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1 Introduction

How is the pollution intensity of corporate investment affected by firm financial distress? Insofar as

dirty assets represent lower short-term costs and a higher risk exposure relative to clean ones, firms

may have incentives to pollute more as they approach default. This hypothesized risk- or pollution-

shifting channel may not only be costly for debt holders (Jensen and Meckling (1976)) but also for

other stakeholders and the environment (Shavell (1986), Ohlrogge (2023)). Importantly, current divest-

ment campaigns aimed at increasing financing costs of polluting firms and reducing their size (extensive

margin) may prove to be counterproductive if this pollution-shifting effect (intensive margin) is more

potent. In this paper, we examine the relationship between financial distress and the nature of corporate

assets and investments and investigate the relevance of this mechanism empirically. We then develop a

dynamic corporate model with endogenous default and clean vs. dirty asset choice to analyze firm be-

havior along both the extensive and intensive margins of pollution in light of debt or equity divestment

campaigns and U.S. bankruptcy rules.

Investigating the relationship between financial distress and environmental practices is challenging, as it

requires granular data on pollution and production. Further, financial distress could itself be correlated

with unobserved forces, such as productivity differences across firms that could also affect pollution.

Another challenge is to decompose pollution in its intensive and extensive margins. We attempt to

address these challenges by using the oil and gas industry as our empirical setting. We first assemble a

high-frequency and nearly exhaustive database of U.S.-located oil and gas projects completed between

2012 and 2022. We then develop a measure of gas flaring relying on recent advances in satellite

imaging and remote sensing, and another based on administrative data on toxic releases. Together these

two measures provide a comprehensive and granular picture of polluting practices within oil and gas

companies. Further, we take advantage of key institutional features of this industry and use geographic

variables to control for unobserved differences in technology or productivity between projects (Gilje

and Taillard (2015), Gilje, Loutskina, and Murphy (2020).

The fossil fuel industry provides a particularly relevant setting for our research objective. First, it

is responsible for significant air and water pollution, making it the largest source of greenhouse gas

emissions in the United States.1 Second, the capital structure of oil and gas companies involves high

1Environmental Integrity Project: https://environmentalintegrity.org.



leverage and financial distress. Third, this industry is at the epicenter of divestment campaigns with a

stated objective of inflating its financing costs and reducing the scale of its operations. For instance, in

October 2021, more than 1,485 institutions with $39.2 trillion in assets under management committed

to divest from fossil fuels in what appeared to be the fastest-growing divestment movement in history.

Such divestment has been encouraged through voluntary initiatives and recent regulatory proposals

considering implementing green capital requirements or green repo.2 Yet, the effectiveness of such

policies remains heavily contested and debated within economists, investors, and policymakers.

Our empirical analysis relies on three complementary econometric perspectives that yield the same

conclusion: pollution intensity increases with financial distress. First, we provide ample evidence of

a positive and robust relationship between pollution and proxies for financial distress. Specifically,

we plot the binscatters between our pollution measure and proxies for financial distress, such as size,

leverage, Altman Z-score, estimated default probability. Second, we investigate how polluting practices

evolve around a Chapter 11 filing in a dynamic event study window. The intuition of the test is that

a Chapter 11 event may lead to a sizable reduction in default probability right after the filing. We

show that the probability of pollution peaks just before a Chapter 11 filing and then decreases sharply

immediately after. Third, we construct a measure of default probability at the monthly frequency. We

then regress the pollution at the well-level on the lagged and forward default probabilities. We show that

the relationship between pollution and default probability is the strongest for concomitant or one-month

lag default probabilities.

Our analysis builds on the premise that pollution increases a firm’s exposure to environmental liabili-

ties and thus, increases the riskiness of its cash flows. One critical implication is that the relationship

between pollution intensity and financial distress ought to be stronger when such risk heightens. We

validate this premise, by using the Lawsuit Climate Survey. This survey reports corporate perceptions

of the fairness and reasonableness of state liability systems, capturing firms’ subjective ex-ante expec-

tations about potential costs faced in a given state and thus variations in environmental liability risks.

We split our sample into two, namely, one with projects in locations with high liability risk, and an-

other with projects in locations with low liability risk. We then show that the relationship between the

probability of default and pollution is stronger in the sample with high liability risk, consistent with our

hypothesized pollution-shifting channel.

2Oehmke and Opp (2021), Drudi et al. (2021), Van Steenis (2019), and Board (2022).
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Next we proceed to develop and calibrate a rich dynamic model with endogenous leverage, default, and

pollution intensity to rationalize our empirical results and provide further intuition as to the underlying

economic mechanism. Understanding how capital structure and distress feed back into the clean or

dirty nature of investment is first-order, because pollution exposes firms to potentially large environ-

mental liabilities, future regulatory burden, shift in workforce and consumer preferences, etc. Further,

when such investment is irreversible, these decisions may have long-lasting effects. In the model, the

choice of pollution intensity is endogenous and inherently dependent on firm capital structure, financial

distress, and productivity. In turn, capital structure, financial distress, and ultimately default decisions

depend on the firms’ liability risk exposure, as captured by pollution intensity and size, and the mag-

nitude and likelihood of implementing or enforcing regulatory pollution costs. This way, we can study

the ex-ante implications on optimal leverage and capital structure and how investment decisions, jointly

affect both capital structure and firm value and cost of debt.

We augment a standard discrete-time dynamic model of capital structure with two types of capital

(clean vs. dirty) and an asset substitution motive. The model also features financing frictions through

equity and debt issuance costs, which we use for analyzing the effects of divestment campaigns. The

core mechanism relies on the mapping between pollution and risk exposure, which becomes more ma-

terial as a firm approaches default.3 Clean assets face a per-period operating cost. Conversely, dirty

assets do not incur any operating cost, but are subject to a random liability shock. Thus, a firm’s expo-

sure to pollution liability risk may provide short-term earning benefits and higher investment growth,

as it saves on operating costs, but it may also lead to higher credit risk and debt costs that become

particularly critical following adverse productivity shocks. Depending on its distress level, a firm may

have incentives to hedge against potential liability risk or amplify such risk.

We match empirical moments pertaining to the oil and gas industry and derived from our sample.

Among others, the model is successful at replicating key moments such as: (i) leverage, (ii) default

rate, (iii) value of equity and debt issuances, (iv) pollution intensity, and (v) the elasticity of pollution

intensity to financial distress. We then revisit some of the arguments behind the impact of divestment

campaigns by putting forward the distinct effects associated with the extensive (i.e., firm size) and

3Such mapping between pollution and risk exposure is inherent to a growing asset pricing literature (Bolton and Kacper-
czyk, 2021a,b; Zhang, 2023; Hsu, Li, and Tsou, 2023; Giglio et al., 2023). While the paper builds on this insight, our
objective is rather about understanding how such risk exposure due to polluting assets interacts with investment dynamics
and capital structure.
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intensive (clean vs. dirty asset composition) margins of pollution in our quantitative analysis. We find

that the relationship between financing costs and pollution is rather complex and depends on a firm’s

capital structure, financial health, and corresponding elasticities of both margins. In fact, our analysis

highlights that, one may tend to overestimate significantly the effects of divestment campaigns and

increased financing costs, absent any consideration for the intensive margin channel.

We investigate what happens when we increase equity or debt issuance costs or interest rates. The ef-

fects of issuance costs appear to be mostly counterproductive or modest at best. There are two reasons

behind this surprising result. First, equity issuances are relatively small in terms of their value relative

to firm size. Thus, small increases in corresponding costs may only have negligible effects by construc-

tion. Second, even when such costs are relatively large and significantly hamper their financing flexibil-

ity, we have two forces offsetting each other. Indeed, as firms may become more financially distressed,

they experience a reduction in size on the one hand, but their pollution intensity also increases. Further,

we found a non-monotonic relationship between pollution intensity and the magnitude of divestment

campaigns. Whether the extensive or the intensive margin dominates depends on the calibration and

the magnitude of the cost changes. These countervailing forces are also present for debt issuance costs

or interest rates, albeit with larger magnitudes.

Overall, our analysis raises doubt as to the relevance of blanket divestment campaigns and point to

their potentially limited impact. Further, it emphasizes that the presence of built-in incentives affecting

directly pollution intensity choice, as it is the case debt- or asset-tilting strategies or sustainability-

linked bonds can prove more effective.

Our work revolves around research strands on (i) corporate environmental decisions and financial fric-

tions, (ii) asset substitution theory, (iii) dynamic capital structure models, and (iv) the oil and gas

industry.

First, it contributes to the growing empirical literature connecting corporate environmental decisions

to financing. This literature has so far focused mostly on investigating the role of financial constraints

(Chava, 2014; Andersen, 2017; Cohn and Deryugina, 2018; De Haas and Popov, 2019; Levine et al.,

2019; Xu and Kim, 2022). For example, Xu and Kim (2022) study how industrial pollution changes

when firms face fewer financial constraints.
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In contrast, we explore a complementary yet distinct channel associated with financial distress and

risk-taking. In essence, our approach focuses on how the riskiness of polluting assets affect investment

decisions, as opposed to the level of their fixed costs. In addition to our empirical analysis, one distinct

feature of our work resides in providing theoretical foundations and calibrating a model to investigate

quantitatively the effects of divestment campaigns.

Like us, two recent papers, Iovino, Thorsten, and Sauvagnat (2022) and Lanteri and Rampini (2023),

also build models accounting for pollution choices. Iovino, Thorsten, and Sauvagnat (2022) focus on

the relationship between corporate taxation and emission intensity, while Lanteri and Rampini (2023)

investigate clean technology adoption in a theoretical setting featuring old vs. new forms of capital and

financial constraints. In stark contrast, our approach focuses on the pollution-shifting motive stemming

from financial distress. Further, we allow for endogenous size, capital structure, and default, for the

feedback between pollution intensity choices and financing costs, and for debt and equity financing

frictions. All these distinct features are critical to investigate holistically the implications of divestment

campaigns on the extensive and intensive margins of pollution.

The extensive margin channel of pollution has been advanced as an argument in favor of divestment

campaigns and investigated in several papers with mixed empirical findings (Barber, Morse, and Yasuda

(2021), Berk and van Binsbergen (2021), Broccardo, Hart, and Zingales (2022), De Angelis, Tankov,

and Zerbib (2022), Sachdeva et al. (2022), Green and Vallee (2022), Kacperczyk and Peydró (2022),

Becht, Pajuste, and Toniolo (2023), Hartzmark and Shue (2023), and Gormsen, Huber, and Oh (2023)).

