mean

of perceived novelty over 60 periods after patent issuance, E[x̂t|x], where x̂t = E[x|r1, ..., rt].
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Figure 5: Theoretical Predictions of Dynamic Return Reaction by Novelty

This figure plots the model-predicted dynamic return expectation for ten values of true novelty

(x ∈ {1, ..., 10}). We pick reasonable numerical values for exogenous model parameters and compute

the model-implied expected novelty. We assume that the firm return on patent issuance follows a

normal distribution truncated at zero, with a mean that is positively related to the logarithm of

the perceived novelty. The prior distribution of true novelty follows a lognormal distribution with a

mean of one and a standard deviation of one. Investors’ unbiased signals have a standard deviation

of 2. We relate perceived novelty to return response by assuming λ0 = 0, λ1 = 0.1, σx = 0.1,

and σε = 0.12. We are interested in the evolution of the conditional return expectations over 60

periods after the patent issuance, E[Rt|x], which we estimate numerically using 1,000,000 random

independent draws.
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Figure 6: Theoretical Predictions of Dynamic Return Reaction by Signal Precision

This figure plots the comparative statics of model-predicted dynamic return expectations for ten

values of true novelty (x ∈ {1, ..., 10}) over different levels of signal precision. We pick the reasonable

numerical values for the exogenous model parameters and compute the model-implied expected

novelty. We assume that the firm return on patent issuance follows a normal distribution truncated

at zero, with a mean that is positively related to the logarithm of the perceived novelty. The prior

distribution of true novelty follows a lognormal distribution with a mean of one and a standard

deviation of one. We compare two scenarios where investors’ unbiased signals have a standard

deviation of 1 (precise) or 2 (noisy). We relate perceived novelty to return response by assuming λ0 =

0, λ1 = 0.1, σx = 0.1, and σε = 0.12. We are interested in the evolution of the conditional return

expectations over 60 periods after the patent issuance, E[Rt|x], which we estimate numerically using

1,000,000 random independent draws.
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Figure 7: 3-Day Issuance Return after Patent Issuance across Patent Novelty

This figure depicts the 3-day short-term returns after patent issuance for different levels of patent

novelty. We run the following regression at the firm-day level:

log(Ri,t,t+2) = αm + αind +
10∑
k=1

βk1i∈novelty decile k,t +Xi,t + εi,t,

where the ten indicator variables represent that the firm issues at least one patent in a certain

novelty decile. We control for month and industry fixed effects and firm characteristics, including

size, book-to-market, profitability, investment, market beta, short-term reversal, and medium-term

momentum. We plot the issuance coefficients, βk, for all ten deciles. The error bars are 90%

confidence intervals with clustered standard errors at the year-month level.
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Figure 8: Cumulative IRF of Firm Returns after Patent Issuance across Patent Novelty

This figure plots the cumulative impulse response of future returns after patent issuance for different

levels of patent novelty. In particular, we run the following regression for each τ ∈ [1, 60] at the

firm-month level:

ri,t+τ = αt + αind +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ ,

where the ten indicator variables represent that the firm issues at least one patent in a certain

novelty decile. We control for month and industry fixed effects and firm characteristics, including

size, book-to-market, profitability, investment, market beta, short-term reversal, and medium-term

momentum. We plot the cumulative coefficients,
∑t

τ=1 βτ,d, over t ∈ [1, 60] for the ten deciles. The

error bars are 95% confidence intervals with clustered standard errors at the year-month level.
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Figure 9: Cumulative IRF of Firm Returns after Patent Issuance by Institutional Holdings.

This figure compares the cumulative impulse response of future returns after patent issuance for

different levels of patent novelty for firms with high versus low institutional holdings. We run the

following regression for each τ ∈ [1, 60] at the firm-month level:

log(Ri,m+τ ) = αm +
10∑
k=1

βk,τ,high1i∈novelty decile k,m × 1high inst hold,m+

10∑
k=1

βk,τ,low1i∈novelty decile k,m × 1low inst hold,m +Xi,m + εi,m+τ ,

where we interact the ten indicator variables of firms issuing patents in each decile with dummies

for high and low institutional holdings. We categorize high versus low holdings using the median

institutional holdings for each month following Ferreira and Matos (2008). We control for month

fixed effects and firm characteristics, including size, book-to-market, profitability, investment, mar-

ket beta, short-term reversal, and medium-term momentum. We plot the cumulative coefficients,∑t
τ=1 βk,τ,high and

∑t
τ=1 βk,τ,low, over t ∈ [1, 60] for the most novel (d = 1 and d = 2) and most

non-novel (d = 9 and d = 10) deciles. The error bars are 95% confidence intervals with clustered

standard errors at the year-month level.
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Figure 10: Patent Private Value on Novelty

This figure plots the average patent’s private value (as estimated in the Kogan et al. (2017)) against

the patent novelty. In particular, we run the following patent-level OLS regression:

KPSSi = αyr + αcpc +
10∑
d=1

βd1{Novelty Decilei = d}+ εi,

where KPSSi represents the private value of patent i in millions of nominal dollars (in red) or

deflated to 1982 (million) dollars using the CPI (in blue). The term 1{Novelty Decilei = d} is a

dummy variable that indicates which novelty decile d the patent i belongs to. We also include the

patent’s grant year and CPC-class fixed effects. We designate the tenth novelty decile - representing

the most non-novel patents - as our benchmark group. We then plot the coefficient βi for all

remaining decile groups i ∈ [1, 9]. The error bars are 95% confidence intervals with clustered

standard errors at the year level.

