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  ABSTRACT 

We analyze the properties of two prior specifications for the betas and residual (co)variance 
parameters in the Bayesian procedure for comparing asset pricing models initiated by Barillas and 
Shanken (2018). We state the key underlying results that led to the alternative prior proposed by 
Chib, Zeng and Zhao (2020, CZZ) and show that the implied posterior model probabilities are 
invariant to reparameterization of the models. Simulation evidence indicates that the new prior is 
preferred, though the dramatic performance differential reported by CZZ is not observed. 
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In Barillas and Shanken (2018, BS), we develop a Bayesian procedure for comparing asset pricing 
models with traded factors. In this short paper, we discuss a modification of the prior and prove 
that it satisfies a desirable form of prior consistency across models, as well as invariance to 
reparametrization. The modified approach retains most of the framework in BS, including the joint 
treatment of included/excluded model factors and the form of the informative prior for alphas. The 
difference, which drives consistency and invariance, corresponds to the prior for the so-called 
“nuisance parameters” – the betas and residual (co)variance parameters.  

The key insight that underlies the modified prior is our observation that there is a natural 
invertible mapping between the nuisance parameters for each pair of models, as explained in 
Section I below. Prior consistency then leads to the sensible requirement that the nuisance priors 
for all models be the same after the parameter spaces have been transformed such that they are 
identical. This condition is violated in BS. Invariance goes further in requiring that the posterior 
model probabilities be independent of the choice of parametric representation of the models. Our 
exploration of invariance was prompted by a question from a respected colleague as to whether 
the modified nuisance priors are truly noninformative for all models.   

The explicit invertible mapping between the nuisance parameters for different models, 
together with our related observations about the properties of the corresponding induced priors 
under reparametrization, serves as the foundation for the work of Chib, Zeng, and Zhao (2019, 
CZZ). We communicated these thoughts to CZZ in response to an earlier version of their paper - 
which, for the record, contained no hint of this transformation or the induced prior,1 – arguing that 
the issues they raised about differing parameter spaces and prior support were not a problem. CZZ 
then used these ideas in developing the modified prior and derived a useful expression for this 
prior. Given the respective contributions of each of us to the analysis that has emerged, hereafter 
we refer to the modified prior as the BS-CZZ prior. As we show in Section III, the resulting 
likelihood measure for each model can be obtained from a simple variation of the moment-
generating approach of BS.  

Whether the technical  properties of the nuisance priors considered here will have a material 
impact in applications is not clear. We, therefore, examine some frequentist properties of the two 
Bayesian prior approaches. This involves repeated sampling of factor returns simulated under the 
null that a given pricing model holds. CZZ examine such simulation evidence. However, as we 
discuss in Section IV, the models that they examine likely suffer from selection bias, given the 
nature of their data-based model screening procedure. Moreover, although the sole metric that they 
focus on yields dramatic results favoring the BS-CZZ prior, it provides rather limited information. 
We therefore explore a broader set of null models and more informative metrics, including a simple 
economic measure with an investment orientation. 

This paper is organized as follows. Section I describes the statistical framework of BS. 
Section II then analyzes the invariance of model comparison under the BS-CZZ prior. Section III 
discusses the calculation of marginal likelihoods under the BS-CZZ prior, and Section IV provides 
simulation evidence under the BS and BS-CZZ priors. Section V concludes. 

I. The Statistical Framework of BS 

                                                            
1 CZZ allude to an argument made by a “reader” (we revealed that one of us was a reviewer of the paper), but do not 
acknowledge the central role that the ideas in that argument (the explicit mapping and induced prior under 
reparametrization) played in the development of their paper. Also see footnote 6 below. 
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Bayesian model comparison ultimately reduces to a comparison of model marginal 
likelihoods – the result of averaging the likelihood function over the prior for the given model, M. 
In contrast to earlier work in this area, a key feature of the BS approach involves conditioning the 
posterior analysis of each model on all of the factor data. Along with some simplifying assumptions 
on the prior, this yields a marginal likelihood of the form 

        𝑀𝐿 ൌ 𝑀𝐿௎ሺ𝑓|𝑀𝑘𝑡ሻ ൈ  𝑀𝐿ோሺ𝑓∗|𝑀𝑘𝑡, 𝑓ሻ,                  (1) 

where f denotes the nonmarket factors included in the model, f* denotes the excluded factors,2 
𝑀𝐿௎ሺ𝑓|𝑀𝑘𝑡ሻ is the unrestricted ML for the multivariate linear regression of f on the market factor 
and a constant,  