In this context, our analysis brings to the forefront the relevance of both extensive and intensive margins,

their corresponding elasticities, and potentially countervailing effects.

In particular, we view our analysis as complementary to recent work by Berk and van Binsbergen

(2021) who highlight the potentially limited effects of divestment and Hartzmark and Shue (2023) who

exploit cross-industries variations to show that an increase in the cost of capital can lead to an increase

in pollution intensity. Like us, both of these papers point to potential shortcomings or raise doubts as

to the effectiveness of divestment campaigns. Yet, very little research offers a rich quantitative setting

to investigate their implications and assess their benefits. To our knowledge however, our paper is

the first to study explicitly – both empirically and quantitatively – the effects and interactions among

extensive and intensive margins jointly, the distinct roles of equity and debt divestment, and alternative
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policies such as debt tilting. Our quantitative analysis also enables us to show how a firm’s pollution,

which stems from the product of these two margins, is ultimately affected by interest rates, credit risk,

and changes in debt and equity issuance costs. Overall, our results can be helpful to understand how

changes in financing costs interact with pollution and to interpret how divestment campaign may affect

firm behavior. One implication is that empirical researchers should carefully define whether they look

at pollution intensity or total pollution, as its dynamics adhere to different economic mechanisms.

Our works also speaks to the literature on asset substitution and risk-shifting (Jensen and Meckling

(1976)). As a firm approaches default, limited liability creates an incentive for firms to take on ad-

ditional risks (Rauh (2009)). In particular, Gilje (2016) studies risk-shifting incentives in the oil and

gas industry. Gilje (2016) defines risky investment as exploratory projects and development projects

as safe investments. He shows that firms with more covenants, shorter debt maturity, and more bank

debt are more likely to increase their development in safer projects, suggesting that bank monitoring

reduces risk-shifting conflicts. We focus instead on a different classification of investment risk based

on their embedded pollution.4 Our dynamic model shares the insights of Purnanandam (2008), where

firms with high continuation value have fewer incentives to risk-shift. Moreover, the ability to discharge

environmental claims in bankruptcy incentivizes firms to take excessive environmental risks (Shavell,

1986; Feinstein, 1989; Ohlrogge, 2023). We show that the capital structure matters in understanding

the overall impact of higher bankruptcy risks on this environmental risk-taking.

Our modelling approach builds on dynamic models of capital structure (e.g., Gomes (2001), Hennessy

and Whited (2007), Gomes and Schmid (2010), Begenau and Salomao (2019)). One key novelty in

our model resides in introducing two types of capital and an asset substitution motive and our focus on

investigating quantitatively how capital structure and financial distress affect pollution choices.5 Our

setting differ, in that the firms gets to choose the share invested in green vs brown assets. In light of the

persistence/partial irreversibility of such investment, the exposure to risk cannot be promptly adjusted.

Further, creditors anticipate the effects of asset substitution/risk-taking and adjust the price of corporate

debt ex-ante, mitigating shareholders’ incentives to take on excessive risks.

4Two reasons could explain why debtholders (e.g., banks) do not fully monitor the environmental practices of their
debtors. First, the U.S. legal system protects banks from the environmental liability of their debtors (Ohlrogge, 2020;
Bellon, 2021). Second, asymmetric information and imperfect contracting could explain this absence of monitoring.

5The incentives for asset substitution and risk-taking have been mostly studied in continuous-time models building on
Leland (1994), Leland and Toft (1996), or Leland (1998), which usually account for the level of risk of the firm’s cash flow
process. Falato et al. (2022) also consider a model of two capital types (tangible vs. intangible) in a different context, but
do not model default nor asset substitution.
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Finally, our paper also belongs to the broad literature of oil and gas companies and their investment

dynamics in light of potential regulatory and transition risks. There are two opposite views. The neo-

classical investment view suggests that higher future regulation uncertainty leads to lower production

today (Baldwin, Cai, and Kuralbayeva, 2020; Bogmans, Pescatori, and Prifti, 2023). Conversely, the

hoteling view – where operators find an optimal extraction path that maximizes their intertemporal

profit – highlights that higher future policy uncertainty should lead to higher investment today (Sinn,

2012; Barnett, 2023). Our model shows that limited liability, a friction mostly omitted from these mod-

els, is also an important dimension to consider for our understanding of the interaction between risks

and investment dynamics within the oil and gas industry, as lower earnings or higher financing costs

lead to more distress and affect both pollution and production.6

The rest of the paper is organized as follows. Section 2 presents the data, Section 3 describes our

empirical methodology, and Section 4 showcases our results. Section 5 develops our dynamic model,

while Section 6 provides quantitative results and discusses counterfactuals. Section 7 concludes.

2 Background, Datasets, and Descriptive Statistics

The oil and gas extraction process creates an important number of environmental externalities. Our

paper accounts for two complementary approaches for measuring pollution, namely: (i) flaring, and (ii)

the use of toxic chemical in the fracturing process.

2.1 Flaring Practices

Flaring is the practice of burning the gas generated by an oil well, whenever oil and gas are co-products

in the extraction process. In most cases, operators could decide to extract and develop both resources.

However, extracting gas is only worthwhile in limited cases as operators must pay a high upfront cost

for the purchase of a dehydrator and a compressor, and connect the well to a pipeline. When such

upfront cost are above the present value of future cash flows stemming from gas extraction, it may

be optimal to simply burn (i.e., flaring) or release (i.e., venting) the gas into the atmosphere. Flaring

6Consistent with our results linking financial distress to a decline in the extensive margin of oil and gas companies,
Seleznev, Selezneva, and Melek (2021) show that financially constrained firms are less likely to complete wells that are
already drilled, while Gilje and Taillard (2016) highlight that access to equity financing for public oil companies makes
them more responsive to changes in investment opportunities.
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involves burning natural gas, which releases uncombusted methane and carbon dioxide (CO2) into the

atmosphere and contributes significantly to climate change. Certain oil and natural gas-rich nations

like Yemen, Algeria, and Iraq could meet their national CO2 reduction targets under the UN Paris

Agreement just by eliminating flaring (Elvidge et al. (2018)). Flaring is also a noteworthy contributor to

global warming, although estimates are difficult to find, given the lack of uniform and verified reporting.

Conservative measures suggest that worldwide flaring is estimated to burn 145 billion cubic meters of

gas in 2018, which is equivalent to the total annual gas consumption of Central and South America.

In the U.S., each day of flaring in the shale oil fields of North Dakota and South Texas burns 1.15

billion cubic feet of natural gas, which could provide power for 4 million homes. For all these reasons,

the United Nation views flaring mitigation in the oil and gas industry as "Critical For Reaching 1.5°C

Target" by the United Nations.7

Burning off natural gas, which is often mixed with other toxic chemicals, causes a nuisance that ex-

poses firms to legal liabilities. Thus, flaring is often subject to regulation aiming at minimizing its

negative impact on the environment. For example, in Texas, it requires an authorization, and in North

Dakota, the type of flare that is allowed and its functioning is regulated. Moreover, this activity is likely

subject to further taxation in multiple states. For instance, House Bill 1494, initiated by Rep. Vikki

Goodwin, proposed a tax on the methane flared from oil and gas. This risk has in fact materialized

late 2023 when the Federal state enacted a taxation of flaring activities through the methane emissions

charge contained in the Inflation Reduction Act.8 These regulations are also in line with a stream of

international initiatives, such as the one from the World Bank, which launched the Zero Routine Flaring

initiative (Bank (2015)).

Flaring produces a visible flame that can be detected with a satellite pyrometer. We use this insight

to create a large sample covering flaring practices in the U.S., which is particularly valuable given

the lack of federally-mandated reporting.9 Recent advances in remote sensing allow us to recover a

flaring measure, at the well level. We use the Visible Infrared Imaging Radiometer Suite (VIIRS) data

produced by the Earth Observation Group (EOG), Payne Institute for Public Policy, Colorado School

7https://www.unep.org/explore-topics/energy/facts-about-methane.
8See the proposed rule on "Waste Emissions Charge for Petroleum and Natural Gas Systems" as of January 2024:

https://www.epa.gov/system/files/documents/2024-01/wec-proposed-rule-fr_1-26-2024.pdf
9There is no administrative database on flaring practices at the federal level. Facilities located in Texas and North Dakota

have to report their flaring practices at the state-level. However, flaring reporting is exposed to reporting bias, while the
satellite measure is not.
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of Mines. The data rely on the work of Elvidge et al. (2013) and Elvidge et al. (2015), who construct

measures of radiation emitted by hot sources on Earth at night, relying on laws of physics such as

Planck’s radiation and Wien’s displacement laws to recover the temperature of the hot point.10

We use the hot point’s local temperature to identify the flaring practice, which emits a temperature

between 950°C and 2250°C. This temperature is not to be mistaken with forest fires, which generally

reach about 800°C. Further, we have access to data containing each well’s longitude and latitude coor-

dinates. Thus, we can use this information to investigate whether the temperature is within the flaring

temperature range within 750 meters around the location of a given well. We then count total flaring

detections between days 1 and 90 of production. One noteworthy limitation is that it is possible that

multiple wells can be in close proximity of each other. In this case, we may not be able to disentangle

the exact flaring source with a high degree of precision. As a result, we weigh flaring detections by the

total number of wells captured in the scan. That is, if there are two wells within a detection point, then

their flaring score is increased by 0.5 instead of 1, in order to ensure that less precise detections are

assigned lower weights.

We extensively validate these satellite measures. First, we verify that the spatial and temporal patterns

of our flaring measure are consistent with the geographical development of oil and gas basins. Second,

the probability of observing a flare before well completion is extremely low (Figure 1 reports that this

non-parametric probability is around 3%). However, such probability surges to about 15% within 90

days after well completion and then gradually declines, consistent with standard industry practices.11

2.2 Toxic Chemicals

Our second measure of pollution revolves around the release of toxic chemicals. Hydraulic fracturing

consists of using high-pressure water mixed with toxic chemicals to generate small cracks in the rock to

unleash the trapped oil and gas. The usage of toxic chemicals in this process is legal but controversial

as it is exempt from the Safe Drinking Water Act (SDWA) regulation and several permitting and pol-

lution control requirements from the Clean Water Act since the Energy Policy Act of 2005. However,

ample evidence shows that releasing toxic chemicals can harm both human and animal health. These

10We recover the temperature through Planck’s radiation law, which relates the spectral radiance to the wavelength and
temperature of the material, and Wien’s displacement law, which states that the wavelength of maximum spectral radiant
emittance shifts to a shorter wavelength as the temperature increases.