0

5

10

15

K
PS

S 
Va

lu
e 

in
 M

ill
io

n 
D

ol
la

rs

9th 8th 7th 6th 5th 4th 3rd 2nd 1st
(Most
Novel)

Novelty Deciles

Real KPSS
Nominal KPSS

59



Figure 11: Firm’s Equity Return and Future “Novelty-Seeking” Innovation

This figure plots the firm’s future “Novelty-Seeking” innovation, as measured by the percentage of

most novel patents in year t+ τ against the firm’s equity return at year t. In particular, we run the

following firm-level IV regression for τ = 1, 2, 3, respectively:

Novelty-seeking Innovationi,t+τ = βri,t + γ′Zi,t + αt + αind + εi,t,

where we instrument a firm’s total equity returns ri,t with its idiosyncratic mutual fund price

pressure MFFlowi,t−1→t in the first stage. We also include Zi,t to control for multiple factors that

could affect a firm’s future innovation directions, including firm capital stock, number of employees,

total innovation quality, competitors’ innovation quality, novel intensity, and idiosyncratic volatility.

We first run the above specification on the full sample (blue) and then separate our sample into

high- (red) and low-novel (green) groups by comparing each firm’s average patent novelty with the

industry median. We then run the same specification on each subsample. We plot the coefficients

β for τ = 1, 2, 3 across all three samples. The error bars are 90% confidence intervals with clustered

standard errors at the firm and year level.
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Figure 12: Firm’s Equity Return and Future “Copycat” Innovation

This figure plots the firm’s future “Copycat” innovation, as measured by the percentage of non-novel

patents in year t+ τ against the firm’s equity return at year t. In particular, we run the following

firm-level IV regression for τ = 1, 2, 3, respectively:

Copycat Innovationi,t+τ = βri,t + γ′Zi,t + αt + αind + εi,t,

where we instrument a firm’s total equity returns ri,t with its idiosyncratic mutual fund price

pressure MFFlowi,t−1→t in the first stage. We also include Zi,t to control for multiple factors that

could affect a firm’s future innovation directions, including firm capital stock, number of employees,

total innovation quality, competitors’ innovation quality, novel intensity, and idiosyncratic volatility.

We first run the above specification on the full sample (blue) and then separate our sample into

high- (red) and low-novel (green) groups by comparing each firm’s average patent novelty with the

industry median. We then run the same specification on each subsample. We plot the coefficients

β for τ = 1, 2, 3 across all three samples. The error bars are 90% confidence intervals with clustered

standard errors at the firm and year level.
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Table 1: Patent Social Value on Novelty

This table examines the relationship between a patent’s social value and novelty. We proxy a

patent’s social value using its total forward citations or the total private values (as estimated in the

Kogan et al. (2017)) of all patents that cite it. In particular, we run the following patent-level OLS

regression:

Social Value Proxyi = βBS5
i Decile + γKPSSi + ηXi + εi,

where Social Value Proxyi denotes our proxy for the social value of patent i as defined above.

The term BS5
i Decile represents the novelty decile of the patent. We include KPSSi to control

for a patent’s private value. The vector Xi represents the additional controls, such as firm market

capitalization and firm idiosyncratic volatility, that potentially influence the social value of a patent.

We also control for multiple types of fixed effects in different specifications, including patent grant-

year fixed effects, patent’s CPC class-year fixed effects, firm-level fixed effects, and firm-year fixed

effects. We report the key estimates in the table. Standard errors are in parentheses and all clustered

at the grant year level.

(1) (2) (3) (4) (5)

Total forward citations

BS5
i Decile -0.307∗∗∗ -0.287∗∗∗ -0.277∗∗∗ -0.069∗∗ -0.069∗∗

(-4.99) (-4.85) (-4.87) (-2.49) (-2.49)

Private Value 0.083∗∗∗ 0.070∗∗∗ 0.068∗∗∗ 0.003 0.003

(9.72) (10.14) (9.94) (0.63) (0.62)

Total private values of citing patents

BS5
i Decile -7.414∗∗∗ -6.846∗∗∗ -6.754∗∗∗ -4.498∗∗∗ -3.775∗∗∗

(-5.08) (-4.92) (-4.94) (-5.19) (-5.13)

Private Value 2.350∗∗∗ 1.984∗∗∗ 1.966∗∗∗ 1.148∗∗∗ 0.006

(7.91) (8.14) (8.13) (6.72) (0.06)