𝑓 ൌ 𝛼 ൅ 𝛽𝑀𝑘𝑡 ൅ 𝜀,                  (2) 

and 𝑀𝐿ோሺ𝑓∗|𝑀𝑘𝑡,𝑓ሻ is the restricted ML for the regression of f* on the market and f (constant 
excluded),   
    𝑓∗ ൌ 𝛽∗ሾ𝑀𝑘𝑡,𝑓ሿ′ ൅ 𝜀∗.                        (3) 

In this way, the model restriction on the intercepts (α* = 0) is imposed in (3), while the expected 
returns of the model’s factors are unconstrained in (2).3 The market excess return, Mkt, is included 
in all models. 

In BS, the prior belief about the model’s factor alphas in (2) is taken to be informative, 
reflecting the researcher’s view about the potential magnitude of the investment Sharpe ratio. The 
prior for the “nuisance parameters” is a product of Jeffreys (1961) priors, with independence 
between the parameters of (2) and (3). This is an “improper” prior in that the integral over all 
values of the parameters is not finite (a proper prior integrates to one). Nonetheless, improper 
priors often give rise to well-defined posterior beliefs and are routinely used in Bayesian analysis. 
However, the use of improper priors in model comparison raises additional issues that we 
discussed in BS and return to now.   

Consider improper priors p(θ1) and p(θ2) for models M1 and M2 respectively. Since the 
priors do not integrate to one, without further consideration we could just as well replace these 
priors with, for example, 10 x p(θ1) and 2 x p(θ2), increasing the posterior odds in favor of M1 by 
a factor of 5 = 10/2. The question then arises as to when is it appropriate to use the same 
proportionality constant for each model, as we did. Such conditions are discussed by Berger and 
Pericchi (2001), who consider the common case in which parameters are the same across models, 
but also consider other scenarios in which the parameters are “essentially similar.” We used the 
latter to motivate our analysis with different nuisance parameters under each model, but below we 
show that the BS improper prior approach is equivalent to (produces the same posterior 
probabilities as) one in which the nuisance parameters are actually common across models. This 
follows from the invertible mapping mentioned earlier, which we now describe. 

The all-factors model M1 involves regressing all of the non-market factors on Mkt and a 
constant. The market betas, β1, of these factors and the corresponding residual covariance matrix, 
Var1, together constitute the nuisance parameters θ1 for M1. Let θ2 be the set of nuisance parameters 
{β, β*, var(ε) and var(ε*)} for the model M with factors f and excluded factors f*, as in (2) and (3). 

                                                            
2 Consistent with Barillas and Shanken (2017), test asset returns give rise to an additional ML term that is the same 
for all models and thus drops out of the model comparison. 
3 Since no factors are excluded in the all-factors model, the ML for this model consists only of the first term, MLU. 
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In BS, we note that the number of parameters in θ1 and θ2 is the same for all models, a condition 
emphasized by Berger and Pericchi (2001). Here we take this an important step further. 

Substituting the expression for the included factors f from (2) into (3) and collecting terms gives 
the regression of f* on Mkt. Together with the regression of f on Mkt in (2), we have θ1 expressed 
in terms of θ2. This is our mapping from θ2 to θ1, and some additional algebra shows that the 
mapping is invertible.   

For example, suppose that we start with the three factors of Fama and French (1993): Mkt, 
HML, and SMB.4 Consider the two-factor pricing model {Mkt, HML}, where f is the included 
factor HML and f* is the excluded factor SMB. In this case, (2) and (3) are 𝐻𝑀𝐿 ൌ 𝛼 ൅ 𝛽𝑀𝑘𝑡 ൅ 𝜀 
and 𝑆𝑀𝐵 ൌ 𝛽∗ሾ𝑀𝑘𝑡,𝐻𝑀𝐿ሿ′ ൅ 𝜀∗, where 𝛽∗ ൌ ሺ𝛽ெ

∗ ,𝛽ு
∗ ሻ. The nuisance parameters are 𝜃ଶ ൌ

ሺ𝛽,𝛽ெ
∗ ,𝛽ு

∗ ,𝜎ఌଶ,𝜎ఌ∗ଶሻ. Now substituting the expression for HML from the first regression into the 
second yields 

