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ABSTRACT

Using long-horizon beta estimates, Lettau, Ludvigson, and Ma (2019) document striking pricing

ability and cross-sectional explanatory power for a capital share growth factor across major asset

classes. We revisit their findings and show that the statistical significance of their results is likely

due to the interaction between the lack of identification of the proposed single-factor model and

the persistence induced by overlapping the data to obtain long-horizon beta estimates. This casts

doubts on whether capital share betas are truly priced in the cross-section of expected returns and

calls for alternative methods to validate the existence of capital share risk in U.S. asset prices.
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Lettau, Ludvigson, and Ma (2019, LLM) provide evidence that the capital share growth of aggregate

income carries a positive and statistically significant risk premium for a wide range of assets. The

main results are based on long-horizon betas that are obtained by regressing H-period compounded

test asset returns on the H-period growth of the capital share factor. The authors argue that this

H-period aggregation can mitigate the effect of measurement error in the data as well as the impact

of model misspecification arising from omission of additional risk factors. The estimated H-horizon

betas are then shown to be useful for explaining one-period expected return premia. Given the non-

standard setup with H-period test asset returns (and factors) in the first pass but one-period returns

in the second pass, statistical inference on the risk premia parameters was performed using a bootstrap

method.

Table I reproduces LLM’s results for equity and nonequity portfolio returns. In addition to horizons

H = 4 and 8, we report results for H = 1. The table presents the estimate for the risk premium

parameter, λ̂H , (multiplied by 100) for the capital share factor, the corresponding 95% bootstrap

confidence interval based on 10,000 replications (in square brackets below the estimate), and the

cross-sectional adjusted R2 (at the bottom in curly brackets).1

Table I about here

Several remarks on the results in Table I are in order. While the confidence intervals are relatively

wide for H = 1, they tighten substantially for H = 4 and even further for H = 8. At these longer

horizons, the risk premium is positive and highly significant at the 5% nominal level. Similarly, for

equity portfolios, the cross-sectional adjusted R2 increases from zero and negative values to values

as high as 80% to 86%, suggesting that a single nontraded factor can explain a large fraction of the

cross-sectional variation in equity portfolio returns.2 The pricing ability of LLM’s single-factor model

is not limited to equity portfolios and it appears to extend to nonequity asset classes. The high

1Slight differences in the bootstrap confidence bounds between our Table I and LLM’s Table III arise from the

different number of bootstrap replications and the inherent randomness embedded in the resampling of the data.

2While LLM (p. 1757) acknowledge that this does not hold for industry portfolios, FX and commodity returns, in

Appendix B (Table B.I) we show that the positive and statistically significant risk premium on the capital share factor

is not robust across a wider set of equity and nonequity portfolio returns. The only commonality across all of these

portfolios is the identification failure that we discuss below.
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cross-sectional regression R2s are even more remarkable for these nonequity test assets with values for

H = 4 of 0.86, 0.79, and 0.95 for bonds, sovereign bonds, and options, respectively.3 Overall, these

results seem to support – at least for the specific equity and nonequity portfolio returns considered in

Table I – LLM’s argument that aggregating over H periods may sharpen the signal in the data and

produce more informative inference. We return to these issues later in this note.

This evidence raises two questions. First, is the capital share factor unique in producing this

highly significant risk premium? If the answer to this question is affirmative, this would elevate

the status of the capital share factor in enhancing our understanding about the underlying drivers

of the cross-section of asset returns. As a reminder, the empirical asset pricing literature has had

difficulty identifying priced nontraded macroeconomic factors that pass statistical scrutiny and robust

evaluation. Second, is the proposed multi-period estimation and inference approach indeed a more

informative method for uncovering priced factors in the cross-section of asset returns? Again, an

affirmative answer to this question could expand our tools for characterizing and spanning the factor

space of asset returns. We provide evidence that sheds light on these questions.

I. Is the Capital Share Factor Unique in Producing Highly
Significant Risk Premia Estimates?

To address this question, it is instructive to subject other nontraded factors to the same estimation

and inference procedure that is used in LLM and Table I. In Table II below, we report results for four

series from the FRED quarterly database for macroeconomic research: new private housing units

authorized by building permits in the Northeast, Midwest, South, and West Census regions (denoted

by PerN, PerMW, PerS, and PerW, respectively).4 In general, the level of these series does not share

3For context, the number of time-series observations used for computing these R2s is 143 (with 20 bonds), 60 (with

six sovereign bonds), and 98 (with 18 options).

4The results reported below hold for all 11 of the nonprice series from the housing group, as well as other macroe-

conomic variables, in the FRED quarterly database for macroeconomic research. All of these series are available at

https://research.stlouisfed.org/econ/mccracken/fred-databases/. To avoid data-mining and conserve space, we

focus on the regional building permit series. The mnemonics for the four regional permit variables are PERMITNE,

PERMITMW, PERMITS, and PERMITW, while those for the unreported housing variables are HOUST, HOUST5F,

PERMIT, HOUSTMW, HOUSTNE, HOUSTNS, and HOUSTNW.
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the business cycle or lower-frequency dynamics of the capital share factor and their growth rates are

only weakly correlated with the growth rate of the capital share factor, with correlations ranging from

8% to 11%. The correlations among the regional housing variables are also not extremely high, with

the correlation between the growth rates of building permits in the Northeast and West, for example,

being 50.6%. Importantly, the regional nature of the building permits undermines the theoretical

arguments that underlie the usefulness of these series as common risk factors in asset pricing models.5

We construct the housing factors exactly the same way the capital share factor is constructed in

LLM (by summing up the log differences over H periods and exponentiating) and scale them to have

the same standard deviation as the capital share factor to facilitate comparisons of the risk premium

estimate across factors. We apply LLM’s bootstrap method to these four nontraded factors in exactly

the same way as in Table I. The results for H = 8 (two-pass risk premium estimates, 95% bootstrap

confidence intervals constructed using LLM’s method, and cross-sectional adjusted R2s) are presented

in Table II.

Table II about here

The results are rather surprising. All of these variables appear to possess the same pricing ability

as the capital share factor, with positive, highly significant risk premia and substantial explanatory

power. For example, for “All Equities,” the 95% confidence interval for the risk premium on building

permits in the Northeast is [0.69, 0.89] with a cross-sectional adjusted R2, denoted by R̄2, of 0.73.