Firm Size No Yes Yes Yes Yes

Firm Volatility No No Yes Yes Yes

Year-CPC FE Yes Yes Yes Yes Yes

Firm-year FE No No No No Yes

Firm FE No No No Yes No

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2: Firm’s Future Sustaining Innovation Following Novel Technology

This table examines how many sustaining innovations are produced by novel firms following their

established novel technology. In particular, we run the following firm-year level OLS regression:

Avg. Follow-ups on noveltyi,t+1→t+τ = βNovel patent intensityi,t + γ′Zi,t + αt + αind + εi,t,

where we employ the “Novel patent intensity” metric, defined as the fraction of a firm’s patents

in the first decile of patent novelty for a given time, to measure a firm’s level of novelty. The

dependent variable is a firm’s future sustaining innovation, calculated by its average number of

follow-up patents following its novel patents in the short run (i.e., next five years, as shown in

columns (3) and (4)) and the long run (i.e., until the end of our data period, as shown in columns

(1) and (2)). We include Zi,t to control for multiple factors that could affect a firm’s future innovation

directions, including firm capital stock, number of employees, total value of innovation, competitors’

innovation quality, novel intensity, and idiosyncratic volatility. We also control for year and industry

fixed effects. We report the key estimates in the table. Standard errors are in parentheses and all

clustered at the firm and year level.

Avg. Follow-upst+1→2021 Avg. Follow-upst+1→t+6

(1) (2) (3) (4)

Novel Patent Intensity -1.147∗∗∗ -1.050∗∗ -0.393∗∗∗ -0.365∗∗∗

(-4.65) (-2.27) (-6.99) (-3.01)

Value of Innovation 24.016∗∗∗ 19.845∗∗∗ 5.040∗∗∗ 3.988∗∗∗

(7.67) (5.31) (7.45) (5.17)

Year FE Yes Yes Yes Yes

Industry FE No Yes No Yes

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: Firm’s Future Novelty-seeking Innovation

This table examines whether novel firms consistently produce more novel patents in subsequent

years. In particular, we run the following firm-year level OLS regression:

log(
% of Novel Patentsi,t+τ

% of Novel Patentsi,t
) = βτNovel patent intensityi,t + γ′τZi,t + αt + αind + εi,t+τ ,

where we employ the “Novel patent intensity” metric, defined as the fraction of a firm’s patents

in the most novelty decile for a given time, to measure a firm’s novelty. The dependent variable

log(
% of Novel Patentsi,t+τ

% of Novel Patentsi,t
) represents the firm’s growth in “novelty-seeking” innovation, relative to its

original level at time t. We include Zi,t to control for multiple factors that could affect a firm’s future

innovation directions, including firm capital stock, number of employees, total value of innovation,

competitors’ innovation quality, novel intensity, and idiosyncratic volatility. We also control for

year and industry fixed effects. We report the key estimates in the table. Standard errors are in

parentheses and all clustered at the firm and year level.

(1) (2) (3) (4) (5)

Year 1 Year 2 Year 3 Year 4 Year 5

Novel Patent Intensity -0.4353∗∗∗ -0.4885∗∗∗ -0.5197∗∗∗ -0.5445∗∗∗ -0.5824∗∗∗

(-24.68) (-27.34) (-24.83) (-27.52) (-28.13)

Value of innovation -0.1299∗∗∗ -0.1355∗∗∗ -0.1469∗∗∗ -0.1387∗∗∗ -0.1521∗∗∗

(-3.91) (-3.75) (-3.68) (-3.58) (-3.86)

Year FE Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

64



Table 4: Firm’s Equity Return and Future Sustaining Innovation

This table examines the relationship between firms’ future sustaining innovations and their equity

returns. In particular, we run the following firm-year level IV regression:

Avg. Follow-ups on noveltyi,t+1→t+τ = βri,t + γ′Zi,t + αt + αind + εi,t,

where we instrument a firm’s total equity returns ri,t with its idiosyncratic mutual fund price

pressure MFFlowi,t−1→t in the first stage (the first-stage estimates are reported in columns (2) and

(4)). The dependent variable is a firm’s future sustaining innovation, calculated by its average

number of follow-up patents following its novel patents in the short run (i.e., the next five years, as

shown in column (3)) and the long run (i.e., until the end of our data period, as shown in column

(1)). We also include Zi,t to control for multiple factors that could affect a firm’s future innovation

directions, including firm capital stock, number of employees, total innovation quality, competitors’

innovation quality, novel intensity, and idiosyncratic volatility. We report the key estimates in the

table. Standard errors are in parentheses and all clustered at the firm and year level.

