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Proposition 1 (page 1655) of Jagannathan and Ma (2003) shows that the global minimum variance
portfolio of a given a sample covariance matrix when there are “no short sale” constraints and
upper bounds on portfolio weights is the unconstrained global minimum variance portfolio when the
covariance matrix is adjusted by shrinking its elements that are large in magnitude in a particular
manner.

Proposition 2 (page 1656), says that: (1) The adjusted covariance matrix in Proposition 1 is the
maximum likelihood estimate of the covariance matrix subject to the constraint that its implied
global minimum variance portfolio satisfies the portfolio weight constraints; and (2) The global
minimum variance portfolio of the constrained maximum likelihood estimate of the covariance
matrix is also the global minimum variance of the sample covariance matrix when there are “no
short sale” constraints and upper bounds on portfolio weights.

Unfortunately, there is an error in the proof of Proposition 2, and in this note we correct the
error. Equation (8) in Jagannathan and Ma (2003) should have been Equation (10) in this note.
The two equations are the same except for the fourth term on the right side of Equation (10) in this
note. The fourth term was omitted in Jagannathan and Ma (2003) by mistake, and that mistake
carried over to the proofs of the propositions. Because of this error, the proofs in the paper are
correct only when there are lower bounds on portfolio weights (i.e., “no short sale” constraints only)
but not when there are upper bounds on portfolio weights as well. We now have the fourth term
incorporated, and the proofs of the propositions have been corrected. The propositions as originally
stated in Jagannathan and Ma (2003) remain valid. In the following we present a self-contained
discussion of the effects of portfolio weight constraints that corrects the omission in Section I of the
original paper.

Given an estimated covariance matrix S, the global portfolio variance minimization problem
when portfolio weights are constrained to satisfy both a lower bound of zero and a upper bound of
ω̄ is given by

min
ω

1

2
ω′Sω, (1)

s.t.
∑
i

ωi = 1. (2)

ωi ≥ 0, i = 1, 2, ..., N. (3)

ωi ≤ ω̄, i = 1, 2, ..., N. (4)

Then, the Lagrangian expression is

L =
1

2
ω′Sω − λ0(

∑
i

ωi − 1)−
∑
i

λiωi −
∑
i

δi(ω̄ − ωi). (5)

Here λ = (λ1, ..., λN )′ are the Lagrange multipliers for the nonnegativity constraints (3), δ =
(δ1, ..., δN )′ the multipliers for the constraints (4), and λ0 is the multiplier for (2).

It is well-known that the Karush-Kuhn-Tucker conditions below are sufficient and necessary for
the above optimization problem. ∑

j

Si,jωj − λi + δi − λ0 = 0, (6)

λ0, λi, δi, ωi, (ω̄ − ωi) ≥ 0, (7)

λiωi = 0, (8)

δi(ω̄ − ωi) = 0. (9)

2



All 4 equations above hold for all i = 1, 2, ..., N .
Note that (1) is concave as a function of ω and the constraints are all convex, so the solution to

the constrained portfolio variance minimization problem (1) is unique. Denote it as ω++(S). Let
1 denote the column vector of ones. Then we have the following proposition.

Proposition 1: Let

S̃ = S + (δ1′ + 1δ′)− (λ1′ + 1λ′)− 2ω̄(δ′1)(11′). (10)

Then S̃ is symmetric and positive semi-definite, and ω++(S) is one of its global minimum variance
portfolios.

Proof: The matrix S̃ is obviously symmetric. Now we prove that it is positive semi-definite. Suppose
that

(ω1, ..., ωN , λ1, ..., λN , δ1, ..., δN , λ0) ≡ ((ω++)′, λ′, δ′, λ0)

is a solution to the portfolio variance minimization problem given in equation (1) with constraints
given in equations (2)-(4). In order to prove S̃ is positive semi-definite, for any vector x, we need
to check that x′S̃x ≥ 0.