For options, the R̄2s for the Midwest, South, and West regions are 0.99, 0.98, and 0.99, respectively.

Similar results, with a positive and significant risk premium, also obtain for H = 4.6 We should note

that this evidence does not invalidate the capital share as a genuine priced risk factor. The evidence in

Table II simply demonstrates that, provided LLM’s bootstrap method is theoretically valid, there are

many nontraded priced factors. However, given the limited sample size, the tight confidence intervals

5Of course, this does not rule out the possibility that housing, and its empirical proxies, is a priced risk factor (e.g.,

Piazzesi, Schneider, and Tuzel (2007)).

6For robustness, we explored various factors from the FRED database and other sources (the results are not reported

here to conserve space) and found that many of them exhibit similar characteristics when the inference is conducted with

H-period returns and factors using LLM’s bootstrap method.
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and extremely high R̄2s (for asset classes known to be difficult to price) raise some doubts about the

validity of the statistical procedure.

II. Is the Multi-Period Estimation and Inference Approach a More
Informative Method for Uncovering Priced Factors in the

Cross-Section of Asset Returns?

The evidence presented so far runs against the consensus in the empirical asset pricing literature

that only a few nontraded factors are priced. Accordingly, we now turn to the second question that

we raised above and scrutinize the implicit assumptions that underpin the validity of the statistical

inference procedure that produced the results in LLM and Tables I and II. More specifically, the validity

of the statistical inference depends critically on the full column rank of the matrix X = [1N , βH ],

where βH = [β1,H , . . . , βN,H ]′ is the H-period vector of risk exposures on the N test assets and 1N

denotes an N -vector of ones. This identification condition follows immediately from defining (in the

ordinary least squares (OLS) framework) the zero-beta rate (λ0) and risk premium (λH) parameters as

λH ≡ [λ0, λH ]′ = (X′X)−1X′µR, where µR is the N -vector of expected one-period test asset returns.

In single-factor models such as the capital share factor model, rank failure of X can arise because

the risk factor’s variation does not induce changes in test asset returns (Pukthuanthong, Roll, and

Subrahmanyam (2019)) or because βH is a constant vector.7

Before we subject the identification condition to formal statistical testing, we want to highlight

the constrained nature of the problem in recovering information about the true risk premia. In the

one-period setting, a large cross-section N of test assets relative to the time-series observations T

can severely impair the accuracy of standard inference procedures. Since in LLM’s setting the two-

pass procedure can be rewritten as a moment condition problem with 3N moment conditions, the

effective number of time-series observations per moment condition (test asset) could be quite limited

for large N . As a reminder, for “All Equities” in Table I, N = 85 and T = 200 for H = 1. For

nonequity asset classes, N is an even larger fraction of T, with the most extreme case being CDS

(N = 20, T = 38). The H-period setting affects the quality of inference along two dimensions. First,

7In multifactor models, linear combinations of the columns of βH represent another potential source of identification

failure.
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H-period data overlapping reduces the effective number of time-series observations as it trims the

independent information in the sample. (See Richardson and Stock (1989), Valkanov (2003).) Second,

the overlapping structure induces strong persistence in the series that may obscure true relationships

and lead to spurious comovements. To be clear, averaging can potentially reduce the noise and sharpen

the low-frequency signal, but it should be done without overlapping data for which identification-robust

inference (Kleibergen and Zhan (2020)) is readily applicable.

Given the small T, large N/T, and possibly large H/T in LLM’s analysis, standard asymptotic

rank tests for testing the reduced rank of X, H0 : rank(X) = 1, would provide an extremely inaccurate

approximation of the sampling distributions of these statistics. Simulation results for H = 4 and 8

(reported in Appendix A) show that under H0, the asymptotic rank tests exhibit empirical rejection

rates close to 100% at the 5% nominal level, that is, the tests suggest that the model is well identified

when the null of a reduced rank is true. Instead, in Appendix A we propose a new bootstrap-based

rank test that is characterized by excellent size and power properties. Table III reports the results

(p-values) from the bootstrap rank test for single-factor models based on the capital share factor and

the four regional building permits that we explored earlier. For comparison, we also include one traded

factor – the popular small-minus-big (SMB) factor – that is known to have a nontrivial correlation

with the equity portfolio returns.8 This traded factor serves as a natural benchmark in evaluating the

identification properties of the model.

Table III about here

We start with the capital share (KS) factor. Based on a 5% significance level, we can never reject

the null hypothesis of a reduced rank. (In fact, this is true for all H = 1, . . . , 8.)9 This preliminary

8In unreported results, the risk premium estimates for SMB are also statistically significant with 95% confidence

intervals, based on LLM’s bootstrap, being somewhat wider and not exhibiting as much tightening with H as those for

the nontraded factors in Tables I and II. It should be noted that the block bootstrap in LLM does not properly mimic

the persistence in H-period returns and factors, which suppresses the true sampling uncertainty and results in artificially

tighter confidence intervals.

9While the identification-robust method of Kleibergen and Zhan (2020) cannot be readily applied to the H-period

setup, we used it to construct confidence sets for the capital share factor at H = 1. These confidence intervals are either

unbounded, disjoint, or very wide, suggesting lack of identification. In an earlier version of this note, we proposed a

5



test has crucial implications for the subsequent analysis on the risk premium parameter λH , including

inconsistency of the OLS estimator of λH , highly nonstandard large-sample behavior, and invalidity

of the bootstrap method as implemented in LLM. The reader may be skeptical that the rank test has

low power in rejecting the null, so that the resulting inference is overly conservative. These concerns

are valid as the power of the test depends on the distance from the null (for example, how far β̂H

is from a vector of zeros or ones), which is a function of the effective number of observations. As

argued above, large H and N relative to T reduce the amount of independent information in the

sample, which is accompanied by elevated sample uncertainty that could overwhelm seemingly large

and dispersed estimates of β̂H . Following a request by a referee, we evaluated the power of the rank

test in simulations, calibrated to the application setup, with true values for βH set to their sample

estimates for H = 8. Despite the small sample size, the empirical power of the bootstrap rank test in

this case is close to 100% at the 5% nominal level for all equity portfolios. Similar results – indicating

that the power of the bootstrap rank test is quite high in empirically relevant settings – obtain using an

alternative simulation design reported in Appendix A. Having said that, it is important to highlight the

extremely limited information in the sample, especially for nonequity asset classes, that is insufficient

to identify the parameters of interest. So it could well be the case that the capital share factor is a

genuine risk factor but the limited sample information does not allow the researcher to identify the

risk premia and possible pricing ability of the factor. Nevertheless, the empirical failure of the rank

test to reject the null of reduced rank implies that standard methods (asymptotic or bootstrap) would

lead to unwarranted conclusions and false inference. This is the main takeaway of our note.10

nonparametric, identification-robust bootstrap method for the H-period setting that did not lend empirical support to

LLM’s claim that capital share growth is a priced risk factor.