𝑆𝑀𝐵 ൌ 𝛽ெ
∗ 𝑀𝑘𝑡 ൅ 𝛽ு

∗ ሺ𝛼 ൅ 𝛽𝑀𝑘𝑡 ൅ 𝜀ሻ ൅ 𝜀∗ ൌ 𝛽ு
∗𝛼 ൅ ሺ𝛽ெ

∗ ൅ 𝛽ு
∗𝛽ሻ𝑀𝑘𝑡 ൅ ሺ𝜀∗ ൅ 𝛽ு

∗ 𝜀ሻ, 

where 𝜀 and 𝜀∗ are uncorrelated with 𝑀𝑘𝑡 and with each other. Hence, this equation is the 
regression of 𝑆𝑀𝐵 on 𝑀𝑘𝑡 and a constant, and so 𝜃ଵ ൌ ሺ𝛽ଵ,𝑉𝑎𝑟ଵሻ, where 𝛽ଵ ൌ ሺ𝛽,𝛽ெ

∗ ൅ 𝛽ு
∗𝛽ሻ is 

the 1x2 vector of simple regression coefficients for HML and SMB on Mkt and Var1 is the 2x2 
residual covariance matrix with diagonal elements 𝜎ఌଶ and  𝜎ఌ∗ଶ ൅ 𝛽ு

∗ଶ𝜎ఌଶ and off-diagonal element 
𝛽ு
∗ 𝜎ఌଶ. This is the mapping from  𝜃ଶ to 𝜃ଵ. The following result makes use of such a transformation 

and will be applied to derive our main conclusions. 

LEMMA: Let M be a factor pricing model, as in (2) and (3), with nuisance parameters θ and let    
φ = g(θ) be a one to one mapping such that the inverse is differentiable with Jacobian Jg

-1(θ). 
Then, by a change of variables, the induced prior for φ is    

    p(g-1(φ))|det(Jg-1(φ))|,             (4) 

where p(θ) is the prior for θ. With π(α | θ) the (conditional) prior for α, the ML for M is unaffected 
by the reparametrization, that is, the ML is the same with p(θ) or the induced prior for φ. In 
addition, if p(θ) is an improper prior with proportionality constant c, then the induced prior 
inherits this proportionality constant through the first term, p(g-1(φ)).  

Proof: First note that the likelihood for (α, φ) is L(α, g-1(φ) | M, F), where F is the factor return 
data. Also, the prior for α under the reparametrization is π(α | g-1(φ)). Then the ML under the 
induced prior for φ is 

∫∫ π(α | g-1(φ))p(g-1(φ))L(α, g-1(φ) | M, F)|det(Jg-1(φ))|d(α, φ).                    (5) 

Substituting θ = g-1(φ) and d(α, θ) = |det(Jg
-1(φ))| d(α, φ), this integral reduces to 

       ∫∫ π(α | θ)p(θ)L(α, θ | M, F)d(α, θ),           (6)  

the ML under the original parametrization. Q.E.D. 

Let us consider the BS prior approach in light of this result. Without loss of generality, suppose 
we have two models, M1 and M2, with nuisance parameters θ1 and θ2, respectively, linked by an 
invertible mapping, g(θ2)= θ1. Let p(θ1) be the BS prior for θ1. By the lemma (with θ2 as θ and θ1 
as φ), we can replace θ2 and its BS prior, p(θ2), with θ1 and the prior induced by p(θ2) without 

                                                            
4 This is precisely the example that we supplied to CZZ in a review of their initial draft.  
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changing ML2. Of course, ML1 is also unchanged, because we have not modified the 
parametrization of M1. Therefore, the posterior model probabilities will be unaffected. Note that 
after the transformation by g, we have the same nuisance parameters, θ1, for each model and the 
same prior support.5 However, there is nothing constraining the induced prior for θ1 and p(θ1) to 
be the same, a weakness of the original approach that has become evident through this 
transformation argument. As a result, the original prior specification may favor certain models in 
unanticipated and unintended ways. Fortunately, a slight twist on this argument motivates a 
modified approach that essentially amounts to imposing the same nuisance prior under each model. 

II. The Modified Prior, Consistency, and Invariance of the Model Comparison 

 Again, we start with models M1 and M2 and a prior p(θ1) for θ1. However, rather than map 
θ2 to θ1, we now let g denote the reverse mapping of θ1 to θ2 = g(θ1) and we take the prior for θ2 to 
be the induced prior based on p(θ1) and g. By the lemma (now with θ1 as θ and θ2 as φ), the ML2 
obtained using the induced prior for θ2 is the same as that based on the θ1 parametrization and 
p(θ1). Moreover, if p(θ1) is improper with a proportionality constant c then, as observed in the 
lemma, the induced prior for θ2 under M2 will inherit the same constant, which will then cancel out 
in the comparison of MLs. This modification is therefore equivalent to requiring that the nuisance 
prior be the same for all models, a sensible consistency condition. This is the prior approach used 
by CZZ, although they do not mention this interpretation. 