(1) (2) (3) (4)

Avg. Follow-upst+1→t+6 FS Avg. Follow-upst+1→2021 FS

ri,t 1.0859∗ 3.7722∗∗

(1.78) (2.11)

Value of Innovation 2.8891∗∗∗ 0.2109∗∗∗ 7.1434∗∗∗ 0.2088∗∗∗

(3.78) (2.77) (4.68) (2.72)

MFFlowt−1→t 0.4271∗∗∗ 0.4138∗∗∗

(3.03) (3.03)

Industry FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

CD Wald F 119 121

Observations 29876 29876 32141 32141

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Firm’s Equity Return and Future Sustaining Innovation with Subsamples

This table examines whether novel or non-novel firms are more likely to be affected by market

reactions and change their sustaining innovations. In particular, we separate our sample into high-

and low-novel groups by comparing each firm’s average patent novelty with the industry median

and then run the following firm-year level IV regression:

Avg. Follow-ups on noveltyi,t+1→t+τ = βri,t + γ′Zi,t + αt + αind + εi,t,

where we instrument a firm’s total equity returns ri,t with its idiosyncratic mutual fund price

pressure MFFlowi,t−1→t in the first stage. The dependent variable is a firm’s future sustaining

innovation, calculated by its average number of follow-up patents following its novel patents in the

short run (i.e., the next five years, as shown in columns (1) and (3)) and the long run (i.e., until

the end of our data period, as shown in columns (2) and (4)). We also include Zi,t to control for

multiple factors that could affect a firm’s future innovation directions, including firm capital stock,

number of employees, total innovation quality, competitors’ innovation quality, novel intensity, and

idiosyncratic volatility. We report the key estimates in the table. Standard errors are in parentheses

and all clustered at the firm and year level.

High-novelty Low-novelty

(1) (2) (3) (4)

Follow-upst+1→t+6 Follow-upst+1→2021 Follow-upst+1→t+6 Follow-upst+1→2021

ri,t 0.6796∗∗ 3.1458∗∗ 1.5016 3.9389

(2.18) (2.50) (1.38) (1.47)

Value of Innovation 2.4851∗∗∗ 8.2425∗∗∗ 3.0796∗∗∗ 6.7250∗∗∗

(4.93) (5.70) (3.09) (3.64)

Industry FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 13829 15080 16046 17060

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A Additional Figures and Tables

A.1 Figures

Figure A.1: Impulse Response of Firm Realized Volatility after (Non-)Novel Patent Issuance

This figure plots the impulse response of future return volatility after patent issuance for different

levels of patent novelty. We run the following regression for each τ ∈ [1, 60] at the firm-month level:

σi,t+τ = αt + αind +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ ,

where σi,t+τ is the return standard deviation of firm i in month t + τ , computed from daily re-

turns. The ten indicator variables represent that the firm issues at least one patent in a certain

novelty decile. We control for month and industry fixed effects and firm characteristics, including

size, book-to-market, profitability, investment, market beta, short-term reversal, and medium-term

momentum. We plot coefficients, βτ,d, over t ∈ [1, 60] for the most novel (d = 1) and most non-novel

(d = 10) decile. The error bars are 95% confidence intervals with clustered standard errors at the

year-month level.
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Figure A.2: Cumulative IRF of Firm Market Beta after (Non-)Novel Patent Issuance

This figure plots the impulse response of future market beta after patent issuance for different levels

of patent novelty. We run the following regression for each τ ∈ [1, 60] at the firm-month level:

βmkt
i,t+τ = αt + αind +

10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ ,

where βmkt
i,t+τ is the market beta of firm i in month t + τ , computed by regressing daily returns for

firm i on the market daily returns in month t + τ . The ten indicator variables represent that the

firm issues at least one patent in a certain novelty decile. We control for month and industry fixed

effects and firm characteristics, including size, book-to-market, profitability, investment, market

beta, short-term reversal, and medium-term momentum. We plot coefficients, βτ,d, over t ∈ [1, 60]

for the most novel (d = 1) and most non-novel (d = 10) decile. The error bars are 95% confidence

intervals with clustered standard errors at the year-month level.
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Figure A.3: Cumulative IRF of Firm Implied Volatility after (Non-)Novel Patent Issuance

This figure plots the impulse response of future implied volatility after patent issuance for different

levels of patent novelty. We run the following regression for each τ ∈ [1, 60] at the firm-month level:

Implied Voli,t+τ = αt + αind +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ ,

where Implied Voli,t+τ is the implied volatility for standardized ATM options maturing in 30 days

of firm i in month t+ τ , provided by OptionMetrics. The ten indicator variables represent that the

firm issues at least one patent in a certain novelty decile. We control for month and industry fixed

effects and firm characteristics, including size, book-to-market, profitability, investment, market

beta, short-term reversal, and medium-term momentum. We plot coefficients, βτ,d, over t ∈ [1, 60]

for the most novel (d = 1) and most non-novel (d = 10) decile. The error bars are 95% confidence

intervals with clustered standard errors at the year-month level.
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Figure A.4: Underreaction in 1-Year Earnings Expectations across Patent Novelty

This figure plots the Coibion and Gorodnichenko (2015) regression coefficients for short-term 1-

year earnings expectations over ten deciles of patent novelty. In particular, we run the following

regression at the firm-issuance-date level:

