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I. Double-sorted Beta Portfolios

I start by forming portfolios with a spread in consumption betas as proxied either with
garbage or NIPA expenditure and checking whether this spread leads to a corresponding
spread in average excess returns. This technique was popularized by Fama and French (e.g.,
Fama and French (1992)) and can be thought of as a local regression of excess returns on

betas.

Specifically, I form 25 double-sorted portfolios from all stocks with annual returns from 1960
through 2007. I compute full-sample multivariate garbage growth and expenditure growth
betas, calculate a grid of NYSE quintile breakpoints, and assign each stock to a value-
weighted portfolio of the stocks in its garbage and expenditure beta quintiles. Requiring 47
years of annual returns introduces strong survivorship bias, but is necessary for computing
betas with any precision given the low frequency and short time span of the garbage data.
There is also no reason to suspect that this bias will affect the relative performance of the
garbage and expenditure models. Also note that, given the forward-looking nature of full-
sample betas, the resulting portfolios are not tradable and I therefore exclude them from
tests with tradable assets. It is nonetheless still interesting to ask whether they display a

spread in returns relative to each other.

Table I presents the average excess returns of the 25 double-sorted portfolios as well as the
average returns on long-short strategies between the fifth (highest) and first (lowest) garbage

and expenditure beta quintiles. As can be seen from the bottom two panels, garbage betas



increase from top to bottom and expenditure betas increase from left to right. To get a sense
of the spread in returns across quintiles, it is enough to check for a monotonic increasing
pattern from top to bottom or from left to right. Casual inspection suggests that the pattern

is more pronounced vertically, as the garbage betas increase.

These patterns suggest that variation in garbage growth betas is more highly compensated
than variation in expenditure growth beta, each holding the other fixed. To help visualize
this result, Figure 7?7 shows scatter plots of mean excess returns versus expenditure and
garbage growth betas. The garbage growth betas produce a much better fit and a steeper
slope. Expenditure growth betas fail to capture the spread in returns across these portfolios.
In both graphs, the zero beta rate is high, likely due to the noted survivorship bias endemic
to these portfolios. Notice, however, that the zero beta rate is about twice as high in the

expenditure beta plot than in the garbage beta plot.

As a formal test, Table II shows the results from Fama and MacBeth (1973) regressions
of the returns on the 25 double-sorted portfolios on their garbage growth and expenditure
growth betas. Unlike in tests with tradable assets, I include a free constant to allow the
regression to ignore the high survivorship bias and focus on the relative fit of the portfolios.
Garbage growth betas obtain a statistically significant premium, accounting for 57% of the
variation in the average excess returns on the 25 portfolios. In contrast, expenditure growth
betas are not priced in this cross-section. In addition, the expenditure-based model leads
to a much larger intercept of 10.62%. In unreported tests, the premium on garbage growth

is not driven out by the excess market return or the returns on the small-minus-big (SMB)



and high-minus-low (HML) Fama and French (1993) factors.

To quantify the risk premium, I plug its estimate into the formula from the linearized Euler

equation:
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Calibrating f = 0.95 and using the sample mean of the Treasury bill return, the estimated
premium of 1.04% per unit of garbage growth beta corresponds to a risk aversion of 13,
nearly identical to the estimates in the equity premium section of the paper. By contrast,

the (insignificant) premium on expenditure growth is many times too low.

The results from the 25 double-sorted beta portfolios suggest that unlike expenditure growth
betas, garbage growth betas are compensated with a plausibly large and significant positive

risk premium.

II. Fama-MacBeth Regressions

I consider alternative sets of test assets. Table III uses the standard 25 Fama and French

(1993) size and book-to-market portfolios as test assets.

Overall, garbage growth obtains a significant positive premium. Expenditure growth does the
same. The measure of Parker and Julliard (2005) does particularly well, or about as good

as the Fama-French three-factor model. This is a result of the small positive correlation



between this measure and HML. Garbage growth survives in the presence of SMB and HML

but expenditure growth does not.

Table IV uses the Fama and French (1993) size and book-to-market decile portfolios. Notice
that this set of test assets does not lead to model rejection. The factor premia are similar. In
this cross-section, garbage growth drives out expenditure growth when the two are matched
head-to-head. The other two consumption measures perform well, leading to low pricing

errors.

III. GMM Linear Test

In this section I show the derivation of the efficient weighting matrix used in the paper. I

conclude with results showing alternative weights.