 While we focus on the case of an improper nuisance prior in our previous work, the main 
points made here are quite general and driven by the invertible mapping between nuisance 
parametrizations. The lemma holds for informative nuisance priors as well, and thus the strategy 
of starting with a prior for one “reference model” and employing the equivalent induced priors for 
all other models can therefore be applied in this case too.  A previous paper by Chib and Zeng 
(2019) uses a proper prior and notes that "the model-by-model prior must be proper." But as noted 
above and in our review of the first draft of what became the CZZ paper, the induced prior inherits 
the proportionality constant under a change of variables and so an improper prior can be used, as 
CZZ proceeded to do. Thus, our invertible mapping and observations about the induced prior led 
to their modification of our initial approach.   

 As the three-factor example of the previous section demonstrates, there is more than one 
way to statistically represent the space of nuisance parameters. Therefore, one may wonder 
whether the model comparison would be affected if we started with a different parametrization for 
M1 or M2. The following proposition shows that the model comparison would not change. 

PROPOSITION: Suppose the prior for M1 is π(α1 | θ1)p(θ1).  The prior for any other model, M2, is 
defined as π(α2 | θ2) times the induced nuisance prior based on the M1 prior and the mapping θ2 = 
g(θ1).6  i) Let θ1r = h(θ1) be an alternative reparametrization of M1 with the parametrization of M2 

unchanged. The prior for θ1r is that induced by h and p(θ1). Then the induced prior for M2, the 
MLs, and the posterior model probabilities are unaffected. ii) If the parametrization of M1 is fixed 
and θ2r = q(θ2) is an alternative reparametrization of M2, then the MLs and the posterior model 
                                                            
5 In the first draft of CZZ, they emphasized that these conditions fail to hold in the original BS parametrization. The 
argument above, an important part of what we provided to the authors in our response, shows that this was not the 
problem.  Our mistake at the time was not immediately recognizing that there was a problem nonetheless. 
 
6 For the CAPM, there are no alphas and so the π term is simply one. Note that the g used here is the inverse of the g 
used at the end of the previous section.  
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probabilities are again unaffected.  iii) If the prior for M1 (whatever the parametrization) is taken 
to be the Jeffreys prior, then the MLs and the posterior model probabilities do not depend on the 
initial model parametrizations. 

Proof: See Appendix A. 

 Jeffreys rule is a method for coming up with a prior that involves taking the square root of 
the determinant of the information matrix. This rule guarantees that the posterior analysis of a 
given model does not depend on the initial parametrization of that model, a property often 
associated with the notion of a noninformative prior.7 The upshot of our proposition is that the 
entire model comparison analysis is invariant to the initial parametrization of the reference model 
M1, as well as the parametrizations of the other models, provided that we start with a Jeffreys prior 
for M1. Thus, we extend Jeffreys invariance for a single model to the comparison of a set of models 
in this context. Next, we show that the BS-CZZ marginal likelihoods can be obtained by a 
straightforward modification of the method used by BS. We then compare the performance of the 
BS and invariant BS-CZZ priors in simulations. 

III. Calculation of Marginal Likelihoods under the BS-CZZ Prior 

Let L be the number of factors, Mkt and f, in model M and let K be the total number of 
factors, Mkt, f, and f*, in (2) and (3), where f*

 denotes the factors excluded from M. The residual 
covariance matrix of dimension L-1 for regression (2) of f on Mkt and a constant is 𝛴 and that of 
dimension K-L for regression (3) of f*on Mkt and f is 𝛴∗. Whereas the nuisance prior under BS was 
detሺ𝛴ሻି௅/ଶdetሺ𝛴∗ሻିሺ௄ି௅ାଵሻ/ଶ, the modification derived by CZZ changes the exponents in this 
expression, resulting in the prior  

𝑃(B, 𝛴) = detሺ𝛴ሻିሺଶ௅ି௄ሻ/ଶdetሺ𝛴∗ሻି௄/ଶ.           (7) 

Importantly, this prior is a product of functions of the parameters in (2) and (3). Therefore, the 
nuisance priors for (2) and (3) are independent and the resulting marginal likelihood for M is a 
product of restricted and unrestricted MLs, as in BS: 