11In unreported tests, we confirm that the results are robust to different ways of computing the flaring score.
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chemicals can also pollute nearby water streams and groundwater tables, leak from a storage tank, and

contaminate surface waters. While oil and gas operators face fewer ex-ante regulations than in other

industries, they are still exposed to the same ex-post regulations through legal liabilities. In particular,

releases of toxic chemicals other than diesel fuels expose operators to both CERCLA and tort liabilities.

The definition of toxicity closely follows Bellon (2020). Our measure of toxic chemicals builds on the

Fracfocus database, which is matched to the production information using the unique regulatory ID of

oil and gas wells (API14 number).

2.3 Production Datasets

Oil and gas firms follow a simple operational model: First, they acquire an acreage, a set of contractual

rights to drill a well in a specific geographical area. Operators obtain these rights in exchange of a

payment to the landowner. The payment usually takes the form of an upfront bonus and a royalty

payment that depends on the fraction of oil and gas extracted. Second, the company drills a well,

completes it, and extracts its resources.

One notable advantage of the U.S. oil and gas industry is that we can collect rich and granular admin-

istrative data at the well level. We rely on Enverus, which collects, processes, and cleans the data on

oil and gas activities generated by county, state, and federal authorities. We use two datasets from this

provider pertaining to well characteristics and production. The well characteristics provide information

about the dates of initiation and completion of a well, its operator’s name, its horizontal and vertical

sizes, and its API14 number. It also provides the latitude and longitude coordinates of the well location,

which identify the corresponding basin and allow us to match the data with our satellite-based flaring

measures. The production dataset provides information on the quantity of oil and gas extracted on

each well at the monthly frequency. It is also matched to the datasets on well characteristics and toxic

chemicals using the API14 number. Finally, we complement these project-level datasets with firm-level

balance-sheet information from COMPUSTAT, in addition to information from Chapter 11 filings for

some of our tests.
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2.4 Liability Measure

We use the Lawsuit Climate Survey, which reports corporate perceptions on the fairness and reason-

ableness of states’ liability systems. One important advantage of this survey is its ability to capture

ex-ante subjective expectations about potential legal liabilities faced in a given state and thus provide

relevant variations in environmental liability risk. One caveat is that this survey is not conducted every

year. We use the liability value of the preceding year whenever that is the case. We merge this dataset

at the project level.

2.5 Sample and Descriptive Statistics

We construct two primary samples to perform our analysis. The first sample is at the project level. We

restrict this sample to all publicly listed firms that can be matched to the project-level datasets. We have

78 unique firms that drilled the US onshore well between 2012 and 2022. We restrict the projects for

which we can observe the pollution decision. This restriction gives us 78,044 unique projects.

Panel A of Table 1 provides descriptive statistics for this sample. Several facts emerge. Fewer than

one out of three wells is polluted, according to our pollution measure, combining both flaring and

toxic chemical releases. We define the cost of capital as interest (XINT) over debt (DLTT+DLC), and

find that it averages 10%. This average is close to the discount rate in the SEC guidelines for valuing

reserves. It is also similar to the discount rate in Décaire, Gilje, and Taillard (2020) and within the

range of Kellogg (2014).

Firms in our sample are, on average, highly levered. Namely, an oil and gas project comes from a firm

with an average leverage ratio of 0.73. However, there is significant dispersion, as the standard error

equals 2.9. The average Altman Z-score equals 1.98, with an important dispersion. We define a firm

as distressed if the Altman Z-score is below 1.8. According to this definition, 44% of the wells in the

sample are operated by distressed firms. This is somewhat expected in light of the distress observed in

the oil and gas industry following the significant decline in prices observed after 2014.

The second sample is at the firm-year level and contains the number of new wells firms drill annually.

This sample aims to understand the production dimension of firms’ decisions. On average, a firm starts

about 131 new projects by year, with a standard deviation of 217. For some regressions, we aggregate

the number of wells at the firm-basin level to add controls at the basin level.
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3 Empirical Results

In this section, we explore two margins through which financial factors can affect a firm’s pollution

footprint, namely, (i) the clean or dirty nature of the production process or assets in place (i.e., intensive

margin), and (ii) the production scale (i.e., extensive margin). The stylized facts we document have

been individually studied in the literature, albeit not in the context of the oil and gas industry.

3.1 Financially Distressed Firms Pollute More

We first plot the binscatters of the relationship between pollution and proxies for financial distress. This

stylized fact is consistent with the results in Kim and Xu (2021) and Gentet-Raskopf (2022). Plotting

the relationship in a graph ensures that the relationship is monotonic and not driven by abnormal ob-

servations. Figure 2 shows the relationship between pollution and the Altman Z-score, while Figure 3

uses firm leverage. In both graphs, we can observe the same fact: financial distress is positively related

to pollution. Moreover, the relationship becomes more precise and stronger once we control for the

size of the company or location fixed effects. Overall, the results are consistent with more substantial

financial distress pushing firms to pollute. We validate this visual evidence by estimating the strength

of the relationship in a regression framework, which allows us to quantify the relationship and adds

several fixed effects and time-varying controls. Specifically, Table 2 reports the regression estimates of

our proxies for financial distress on our pollution measures. We measure financial distress in two ways:

Panel A uses the Altman Z-score, and Panel B relies on log-leverage. As shown in Column (1) of panel

A, an increase of one standard deviation of the sample Altman Z-score leads to a drop in pollution

of 4.1%. As shown in Column (1) of panel B, a 1% increase in leverage is associated with 0.00036

pollution units, representing 0.11% of the baseline rate.

The relationship still holds once we add several controls and high-dimensional fixed effects. Specifi-

cally, we add a firm fixed effect to control for the possibility that larger firms might use less polluting

technology and less leverage. We also include the firm total assets. We also add several spatial fixed

effects interacted with a year fixed effect. The spatial fixed effects absorb potential unobserved hetero-

geneity that could create a spurious relationship between pollution and distress. For example, polluting

firms could develop wells in less productive acreages, increasing firm financial fragility. Using location-
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fixed effects to control for differences in productivity is a common practice among papers that rely on

the fracking industry as an empirical setting.

Next we show that the positive relationship between pollution and financial distress also holds if we

decompose the effects by different types of pollution. Specifically, Columns (3) and (4) of Panels A and

B investigate the relationship between Z-score (Panel A) and leverage (Panel B) on flaring. Similarly,

Columns (5) and (6) show the same relationship, except that the dependent variable is now a dummy

variable that takes a value equal to one if the firm uses at least one toxic chemical.

Finally, we perform several event studies that rely on a more precise time variation in the cost of capital.

In particular, we first study the amount of pollution around Chapter 11 bankruptcy events. The idea is

that firms face a lower expected cost of capital following a formal renegotiation. As a result, we should

observe a drop in pollution following a Chapter 11 filing.

We empirically test this prediction. Figure 4 plots the average difference in the probability of polluting

each year around a Chapter 11 filing after controlling for a firm, location, and year-fixed effect. The

reference year is one year before the filing year for Chapter 11. We observe a sharp decrease in the

probability of pollution after the Chapter 11 filing. Specifically, the firms are 30% less likely to pollute

one year after Chapter 11 filing. After the filing, pollution levels may slightly increase over time,

but never reach the same level as before. Three years after filing, firms are still around 15% cleaner.

Overall, the tests indicate that companies with a lower chance of going bankrupt are more inclined to

have a lower pollution level.

The second event study we perform relies on a higher frequency window. We compute monthly firm-

level delisting events using the measure of Boualam, Gomes, and Ward (2020). Specifically, the ap-

proach uses annual rolling logit regression that captures the one-year probability of default, taking into

both balance-sheet and market variables available up to a a certain point. We estimate the following

equation for a given project k, made by firm i at time t and for j =−6,−5, ...,5,6:

Pollutionkit = Lprobi,t+ j +FEikt +Controlsikt + εikt ,

where Pollution is a dummy variable that takes the value of one if the well pollutes and zero otherwise.

Controlsikt is a set of firm and project characteristics namely firm size, sales, capx, Tobin’s Q, the total

liabilities, return on asset, and the first 6 month of oil and gas production. FEikt contains for a firm
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fixed effect, a location fixed effect, a basin-year fixed effect, and a month fixed effect. Lprobi,t+ j is the

estimating distress probability for firm i and for the month t + j.

Figure 5 plots the coefficients, where j goes from -6 to 6. The main insight is that the relationship

between the distress probability and pollution intensity has an inverted U-shape that peaks one month

before the well completion. Specifically, the impact of distress risk is low six months before the well

is completed but gradually increases until one month before completion. Ultimately, this probability

gradually falls. This event study confirms the view that default probability is a key driver behind firms’

decision to pollute.

We then decompose the previous dynamic event study graph on two subsamples, to show that the

relationship between pollution and distress is stronger when the potential liabilities associated with

pollution are stronger. We use the Lawsuit Climate Survey, which reports the perceptions of US busi-

nesses of how fair and reasonable states’ liability systems are to obtain variations in liability risks. The

dots in red of Figure 6 show the impact of the probability of default on pollution for projects located in

states with high perceived liability risks. The dots in gray plot the coefficients for the same regression,

but on the sample of projects that are located in states with low perceived liability risks. Overall, we

show that the relationship is entirely driven by projects located in states with high perceived liability

risk. This empirical fact is consistent with a core prediction of our model, namely that the relation-

ship between distress and pollution should be stronger when the potential liabilities associated with

pollution are stronger.

3.2 Financially Distressed Firms Produce Less

In this subsection, we show that a higher probability of default is associated with lower investment,

as the cost of capital plausibly increases. We view this subsection as a validation exercise of our

database, as there has been an enormous amount of literature, going back to at least Fazzari, Hubbard,

and Petersen (1987), establishing that a company’s distress affects its investment choices. We start by

plotting the binscatter of the average number of projects per year for each firm as a function of proxies

for financial distress. In Figure 7, we use the Altman Z-score as a proxy. In Figure 8, we use leverage.