10It is important to stress that significance tests on individual betas or beta spreads (as in Table VII in LLM), while

informative for some purposes, would not address the issue of identification failure. Statistical significance of individual

betas or spreads – as is the case in this application – is consistent with the possibility of identification failure, that is,

that all betas are jointly statistically indistinguishable from a vector of zeros. This occurs when the betas across the

different test assets are highly correlated, as reflected in the large off-diagonal elements of the covariance matrix of β̂H .

An informal diagnostic to gauge how far the covariance matrix of β̂H , Vβ̂H
, is from a diagonal matrix with diag(Vβ̂H

)

on the main diagonal, which is used for the individual tests, is the ratio between the largest eigenvalue of these two

matrices. With one being the value of this ratio when the two matrices have identical largest eigenvalues, the ratio for

the 25 Size/BM equity portfolios ranges between 7.0 and 9.4 for H = 1, . . . , 8. This suggests that significance tests on
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The rank test results for the regional housing factors are largely similar, indicating that their risk

premia cannot be identified from sample information, and the high statistical significance in Table II

is due to an inadequate statistical methodology. While there are some borderline cases (for example,

PerW for sovereign bonds),11 the large p-values suggest that the rank failure of X – for whatever

reason, irrelevance of the factor or lack of sufficient information in the sample – invalidates the high

statistical significance reported in Table II. With this in mind, there may be other methods to evaluate

the usefulness and pricing ability of a particular factor. We discuss alternative approaches in the next

section.

Finally, we observe in Table III that based on a one-factor model with a traditional traded factor

such as SMB, we can convincingly reject the null hypothesis of a reduced rank for the equity portfolios.

For nonequity asset classes, the results for SMB in Table III suggest that the rank condition can be

compromised even for traded factors if these factors are only weakly correlated with the test asset

returns or the sample size is small. The reduced effective number of observations in the H-period two-

pass methodology further inflates the sampling uncertainty, and the failure of the full rank condition

becomes more pronounced, at larger horizons H. Some interesting results for the market factor (not

reported here but available upon request) shed further light on the potential statistical problems

underlying the H-period two-pass methodology. Despite its high correlation with equity returns, the

rank condition for the H-period CAPM also appears to be violated – not because βH = 0N , but

because β̂H cannot be statistically distinguished from a column of ones given the heightened sampling

uncertainty for large overlapping horizons H. Thus, overlapping the data may not necessarily lead to

a higher signal-to-noise ratio and may, in fact, distort the standard inference procedures.

the individual betas or beta spreads would not be appropriate for evaluating the validity of the identification condition.

Clearly, individual tests based on beta spreads would deliver qualitatively similar conclusions as those of the joint test if

the off-diagonal elements of the covariance matrix of β̂H were small. This is not the case for all asset classes considered

in this application.

11Note that Table III reports 56 rank tests for the four housing factors, and it is natural to observe p-values below

the 0.1 or 0.05 thresholds.
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III. Alternative Empirical Approaches

If the risk premium parameter is poorly identified in the two-pass regression framework, are there

alternative empirical approaches that would prove more informative about the pricing ability of LLM’s

candidate risk factor? While the failure of the identification condition suggests that the sample does

not contain sufficient information to estimate consistently the parameter of interest, it is possible that

alternative methods that exploit other characteristics of the data (time variability of the betas, out-

of-sample evaluation, etc.) may be better suited for the H-period setup. It is important, however, to

recognize that a fair comparison of various competing methods requires that these procedures account

for all sources of statistical uncertainty in the construction of the factor’s risk premium.

One such method, suggested to us by a referee, is based on sorting test asset portfolio returns

on the H-period, rolling-window estimates of the betas for the capital factor. The cumulative (out-

of-sample) return on a long/short portfolio obtained from high/low capital share betas would then

inform the researcher if capital share is a priced risk factor or not. Since this approach can be cast

in a nonparametric estimation setting (see Cattaneo et al. (2020)), the statistical evaluation of the

cumulative return should be adjusted for sampling uncertainty in the portfolio sorting, estimation

uncertainty in the betas used for sorting, the short time span used for out-of-sample evaluation,

possible serial correlation, etc. A well-designed bootstrap method that incorporates all of these sources

of uncertainty can produce a sampling distribution for evaluating the statistical significance of the

cumulative return.

Second, if other risk factors (Fama-French factors, for example) load significantly on the capital

share factor, it is prudent to conduct the portfolio sorting on the capital share betas by controlling

for these factors in the long-horizon beta regressions. This will ensure that the capital share factor

exhibits genuine pricing ability, in addition to that contained in the traditional risk factors. The

inference method for the first approach can be readily modified to account for the additional controls.

Finally, a third evaluation approach can be based on the out-of-sample Sharpe ratio of a mimicking

portfolio for the capital share factor, which employs the test assets and other traded factors.

Given the large number of tuning choices in these alternative methods (size of the rolling window,

determination of the optimal number of portfolios, test/basis asset returns used in the formation of
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the mimicking portfolio, sample and frequency of the data, etc.), it is difficult to argue with a high

degree of confidence for or against the pricing ability of a particular factor. Nevertheless, we applied

these alternative methods to the value-, profitability-, and investment-sorted portfolios with H = 8

and betas computed over a five-year rolling window. The results (not reported here to conserve space)

can be summarized as follows. The cumulative return for the first method (single-factor model with

capital share as the only risk factor) is relatively large and positive in the evaluation period but its

sampling distribution (accounting for the different sources of uncertainty) is very wide and does not

suggest statistical significance. The second method, which controls for the four Fama-French factors

(size, value, operating profitability, and investment), produces an essentially flat and statistically

insignificant cumulative return. It is important to stress that the pricing ability of the capital share

factor further deteriorates when considering shorter compounding horizons such as H = 1 and H = 4.