                            ML = MLU(f | Mkt) ൈ MLR(f*| Mkt, f)           (8) 
with   

MLR(f*| Mkt, f) = ቀ ଵ

ଶగ
ቁ
ሺ಼షಽሻሺ೅షಽሻ

మ 2ሺ௄ି௅ሻ௩ଵ/ଶ𝛤ሺ௄ି௅ሻሺ𝑣1/2ሻ𝑑𝑒𝑡ሺ𝑆ோሻି௩ଵ/ଶ𝑑𝑒𝑡ሺ𝐹′𝐹ሻିሺ௄ି௅ሻ/ଶ 

         MLU(f | Mkt) =   ቀ ଵ

ଶగ
ቁ
ሺಽషభሻሺ೅షభሻ

మ 2ሺ௅ିଵሻ௩ଶ/ଶ𝛤ሺ௅ିଵሻሺ𝑣2/2ሻ𝑑𝑒𝑡ሺ𝑆ሻି௩ଶ/ଶሺ𝑀𝑘𝑡′𝑀𝑘𝑡ሻିሺ௅ିଵሻ/ଶ𝑄    

   

𝑄 ൌ  ቂ1 ൅  ௔

௔ା௞
ሺ𝑊/𝑇ሻቃ

ି௩ଶ/ଶ
ሺ1 ൅ 𝑘/𝑎ሻିሺ௅ିଵሻ, 

 

where 𝑣1 ൌ  𝑇 െ 1, 𝑣2 ൌ  𝑇– ሺ𝐾 െ 𝐿ሻ െ 1, 𝑎 ൌ 1 ൅  𝑆ℎ෢ሺ𝑀𝑘𝑡ሻଶ, and 𝑊 ൌ 𝑇𝛼ෝ′Σ෡
െ1
𝛼ෝ/𝑎,  with 

maximum likelihood estimates indicated by the hat symbol. The terms SR and S denote the residual 

                                                            
7 See https://en.wikipedia.org/wiki/Jeffreys_prior. 
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cross-product matrices for the regressions, restricted (no regression constant) and unrestricted, 
respectively, and  F = (Mkt, f).8 See Appendix B.  

IV. Simulation Evidence 

In their simulation analysis, CZZ report what they call “% correct,” the proportion of 
simulation iterations for which the null model receives the highest posterior probability. We focus 
on the sample size T = 600 with eight factors, which is close to that often used in practice.9 CZZ 
find that the BS procedure never identifies the correct model in 100 iterations for each of 33 data-
generating processes (DGPs) corresponding to different null models based on the eight factors. 
Indeed, this remains true at much larger sample sizes. In contrast, the BS-CZZ prior delivers % 
correct measures ranging from 42% to 65%. Given the consistency and invariance properties 
analyzed in the previous section, it makes sense that the new prior would perform better. But we 
now argue that these levels of performance and the extreme contrast between results for the two 
priors may be misleading. We investigate this issue from two perspectives – the first  relates to the 
limited metric employed by CZZ, and the second to potential selection bias in their choice of 
models to simulate.   

The so-called % correct measure is based on an overly simple binary summary outcome: 
either the highest probability is obtained for the null model or not, which seems contrary to the 
spirit of the Bayesian perspective, with its continuous measure of degree of belief. Note that it is 
possible for a procedure to be “correct” in this sense with only the slightest deviation from equal-
weighted model probabilities.  For example, with 128 models (all models of the eight factors, 
which include the market factor), equal probabilities would be 0.78%. A procedure that obtains a 
posterior probability of 1% for the null model, with all other model probabilities a bit lower, would 
be scored “correct” in that case. Thus, this metric provides minimal information about the relative 
performance of the procedures. This is easily remedied by keeping track of the average posterior 
probability assigned to the null model across simulations. However, while it provides useful 
information, this measure has its own limitations from an economic perspective. 

In particular, the Bayesian procedure can yield a modest probability for the null model but 
place substantial weight on models that are closely related to the null, with similar Sharpe ratios 
(expected excess return over standard deviation). For example, a related model might include 
different versions of what we call “categorical factors” in BS (such as the CMA or IA investment 
factors), or it might leave out a factor that is included in the true model but contributes little to its 
overall Sharpe ratio. Distinguishing between such a scenario and one in which the procedure tends 
to exclude economically important factors is essential.  