For both figures, we plot the raw relationship on the left, and the binscatter with controls is on the right.

The controls include the size of the company. Overall, all figures show a clear negative relationship
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between the number of projects started and these two proxies of financial constraint. Table 3 shows the

estimates in a regression framework. The dependent variable is the firm’s number of new projects in a

given year and basin.

Column (1) shows that when the firm is distressed, which we proxy by having an Altman Z-score

below 1.8, firms reduce their number of projects per basin by 0.8 on average. Once we add a firm

fixed effect and a basin year fixed effect in the specification, this coefficient drops to -0.19. These

fixed effects absorb potential omitted variables, such as differences in investment opportunities that

vary with financial distress. They are also likely to be "contaminated controls", because these controls

also absorb the distress component that causes firms to reduce pollution. With these caveats in mind,

the point estimate gives an economically significant range. There are a total of 65 basins, which is

equivalent to a decrease of between 12 and 52 new projects. On average, a firm has 131 projects per

year, so this reduction represents 11% and 39% of the total number of projects. The relationship also

holds when we add the Z-score and the leverage. Overall, we replicate the known results that higher

financial distress leads firms to reduce investment in our setting.

4 A Dynamic Model of Financial Distress and Pollution Intensity

We extend dynamic corporate finance models featuring endogenous leverage and default (e.g., Hen-

nessy and Whited (2007), Gomes and Schmid (2010), Begenau and Salomao (2019), Gomes and

Schmid (2021)) to account for a firm’s pollution intensity, and the choice to invest in dirty or clean

assets. The distinction between dirty and clean capital investments resides in the following: on the one

hand, clean capital is subject to permanent operating costs, on the other hand, dirty capital does not in-

cur any costs unless a stochastic pollution liability shock is realized. In this context, pollution intensity

is a dynamic and persistent state variable, as investments are only partially reversible, and endoge-

nously depends on current states of firm size, pollution intensity, capital structure, and idiosyncratic

productivity.

Interestingly, this distinction in capital type generates a mechanism akin to risk-taking for financially-

distressed firms. Conceptually, firms subject to financial distress may elect to either gradually become

(i) heavy polluters by hiking their pollution intensity (risk-taking), or, instead, (ii) greener by reduc-
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ing their pollution intensity and hence their exposure to environmental or regulatory costs and (risk-

hedging), depending on their productivity levels and other balance-sheet characteristics.

We build an industry equilibrium with the objective to highlight this key economic channel linking pol-

lution intensity choice to capital structure. We then calibrate the model and investigate its quantitative

properties and implications through a series of counterfactual exercises.

4.1 Technology

We consider an economy populated with heterogeneous firms, producing the same final good. Firms

are infinitely-lived pending no default. They operate a decreasing-return-to-scale technology (α < 1),

with idiosyncratic productivity shocks, s j,t , governing the instantaneous flow of output for firm j at

time t, as follows:

y j,t = s j,tkα . (1)

We assume that the dynamics of these shocks follow a first-order autoregressive process with normal

i.i.d. innovations, following:

log(s′) = ρs log(s)+σsε
′
s, (2)

with εs ∼ N (0,1).

4.2 Dirty vs. Clean Capital

Firms experience different idiosyncratic shock histories and, at each point in time, vary along the fol-

lowing dimensions: capital, k, pollution intensity (i.e., dirty vs. clean composition), η , and debt, b.

Capital stock depreciates at a periodic rate, δ , irrespective of its type. We also assume a quadratic and

asymmetric adjustment cost for capital such that:

g(k,k′) = c
(

k′− (1−δ )k
k

)2

k (3)

c = c01{k′−(1−δ )k>0}+ c11{k′−(1−δ )k<0}, (4)
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with c1 ≥ c0. This assumption allows for smooth and gradual capital stock dynamics and a realistic

firm size distribution. As it is common in the literature, the asymmetry in capital adjustment costs also

entails that taking on additional leverage and a new investment that is only reversible partially is risky

because firm downsizing in the aftermath of a negative shock becomes more costly and slow-moving.

Every period, firms invest in one capital type, namely, dirty (denoted with D) or clean (denoted with C)

capital, and thus carry dynamic capital stocks kD and kC, and total capital k = kD + kC. The dirty vs.

clean capital composition determines an endogenous capital pollution intensity, η = kD

kC+kD = kD

k ∈ [0,1].

Hence, our model allows to express firm pollution as the product of two complementary dimensions:

(i) an intensive margin (i.e., pollution intensity), and (ii) an extensive margin (i.e., firm size).

Dirty and clean capital types require the same investment cost and provide the same per-period output,

and thus are perfectly substitutable from a production perspective. However, they differ in terms of

their maintenance and pollution-related costs, as in for example Oehmke and Opp (2022). The main-

tenance cost per unit of capital is denoted by m > 0, and is only incurred by clean assets. Conversely,

dirty assets are subject to a potential pollution liability shock (e.g., carbon tax, environmental liabilities,

regulatory costs), whose realization affects firms’ net operating income permanently. This pollution li-

ability is captured by a random variable, τC, which takes the value of ζ whenever the shock is realized

and zero otherwise. It is assumed that Prob[τC = ζ ] = p and Prob[τC = 0] = 1− p, so as the expected

time to shock realization is 1
p . Once this shock is realized, we assume that it becomes a permanent insti-

tutional feature. Combined with the capital pollution intensity, this cost shock reflects firms’ exposure

to transition risk within the model.

4.3 Firm Earnings

We define the after-tax profits of the firm, Π, within a given period, as:

Π(k,η ,b,s,τC) = (1− τ)
[
skα − c f − (δ +m)k+ηk(m− τC)−b

]
, (5)

where τ is the effective tax rate on profits (adjusted for taxes on distribution and personal interest

income) and c f is a fixed operating cost. The term τCηk captures the potential losses due to operat-
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ing dirty capital, upon the realization of the pollution liability shock, which can be interpreted as an

endogenous depreciation of dirty capital.

4.4 External Financing

Firms can issue both equity and debt in order to finance their investment. Each type of financing is

subject to an issuance cost, denoted by λe, and λb, respectively. We assume that both bond and equity

holders are risk-neutral, with a discount factor, β . Firms issue one-period bonds at a discount, i.e., they

raise qbb′, with qb < 1, and pay back the face value, b′, in the next period. If the firm defaults, the

creditors receive an amount equal to the liquidation value, that is independent of capital composition,

L(k,b) = min(φ k
b ,0.75), where φ > 0 represents the recovery rate of the firm’s assets. The recovery

value is capped to 75% in order to ensure that issuing debt remains risky across all firm sizes, as in

Begenau and Salomao (2019). In the benchmark setup, we assume that both dirty and clean capital

have the same liquidation value.12

Default region and Debt Pricing. Limited liability is such that it is always beneficial for the equity

holders to default whenever the firm’s equity value, V (k,η ,b,s,τC), dwindles below zero. We define a

parameter region ∆(k,η ,b) that specifies the default states such that:

∆(k,η ,b) = {(s,τC), s.t. V (k,η ,b,s,τC)≤ 0}. (6)

A firm in current state (k,η ,b,s,τC) commands a market value for debt qb, such that:

qb(k,η ,b,s,τC) = β

[¨
(s′,τ ′C)/∈∆(k,η ,b)

dsdτ
′
C +

¨
(s′,τ ′C)∈∆(k,η ,b)

L(k,b)dsdτ
′
C

]
= β [1− p(k,η ,b,s,τC)(1−L(k,b))] , (7)

where p(k,η ,b,s,τC) represents the default probability one period ahead, taking into account all current

state variables.
12The assumption of liquidation being independent of capital types is motivated by the environmental lender liability

discharges benefiting debtholders. We relax this assumption later.
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4.5 Equity Value and the Firm Optimization Problem

Let us now characterize the firm problem and policy decisions. The equity payouts are:

e(k,η ,b,s,τC) = Π(k,η ,b,s,τC)− (k′− (1−δ )k)−g(k,k′)−b+(1−λb)qb′+ τ(δk+ rb). (8)

The timeline is such that, at the beginning of each period and upon shock realizations, the firm chooses

to continue or default such that:

V (k,η ,b,s,τC) = max(0,VC(k,η ,b,s,τC)) . (9)

Upon continuation, the firm chooses the size and composition of its investment and the corresponding

financing source. Thus, conditional on survival, its continuation value is given by:

VC(k,η ,b,s,τC) = max
k′,η ′,b′

[
(1+1e<0λe)e+βEs,τC [V (k′,η ′,b′,s′,τ ′C)]

]
, (10)

where 1e<0λee represents equity issuance and corresponding costs when the firm payouts are negative,

and the expectation in the right-hand side is taken over the conditional distributions of s and τc.

We assume – without loss of generality – that any investment is exclusively clean or dirty within a given

period, and specify the dynamics of capital and its composition, given investment, i, and type, ηi as:

k′ = (1−δ )k+ i (11)

η
′ =

η(1−δ )k+ηii
(1−δ )k+ i

= η +
(ηi −η)i

(1−δ )k+ i
. (12)

We note that in the complete absence of pollution liabilities (i.e., probability is 0), a strictly positive

maintenance cost for clean assets (i.e., m > 0) implies that firms always choose to invest in dirty capital.

Conversely, in the presence of a permanent pollution tax, such that τC > m, clean capital is always

preferred. The more interesting case resides in a setting with a stochastic pollution tax implementation

and firm default. Indeed, away from default, firms’ choice depends on E[τC] vs. m. Conversely, under
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a high distress probability and the realization of a pollution cost shock tomorrow, τ ′C, may lead to

certain firms defaulting. Thus, distressed firms may have incentives to load on more dirty assets today

(risk-taking), as long as m > E[τ ′C|(k′,η ′,b) /∈ ∆(k,η ,b)].