For notational simplicity, write (10) as

S̃ = S − L.

where
L = −(δ1′ + 1δ′) + (λ1′ + 1λ′) + 2ω̄(δ′1)(11′). (11)

We can easily check that for any z,

z′Lz = 0 if z′1 = 0. (12)

Now consider two situations.
1. x′1 = 0.
We have x′Lx = 0, hence x′S̃x = x′Sx ≥ 0. This inequality shows that S̃ is positive semi-

definite. We know that for any x, x′Sx ≥ (ω++)′Sω++. Then for any x, x′S̃x ≥ (ω++)′S̃ω++, and
ω++(S) is one of the global minimum variance portfolios of S̃. Q.E.D.

2. x′1 6= 0.
Without loss of generality, we can assume

x′1 = 1. (13)

We first state some results. From the Karush-Kuhn-Tucker conditions (6), (8) and (9), we have
correspondingly

λ− δ = Sω++ − λ01, (14)

(ω++)′λ = 0, (15)

(ω++)′δ = ω̄δ′1. (16)

Then, noticing that from (2) we have (ω++)′1 = 1,
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(ω++)′L = −(ω++)′δ1′ − (ω++)′1δ′ + (ω++)′λ1′ + (ω++)′1λ′

+ 2ω̄(δ′1)(ω++)′(11′)

= −ω̄(δ′1)1′ − δ′ + 0 + λ′ + 2ω̄(δ′1)1′

= λ′ − δ′ + ω̄(δ′1)1′. (17)

From (15), (16) and (17),

(ω++)′Lω++ = λω++ − δω++ + ω̄(δ′1) = 0. (18)

So

(ω++)′Sω++ = (ω++)′S̃ω++ + (ω++)′Lω++

= (ω++)′S̃ω++. (19)

Now we are ready to check that x′S̃x ≥ 0.

x′S̃x = x′Sx− x′Lx
= x′Sx− (ω++ + (x− ω++))′L(ω++ + (x− ω++))

= x′Sx− (ω++)′Lω++ − 2(ω++)′L(x− ω++)

− (x− ω++)′L(x− ω++)

= x′Sx− 2(ω++)′L(x− ω++). (20)

This is because (x − ω++)′1 = 1 − 1 = 0, and then (x − ω++)′L(x − ω++) = 0 according to (12).
(ω++)′Lω++ = 0 is from (18). Then,

x′S̃x = x′Sx− 2(λ′ − δ′ + ω̄δ′11′)(x− ω++)

= x′Sx− 2(λ′ − δ′)(x− ω++)

= x′Sx− 2(Sω++ − λ01)′(x− ω++)

= x′Sx− 2(ω++)′S(x− ω++)

= x′Sx− 2(ω++)′Sx+ (ω++)′Sω++ + (ω++)′Sω++

= (x− ω++)′S(x− ω++) + (ω++)′Sω++

≥ (ω++)′Sω++

= (ω++)′S̃ω++ (21)

≥ 0. (22)

The first equality follows from (17). The second and fourth equality holds because (x−ω++)′1 = 0,
and S is symmetric. The third equality follows from (14). The last equality follows from (19). Both
inequalities hold because S is positive semidefinite.

From (22), S̃ is positive semi-definite.
To prove that ω++ is a global minimum variance portfolio of S̃, it is sufficient to show that the

variance of all portfolios, x, such that x′1 = 1, is not smaller than (ω++)′S̃ω++. This is exactly
what equation (21) implies. Q.E.D.

The proposition is proved by combining two situations discussed above.
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This result shows that constructing a constrained global minimum variance portfolio from S
is equivalent to constructing a (unconstrained) minimum variance portfolio from S̃ = S + (δ1′ +
1δ′)− (λ1′ + 1λ′)− 2ω̄(δ′1)(11′).

In general, given a constrained optimal portfolio ω++(S), there are many covariance matrix
estimates that have ω++(S) as their (unconstrained) minimum variance portfolio. Is there anything
special about S̃? We do have an answer to this question when returns are jointly normal and S is
the MLE of the population covariance matrix.