Of course, if all we cared about was maximizing the true Sharpe ratio, we would simply 
include all factors in the model, ignoring the desirability of parsimony. In practice, however,  
estimation error in a model’s tangency portfolio weights will degrade the portfolio performance. 
In particular, if we include factors that are redundant, these factors will receive some weight in the 
estimated tangency portfolio, whereas the true optimal weight is zero.  Ideally, a procedure would 
do a good job of figuring out when to exclude such factors from a model.10 

                                                            
8 For simplicity, we let the factor names, Mkt or f, do double duty and also refer to the time series for that factor. 
9 As in CZZ, the prior Sharpe multiple is taken to be three. 
10 Parsimony may also help obtain more efficient estimates of the cost of capital from a model by avoiding noisy 
estimation of the contribution that exposure to an irrelevant factor makes to expected returns. 
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One simple metric that reflects these considerations is the true Sharpe ratio of the estimated 
tangency portfolio for the null model. More specifically, we calculate the weighted average of the 
true Sharpe ratios for all models, with weights equal to the model posterior probabilities. Following 
Jobson and Korkie (1980), we estimate the portfolio weights for each model as the unbiased 
estimate of the inverse of the covariance matrix times the sample mean vector of the model factors, 
normalized so that the weights sum to one. The data are simulated for a null model M with factors 
𝑀𝑘𝑡 and 𝑓, and excluded factors f*, from a multivariate normal distribution with mean and 
covariance matrix taken to be the maximum likelihood estimates of (2) and (3) based on the 
original data. The Sharpe ratio under the null for a given model (which may be the null or any 
other model) is then based on the estimated portfolio weights for the model and these “true” 
moments.   

Thus, for each procedure, we report an average across null experiments and 100 simulation 
iterations for each null of a scaled value for this posterior-weighted Sharpe ratio. The scaling 
involves dividing by the maximum Sharpe ratio under the null assuming knowledge of the true 
tangency weights. Thus, the scaled values are all less than one and indicate the fraction of the 
Sharpe ratio of the true tangency portfolio that is realized using the given Bayesian procedure. We 
refer to this as the Sharpe ratio (SR) proportion. As additional descriptive information to assess 
the extent to which a procedure is parsimonious, we provide the posterior-weighted average of the 
number of model factors for each procedure and the actual number of factors in the null model. 
Again, these are averaged across simulation iterations and all nulls considered.  

We also explore the effect of restricting attention to models that contain at most one version 
of each categorical factor, a plausible a priori condition that is imposed in BS. In keeping with 
CZZ, we focus here on frequentist properties of the Bayesian methods. It would be of interest to 
evaluate the Bayesian predictive distribution of returns for each prior and calculate the certainty- 
equivalent returns, given an assumption about utility. Doing so is beyond the scope of this short 
paper but will be explored in future work.11 

Another aspect of the CZZ simulation analysis raises doubts about taking it at face value. 
In deciding which models to treat as null model DGPs, CZZ conduct a pre-screening to ensure that 
each assumed pricing factor is statistically significant. This sort of “model mining” is likely to 
impart biases in the choice of null models – in addition to large point estimates of factor means, 
Linnainmaa and Roberts (2018) suggest that unusually low volatility and low factor correlations 
will often be obtained. To determine whether this has a material impact on the conclusions derived 
from the simulations, we evaluate the performance of the Bayesian methodologies over all models 
that can be formed from the given factors. That some factor pricing results are not statistically 
significant in the original data may better reflect the ambiguities that are inherent in actual model 
comparison,12 although inevitably some characteristics of the true DGP will be under- and others 
overstated. In any event, this would provide some additional perspective on the performance of 
the two prior approaches.   

Table 1 reports various measures for the BS and BS-CZZ priors. As a warm-up exercise 
with a relatively small number of factors and no categorical factors, we start with the four factors 
of Hou, Xue, and Zhang (2015). Panel A gives the results averaged across both the eight models 
based on these factors and the 128 models based on the eight factors used by CZZ. With four 

                                                            
11 Also see related work by Pastor and Stambaugh (2000). 
12 Of course, failure to reject a null does not mean it is true, particularly given the volatility of returns. 
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factors, the performance of the two priors is similar, but the new version has a slight edge. For 
example, the SR proportions are 95.4% and 95.8%, respectively. With eight factors, the gap 
widens, although the SR proportions still differ by less than one percentage point. The % correct 
and Prob(null) measures are substantially reduced for both priors with eight factors. While the % 
correct for BS-CZZ is about five times that for BS, the more relevant Prob(null) is a little more 
than two times that for BS.  