EPS1,i,t − Epost[EPS1,i,t] = α1 + β1(Epost[EPS1,i,t]− Epre[EPS1,i,t]) + ε1,i,t,

where we use the realized earnings and consensus earnings expectations 90 days before and after

the patent issuance dates to construct forecast errors and forecast revisions. We plot coefficients,

β1, separately for the ten novelty deciles. The error bars are 95% confidence intervals with double-

clustered standard errors at the firm and issuance date level.
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Figure A.5: Overreaction in Long-Term Growth Expectations across Patent Novelty

This figure plots the Coibion and Gorodnichenko (2015) regression coefficients for long-term earnings

growth (LTG) expectations over ten deciles of patent novelty. In particular, we run the following

regression at the firm-issuance-date level:

∆5ei,t+5year/5− LTGpost,i,t = αLTG + βLTG(LTGpost,i,t − LTGpre,i,t) + εLTG,i,t,

where we use the realized 5-year annualized earnings growth and consensus earnings expectations

90 days before and after the patent issuance dates to construct forecast errors and forecast revisions.

We plot coefficients, βLTG, separately for the ten novelty deciles. The error bars are 95% confidence

intervals with double-clustered standard errors at the firm and issuance date level.
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Figure A.6: Cumulative IRF of Firm Returns on (Non-)Novel Patent Intensity

This figure plots the cumulative impulse response of future returns on (non-)novel patent intensity.

We run the following regression for each τ ∈ [1, 60] at the firm-month level:

ri,t+τ = αt + αind + βτ (Non-)Novel patent intensityi,t + γ′Xi,t + εi,t+τ ,

where the (non-)novel patent intensity is the fraction of (non-)novel patents over total patent is-

suance for each firm month. We define a patent as a novel patent if it lies in the first decile of patent

novelty and a non-novel patent if it belongs to the tenth decile. We control for month and industry

fixed effects and firm characteristics, including size, book-to-market, profitability, investment, mar-

ket beta, short-term reversal, and medium-term momentum. We plot the cumulative coefficients,∑t
τ=1 βτ , over t ∈ [1, 60]. The error bars are 95% confidence intervals with clustered standard errors

at the year-month level.
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Figure A.7: Cumulative IRF of Firm Returns on Firm Similarity Scores

This figure plots the cumulative impulse response of future returns on average similarity score. We

run the following regression for each τ ∈ [1, 60] at the firm-month level:

ri,t+τ = αt + αind + βτSimilarity scorei,t + γ′Xi,t + εi,t+τ ,

where the similarity score is the average patent novelty decile of all patents issued at the firm-

month level. We control for month and industry fixed effects and firm characteristics, including

size, book-to-market, profitability, investment, market beta, short-term reversal, and medium-term

momentum. We plot the cumulative coefficients,
∑t

τ=1 βτ , over t ∈ [1, 60]. The error bars are 95%

confidence intervals with clustered standard errors at the year-month level.
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Figure A.8: Cumulative IRF of Firm Returns on Good/Bad (Non-)Novel Patent Intensity

This figure plots the cumulative impulse response of future returns on (non-)novel patent intensity

for good versus bad patents. We run the following regressions for each τ ∈ [1, 60] at the firm-month

level:

ri,t+τ = αt + αind + βτGood/Bad (Non-)Novel patent intensityi,t + γ′Xi,t + εi,t+τ ,

where the good/bad (non-)novel patent intensity is the fraction of good/bad (non-)novel patents

over total patents issuance at the firm-month level. We define a patent as a novel patent if it

lies in the first decile of patent novelty, a non-novel patent if it belongs to the tenth decile, and

good/bad patents as above/below-median patents in terms of 10-year forward similarity (impact).

We control for month and industry fixed effects and firm characteristics, including size, book-to-

market, profitability, investment, market beta, short-term reversal, and medium-term momentum.

We plot the cumulative coefficients,
∑t

τ=1 βτ , over t ∈ [1, 60]. The error bars are 95% confidence

intervals with clustered standard errors at the year-month level.
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A.2 Tables

Table A.1: Short-Term Returns on Patent Issuance Dummy

This table presents the OLS estimates of regressing the 3-day short-term returns on (novel/non-

novel) patent issuance. In particular, we run the following regression at the firm-day level:

Rt,t+2 = αt + αind + βPatent Issuance Dummyi,t + γ′Xit + εi,t,

where the patent issuance dummies represent that the firm issues at least one (novel/non-novel)

patent. We control for issuance date and industry fixed effects and firm characteristics, including

size, book-to-market, profitability, investment, market beta, short-term reversal, and medium-term

momentum. Standard errors are clustered at the issuance date level.