4.6 Stationary Firm Distribution

We define the cross-sectional distribution of firms at the beginning or period t, as µt = µ(k,η ,b,s,τC),

over capital, k, pollution intensity, η , debt, b, given an idiosyncratic productivity, s, and an aggregate

pollution liability shock, τC. Further, we define aggregate variables at the beginning of period t as:

Ft =
´

dµt Mass of firms

Kt =
´

kdµt Aggregate capital

It =
´

idµt Aggregate investment

Bt =
´

bdµt Aggregate debt

ϒt =
´

ηdµt Aggregate pollution intensity

Pt =
´

kηdµt Aggregate pollution

4.7 Firm Entry

Firm entry allows for the replacement of defaulting firms and thus is necessary to ensure a stationary

firm distribution in equilibrium. At the beginning of each period t, a mass of firms are created, with the

following initial conditions: (i) no initial debt, b = 0, and (ii) an initial draw of the idiosyncratic shock

s j,t , from the long-run invariant distribution, H(s), derived from (2). Entrant firms are assumed to start

with an initial amount of capital ke = γkk̄t , that is proportional to the average firm size, k̄t =
Kt
Ft

, and

a pollution intensity level ηe = 1. Thus, given the initial firm conditions, only firms with sufficiently

large productivity shocks may find it optimal to enter the market.

4.8 Equilibrium

A recursive competitive equilibrium consists of: (i) value function V (k,η ,b,s,τc), (ii) policy functions

∆(k,η ,b), k′(k,η ,b,s,τc), η ′(k,η ,b,s,τc), and b′(k,η ,b,s,τc), and (iii) distributions for incumbent

and entrant firms, such that:
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• Value function V (k,η ,b,s,τc) and policy functions, ∆(k,η ,b), k′(k,η ,b,s,τc), η ′(k,η ,b,s,τc),

and b′(k,η ,b,s,τc) solve the firms problem.

• Given optimal policies, the law of motion for the distribution of firms satisfies:

µt+1(k,η ,b,s,τC) =

ˆ
S

ˆ
∆̄(k,η ,b)

dµt(k,η ,b,s,τC)dGs(s′|s)dτC,

where ∆̄(k,η ,b) represents the continuation states. The firm distribution evolves as follows. Every

period, a mass of firm defaults and exit the economy and are replaced by new entrants characterized by

their initial size, debt and pollution intensity. Conversely, surviving incumbent firms evolve according

to the realization of their productivity shocks over the next period and the corresponding optimal policy

functions. Thus, at each period, the measure of firms for a given quintuplet state (k,η ,b,s,τc) is

determined by both entrant and incumbent firms.

5 Quantitative Application

Our model is calibrated to match moments and derive implications related to the oil and gas industry,

in line with our empirical section. In this context, the clean vs. dirty asset choice corresponds to oil

wells, being drilled and operated with or without gas flaring or toxic chemical release.

5.1 Model Parametrization

The model consists of 17 parameters for which we need to specify a value: one for preferences, four

for institutional features, nine for technology, and three for the distinctive features of dirty and clean

assets. We calibrate the model on a yearly basis and our target moments are derived from the oil and

gas industry. A subset of seven parameters are set according to the literature or from direct empirical

counterparts. The remaining ten parameters, namely: (i) investment adjustment cost, c0; (ii) divestment

adjustment cost, c1; (iii) fixed operating cost, c f ; (iv) equity issuance cost, λe; (v) debt issuance cost, λb;

(vi) operating costs of clean asset, m; (vii) probability of pollution liabilities, p; and three parameters

governing the productivity process, (s̄,ρ,σ), are calibrated to jointly match target moments.
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Our calibration exercise is standard and proceeds as follows: first, we solve for the policy and value

functions through a method combining value and policy function iteration. Models with endogenous

default can be relatively difficult and time-consuming to solve. We follow the numerical dynamic pro-

gramming approach in Gomes and Schmid (2010) and simultaneously updated both the value function

and the price of debt through the iteration procedure.13 The model solution relies on a discretization

of the idiosyncratic shock process following Tauchen and Hussey (1991) and allowing for 7 states.

Second, we simulate the model-implied moments and minimize the distance with their empirical coun-

terparts. Table 5 reports set (Panel A) and calibrated (Panel B) parameters in our benchmark calibration.

Set parameters. We set the discount factor β to 0.976, corresponding to an annualized interest rate

of about 2.5%. For the institutional parameters, we set the effective corporate tax, τ to 25%, the

bankruptcy cost, φ to 0.4, consistent with an average recovery value on defaulted bonds of about 60%,

in line with parameter values commonly used in the literature.

For the technology parameters, we use a decreasing-returning-to-scale parameter, α , of 0.65, which is

within the range of values used in the literature, and an annual depreciation rate of 10%, consistent with

the average NIPA depreciation rate and an operating lifespan of an oil well of about 10 years. Finally,

we determine the AR(1) parameters associated with idiosyncratic shock dynamics using their empirical

counterparts (revenue process).

The relative size, γk, of entrants are determined relying directly on their data counterparts. Finally, the

maintenance cost of clean assets, m, is directly imputed based on our measurement net revenues of dirty

vs. clean assets, as obtained from our sample of oil well projects.

Calibrated parameters. The remaining parameters are jointly calibrated so as model-implied mo-

ments, determined based on a panel consisting of 5,000 firms simulated over 30 years, are inline with

their empirical counterpart targets. The calibrated parameters and corresponding target moments are

relatively standard in the literature with two exceptions. First is the divestment adjustment cost for

which the corresponding target is the ratio of the investment rate of the smallest size quartile over the

average investment rate, as in Begenau and Salomao (2019).14 Second is the probability of pollution

13Further computational details are relegated to the Online Appendix.
14The empirical average investment rate is determined at the extensive margin as follows: the average firm in our sample

consists of about 575 oil wells, and initiate about 86 new well project per year. Assuming that oil wells are of homogeneous
value, this represents an annual investment rate i = 86

575 = 15.0%.
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cost implementation, p, is identified through the average capital pollution intensity of firms in our

sample.

5.2 Results

We begin by characterizing the policy functions and the key mechanism linking financial distress, capi-

tal, and debt choices, to pollution intensity. Further, we validate our quantitative exercise by discussing

cross-sectional moments that were not targeted in our calibration. Finally, we examine the effects of in-

terest rates, institutional parameters related to issuance costs and policy through comparative statics and

counterfactual analyses. The model is solved for our benchmark calibration, in addition to alternative

specifications described in our quantitative applications.

5.2.1 Optimal Policies and Mechanism

In light of our parameter specification, we characterize the optimal policies generated by the model.

Corporate decisions involve an exogenous productivity shock, s, in addition to three endogenous states:

capital, k, debt, b, and pollution intensity, η . Given the dynamic nature of the model and the auto-

regressive property of the idiosyncratic productivity shock, a firm’s decision to continue or default, and

its next-period characteristics, depend on all current variables.

One particularly novel aspect of our model is the pollution intensity decision, η ′(K,η ,B,s,τc) and its

feedback to firm capital structure. Optimal policies are constructed, assuming that the liability shock

remains null, by averaging over the top and bottom halves of current firm size, K (Panel A), or firm

pollution intensity, η , (Panel B), and the productivity shock, s, using the steady-state distribution, µ .

Figure 11 reports select optimal policy functions pertaining to firm size, pollution intensity, and default

probability. Panel A illustrates the behavior of small and large firms across the range of productivity

values. We see that small firms tend to select higher pollution intensity relative to larger firms. This

is particularly visible for lower productivity levels. Indeed, as firm face adverse productive shocks and

approach financial distress, they have more incentives to load up in riskier polluting assets, as long as no

pollution liability shock has been realized. Further, the increased pollution intensity is also associated

with higher default probability.
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Panel B reports optimal policies averaged over the top and bottom halves of of pollution intensity. We

note that when productivity is sufficiently favorable, high pollution firms tend to relatively larger than

low pollution firms. The intuition is straightforward. Absent any costly pollution liability shock, high

pollution firms economize the clean asset operating cost, thus generating higher profits, and scaling

up faster. However, adverse productivity shocks lead to the opposite behavior. High pollution firms

are more exposed to financial distress and credit risk, rendering the financing to be more sensitive to

productivity shocks. As a result, they scale down faster during unfavorable situations. Further, such

scaling down is also accompanied with a larger increase in their pollution intensity, as depicted in the

central plot in Panel B. This pollution-shifting behavior further exacerbate the firm default probability.

This result is in line with a risk-taking motive, driven by the equity holders’ limited liability and fi-

nancial constraints. Indeed, as firms become more constrained, they limit their operating costs, by

increasing their pollution intensity. Due to financial distress, the expected firm value conditional on

survival also impacts their pollution intensity choice as firms are willing to take on more transition risk

exposure. It is also worth noting that the increase in pollution intensity for distressed firms is likely to

be associated with the sale of clean assets, as opposed to dirty asset investments.15

5.2.2 Model Validation & Cross-sectional Moments

In order to generate sensible quantitative results about the relationship between corporate decisions

and pollution, it is essential to validate the benchmark calibration by investigating both micro and

macro moments. In this section, we explore the sensitivity of pollution intensity choice to firm size

and financial distress measures. We then explore the cross-sectional moments implied by the model’s

steady-state firm distribution and compare them to their empirical counterparts.

Pollution sensitivity to default rates, size, leverage, and productivity. Figure 12 reports the re-

lationship between firm variables such as (i) default probability, (ii) size, (iii) productivity, and (iv)

leverage, and pollution intensity, tabulated as a share of dirty capital stock or dirty new investment. In

line with the model policy functions, pollution intensity is negatively related to size, productivity, and

leverage.

15Our model does not assume a fixed aggregate amount of clean or dirty capital. In this context, one could interpret the
sold assets as simply scrapped or reallocated beyond the borders of our economy, and thus not contributing to its aggregate
pollution.
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In contrast, the relationship between default probability and pollution intensity exhibit a U-shape pat-

tern. Indeed, firm with no immediate risk of default can initially take on more polluting assets, as long

their expected costs are equal to or cheaper than clean assets. As such probability of default increases,

firms may be inclined to hedge themselves again further negative pollution shocks and become greener.

However, as firms become further distressed, their equity holders become more incentivized to take on

more risks and thus operating more polluting assets as they "gamble for resurrection".

Figure 13 further examines the relationship between financial distress and pollution, as a function of

firm size. It shows that the positive relationship between financial distress and pollution is mostly

concentrated among the lowest size tercile. Moreover, it appears that the average firm pollution does

increase overall for low to medium-size firms as the increase in pollution intensity accompanying fi-

nancial distress is only partially compensated by the decline in firm size.