The third method also produces an out-of-sample Sharpe ratio for the mimicking portfolio of the

capital share factor that is essentially zero and statistically different and dominated by the market

portfolio. While these results do not lend support to the capital share as a priced risk factor in the

cross-section of these equity returns, they do not rule out the possibility that other sorting choices,

test assets, or mimicking portfolios may provide more favorable evidence for the pricing ability of the

capital share factor.

IV. Concluding Remarks

In summary, the results in this note highlight some problems arising from identification failure and

H-period compounding of the data. We present evidence that questions the robustness and reliability

of LLM’s findings of high statistical significance and explanatory power for a capital share factor. The

validity of these results relies critically on the identification (full-rank) condition in their H-period

model. We find no empirical evidence that this condition holds in the sample. We also demonstrate

that LLM’s inference method produces pervasive evidence of high statistical significance and explana-

tory power for other nontraded factors that also fail the full-rank condition. This identification failure

is more subtle than in the standard setup as it is partially obscured by the persistence induced by

H-period compounding of the data. This suggests the need for extra caution in conducting inference in

a multi-period setting as the proposed statistical method should account for the possibility of spurious
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commonality arising from overlapping data over long horizons. Performing the analysis at a lower

frequency (without overlapping data) or using alternative empirical methods may be better suited for

robust evaluation of nontraded macroeconomic factors.
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Appendix A. Bootstrap Rank Test

The identification condition for the second-pass risk premium in single-factor models with a zero-

beta rate is that the N×2 matrix X = [1N , βH ] is of full column rank. Let IN−1 be an (N−1)×(N−1)

identity matrix and P denote an N × (N − 1) orthonormal matrix (P′P = IN−1) whose columns are

orthogonal to 1N such that

PP′ = IN − 1N (1′N1N )−11′N . (A1)

Using this notation, the null of reduced column rank, H0 : rank(X) = 1, can be expressed as H0 :

P′βH = 0N−1, where 0N−1 is an (N − 1)-vector of zeros. A simple Wald test of H0 : P′βH = 0N−1

can be performed using the test statistic

WT = (T −H)β̂
′
HPV̂−1

P′β̂H

P′β̂H , (A2)

where β̂H is the OLS estimate of βH (from a regression of H-period test asset excess returns Re
t+H,t

on a constant and the H-period factor ft+H,t) and V̂P′β̂H
is a consistent estimator of the long-run

covariance matrix

VP′β̂H
=
∑∞

j=−∞
E
[
mt,Hm

′
t+j,H

]
, (A3)

with mt,H =
(ft+H,t−µfH )

σ2
fH

P′εt+H,t, µfH = E [ft+H,t] , and σ2
fH

= Var [ft+H,t] . In the numerical im-

plementation of the test, we use the Newey and West (1987) heteroskedasticity and autocorrelation

consistent (HAC) estimator with a bandwidth set equal to H.

While under some regularity conditions the testWT is asymptotically chi-squared distributed with

N−1 degrees of freedom, this approximation will likely provide a very poor approximation of the finite-

sample distribution for the reasons discussed in this note: small T and large N and H (both relative

to T ) that further reduce the effective number of time-series observations.12 Before describing the

bootstrap procedure for approximating the finite-sample distribution of the test WT , it is convenient

12The H-period overlapping data also induces strong serial correlation of a telescoping sum pattern. It is widely

documented that the Newey and West (1987) HAC estimator is not well suited to capture this type of serial dependence.

We also experimented with the Hansen and Hodrick (1980) HAC estimator, but this estimator is not guaranteed to be

positive semi-definite. This is the case in LLM’s empirical application given the large N and the relatively small T.
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to pre-multiply the first-pass regression model by P′, which yields

P′Re
t+H,t = P′α+ P′βHft+H,t + P′εt+H,t. (A4)

This model also facilitates imposing the null hypothesis of reduced rank H0 : P′βH = 0N−1 in the

bootstrap sample. Under the null, we have

P′Re
t+H,t = µP′Re + P′εt+H,t, (A5)

where µP′Re = E
[
P′Re

t+H,t

]
. Let P′ε̂t+H,t denote the OLS estimate of P′εt+H,t and µ̂P′Re be

the sample estimate of µP′Re . Stack the H-period factor ft+H,t and the (N − 1)-vector R̃e
t+H,t =

µ̂P′Re + P′ε̂t+H,t in a (T −H)×N matrix Z with rows zt = [ft+H,t, (R̃
e
t+H,t)

′] for t = 1, . . . , T −H.

The bootstrap samples are constructed by drawing with replacement blocks of M (1 ≤ M <

T − H) observations from matrix Z, denoted by Z∗ = {(z∗1, z∗2, . . . , z∗M ), (z∗M+1, z
∗
M+2, . . . , z

∗
2M ), . . . ,

(z∗T−M−H , z
∗
T−M+1−H , . . . , z

∗
T−H)}, with z∗t = [f∗t+H,t, (R̃

e∗
t+H,t)

′] being the resampled analog of the

original data zt = [ft+H,t, (R̃
e
t+H,t)

′]. Using the bootstrap sample, we obtain the estimated quantities

P′β̂
∗
H and P′ε̂∗t+H,t by running an OLS regression of R̃e∗

t+H,t on f∗t+H,t (and a constant). Then, the

bootstrap analog of WT for the j-th bootstrap sample is constructed as

W∗T,j = (T −H)β̂
∗′
HPV̂∗−1

P′β̂
∗
H

P′β̂
∗
H , (A6)

where V̂∗
P′β̂

∗
H

denotes the HAC estimator of VP′β̂H
, with the bootstrap sample analog of mt,H being

m̂∗t,H =
(f∗t+H,t−µ̂

∗
f∗
H

)

σ̂∗2
f∗
H

P′ε̂∗t+H,t, µ̂
∗
f∗H

= 1
T−H

∑T−H
t=1 f∗t+H,t, and σ̂∗2f∗H

= 1
T−H

∑T−H
t=1 (f∗t+H,t−µ̂

∗
f∗H

)2.WithB

bootstrap replications, the bootstrap p-value of the rank test is computed as 1
B

∑B
j=1 I

{
W∗T,j >WT

}
,

where I{·} is the indicator function.