(1) (2) (3)

Rt,t+2 (%)

Novel Dummy 0.047∗∗∗ 0.001

(2.63) (0.07)

Non-Novel Dummy 0.064∗∗ 0.022

(2.20) (0.93)

Patent Dummy 0.046∗∗∗

(2.80)

R2 0.069 0.069 0.069

Industry FE Yes Yes Yes

Date FE Yes Yes Yes

Controls Yes Yes Yes

Observations 46,732,925 46,732,925 46,732,925

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.2: Firm’s Future Sustaining Innovation Following High-impact Novel Patents

This table examines how many sustaining innovations are produced by novel firms following their

established high-impact novel technology. In particular, we run the following firm-year level OLS

regression:

Avg. Follow-ups on noveltyi,t+1→t+τ = βHigh-Impact Novel Intensityi,t + γ′Zi,t + αt + αind + εi,t,

where we employ the “High-impact Novel Intensity” metric, defined as the fraction of a firm’s most

novel and high-impact patents (we split the most novel patents into high-impact and low-impact

groups based on their ten-year forward similarity measures constructed following Kelly et al. (2021))

for a given time. The dependent variable is a firm’s future sustaining innovation, calculated by its

average number of follow-up patents following its novel and high-impact patents in the short run

(i.e., next five years, as shown in columns (3) and (4)) and the long run (i.e., until the end of our data

period, as shown in columns (1) and (2)). We include Zi,t to control for multiple factors that could

affect a firm’s future innovation directions, including firm capital stock, number of employees, total

value of innovation, competitors’ innovation quality, novel intensity, and idiosyncratic volatility. We

also control for year and industry fixed effects. We report the key estimates in the table. Standard

errors are in parentheses and all clustered at the firm and year level.

Avg. Follow-upst+1→2021 Avg. Follow-upst+1→t+6

(1) (2) (3) (4)

High-Impact Novel Intensity -0.574 -1.136 -0.374∗∗∗ -0.376∗∗∗

(-1.49) (-1.18) (-6.15) (-4.15)

Value of Innovation 39.781∗∗∗ 36.443∗∗∗ 6.737∗∗∗ 6.179∗∗∗

Year FE Yes Yes Yes Yes

Industry FE No Yes No Yes

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.3: Firm’s Equity Return and Future Sustaining Innovation on Single Novelty Groups

This table examines the relationship between firms’ future sustaining innovations and their equity

returns. In particular, we restrict our sample to firms with patents granted in only one novelty

decile and get ten subsamples (one for each novelty decile). Then, we run the following firm-year

level IV regression on those ten subsamples:

Avg. Follow-ups on noveltyi,t+1→t+τ = βri,t + γ′Zi,t + αt + αind + εi,t,

where we instrument a firm’s total equity returns ri,t with its idiosyncratic mutual fund price

pressure MFFlowi,t−1→t in the first stage (the first-stage estimates are reported in columns (2)

and (4)). The dependent variable is a firm’s future sustaining innovation, calculated by its average

number of follow-up patents following its novel patents in the long run (i.e., until the end of our data

period, as shown in columns (1) and (3)). We also include Zi,t to control for multiple factors that

could affect a firm’s future innovation directions, including firm capital stock, number of employees,

total innovation quality, competitors’ innovation quality, novel intensity, and idiosyncratic volatility.

We report the key estimates in the table. Standard errors are in parentheses and all clustered at

the firm and year level.

Novel (Decile 1) Non-novel (Decile 10)

(1) (2) (3) (4)

Avg. Follow-upst+1→2021 FS Avg. Follow-upst+1→2021 FS

ri,t 3.5196∗∗∗ 13.7209

(3.22) (1.06)

Value of Innovation 10.1745∗∗∗ -0.5832 13.3152 -0.3959

(4.25) (-0.90) (1.28) (-0.55)

MFFt−1→t 0.5141∗∗∗ 0.2983

(3.95) (0.97)

Industry FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

CD Wald F 14 1

Observations 2402 2402 422 422

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.4: Firm’s Equity Return and Future Novelty-Seeking Innovation

This table examines the relationship between the firm’s future “Novelty-Seeking” innovation, as

measured by the percentage of most novel patents in year t+ τ and the firm’s equity return at year

t. In particular, we run the following firm-level IV regression for τ = 1, 2, 3, respectively:

Novelty-seeking Innovationi,t+τ = βri,t + γ′Zi,t + αt + αind + εi,t+τ ,

where we instrument a firm’s total equity returns ri,t with its idiosyncratic mutual fund price

pressure MFFlowi,t−1→t in the first stage (the first-stage estimates are reported in columns (2),

(4) and (6)). We also include Zi,t to control for multiple factors that could affect a firm’s future

innovation directions, including firm capital stock, number of employees, total innovation quality,

competitors’ innovation quality, novel intensity, and idiosyncratic volatility. We report the key

estimates in the table. Standard errors are in parentheses and all clustered at the firm and year

level.