Cross-sectional moments. We also investigate the model performance in the cross-section. Table 6

reports the cross-sectional averages of model variables and their empirical counterparts. These mo-

ments provide additional modelling validation as they were not part of our calibration exercise. With

the exception of the size distribution, which is more concentrated, the model generates values and pat-

terns that are reasonably close to the data. In particular, default probabilities are decreasing with size

and range from 12% for the bottom quartile to 2% for the top quartile. Pollution intensity also exhibits

a decreasing pattern in line with the data, with values ranging from 0.35 to 0.23.

5.3 Counterfactual Analysis: Micro-level Effects

Table 7 reports counterfactual results pertaining to changes associated with (i) interest rates, (ii) debt

and equity issuance costs, and (iii) pollution liability costs. The reported results represent long-run

changes relative to the benchmark economy for firm size, debt, leverage, default rate, in addition to

pollution intensity and average pollution. These changes are tabulated in logs on an equal-weight basis.

Interest Rates and Monetary Policy. How does pollution choice respond to changes in interest rates

or monetary policy? Panel A highlights that a 100 basis point increase in interest rates is associated

with potentially large and countervailing effects along the extensive and intensive margins of pollution.

While the average firm size declines by about 17%, the average pollution intensity does increase by
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about 8%, consistent with the increase in default probability and the pollution-shifting mechanism.

Indeed, an increase in borrowing costs implies lower debt capacity and firms scaling down. Further,

earnings also dwindle leading to a further increase in credit spreads and pushing more companies

toward financial distress. Ultimately, and as long as the pollution liability cost has not yet been realized,

this leads firms to take on more risks and turn to more polluting assets. Overall, however, our results

point to the extensive margin effect being more prominent, ultimately leading to an overall decline in

average and aggregate pollution of about 9.3% and 4.1%, respectively.

Debt and Equity Issuance Costs. Next we investigate the effects associated with increased debt

and equity issuance costs, which we interpret as being driven by investor preferences and investment

exclusion campaigns. Our analysis highlights that the magnitude of the effects of these issuance costs

depends necessarily on a firm capital structure and the relevance of such issuances. Indeed, we estimate

that the annual equity and debt issuances represent a value (as a share of capital) of about 6% each, for

the oil and gas firms in our sample.16

First, we show that an increase in equity issuance costs can only have modest effects on aggregate

pollution. Indeed, Panel C reports that an increase of 1.5% in equity issuance costs (representing a

doubling of the benchmark value), does not have any significant effect on size or pollution intensity.

This result is consistent with dynamic corporate models noting the limited effects of equity issuances

(Gomes and Schmid (2021)), and more generally the fact that such linear issuance equity, only have

modest wealth effects.

However, as the equity issuance costs increase more significantly (+4.5%), such change can lead to a

counterproductive increase in the average firm pollution of 1.5%. Such increase is due to the decline in

average size of 0.9% combined with a larger increase in pollution intensity of 2.3%. Thus, our results

can be viewed as providing a complementary perspective to the findings in Berk and van Binsbergen

(2021) who argue that divestiture strategies do not appear to meaningfully affect the cost of capital of

targeted firms and thus their investment decisions. Our point, is that even if such was the case, and

captured by equity issuance costs, the fact that such issuances are relatively infrequent and represent

only a small fraction of the firm financing needs, means that equity divestment campaigns may not be

that effective.
16Understanding the impact of divestment campaigns in light of firm capital structure and the relevance of equity and

debt financing is typically absent from the literature and deserves further research.
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Next we move on to debt issuances which represent the major source of financing for oil and gas com-

panies. Panel B shows that a 25 basis point increase in debt issuance costs is in fact associated with an

increase in average firm pollution, albeit such effect remains negligible. This is due to offsetting effects

from the extensive (-3.4%) and intensive (+4.1%) margins. In line with the interest rate counterfactual

above, an increase in debt issuance costs, which are proportional to total debt stock in this setting, ham-

per firms’ financial flexibility and ability to roll over debt and increase the overall cost of borrowing.

Firms respond to such shock by scaling down and shifting toward more polluting assets. Firms with

higher likelihood of default respond more aggressively relative to low distress firms.

Surprisingly however, a larger change in debt issuance costs (+0.75%) leads to the opposite conclusion

(i.e., a 2.3% decline in average firm pollution) as the intensive margin effect subsides and the extensive

margin effect ultimately dominates. The hump-shape pattern observed for pollution intensity deserves

some attention. Pollution intensity initially first increases significantly due to the risk-shifting motive.

When debt issuance costs becomes very large, firm debt issuance and leverage significantly decline,

ultimately reducing such shifting incentives and the magnitude of the intensive margin effect.

Figure 14 plots the magnitude of these changes across a range of changes in debt issuance costs and

interest rates. Ultimately, the relative elasticities of the intensive and extensive margins to default

probability determine the sign of the aggregate effect.

Finally, in light of the substitution between equity and debt financing, a natural experiment is to inves-

tigate whether joint equity and debt divestment campaigns can be significantly more effective. Such

approach – which has been overlooked in the existing literature – would ensure that financing costs

increase across the board and prevent the substitution work around. Nonetheless, as Panel D illustrates,

the combination of large debt and equity issuance costs only leads to a 4.9% average decline in pol-

lution, as a result of a -8.3% in the extensive margin and an offsetting increase of 3.4% in pollution

intensity for the average firm.

5.4 Regulatory Costs and Pollution Liabilities

We finally investigate the implications in the likelihood, p, and magnitude, τ , of pollution liabilities.

Both dimensions affect the expected costs associated with polluting assets, and outcome variance. In

contrast to previous policies, an increase in either aspect leads to a decline in both the intensive and
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extensive margins. Unsurprisingly, as the cost of polluting assets increases, firms grow at a slower rate

and reduce their pollution intensity. In addition, these effects appear more significant for the magnitude

of the pollution liability as opposed to its likelihood.

5.5 Extensions: Debt and Asset Tilting and Stranded Asset Policies

In this section, we augment the model to account for further manifestations of the differences in the

treatment of green vs. dirty assets by analyzing alternative policies. Namely, we would like to in-

vestigate how debt holder tilting toward green firms or differentiated recovery values upon liquidation

influence firm capital structure and capital choice.

5.5.1 Debt Tilting and Sustainability-Linked Bonds

We extend our model to account for potential effects stemming from debt holder tilting toward greener

firms. We model such tilting by formulating a debt issuance cost that is linearly increasing in pollution

intensity, λ̃b = (1+ θ0η)× λb, with tilt multiple, θ0 > 0. Such debt tilting can be interpreted as a

form of implicit greenium reflecting investor preferences and demand or as an explicit or negotiated

monetary incentive, as it is, for example, the case for sustainability-linked bonds or loans.

Contrary to the blanket debt issuance cost increases discussed above, tilting provides firms with addi-

tional incentives to shift their investments toward greener assets. These assets now provide the addi-

tional benefit of lowering firms’ debt issuance costs, and ultimately preserve their financial flexibility

and reduce their likelihood of distress.

We start from the benchmark debt issuance cost value of 25 basis points and consider a linear increase

that goes up to 100 basis points for a 100%-dirty firm. Such an increase represents a debt issuance cost

gap of 10 to 15 basis points across firms in the bottom and highest pollution intensity quartiles in line

with existing empirical estimates of the greenium.

Our results point to the effectiveness of this approach relative to a uniform increase in debt issuance

costs. On the one hand, increases across the board do not provide firms with any virtuous incentives,

as firms simply substitute from debt to equity issuance, all else equal. While such substitution may still

lead to costlier financing and reduce firm size, such lack of financial flexibility comes with an increase

in pollution intensity, as firms attempt to front-load their earnings, in light of the increase in default
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likelihood and thus lower discount factors. Conversely, tilting opens up a new adjustment channel as

firms substituting dirty for clean assets benefit from improved financing conditions, with limited effect

on their profitability, default rate, or growth.

In fact, as Panel B in Table 8 illustrates, tilted debt issuance costs lead to a decline in pollution of the

order of 38-40%, which is mostly due to the intensive margins, as the average firm reduces its pollution

intensity by over 36%.

5.5.2 Stranded Assets and Recovery Rates

Next we move on to investigating the role of liquidation value upon default of polluting assets. We

assume the extreme case where polluting assets are stranded and worthless in the bankruptcy state. In

light of our parameter setting, this assumption has relatively limited effects on firm pollution intensity

choice and overall pollution. This is not surprising in light of our parameters and empirical moments

matched from the oil and gas industry. Indeed, the average annual default probability is about 5%, and

the benchmark recovery rate is around 60%. Given that the pollution intensity of the average firm is

28%, assigning a recovery rate of 0 to dirty assets only increases credit spreads by a negligible amount,

all else equal.

5.5.3 Higher Asset Divestment Costs

Finally, we also assume that dirty assets require additional divestment costs relative to clean assets.

Essentially, we consider here the preferences of potential asset buyers in the secondary market for

capital, instead of the preferences of debt holders. We rewrite divestment costs as: c̃1 = (1+θ1η)×c1,

with multiple θ1 > 0 and re-solve for the model, all else equal. Higher divestment costs penalize

firms in the aftermath of adverse shocks. As firms’ ability to sell assets and scale down becomes

severely compromised, this renders its pollution intensity more persistent (i.e., less reversible), and

limits its operational and financial flexibility, potentially precipitating the firm toward bankruptcy. Thus,

firms become ex-ante increasingly cautious when investing in dirty assets and choose lower pollution

intensity. Panel D illustrates, that in the presence of divestment costs that are twice as high for polluting

assets, average and aggregate pollution decline by 51%, and 32%, respectively.17

17While the firm could selectively choose to sell clean or dirty assets, we assume here that the divestment cost it is subject
to is simply proportional to its current pollution intensity. We also keep the 0-recovery rate upon default for consistency.
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6 Conclusion

To conclude, we use novel and granular project-level datasets from the oil and gas industry to show that

proxies of financial distress lead to increased pollution and decreased production. Specifically, we plot

the binscatters between the pollution measure and proxies for financial distress, such as size, leverage,

and Altman Z-score. Second, we investigate how such polluting practices evolve around a Chapter 11

filing in a dynamic event study window. Finally, we construct a measure of default probability and plot

the lead-lag relationship between this measure of default probability and pollution. We show that the

relationship between pollution and default probability is the strongest for concomitant or one-month

lag default probabilities.