 

Table I  

Simulations: BS and BS-CZZ prior 

The table reports simulation results under both the BS and the BS-CZZ priors. Panel A gives the results averaged 
across the eight models based on the four factors of Hou, Xue, and Zhang (2015) as well as for the 128 models 
based on the eight factors used by CZZ. Panel B reports the results for the eight-factor analysis that excludes 
models that have two versions of the same categorical factor. % correct denotes the proportion of times the 
procedure gives the null model the highest posterior model probability. P(null model) is the average model 
probability given to the null model. SR prop is the fraction of the population Sharpe ratio under the null achieved 
by the procedure described in the text that incorporates sample uncertainty in estimating tangency portfolio 
weights. Factors mean is the posterior-weighted average of the number of model factors for each prior and 
Factors null is the average number of factors in the null model. 
_________________________________________________________________________________________ 

Panel A. All Models 

 
Panel B. Models with Categorical Restriction 

        Prior             BS                BS-CZZ 

Number Factors 8 8     

% correct 17.3% 33.3%       

P(null model) 13.5% 15.5% 

SR prop 91.8% 94.1% 

Factors  mean 3.52 4.29 

Factors null 3.83 3.83 
 

 

         Prior          BS        BS-CZZ            BS         BS-CZZ 

Number Factors 4 4     8 8 

% correct 67.9% 77.0% 4.0% 20.5% 

P(null model) 51.9% 55.7% 3.2% 7.2% 

SR prop 95.4% 95.8% 94.6% 95.5% 

Factors  mean 2.77 2.79 5.28 4.97 

Factors null 2.50 2.50 4.50 4.50 
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In Panel B we turn to the eight-factor analysis, which excludes models that have two versions of 
the same categorical factor. Here, % correct for BS is about half that of BS-CZZ. However, 
consistent with our earlier discussion of the limitations of this metric,  the probabilities for the null 
model are quite close, at 13.5% versus 15.5%. In addition, while the BS-CZZ prior leads to 
inclusion of 0.8 more factors than BS on average, the SR proportion is 94.1% using this modified 
prior, as compared to 91.8% for BS. These results are far from the extreme performance of the BS 
method that CZZ report for the % correct metric and the pre-screened models. 

V. Conclusion 

The desirable nuisance-prior consistency and invariance properties that we establish for 
model comparison with the BS-CZZ prior formalize the analytical sense in which this modified 
prior is preferred to the original BS prior. However, while this suggests that the new approach will 
perform better, it is not clear what to anticipate in terms of quantitative magnitudes. In order to 
shed light on the latter question, we conduct simulation analysis. The results suggest that, while 
our various metrics consistently favor the new method, the divergence between the two prior 
approaches is far less than the CZZ simulations suggest. Not surprisingly, the ability to identify 
the “correct” model with the new prior declines considerably in the eight-factor analysis with a 
broader set of DGPs. Thus, our results may provide a more realistic indication of the “power” of 
using the BS-CZZ prior. Nonetheless, the findings with the economically oriented SR proportion 
metric are encouraging and suggest that the models favored using both prior approaches tend to be 
closely related to the true models, but with the edge going to the BS-CZZ prior.  

We can also report that if we use the BS-CZZ prior with the 10 factors explored in BS, the 
model with the highest probability when the categorical restriction is imposed is the same six-
factor model identified in BS, namely, {Mkt ROE HMLm UMD SMB IA}. Also, as in BS, the 
more timely versions of the value and profitability factors (HMLm and ROE), together with 
momentum (UMD) and the market factor, are included in the top seven models, which garner most 
of the posterior probability. Thus, the main empirical conclusions continue to hold. 
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Appendix A: Proof of the Proposition 

i) A direct application of the lemma with θ1 and θ1r in the place of θ and φ, respectively, implies 
that ML1 is unchanged. Now consider the effect of the reparametrization of M1 on the ML for M2 

with parameters θ2. Note that θ2 = g(θ1)= g(h-1(θ1r)) and so the new induced prior for θ2 is the 
induced prior based on the mapping g∘h-1 and the prior for θ1r. But the prior for θ1r is itself induced 
by the mapping h and the prior p(θ1),  

               p(h-1(θ1r))|Jh-1(θ1r))| ,          (A1) 

as in (4). Using (4) again, to get the induced prior for θ2, this time we first evaluate the prior for 
θ1r in (A1) at (g∘h-1)-1 = h∘ g-1 applied to θ2 and then multiply by the corresponding Jacobian term 
for h∘ g-1. The expression based on (A1) is  

      p(h-1(h∘ g-1 (θ2)))|det(Jh-1(h∘ g-1(θ2))) = p(g-1(θ2))|det(Jh(g-1(θ2)))-1|,      (A2) 
where we use the inverse function theorem to evaluate Jh-1.13 We still need to multiply (A2) by the 
Jacobian term |det(Jh∘ g-1(θ2))| to finish off the induced prior for θ2. By the chain rule, Jh∘ g-1(θ2) is 
Jh(g-1(θ2))Jg-1(θ2).14 Therefore, cancelling the Jh term with its inverse, we are left with p(g-1(θ2)) 
times |det(Jg-1(θ2)|. Thus, the new induced prior for θ2 is the original prior induced by p(θ1) and the 
mapping θ2 = g(θ1). The rest of i) follows.   