Let the N × 1 return vector ht = (r1t, r2t, ..., rNt)
′ be i.i.d. normal N(µ,Ω). Then the MLE of

Ω is the sample covariance matrix S =
∑T

t=1(ht − h̄)(ht − h̄)′/T . The likelihood function depends
on both µ and Ω, even though we want to estimate Ω only. To get rid of the dependence on µ,
recall that for any estimate of the covariance matrix, the MLE of the mean is always the sample
mean (Morrison 2005). With this estimate of the mean, the log-likelihood (as a function of the
covariance matrix alone) becomes

l(Ω) = CONST− T

2
ln |Ω| − T

2
tr(SΩ−1). (23)

This can also be considered as the likelihood function of Ω−1 and is defined for nonsingular Ω.
Now consider the constrained MLE of Ω, subject to the constraint that the global minimum

variance portfolio constructed from Ω satisfies the weight constraints (3)-(4). Let Ωi,j denote the
(i, j)-th element of Ω and Ωi,j denote the (i, j)-th element of Ω−1, then the constraints are∑

j

Ωi,j ≥ 0, i = 1, 2, ..., N. (24)

∑
j

Ωi,j ≤ ω̄
∑
k

∑
j

Ωk,j , i = 1, 2, ..., N. (25)

So the constrained ML problem is to maximize (23), subject to constraints (24)-(25). The La-
grangian expression for this is

L = l(Ω) +
∑
i

λ̃i
∑
j

Ωi,j +
∑
i

δ̃i

ω̄∑
k

∑
j

Ωk,j −
∑
j

Ωi,j

 . (26)

We have the following proposition.

Proposition 2: Assume that returns are jointly i.i.d. normal N(µ,Ω). Let S be the unconstrained
MLE of Ω.

1. Given S, let {λi, δi, ωi}i=1,...,N be a solution to the constrained portfolio variance minimization
problem (1)-(4), and construct S̃ according to (10). Assume S̃ is non-singular. Then, S̃
and {λ̃i, δ̃i} = {λi, δi}i=1,...,N jointly satisfy the first-order conditions for the constrained ML
problem.

2. Let S̃ and {λ̃i, δ̃i} jointly satisfy the first-order conditions for the constrained ML problem. For
i = 1, ..., N , define ωi =

∑
j S̃

i,j/
∑

k,l S̃
k,l, the normalized row sums of S̃−1. Then, the sample

covariance matrix S = S̃− (δ̃1′+ 1δ̃′) + (λ̃1′+ 1λ̃′) + 2ω̄(δ̃′1)(11′); and {λ0, λi, δi, ωi}i=1,...,N

is a solution to the constrained portfolio variance minimization problem (1)-(4), where λ0 =
1

1′S̃−11
+ ω̄δ̃′1, and {λi, δi} = {λ̃i, δ̃i}, i = 1, ..., N .
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Proof of Proposition 2:
Before the proof we will show the expressions of the Karush-Kuhn-Tucker conditions.
Let the solution to the constrained ML problem be Ω̂. Morrison (2005) (equation (6) on page

23) shows that the derivatives of the likelihood function are

∂l

∂Ωi,i
=

1

2
Ωi,i −

1

2
Si,i, all i. (27)

∂l

∂Ωi,j
= Ωi,j − Si,j , all i < j. (28)

Note that the log likelihood is concave as a function of Ω−1 (Zwiernik, Uhler, and Richards
(2017)) and the constraints (24)-(25) are all convex, so the estimate satisfying the Karush-Kuhn-
Tucker conditions is the constrained MLE.

The derivatives of the following two terms of the Lagrangian expression are

∂

∂Ωi,i

∑
k

λ̃k
∑
j

Ωk,j +
∑
k

δ̃k(ω̄
∑
l

∑
j

Ωl,j −
∑
j

Ωk,j)


=λ̃i − δ̃i + ω̄

∑
k

δ̃k, (29)

∂

∂Ωi,j

[∑
k

λ̃k
∑
m

Ωk,m +
∑
k

δ̃k(ω̄
∑
l

∑
m

Ωl,m −
∑
m

Ωk,m)

]
=(λ̃i + λ̃j)− (δ̃i + δ̃j) + 2ω̄

∑
k

δ̃k. (30)

Combining (27)-(30), we have that the Karush-Kuhn-Tucker conditions for the constrained ML
problem (23)-(25) are

1

2
Ω̂i,i −

1

2
Si,i = −λ̃i + δ̃i − ω̄

∑
k

δ̃k, all i. (31)