(1) (2) (3) (4) (5) (6)

Year 1 FS Year 2 FS Year 3 FS

ri,t -0.0131 0.0837 0.1213∗∗

(-0.20) (1.23) (2.07)

Value of Innovation -0.0079 0.1556∗ -0.0269 0.1391∗ -0.0346∗ 0.1374

(-0.41) (1.71) (-1.57) (1.72) (-1.91) (1.52)

Avg. Patent BSt -0.0482∗∗∗ -0.0027 -0.0443∗∗∗ -0.0034 -0.0394∗∗∗ -0.0038

(-7.47) (-1.06) (-7.96) (-1.38) (-7.26) (-1.61)

MFFt−1→t 0.3931∗∗∗ 0.3718∗∗∗ 0.4402∗∗∗

(2.83) (2.73) (3.29)

Industry FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

CD Wald F 96 83 103

Observations 24215 24215 22577 22577 21011 21011

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.5: Firm’s Equity Return and Future Novelty-Seeking Innovation with Subsamples

This table examines whether novel or non-novel firms are more likely to be affected by market

reactions and change their future “Novelty-Seeking” innovation, as measured by the percentage of

most novel patents in year t + τ . In particular, we separate our sample into high- and low-novel

groups by comparing each firm’s average patent novelty with the industry median and then run the

following firm-level IV regression for τ = 1, 2, 3, respectively:

Novelty-seeking Innovationi,t+τ = βri,t + γ′Zi,t + αt + αind + εi,t+τ ,

where we instrument a firm’s total equity returns ri,t with its idiosyncratic mutual fund price

pressure MFFlowi,t−1→t in the first stage. We also include Zi,t to control for multiple factors that

could affect a firm’s future innovation directions, including firm capital stock, number of employees,

total innovation quality, competitors’ innovation quality, novel intensity, and idiosyncratic volatility.

We report the key estimates in the table. Standard errors are in parentheses and all clustered at

the firm and year level.

High-novelty Low-novelty

(1) (2) (3) (4) (5) (6)

Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

ri,t 0.0199 0.0966∗∗ 0.1962∗ -0.1059 0.0232 0.0378

(0.17) (2.07) (1.87) (-1.22) (0.25) (0.79)

Value of Innovation 0.1179∗∗∗ 0.0799∗∗∗ 0.0387 -0.0199 -0.0425∗∗ -0.0367∗∗∗

(3.10) (2.79) (1.16) (-1.25) (-2.30) (-2.76)

Avg. Patent BSt -0.0761∗∗∗ -0.0688∗∗∗ -0.0521∗∗∗ -0.0256∗∗∗ -0.0236∗∗∗ -0.0202∗∗∗

(-5.46) (-5.71) (-5.13) (-6.08) (-6.72) (-6.76)

Industry FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Observations 10986 10217 9481 13228 12357 11528

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.6: Firm’s Equity Return and Future Copycat Innovation

This table examines the relationship between the firm’s future “Copycat” innovation, as measured

by the percentage of non-novel patents in year t + τ , and the firm’s equity return at year t. In

particular, we run the following firm-level IV regression for τ = 1, 2, 3, respectively:

Copycat Innovationi,t+τ = βri,t + γ′Zi,t + αt + αind + εi,t+τ ,

where we instrument a firm’s total equity returns ri,t with its idiosyncratic mutual fund price

pressure MFFlowi,t−1→t in the first stage (the first-stage estimates are reported in columns (2),

(4) and (6)). We also include Zi,t to control for multiple factors that could affect a firm’s future

innovation directions, including firm capital stock, number of employees, total innovation quality,

competitors’ innovation quality, novel intensity, and idiosyncratic volatility. We report the key

estimates in the table. Standard errors are in parentheses and all clustered at the firm and year

level.

(1) (2) (3) (4) (5) (6)

Year 1 FS Year 2 FS Year 3 FS

ri,t -0.0429∗ -0.0180 -0.0473∗∗∗

(-1.74) (-0.80) (-2.90)

Value of Innovation -0.0053 0.1553∗ -0.0150 0.1384∗ -0.0093 0.1358

(-0.60) (1.70) (-1.48) (1.67) (-1.02) (1.51)

Avg. Patent BSt 0.0204∗∗∗ -0.0014 0.0187∗∗∗ -0.0014 0.0148∗∗∗ -0.0004

(6.15) (-0.48) (6.29) (-0.51) (6.00) (-0.16)

MFFt−1→t 0.3928∗∗∗ 0.3715∗∗ 0.4390∗∗∗

(2.67) (2.57) (3.07)

Industry FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

CD Wald F 95 83 102

Observations 24215 24215 22577 22577 21011 21011

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.7: Firm’s Equity Return and Future Copycat Innovation with Subsamples

This table examines whether novel or non-novel firms are more likely to be affected by market

reactions and change their future “Copycat” innovation, as measured by the percentage of non-

novel patents in year t+ τ . In particular, we separate our sample into high- and low-novel groups

by comparing each firm’s average patent novelty with the industry median and then run the following

firm-level IV regression for τ = 1, 2, 3, respectively:

Copycat Innovationi,t+τ = βri,t + γ′Zi,t + αt + αind + εi,t+τ ,

where we instrument a firm’s total equity returns ri,t with its idiosyncratic mutual fund price

pressure MFFlowi,t−1→t in the first stage. We also include Zi,t to control for multiple factors that

could affect a firm’s future innovation directions, including firm capital stock, number of employees,

total innovation quality, competitors’ innovation quality, novel intensity, and idiosyncratic volatility.