ii) ML1 is unchanged by assumption. As to M2, we can write θ2r = q(θ2) = q(g(θ1)). Therefore, by 
the lemma with q∘ g in the role of the mapping, ML2 is the same with p(θ1) or the induced prior 
for θ2r. Similarly, ML2 is the same with p(θ1) or the induced prior for θ2. Thus, ML2 is the same 
with either induced prior (for θ2 or for θ2r).   

iii) If we start with parameters θ1r instead of θ1, then the Jeffreys prior for θ1r will, by the usual 
invariance property, be the prior induced by p(θ1) and the mapping h. Thus, part (i) of the 
proposition applies and ii) applies in general. Q.E.D.   

Appendix B: Calculating the BS-CZZ Marginal Likelihoods 

Here, we discuss the changes to the appendices in Barillas and Shanken (2018) that are 
needed to accommodate the BS-CZZ prior. We start with the internet Appendix to BS, with N the 
number of left-hand-side factors, K the number of right-hand-side factors, and 𝛴 the residual 
covariance matrix. As in BS, we first consider the restricted case (no constant in the regressions) 
and then the unrestricted case. The nuisance prior is now assumed to be 

𝑃(B, 𝛴) = 𝑑𝑒𝑡ሺ𝛴ሻି௭/ଶ ,         (B1) 

generalizing z = N+1 in BS. The likelihood function is unchanged.   

It follows that the degrees of freedom in the inverted Wishart density that emerges in the 
marginal likelihood derivation are v = T-K-N-1 + z, which equals T-K when  z = N+1.  As a result,  

               MLR = ቀ ଵ

ଶగ
ቁ
ಿሺ೅ష಼ሻ

మ 2ே௩/ଶ𝛤ேሺ𝑣/2ሻ𝑑𝑒𝑡ሺ𝑆ோሻି௩/ଶ𝑑𝑒𝑡ሺ𝐹′𝐹ሻିே/ଶ.                            (B2) 

For the unrestricted marginal likelihood, the change in degrees of freedom from T-K to v also 
affects the calculation of Q in (B2) of Appendix B to BS. This gives 

                                                            
13 See https://en.wikipedia.org/wiki/Inverse_function_theorem.  
14 See https://en.wikipedia.org/wiki/Chain_rule.  
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                MLU =  ቀ ଵ

ଶగ
ቁ
ಿሺ೅ష಼ሻ

మ 2ே௩/ଶ𝛤ேሺ𝑣/2ሻ𝑑𝑒𝑡ሺ𝑆ሻି௩/ଶ𝑑𝑒𝑡ሺ𝐹′𝐹ሻିே/ଶ𝑄,                    (B3)  

  

𝑄 ൌ  ൤1 ൅  
𝑎

𝑎 ൅ 𝑘
൬
𝑊
𝑇
൰൨
ି௩/ଶ

൬1 ൅
𝑘
𝑎
൰
ିே/ଶ

, 

 

where  v = T-K-(N+1)+z, 𝑎 ൌ 1 ൅  𝑆ℎ෢ሺ𝑀𝑘𝑡ሻଶ, and 𝑊 ൌ 𝑇𝛼ෝ′Σ෡
െ1
𝛼ෝ/𝑎.  

 The likelihood MLR in (8) is now obtained by letting K-L play the role of N and L the role 
of K in (B2) above. The prior input z is chosen to give the exponent for 𝛴∗ in (7), that is, z = K. 
The corresponding v is T-L-(K-L+1)+z = T-K-1+z. = T-1. The likelihood MLU is obtained by 
substituting L-1 for N, 1 for K and Mkt for F in (B3) above. Then z is chosen to give the exponent 
for 𝛴 in (7), i.e., z = 2L-K. The corresponding v is T-1-(L-1+1)+z = T-1+L-K. We have confirmed 
that (8) gives identical MLs to those obtained using the CZZ method. 
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