A similar bootstrap test can be constructed for the null H0 : βH = 0N but without pre-multiplying

by the matrix P′. While the two tests yield almost identical results for models with a single spurious

factor, differences emerge in the presence of useful factors in single- or multi-factor models. For

example, since the identification condition is concerned with the matrix X = [1N , βH ], the rank of X

can be compromised if βH = c for some c 6= 0N . Furthermore, in multi-factor models, βH is a matrix
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and rank failure can also occur if two or more of its columns are linear combinations of each other

(even if, individually, they are different than a zero vector, that is, the factors are not spurious).

Below we report the results from a Monte Carlo simulation study that evaluates the size and

power properties of the asymptotic and bootstrap versions of the rank test of X = [1N , βH ]. To

assess power, we simulate one-period data jointly for the SMB factor and the test portfolio returns,

using the sample means and sample covariance matrix. For the size of the test, we impose the null

of rank failure by setting the covariance between the factor and the test asset returns equal to a zero

vector. Since there is evidence of non-Gaussianity in the data, SMB and portfolio returns are generated

from a multivariate-t distribution with six degrees of freedom. The rank test is then performed on

the betas estimated from H-period data by compounding returns as a moving product over a sliding

window of length H. For the bootstrap version of the test, we impose the null of rank deficiency on

the compounded returns (as explained above), and we use the block bootstrap to compute the rank

test statistic.13

We consider two sample sizes: T = 202, the (before-transformation) sample size in LLM, and

T = 1, 000, a sufficiently large sample size to determine how quickly the empirical power of the test

improves as T increases. The number of Monte Carlo runs is set to 10,000. The chosen horizons

are H = 1, 4, and 8, and the number of bootstrap replications for the bootstrap rank test is set to

B = 399. Finally, the test portfolios are the 10 long-run reversal portfolios (N = 10) and the 25 size

and book-to-market sorted portfolios (N = 25), respectively.

Table A.I presents our simulations results, where Panels A and B report results for the size and

power of the asymptotic rank test (which is robust to serial correlation and conditional heteroskedas-

ticity) while Panels C and D report results for the size and power of the bootstrap test.

Table A.I about here

The size distortions of the asymptotic rank test for nonoverlapping data (H = 1) arise from the

large dimension of N relative to T but tend to vanish as T grows. For the overlapping setting (H > 1),

however, the size distortions of the asymptotic rank test are massive and remain large for T = 1, 000.

13We employ a block size of M = H. Moreover, we use the Newey and West (1987) HAC estimator with a bandwidth

set to H in the computation of the asymptotic and bootstrap versions of the tests (see also footnote 11).
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For example, for N = 25, T = 202, and H = 4, 8, the asymptotic rank test (Panel A) leads to

empirical rejection rates close to 100% at a 5% nominal level. Even for T = 1, 000, these rejection

rates exceed 65% and 86% for H = 4 and H = 8, respectively. These results highlight the hidden

challenges of using standard inference with overlapping data. These tests would suggest, erroneously,

that a model with a spurious factor is well identified. Certainly, a smaller N and a larger T help,

but the overrejections of the asymptotic versions of these tests are still substantial, as emphasized in

Panel A for the 10 long-run reversal portfolios. Panel C displays a dramatic size improvement when

considering the bootstrap implementation of the rank test. The size properties of the test are now very

good regardless of the chosen overlapping horizon H. The bootstrap rank test slightly underrejects

for T = 202, but its empirical size approaches the nominal level as T increases.14 Importantly, the

empirical power of the test is high even for the sample size in the empirical analysis. While the power

of the test deteriorates for H = 8 and T = 202, this is to be expected because, as argued in the main

text, the number of effective independent observations decreases with the overlapping horizon H. As

T increases, the empirical power improves materially. Another notable feature is that the power of

the rank test improves as, for fixed H and T , the number of test assets N increases. In summary, this

simulation evidence suggests that the bootstrap-based identification test used in this note should be

fairly reliable for the sample sizes and compounding horizons considered by LLM.

14We attribute the slight size distortions of the bootstrap to several sources. First, our choice of block size, M = H,

may be partly responsible for this. A more judicious or data-driven selection of M would likely eliminate these distortions.

Second, as argued earlier, Newey-West estimator does not provide a reliable approximation of the asymptotic variance for

H-period overlapping. Third, the choice of the multivariate-t distribution with six degrees of freedom may be too extreme

as some higher-moment regularity conditions, required for asymptotic validity, may not be satisfied. Nevertheless, it is

instructive to assess the robustness of the proposed bootstrap method to possible deviations from standard regularity

conditions.
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Appendix B. Additional Empirical Evidence

This appendix presents results for additional test assets that were not explicitly considered by

LLM. The test asset portfolios are, in order, the 25 size and momentum (Size/MOM), 10 short term

reversal (ShREV), 17 industry (Industries), and 10 dividend yield (DIVYLD) sorted portfolios from

Kenneth French’s website. We also consider these equity portfolios together in the “All Equities”

column. The additional test asset portfolios are the 23 commodity (Commodities) and 12 foreign

exchange (FX) portfolios from He, Kelly, and Manela (2017). The sample period is the same as

in LLM (1963:Q3 to 2013:Q4) except for Commodities (1986:Q4 to 2012:Q4) and FX (1976:Q2 to

2009:Q4). For each set of test assets, we run a battery of one-factor models based either on capital

share or on individual regional permits as pricing factors. For each one-factor model and compounding

horizon H = 4 and 8, Table B.I reports LLM’s bootstrap confidence interval for the risk premium

estimate (in square brackets), the cross-sectional adjusted R2 (R̄2, in curly brackets), and the p-value of

the bootstrap rank test (in round brackets). The number of bootstrap replications for the calculation

of the confidence intervals and the p-values of the bootstrap rank test is 10,000.

Table B.I about here

Several observations emerge from the table. First, the pricing ability of the capital share factor

vanishes when considering these additional asset classes. The capital share risk premium estimates are

often negative (in seven cases out of 14) and the overall magnitude of these estimates is much smaller

than that documented by LLM. Second, the confidence intervals for the KS factor are generally wide

and contain zero in 11 out of 14 cases. The three cases in which the confidence intervals do not contain

zero are those in which the risk premium estimates are negative. Moreover, the KS one-factor model

does not violate the full-rank condition in only three cases in which the risk premium estimates are

statistically insignificant. Third, the capital share model cross-sectional adjusted R2s are small and

negative in eight cases out of 14. Finally, when considering one-factor models with individual regional

permits and LLM’s bootstrap method, the risk premium estimates are often statistically significant.