Ω̂i,j − Si,j = −(λ̃i + λ̃j) + (δ̃i + δ̃j)− 2ω̄
∑
k

δ̃k, all i < j. (32)

λ̃i, δ̃i,
∑
j

Ω̂i,j ,

ω̄∑
k

∑
j

Ω̂k,j −
∑
j

Ω̂i,j

 ≥ 0, all i. (33)

λ̃i
∑
j

Ω̂i,j = 0, all i. (34)

δ̃i(
∑
j

Ω̂i,j − ω̄
∑
k

∑
j

Ω̂k,j) = 0, all i. (35)

Conditions (31) and (32) imply that the constrained MLE can be written as

Ω̂ = S − (λ̃1′ + 1λ̃′) + (δ̃1′ + 1δ̃′)− 2ω̄(δ̃′1)(11′). (36)
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Note that Ω̂ has the same form as S̃ in (10). We will prove the proposition below using this
observation.

The proof of Part 1:
Let {λi, δi, ωi}i=1,...,N be a solution to the constrained portfolio variance minimization problem

(1)-(4), given S, and construct S̃ according to (10). We want to prove that (31)-(35) still hold if
replacing Ω̂ in them with S̃.

(33)-(35) directly follow (7)-(9), given ωi =
∑

j S̃
i,j/

∑
k,l S̃

k,l already proved in Proposition 1.

If replacing Ω̂ in(36) with S̃ it would be the same as (10), so it holds by definition of S̃. This
implies (31)-(32). Q.E.D.

The proof of Part 2:
Let S̃ and {λ̃i, δ̃i}i=1,...,N jointly satisfy the first-order conditions for the constrained ML prob-

lem. Then, (31)-(35) hold if replacing Ω̂ in them with S̃, and (31)-(32) imply (36). To show that
{λi, δi, ωi}i=1,...,N is a solution to the constrained portfolio variance minimization problem (1)-(4),
we need to prove (6)-(9).

(7)-(9) directly follow (33)-(35), given ωi =
∑

j S̃
i,j/

∑
k,l S̃

k,l by definition.
The remained equation (6) can be written as

Sω = λ− δ + λ01. (37)

From the definition of S here, S = S̃ − (δ̃1′ + 1δ̃′) + (λ̃1′ + 1λ̃′) + 2ω̄(δ̃′1)(11′), we have

Sω = S̃ω + λ̃1′ω + 1λ̃′ω − δ̃1′ω − 1δ̃′ω + 2ω̄(δ̃′1)11′ω. (38)

And from definition of ω,

S̃ω = S̃
S̃−11

1′S̃−11
=

1

1′S̃−11
1, (39)

1′ω = 1′
S̃−11

1′S̃−11
= 1. (40)

Following (8)-(9)

λ̃′ω = 0, (41)

δ̃′ω = ω̄(δ̃′1). (42)

Substituting (39)-(42) into (38), and using the definition of λ0, we have

Sω =
1

1′S̃−11
1 + λ̃+ 0− δ̃ − ω̄(δ̃′1)1 + 2ω̄(δ̃′1)1

= λ− δ + λ01. (43)

Then (6) is also proved. Q.E.D.

According to this proposition the S̃ constructed from the solution to the constrained global
variance minimization problem is the ML estimator of the covariance matrix, subject to the condi-
tion that the global minimum variance portfolio weights satisfy the nonnegativity and upper bound
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constraints. So we could impose the constraints in the estimation stage instead of the optimization
stage and the result would be the same.

When only the nonnegativity constraint is imposed, the vector of Lagrange multipliers for the
upper bound will be zero. So S̃ = S − (λ1′ + 1λ′), and we can simplify the statements in the two
Propositions in a straightforward way.

Jagannathan and Ma (2003) gave a shrinkage interpretation of the effects of portfolio weight
constraints. Their interpretation of the terms (1δ′+ δ1′) and (1λ′+ λ1′) remain valid. For brevity
we do not repeat these interpretations here. The originally omitted term, −2ω̄(δ′1)(11′), reduces
the variances and covariances of all stocks by equal amount. Doing so does not change the global
minimum variance portfolio. Hence after taking this term into account, the shrinkage interpretation
would not change.
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