We then construct a dynamic endogenous default model with two productive assets to study how a

change in financial health affects pollution and production. In the model, the choice of pollution inten-

sity is endogenous and inherently dependent on firm capital structure, financial distress, and productiv-

ity. Dirty capital does not incur operating costs unless a stochastic pollution liability shock is realized.

As firms face limited liability, it becomes rational to increase pollution if they approach financial dis-

tress. Intuitively, the pollution liability is not paid if the firms file for bankruptcy, which truncates the

ex-ante expected cost of polluting. We show that ESG divestment campaigns have different effects on

firms because they change the capital structure of the firm and their incentive to risk-shift by polluting

more.
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Figure 1: Validation of the Flaring Measure

A. Probability of flaring around well completion
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This graph plots the non-parametric probability of observing a flare before and after the well com-
pletion. We observe that the probability of flaring is low before the well is flaring; This probability
increases just after the well is completed, and peaks at completion, and decreases with time. These
patterns are consistent with the observed practice of flaring in the oil and gas, and confirm the usage of
satellite imaging datasets to measure flaring practices.
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Figure 2: Relationship between Pollution and Financial Distress
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These graphs report the binned scatterplots of our pollution measure with the Altman z-score. Pollution
is defined as a dummy variable that takes the value 1 if the well is either flaring or using toxic chemicals.
Both graphs show a negative relationship between pollution and the z-score which is consistent with
the idea that firms that are more financially distressed are more likely to pollute. In the graph located at
the left, we show the relationship without any controls. In the graph located at the right, we show the
relationship after the inclusion of a control for the size of the company and a location fixed effect.
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Figure 3: Relationship between Pollution and Leverage
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These graphs report the binned scatterplots between pollution and the firm’s leverage. Pollution is
defined as a dummy variable that takes the value 1 if the well is either flaring or using toxic chemicals.
Both graphs show a positive relationship between pollution and firm’s leverage, which is consistent
with the idea that firms that are more financially distressed are more likely to pollute more. In the graph
located at the left, we show the relationship without any controls. In the graph located at the right, we
show the relationship after the inclusion of a control for the size of the company and a location fixed
effect. We exclude outliers, i.e. firms for which the leverage is below 0 or above 1, and show in the
econometric regressions that the relationship still hold in the full sample.
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Figure 4: Dynamic Graph: Bankruptcy
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This graph studies the pollution practices and after a firm files for Chapter 11. The x-axis report the
the years around chapter 11 filings. The y-axis represent the probability of pollution for firms that will
or have filed for bankruptcy for the given year. This probability is estimated using a dynamic event
windows in a difference-in-differences regression framework within the sample of firms that file for
bankruptcy, where a firm, location, and year fixed effects are included.
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Figure 5: Dynamic Graph: Around the Well Completion
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This graph studies the pollution practices at the monthly frequency, for different lagged probability
of default. Specifically, we compute monthly level of firm delisting events using an annual rolling
logit regression that captures the probability of defaulting at any time within the next year, given the
information available at the beginning of the year. We then regress our pollution measure of time t
on the probability of default at time t + j, where j goes from -6 to 6. We add a set of control to the
regression. These controls include a set of firm characteristics (namely firms’ firm size, sales, capx,
tobin Q, the total liabilities, return on asset, and the first 6 month of oil and gas production) and a firm
fixed effect, a location fixed effect, a basin-year fixed effect, and a month fixed effect. We report the
coefficients (y-axis) that measures the relationship between pollution and the monthly probability of
delisting at time t + j, where j goes from -6 to 6 (x-axis).
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Figure 6: Dynamic Graph: Around the Well Completion
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This graph studies the pollution practices at the monthly frequency, for different lagged probability of
default. The relationship is estimated on different subsamples: in red, in the sample where the perceived
liabilities of the location are above the sample median, and in gray, where these perceived liabilities are
below the sample median. We compute monthly level of firm delisting events using an annual rolling
logit regression that captures the probability of defaulting at any time within the next year, given the
information available at the beginning of the year. We then regress our pollution measure of time t
on the probability of default at time t + j, where j goes from -6 to 6. We add a set of control to the
regression. These controls include a set of firm characteristics (namely firms’ firm size, sales, capx,
tobin Q, the total liabilities, return on asset, and the first 6 month of oil and gas production) and a firm
fixed effect, a location fixed effect, a basin-year fixed effect, and a month fixed effect. We report the
coefficients (y-axis) that measures the relationship between pollution and the monthly probability of
delisting at time t + j, where j goes from -6 to 6 (x-axis).

41



Figure 7: Relationship between New Projects and Financial Distress
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These graphs plot the binscatter of the number of new projects, aggregated at the basin level, with the
Altman z-score. Both graphs show a positive relationship between the number of new projects and the
z-score which is consistent with the idea that firms that are more financially distressed are more likely
to invest in fewer new projects. In the graph located at the left, we show the relationship without any
controls. In the graph located at the right, we show the relationship after the inclusion of a control for
the size of the company. Both binscatters are estimated on the sample of all oil projects.
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Figure 8: Relationship between New Projects and Leverage
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These graphs plot the binscatter of the number of new projects, aggregated at the basin level, with the
Altman z-score. Both graphs show a positive relationship between the number of new projects and the
z-score which is consistent with the idea that firms that are more financially distressed are more likely
to invest in fewer new projects. In the graph located at the left, we show the relationship without any
controls. In the graph located at the right, we show the relationship after the inclusion of a control for
the size of the company. Both binscatters are estimated on the sample of all oil projects.
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Figure 9: Relationship between Pollution and Interest Payments

-.02

0

.02

.04

.06

.08

Po
llu

tio
n

1 2 3
Interest payment

This graph shows the relationship between pollution and interest payments. Pollution is defined as a
dummy variable that takes the value 1 if the well is either flaring or using toxic chemicals. We divide
the sample into three groups of equal size. The first group has the lowest interest payment and the third
group has the highest interest payment. The second group are the observations that were not in the first
and third group. We then run a regression between between the dummy variable of pollution on each of
these group variables. We add a firm fixed effect a year fixed effect and include a location fixed effect.
We report each of the coefficients on this graph. Specifically, the x-axis reports the group dummy, and
the y-axis reports its point estimate with the confidence interval at the 10% level.
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Figure 10: Distributions of Green Firms and Projects
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The graph on the left plots the average greenness among firms, which is the fraction of wells that were
either using toxic chemicals or flaring between 2012 and 2022 in our sample. To limit the influence of
outliers, we drop the firms that had fewer than 100 projects between 2012 and 2022. The graph on the
right plots the distribution of the total number of projects per firm during our sample time period.
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Figure 11: Optimal Policies for Size, Pollution Intensity, and Default Probability

A. Small vs. Large Firms
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B. Low vs. High Pollution Intensity Firms
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This figure plots optimal next-period size and pollution intensity, and corresponding default probability.
Panel A displays optimal policies for small vs. large firms, while Panel B displays optimal policies for
low vs. high pollution intensity firms. Optimal policy functions are tabulated based on the model steady
state distribution, conditioning on current productivity shock. The parameter values for the benchmark
calibration are reported in Table 5.
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Figure 12: Financial Distress and Pollution Intensity - Model
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This figure shows the relationship between financial distress, as measured by the default probability, key
firm variables (i.e., size, productivity, and leverage), and pollution intensity. Blue solid lines represent
pollution intensity, as a share of total capital, while the red dashed lines represent pollution intensity,
as a share of new investment. The parameter values are reported in Table 5. The results are obtained
using a panel of 5,000 firms simulated over 30 years.

47



Figure 13: Size, Financial Distress and the Intensive and Extensive Margins of Pollution - Model
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This figure shows the relationship between firm size, financial distress, and the intensive (i.e., pollution
intensity), extensive (i.e., firm size) margins of pollution, in addition to total pollution. Firms are sorted
into three equal size categories (small (blue), medium (red), large (yellow)) and four equal default
probabilities bins. The parameter values are reported in Table 5. The results are obtained using a panel
of 5,000 firms simulated over 30 years.
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Figure 14: Extensive and Intensive Margin Pollution Effects of Debt Issuance costs and Interest Rates
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This figure shows the effects (tabulated as log-changes) of an increase in debt issuance costs (left panel)
and interest rates (right panel) on average (i) firm size (blue line), (ii) pollution intensity (red line),
pollution (dashed black line), and (iv) aggregate pollution (solid black line). The parameter values are
reported in Table 5. The results are obtained using a panel of 5,000 firms simulated over 30 years.
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Table 1: Descriptive Statistics

A. All wells

count mean sd p10 p50 p90
Pollution 78044 0.270 0.444 0.000 0.000 1.000
First 6 Oil 78044 58329.698 57065.426 0.000 46109.000 135302.000
First 6 Gas 78044 322581.661 602714.752 10465.000 121645.500 785210.000
CAPEX 78044 6183.538 8085.394 497.214 3054.882 16163.000
Assets - Total 78044 59436.333 93166.150 2159.037 20245.000 239790.000
Leverage 78044 0.730 2.907 0.189 0.475 1.380
Distress 77664 0.439 0.496 0.000 0.000 1.000
Z-score 77664 1.979 1.137 0.536 1.950 3.599
Cost of capital 77023 0.106 0.778 0.021 0.049 0.072

B. Project-level database

count mean sd p10 p50 p90
Projects 1057 131.248 217.746 1.000 30.000 430.000

These tables report the descriptive statistics of our sample. Specifically, Panel A reports the
descriptive statistics based on the sample of public corporation where we can observe the pollution of
the well. Panel B describes the project-level database, where the number of new projects are
aggregated at the basin-year level for all public corporations.
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Table 2: Pollution and Distress

Panel A:
Pollutionit Flaringit Number of toxic chemicalsit > 0

(1) (2) (3) (4) (5) (6)

Z-score (std) -0.041∗ -0.024∗∗ -0.006∗∗ -0.003∗ -0.036∗ -0.023∗

(0.021) (0.011) (0.003) (0.002) (0.021) (0.012)

Assets - Total -0.000∗∗ -0.000∗∗ -0.000∗

(0.000) (0.000) (0.000)

Observations 77,664 75,947 77,664 75,947 77,664 75,947
R-squared 0.0083 0.54 0.0030 0.55 0.0067 0.54
Firm FEi x x x
Basin FEi× year FEt x x x
Location j× year FEt x x x