The overall picture that emerges from this analysis is that the results documented by LLM are not

robust across test assets returns and are driven by an erroneous identification scheme.
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Table I
Two-Pass Cross-Sectional Regressions with Capital Share

The table presents the two-pass risk premium estimate in one-factor models with capital share as the only pricing
factor. The test asset portfolios are, in order, the 25 size and book-to-market (Size/BM), 10 long-term reversal
(REV), 25 size and investment (Size/INV), and 25 size and operating profitability (Size/OP) sorted portfolios from
Kenneth French’s website. LLM also consider these equity portfolios together in the “All Equities” column. The
additional test asset portfolios are the 20 corporate and government bond (Bonds), six sovereign bond (Sov. Bonds),
and 18 option (Options) portfolios from He, Kelly, and Manela (2017). The sample period is 1963:Q3 to 2013:Q4
except for Bonds (1975:Q1 to 2011:Q4), Sov. Bonds (1995:Q1 to 2011:Q1), and Options (1986:Q2 to 2011:Q4). For
each model and compounding horizon (H = 1, 4, and 8), we report LLM’s confidence interval for the risk premium
estimate (in square brackets) and the cross-sectional adjusted R2 (R̄2, in curly brackets). The number of bootstrap
replications for the calculation of the confidence intervals is 10,000.

Size/BM REV Size/INV Size/OP All Equities Bonds Sov. Bonds Options

H = 1 0.53
[−0.49, 1.51]

{R̄2=−0.02}

0.40
[−0.92, 1.78]

{R̄2=−0.11}

−0.91
[−2.06, 0.19]

{R̄2=0.00}

1.36
[0.60, 2.09]

{R̄2=0.21}

0.58
[0.08, 1.08]

{R̄2=0.02}

1.17
[0.07, 2.21]

{R̄2=0.18}

2.69
[2.15, 3.24]

{R̄2=0.91}

5.59
[4.86, 6.26]

{R̄2=0.96}
H = 4 0.74

[0.42,1.08]

{R̄2=0.51}

0.63
[0.33, 0.92]

{R̄2=0.70}

0.61
[0.27, 0.96]

{R̄2=0.39}

0.70
[0.53, 0.87]

{R̄2=0.78}

0.68
[0.53, 0.83]

{R̄2=0.58}

0.82
[0.59, 1.03]

{R̄2=0.86}

1.41
[0.88, 1.96]

{R̄2=0.79}

1.87
[1.41, 2.32]

{R̄2=0.95}
H = 8 0.68

[0.52, 0.83]

{R̄2=0.80}

0.41
[0.30, 0.50]

{R̄2=0.86}

0.55
[0.37, 0.74]

{R̄2=0.62}

0.57
[0.42, 0.71]

{R̄2=0.76}

0.57
[0.49, 0.66]

{R̄2=0.74}

0.57
[0.40, 0.71]

{R̄2=0.89}

1.18
[0.17, 2.19]

{R̄2=0.32}

1.80
[0.82, 2.78]

{R̄2=0.81}
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Table II
Two-Pass Cross-Sectional Regressions with Building Permits

The table presents the two-pass risk premium estimates in one-factor models with building permits in the North
East (PerNE), Mid West (PerMW), South (PerS), and West (PerW) Census regions as pricing factors. The test
asset portfolios are, in order, the 25 size and book-to-market (Size/BM), 10 long-term reversal (REV), 25 size and
investment (Size/INV), and 25 size and operating profitability (Size/OP) sorted portfolios from Kenneth French’s
website. LLM also consider these equity portfolios together in the “All Equities” column. The additional test
asset portfolios are the 20 corporate and government bond (Bonds), six sovereign bond (Sov. Bonds), and 18 option
(Options) portfolios from He, Kelly, and Manela (2017). The sample period is 1963:Q3 to 2013:Q4 except for Bonds
(1975:Q1 to 2011:Q4), Sov. Bonds (1995:Q1 to 2011:Q1), and Options (1986:Q2 to 2011:Q4). For each model and
a compounding horizon of H = 8, we report LLM’s confidence interval for the risk premium estimate (in square
brackets) and the cross-sectional adjusted R2 (R̄2, in curly brackets). The number of bootstrap replications for the
calculation of the confidence intervals is 10,000.

Size/BM REV Size/INV Size/OP All Equities Bonds Sov. Bonds Options

PerNE 0.77
[0.62, 0.90]

{R̄2=0.83}

1.13
[0.72, 1.49]

{R̄2=0.59}

0.86
[0.66, 1.04]

{R̄2=0.74}

0.81
[0.56, 1.04]

{R̄2=0.60}

0.79
[0.69, 0.89]

{R̄2=0.73}

0.49
[0.38, 0.61]

{R̄2=0.76}

0.61
[0.29, 0.95]

{R̄2=0.66}

3.04
[2.39, 3.76]

{R̄2=0.86}
PerMW 0.84

[0.65, 1.01]

{R̄2=0.75}

0.85
[0.63, 1.05]

{R̄2=0.80}

0.85
[0.63, 1.05]

{R̄2=0.69}

0.80
[0.51, 1.09]

{R̄2=0.48}

0.82
[0.70, 0.93]

{R̄2=0.68}

0.42
[0.29, 0.56]

{R̄2=0.64}

1.31
[0.84, 1.78]

{R̄2=0.80}

1.46
[1.38, 1.54]

{R̄2=0.99}
PerS 0.70

[0.44, 0.93]

{R̄2=0.51}

1.03
[0.87, 1.19]

{R̄2=0.89}

0.64
[0.40, 0.87]

{R̄2=0.46}

0.70
[0.49, 0.91]

{R̄2=0.57}

0.68
[0.56, 0.80]

{R̄2=0.55}

0.83
[0.65, 1.01]

{R̄2=0.75}

1.50
[0.91, 2.07]

{R̄2=0.69}

2.38
[2.22, 2.54]

{R̄2=0.98}
PerW 0.78

[0.58, 0.96]

{R̄2=0.67}

0.99
[0.81, 1.15]