We report the key estimates in the table. Standard errors are in parentheses and all clustered at

the firm and year level.

High-novelty Low-novelty

(1) (2) (3) (4) (5) (6)

Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

ri,t -0.0514∗∗ -0.0279 -0.0580∗ -0.0206 -0.0152 -0.0366

(-2.50) (-1.15) (-1.90) (-0.50) (-0.60) (-1.37)

Value of Innovation -0.0226∗∗∗ -0.0209∗∗∗ -0.0163∗∗ 0.0033 -0.0087 -0.0095

(-2.82) (-2.81) (-2.21) (0.23) (-0.60) (-0.57)

Avg. Patent BSt 0.0066∗∗∗ 0.0078∗∗∗ 0.0068∗∗∗ 0.0277∗∗∗ 0.0235∗∗∗ 0.0161∗∗∗

(3.69) (5.03) (6.99) (6.44) (6.53) (6.25)

Industry FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Observations 10986 10217 9481 13228 12357 11528

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.8: Firm’s Equity Return and Future Innovation with Financial Constraints

This table examines whether financially constrained novel firms are more likely to be affected by

the return drops in the equity market and change their future sustaining innovation as a response.

In particular, we first generate firm-level financial constraint measures based on either firm size or

the firm’s size and age index following Hadlock and Pierce (2010) and identify a firm as financially

constrained if its size (size and age index) below (above) the industry median. We then construct

a new key variable of interest by interacting firms’ financial-constrained indicators with the equity

returns. We run our IV specifications with this new explanatory variable on the high-novel sub-

sample as follows:

Avg. Follow-ups on noveltyi,t+1→t+τ = βri,t × Fin. Constrainedi,t + γ′Zi,t + αt + αind + εi,t,

where we instrument ri,t×Fin. Constrainedi,t with MFFlowi,t−1→t×Fin. Constrainedi,t in the first

stage. We also include Zi,t to control for multiple factors that could affect a firm’s future innovation

directions, including firm capital stock, number of employees, total innovation quality, competitors’

innovation quality, novel intensity, and idiosyncratic volatility. We report the key estimates in the

table. Standard errors are in parentheses and all clustered at the firm and year level.

Small Size Indicator Size & Age Index

(1) (2) (3) (4)

Follow-upst+1→t+6 Follow-upst+1→2021 Follow-upst+1→t+6 Follow-upst+1→2021

ri,t × Fin. Constrained 1.3009∗∗∗ 3.0152∗∗∗ 0.6399∗∗ 0.9321

(3.62) (2.86) (2.17) (1.08)

Value of Innovation 2.2419∗∗∗ 8.0189∗∗∗ 2.3116∗∗∗ 8.2374∗∗∗

(3.53) (4.43) (3.82) (4.77)

Industry FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Controls Yes Yes Yes Yes

Observations 13675 14916 13520 14717

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.9: Firm’s Equity Return and Future Innovation with Financial Constraints

This table examines whether financially constrained novel firms are more likely to be affected by

the return drops in the equity market and change their future “Novelty-Seeking” innovation as a

response. In particular, we first generate firm-level financial constraint measures based on either

firm size or the firm’s size and age index following Hadlock and Pierce (2010) and identify a firm

as financially constrained if its size (size and age index) below (above) the industry median. We

then construct a new key variable of interest by interacting firms’ financial-constrained indicators

with the equity returns. We run our IV specifications with this new explanatory variable on the

high-novel subsample as follows:

Novelty-seeking Innovationi,t+τ = βri,t × Fin. Constrainedi,t + γ′Zi,t + αt + αind + εi,t,

where we instrument ri,t×Fin. Constrainedi,t with MFFlowi,t−1→t×Fin. Constrainedi,t in the first

stage. We also include Zi,t to control for multiple factors that could affect a firm’s future innovation

directions, including firm capital stock, number of employees, total innovation quality, competitors’

innovation quality, novel intensity, and idiosyncratic volatility. We report the key estimates in the

table. Standard errors are in parentheses and all clustered at the firm and year level.

Small Size Indicator Size & Age Index

(1) (2) (3) (4) (5) (6)

Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

ri,t × Fin. Constrained -0.0241 0.2463∗∗ 0.4048∗∗ 0.1159∗ 0.1160 0.2105∗

(-0.15) (2.67) (2.41) (1.73) (1.20) (1.71)

Value of Innovation 0.1106∗∗∗ 0.0811∗∗∗ 0.0428 0.1085∗∗∗ 0.0797∗∗∗ 0.0455∗

(3.74) (2.86) (1.69) (3.70) (2.85) (1.98)

Industry FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

CD Wald F

Observations 10992 10224 9485 10996 10227 9487

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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