Panel B:
Pollutionit Flaringit Number of toxic chemicalsit > 0

(1) (2) (3) (4) (5) (6)

Leverage (log) 0.036∗∗ 0.016∗∗∗ 0.002 0.002∗ 0.035∗∗ 0.015∗∗∗

(0.015) (0.005) (0.001) (0.001) (0.014) (0.005)

Assets - Total -0.000∗ -0.000∗ -0.000∗

(0.000) (0.000) (0.000)

Observations 76,594 74,898 76,594 74,898 76,594 74,898
R-squared 0.0061 0.54 0.00032 0.55 0.0058 0.54
Firm FEi x x x
Basin FEi× year FEt x x x
Location j× year FEt x x x

This table reports the regression that measures the link between flaring practices and distress. Panel A
(Panel B) uses the Altman Z-score (The log leverage, respectively) as a proxy for financial distress.
Pollution is defined as a dummy variable that takes the value 1 if the well is either flared or using toxic
chemicals. The dependent variable Flaring is a dummy variable that takes the value 1 if the well is
flared with high intensity and 0 otherwise. Number of toxic chemicalsit > 0 is a dummy variable that
takes the value 1 if the well is using at least one toxic chemical. Z-score (std) is the firm’s Altman
Z-score that has been standardized to have a mean 0 and a variance 1.
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Table 3: New Projects and Distress

New Project
(1) (2) (3) (4) (5) (6)

Distress -0.851∗ -0.192∗

(0.438) (0.103)

Z-score (std) 0.436∗∗ 0.065
(0.220) (0.068)

Leverage (log) -0.475∗∗∗ -0.117∗∗

(0.171) (0.057)

Observations 86,658 86,658 94,908 85,345 85,345 93,470
R-squared 0.00060 0.00066 0.0011 0.063 0.063 0.061
Basin × Year FE x x x
Firm FE x x x

This table reports the regression that measures the link between new projects and distress. The
dependent variable is new project, which is the summation of all new projects in a basin for a given
year. Z-score (std) is the firm’s Altman Z-score that has been standardized to have a mean 0 and a
variance 1.
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Table 4: Bankruptcy and Pollution

Pollution

Post Bankruptcy (Chapter 11) -0.296∗∗ -0.170∗∗∗

(0.125) (0.036)

Observations 4,298 4,273
R-squared 0.35 0.46
Firm FEi x x
year FEt x x
Basin FEi× year FEt x
Location FEt x x

This table reports the relationship between chapter 11 and pollution. Specifically, firms that have
renegotiated their debts through a chapter 11 are less likely to pollute. Pollution is defined as a dummy
variable that takes the value 1 if the well is either flared or using toxic chemicals.

53



Table 5: Parameter Values

Parameter Value Description Target

A. Set Parameters

β 0.976 Discount factor 2.5% risk free rate
α 0.65 DRS parameter Literature
δ 0.1 Depreciation rate NIPA depreciation
τ 0.25 Effective corporate tax rate Gomes and Schmid (2021)
φ 0.4 Bankruptcy cost Gomes and Schmid (2021)
ζ 0.25 Magnitude of pollution liability
γk 0.25 Relative size of entrants Data

B. Calibrated Parameters
Data Model

s̄ 1.65 Aggregate productivity level Sales-to-asset ratio 0.40 0.20
ρs 0.85 Persistence of idiosyncratic shock autocorr. of sales ratio 0.37 0.69
σs 0.45 Volatility of idiosyncratic shock std. dev. of sales ratio 0.12 0.07

c0 0.1 Investment adjustment cost Avg. Inv. rate 0.13 0.12
c1 0.5 Divestiture adjustment cost Size 1 Inv. rate/Avg. Inv. rate 0.90 0.91
c f 6 Fixed operating cost Default rate 0.05 0.06

λe 0.015 Equity issuance cost Equity issuance frequency 0.25 0.19
λb 0.0025 Debt issuance cost Avg. Leverage 0.40 0.73

m 0.06 Clean asset operating cost Avg. pollution intensity 0.27 0.28
p 0.125 Proba. of pollution liability Pollution elasticity to default proba. 0.20 0.14

This table reports set and calibrated parameter values for the model. All moments are reported on an
equal-weighted basis. The model pollution elasticity to default probability is constructed based on a
linear regression without intercept. Model moments are obtained using a panel of 5,000 firms
simulated over 30 years.

54



Table 6: Cross-Sectional Moments

Asset Size Investment Leverage Def. Proba. Poll. Intensity

%tile Data Model Data Model Data Model Data Model Data Model

0%-25% 8.2 37.2 0.15 0.10 0.79 0.59 0.12 0.41 0.35
25%-50% 56.3 56.3 0.15 0.12 0.91 0.67 0.06 0.42 0.27
50%-75% 157.6 77.7 0.12 0.12 0.78 0.72 0.04 0.31 0.26
75%-100% 565.9 115.1 0.13 0.11 0.56 0.80 0.02 0.25 0.23

This table reports the cross-sectional moments. The parameter values are reported in Table 5. All
numbers are tabulated as time series averages of asset percentile levels. The results are obtained using
a panel of 5,000 firms simulated over 30 years.
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Table 7: Long-run Effects of Interest Rates, Issuance Costs, and Regulatory Costs

Size Debt Leverage Default rate Poll. intensity Avg. poll. Agg. poll.

Benchmark 71.37 56.87 0.70 0.06 0.28 15.63 7.8 104

A. Interest rates

∆r = 0.01 -17.1% -39.6% -14.5% 29.3% 7.8% -9.3% -4.1%

B. Debt Issuance Costs

∆λb = 0.0025 -3.4% -19.7% -14.8% 0.7% 4.1% 0.7% 0.2%
∆λb = 0.0075 -5.8% -265.8% -253.7% 2.8% 3.5% -2.3% -3.0%

C. Equity Issuance Costs

∆λe = 0.015 0.2% -3.2% -3.6% -1.5% -0.1% 0.0% 0.3%
∆λe = 0.045 -0.9% -10.5% -8.9% 1.3% 2.3% 1.5% 1.3%

D. Debt + Equity Issuance Costs

∆λb & ∆λe -8.1% -169.0% -155.0% 6.8% 2.8% -5.2% -5.0%

D. Regulatory Costs

∆p = 0.025 -3.4% -3.1% 0.5% 0.6% -55.6% -59.0% -53.5%
∆τ = 0.05 -2.4% -3.6% -0.7% 1% -42.6% -40.2% -38.8%

This table reports the long-run effects (tabulated as log-changes) due to changes in (i) interest rates,
(ii) issuance costs, and (iii) regulatory costs. In Panel D, we use ∆λb = 0.0075 & ∆λe = 0.045. The
parameter values are reported in Table 5. The results are obtained using a panel of 5,000 firms
simulated over 30 years.
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Table 8: Long-run Effects of Alternative Policies: Tilting and Liquidation Values

Size Debt Leverage Default rate Poll. intensity Avg. poll. Agg. poll

Benchmark 71.37 56.87 0.70 0.06 0.28 15.63 7.8 104

A. Uniform Debt Issuance Costs

∆λb = 0.0075 -5.8% -265.8% -253.7% 2.8% 3.5% -2.3% -3.0%

B. Tilted Debt Issuance Costs

λ̃b -3.2% -7.7% -3.9% 0.3% -36.6% -39.9% -38.5%

C. No Recovery Value Upon Default for Dirty Assets

L̃(K,B) -2.6% 0.5% -0.4% -5.3% -0.7% -3.2% -1.5%

D. No Recovery Value Upon Default + Higher Divestment Costs for Dirty Assets

L̃(K,B) & c̃1 -3.5% 1.3% 1.4% -1.5% -47.2% -50.7% -31.6%

This table reports the long-run effects (tabulated as log-changes) due to (i) a uniform 100 basis point
increase in debt issuance costs, (ii) debt tilting, (iii) liquidation value, and (iv) asset divestment costs.
In Panel B, debt issuance costs are: λ̃b = (1+θ0η)λb. In Panel C, liquidation value is:
L̃(K,B) = min(0.75,(1−φ)(1−η)K

B ). In Panel D, divestment costs are: c̃1 = (1+θ1)c1. The
parameter values are reported in Table 5, and the tilting parameters, θ0 = 3, and θ1 = 1. The results
are obtained using a panel of 5,000 firms simulated over 30 years.
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Table 9: Financial Distress Sort

A. Z-score

%tile Z-score # Projects Assets Leverage Poll. Intensity Project Share Poll. Share

0%-25% 2.04 1212 51.57 0.24 0.32 31.1 30.5
25%-50% 1.56 1536 51.80 0.53 0.31 37.4 35.6
50%-75% 0.92 832 17.28 0.83 0.35 20.3 21.8
75%-100% 0.72 462 10.74 1.42 0.35 11.3 12.1

B. Distress Probability

%tile Distress Prob. # Projects Assets Leverage Poll. Intensity Project Share Poll. Share

0%-25% 0.03 2089 63.07 0.27 47.5 40.1
25%-50% 0.17 1238 10.89 0.34 26.5 28.6
50%-75% 1.05 893 4.30 0.37 19.1 22.5
75%-100% 8.03 327 1.95 0.37 7.0 8.2

This table reports cross-sectional moments.
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Table 10: Correlations

corr(X, Pollution) Size Leverage Credit spread

Data Model Data Model Data Model
-0.92 -0.03 0.20

corr(X, Def. Proba) New Investment Inv Type

Data Model Data Model
-0.58 0.04

This table reports set and calibrated parameter values for the model.
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Table 11: Sensitivity of Pollution to Default Probability

(1) (2)
Pollution (model) Pollution (data)

Default probability 0.154∗∗ 0.163∗

(0.097)

Observations 1,567 72,888
R-squared 0.52 0.31
Basin × Year FE - x
time-varying controls x x
Firm FE x x
Time FE x x

This table reports the regression of the investment in dirty assets on the probability of default, for both
the data simulated by the model and the real dataset.
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Figure 15: Firm Distributions Before and After Cost Shock Realization

These figures report the change in the distributions pertaining to: (i) firm size, (ii) pollution intensity,
and (iii) aggregate pollution, before and after the realization of a pollution liability shock. The
parameter values are reported in Table 5. The results are obtained using a panel of 5,000 firms
simulated over 30 years.
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