{R̄2=0.87}

0.76
[0.57, 0.93]

{R̄2=0.67}

0.66
[0.37, 0.96]

{R̄2=0.37}

0.75
[0.62, 0.85]

{R̄2=0.62}

0.54
[0.40, 0.69]

{R̄2=0.68}

1.09
[0.62, 1.56]

{R̄2=0.69}

1.92
[1.84, 2.00]

{R̄2=0.99}
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Table III
Bootstrap Rank Tests in One-Factor Models

The table presents the p-values of the proposed bootstrap rank tests in one-factor models with capital share (KS),
building permits in the North East (PerNE), Mid West (PerMW), South (PerS), and West (PerW) Census regions,
and SMB as pricing factors. The test asset portfolios are, in order, the 25 size and book-to-market (Size/BM), 10
long-term reversal (REV), 25 size and investment (Size/INV), and 25 size and operating profitability (Size/OP) sorted
portfolios from Kenneth French’s website. The additional test asset portfolios are the 20 corporate and government
bond (Bonds), six sovereign bond (Sov. Bonds), and 18 option (Options) portfolios from He, Kelly, and Manela
(2017). The sample period is 1963:Q3 to 2013:Q4 except for Bonds (1975:Q1 to 2011:Q4), Sov. Bonds (1995:Q1
to 2011:Q1), and Options (1986:Q2 to 2011:Q4). The number of bootstrap replications for the calculation of the
p-values is 10,000.

Size/BM REV Size/INV Size/OP Bonds Sov. Bonds Options
Factor/H 4 8 4 8 4 8 4 8 4 8 4 8 4 8

KS 0.217 0.758 0.358 0.323 0.433 0.466 0.177 0.442 0.886 0.654 0.337 0.703 0.673 0.833
PerNE 0.274 0.424 0.079 0.670 0.131 0.228 0.134 0.494 0.277 0.400 0.154 0.044 0.276 0.602
PerMW 0.488 0.331 0.035 0.414 0.113 0.122 0.117 0.332 0.377 0.443 0.249 0.119 0.082 0.105
PerS 0.295 0.480 0.131 0.280 0.259 0.212 0.267 0.330 0.481 0.507 0.140 0.055 0.357 0.255
PerW 0.504 0.467 0.240 0.721 0.122 0.197 0.365 0.479 0.261 0.434 0.068 0.034 0.483 0.242
SMB 0.000 0.000 0.023 0.013 0.000 0.000 0.000 0.000 0.321 0.337 0.281 0.516 0.374 0.475
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Table A.I
Size and Power of Asymptotic and Bootstrap Rank Tests with H-period data

The table presents Monte Carlo simulation results for the empirical size and power of the asymptotic and
bootstrap versions of the rank test. We consider two sample sizes (T = 202, the length of LLM’s original
sample, and T = 1, 000) and three compounding horizons (H = 1, 4, and 8). The number of simulated
paths for the returns and factor is 10,000. For each of the 10,000 Monte Carlo iterations, the p-values for
the bootstrap versions of the tests are computed based on 399 replications. The test portfolios are the 10
long-run reversal portfolios (N = 10) and the 25 size and book-to-market sorted portfolios (N = 25).

Panel A: Size of Asymptotic Rank Test

N = 10 N = 25

T 10% 5% 1% 10% 5% 1%

H = 1 202 0.352 0.255 0.124 0.847 0.784 0.637
1,000 0.165 0.095 0.030 0.344 0.234 0.099

H = 4 202 0.684 0.597 0.431 0.998 0.997 0.992
1,000 0.359 0.256 0.119 0.753 0.659 0.463

H = 8 202 0.881 0.835 0.728 1.000 1.000 1.000
1,000 0.467 0.358 0.193 0.913 0.865 0.744

Panel B: Power of Asymptotic Rank Test

N = 10 N = 25

T 10% 5% 1% 10% 5% 1%

H = 1 202 1.000 1.000 1.000 1.000 1.000 1.000
1,000 1.000 1.000 1.000 1.000 1.000 1.000

H = 4 202 1.000 1.000 1.000 1.000 1.000 1.000
1,000 1.000 1.000 1.000 1.000 1.000 1.000

H = 8 202 1.000 1.000 0.999 1.000 1.000 1.000
1,000 1.000 1.000 1.000 1.000 1.000 1.000

Panel C: Size of Bootstrap Rank Test

N = 10 N = 25

T 10% 5% 1% 10% 5% 1%

H = 1 202 0.058 0.023 0.004 0.016 0.004 0.000
1,000 0.075 0.035 0.005 0.044 0.015 0.002

H = 4 202 0.113 0.051 0.006 0.054 0.017 0.001
1,000 0.131 0.066 0.012 0.126 0.060 0.011

H = 8 202 0.087 0.035 0.004 0.024 0.005 0.000
1,000 0.125 0.064 0.012 0.093 0.038 0.006

Panel D: Power of Bootstrap Rank Test

N = 10 N = 25

T 10% 5% 1% 10% 5% 1%

H = 1 202 1.000 0.998 0.995 1.000 1.000 1.000
1,000 1.000 1.000 1.000 1.000 1.000 1.000

H = 4 202 0.994 0.979 0.884 1.000 1.000 1.000
1,000 1.000 1.000 1.000 1.000 1.000 1.000

H = 8 202 0.811 0.662 0.311 1.000 0.999 0.994
1,000 1.000 1.000 0.998 1.000 1.000 1.000
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Table B.I
Additional Empirical Evidence

The table presents the two-pass risk premium estimates in one-factor models with capital share (KS) and building
permits in the North East (PerNE), Mid West (PerMW), South (PerS), and West (PerW) Census regions as pricing
factors. The test asset portfolios are, in order, the 25 size and momentum (Size/MOM), 10 short-term reversal
(ShREV), 17 industry (Industries), and 10 dividend yield (DIVYLD) sorted portfolios from Kenneth French’s website.
We also consider these equity portfolios together in the “All Equities” column. The additional test asset portfolios are
the 23 commodity (Commodities) and 12 foreign exchange (FX) portfolios from He, Kelly, and Manela (2017). The
sample period is 1963:Q3 to 2013:Q4 except for Commodities (1986:Q4 to 2012:Q4) and FX (1976:Q2 to 2009:Q4).
For each one-factor model and compounding horizon H = 4 and 8, we report LLM’s confidence interval for the risk
premium estimate (in square brackets), the cross-sectional adjusted R2 (R̄2, in curly brackets), and the p-value of the
bootstrap rank test (in round brackets). The number of bootstrap replications for the calculation of the confidence
intervals and the p-values of the bootstrap rank test is 10,000.

Size/MOM ShREV Industries DIVYLD All Equities Commodities FX

H = 4

KS −0.48
[−0.96, −0.01]

{R̄2=0.18}
(0.866)

0.43
[−0.16, 1.03]

{R̄2=0.22}
(0.018)

0.05
[−0.12, 0.22]

{R̄2=−0.04}
(0.200)

0.08
[−0.20, 0.37]

{R̄2=−0.09}
(0.026)

−0.05
[−0.28, 0.19]

{R̄2=−0.01}
(0.793)

−0.22
[−0.63, 0.18]

{R̄2=−0.01}
(0.700)

0.64
[−0.51, 1.79]

{R̄2=−0.00}
(0.239)

PerNE 0.71
[0.10, 1.31]

{R̄2=0.13}
(0.197)

0.90
[0.32, 1.43]

{R̄2=0.56}
(0.741)

0.02
[−0.15, 0.19]

{R̄2=−0.06}
(0.064)

−0.20
[−0.58, 0.18]

{R̄2=−0.00}
(0.623)

0.38
[0.15, 0.61]

{R̄2=0.12}
(0.675)

0.33
[−0.08, 0.73]

{R̄2=0.03}
(0.621)

−0.79
[−1.95, 0.49]

{R̄2=0.15}
(0.331)

PerMW 0.73
[0.12, 1.33]

{R̄2=0.17}
(0.124)

0.82
[0.25, 1.32]

{R̄2=0.40}
(0.441)

0.05
[−0.11, 0.20]

{R̄2=−0.04}
(0.005)

−0.27
[−0.87, 0.32]

{R̄2=−0.06}
(0.825)

0.39
[0.16, 0.61]

{R̄2=0.15}
(0.469)

0.24
[−0.33, 0.79]

{R̄2=−0.02}
(0.270)

−0.68
[−2.94, 1.61]

{R̄2=−0.05}
(0.661)

PerS 0.94
[0.34, 1.52]

{R̄2=0.24}
(0.311)

0.94
[0.14, 1.66]

{R̄2=0.22}
(0.790)

0.06
[−0.12, 0.24]

{R̄2=−0.04}
(0.009)

−0.30
[−0.88, 0.25]

{R̄2=−0.02}
(0.911)

0.52
[0.28, 0.76]

{R̄2=0.19}
(0.673)

0.33
[−0.39, 1.06]

{R̄2=−0.02}
(0.325)

−1.93
[−4.22, 0.49]

{R̄2=0.21}
(0.547)

PerW 0.75
[0.14, 1.36]

{R̄2=0.14}
(0.063)

0.72
[0.28, 1.12]

{R̄2=0.46}
(0.373)

0.04
[−0.14, 0.21]

{R̄2=−0.06}
(0.001)

0.19
[−0.39, 0.74]

{R̄2=−0.08}
(0.811)

0.45
[0.21, 0.69]

{R̄2=0.15}
(0.292)

0.69
[0.14, 1.24]

{R̄2=0.10}
(0.680)

0.18
[−2.25, 2.55]

{R̄2=−0.10}
(0.501)

H = 8

KS −0.38
[−0.73, −0.04]

{R̄2=0.21}
(0.674)

0.34
[−0.12, 0.81]

{R̄2=0.20}
(0.014)

−0.00
[−0.12, 0.12]

{R̄2=−0.07}
(0.052)

0.09
[−0.03, 0.23]

{R̄2=0.15}
(0.136)

−0.07
[−0.25, 0.10]

{R̄2=−0.00}
(0.833)

−0.26
[−0.52, −0.01]

{R̄2=0.13}
(0.275)

0.28
[−0.42, 0.98]

{R̄2=−0.03}
(0.460)

PerNE 0.80
[0.34, 1.25]

{R̄2=0.27}
(0.131)

0.73
[0.48, 0.99]

{R̄2=0.77}
(0.253)

0.01
[−0.10, 0.11]

{R̄2=−0.07}
(0.317)

0.10
[−0.13, 0.32]

{R̄2=−0.04}
(0.568)

0.30
[0.13, 0.47]

{R̄2=0.13}
(0.626)

0.07
[−0.24, 0.39]

{R̄2=−0.04}
(0.298)

−0.35
[−0.96, 0.30]

{R̄2=0.03}
(0.489)

PerMW 0.75
[0.27, 1.23]

{R̄2=0.22}
(0.090)

0.71
[0.39, 1.04]

{R̄2=0.61}
(0.448)

0.02
[−0.09, 0.12]

{R̄2=−0.06}
(0.186)

0.16
[−0.05, 0.38]

{R̄2=0.11}
(0.605)

0.29
[0.11, 0.46]

{R̄2=0.12}
(0.784)

0.17
[−0.21, 0.56]

{R̄2=−0.02}
(0.467)

0.06
[−1.21, 1.35]

{R̄2=−0.10}
(0.711)

PerS 0.98
[0.56, 1.40]

{R̄2=0.39}
(0.182)

0.95
[0.28, 1.57]

{R̄2=0.34}
(0.712)

0.03
[−0.11, 0.18]

{R̄2=−0.06}
(0.096)

0.17
[−0.19, 0.52]

{R̄2=−0.05}
(0.691)

0.50
[0.31, 0.68]

{R̄2=0.24}
(0.469)

0.33
[−0.24, 0.92]

{R̄2=−0.01}
(0.426)

−0.70
[−2.10, 0.69]

{R̄2=0.02}
(0.732)

PerW 0.64
[0.16, 1.13]

{R̄2=0.14}
(0.191)

0.64
[0.38, 0.90]

{R̄2=0.65}
(0.535)

0.01
[−0.12, 0.14]

{R̄2=−0.06}
(0.222)

0.19
[−0.02, 0.39]

{R̄2=0.19}
(0.462)

0.35
[0.16, 0.54]

{R̄2=0.13}
(0.637)

0.50
[0.07, 0.90]

{R̄2=0.12}
(0.414)

0.81
[−0.68, 2.46]

{R̄2=−0.02}
(0.464)
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