A. Efficient Weighting Matrix

Recall the set of moments
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A closer look shows that they are linearly dependent. To illustrate, subtract the first set of
moments from the third, leaving a + B(f — A). If there are N assets and K factors with
N > K, then (8 selects N linear combinations of K random variables, so at most K of the
moments are linearly independent. This shows that in fact only N + NK + K of the full set
of N+ NK + N moments are linearly independent. As a result, the covariance matrix of

the full set is analytically singular, making standard efficient GMM impossible.

There are three ways to deal with this issue. The first is to only consider one-stage GMM and
thus give up on efficiency. The second is to use a pseudo-inverse. In unreported simulations,
I find that the pseudo-inverse approach is not efficient. The third approach is to select out
of the full set of moments those linear combinations that in some sense produce the most

precise estimates.

Along the third approach, consider selecting N + NK + K of the N + NK + N moments in

the following way:
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There is no need to consider alternative weights for the first two sets of moments since given
L, the model is just identified.! In addition, any off-diagonal terms in the third row or
column would lead GMM to push betas away from their OLS estimates in order to fit the

cross-section better. The results from such a test would be hard to judge.



Next, I show that

1
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minimizes the covariance matrix of the estimated factor premia given the betas, and is in
this sense optimal. Since betas are not of principal interest here, it makes sense to focus on
minimizing error in the As. Also note that the first term in parentheses naturally incorporates

a Shanken (1992)-type factor accounting for the fact that the betas are estimated.

To see how the matrix L is derived, observe that the middle set of N K moments are lin-
early independent among each other and with the rest. Thus, any selection procedure must
preserve these moments (select them with full rank). Consider also preserving the rank of
the first NV moments and selecting K of the N last moments. This procedure eliminates
redundant moments, reducing their number to N + NK + K, which is also the number of
unknown parameters. Since the resulting model is just identified, there is no need to consider
different weighting matrices as there is a unique solution. What is left is to choose exactly

which K moments of the last NV to keep. Let L be a K x N selection matrix and form
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As Cochrane (2005, p.242) points out, OLS sets L = " and GLS sets L = f'Cov(R — a —

Bf)~t = 'S~ I will show that in the special case of i.i.d. errors that are also uncorrelated



with the factors,

1
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is optimal (here ¥y = Couv(f)) in that it minimizes the covariance matrix of the As. Without

the i.i.d. assumption, the right-most expression is the correct one.

I find the optimal L by explicitly minimizing the covariance matrix of the estimated As. The

A A

covariance matrix of the parameter vector b = (a, 5, \) is

(%) contay (%) )

To see why, note that in GMM with a selection matrix a and moments g,

Cov(b) = G%)l aCov(g)d’ (a%)ll. (8)

Since the selected model is just identified, I can set a = [ or any other invertible matrix and

obtain the expression above.

The objective is thus to pick L to minimize Cov(b). I compute
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Using the formulas for block-inverting a matrix (and labeling with * terms that are not

pertinent),
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Modifying and rewriting the expression for S = Cov(g;) in Cochrane (2005, p.243),
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Combining and simplifying,
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Finally,
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When L = ()\’2;1)\ @Iy + X8 + Z)_l , the lower right term in Cou(b), that is Cov()),

attains its lower bound, which is
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To see why, let S = )\’2;1/\ ® Iy + BEXsB 4+ ¥ and follow the proof in Hansen (1982,
p.1052) to find the lower bound for (L3)"'LSL'(LB)~". Specifically, let S = CC’ and

A= (LB)"'LC — (B'S™1B)"" B'C~Y. 1t follows that

AN = (LB)T'LSL(LB)™ = (8'S7'8) (17)

(LB)'LSL(LB)™Y = AA+(857'8) . (18)

Thus, the matrix to minimize, (L3) " 'LSL'(LB)~", is equal to the sum of a positive-definite
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matrix that does not depend on L and another positive definite matrix, AA’. This shows

that the minimizing L must satisfy A = 0, which gives

1 1
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This L is the optimal selection matrix for minimizing the covariance matrix of the estimated

factor premia.

B. Alternative Weighting Matrices

Results using the efficient matrix discussed above are in the paper. In this section, I present
results using alternative weights for comparison. Specifically, the different weights are cross-

sectional OLS, one-stage GMM, and pseudo-inverse GMM.

The cross-sectional OLS results in Table V are very similar to the Fama and MacBeth
(1973) and efficient selection matrix results presented int eh main paper. Garbage growth
obtains a significant positive premium of about 2.32% that is in line with the risk aversion
estimates in the equity premium tests. In addition, garbage growth drives out the premium
on expenditure growth when the two factors are included together. Also as before, the

premium on expenditure growth is unstable.

These inferences are challenged by the results in Table VI and Table VII. Here garbage

growth is borderline significant whereas expenditure growth is once significant and once
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insignificant but its premium switches to negative in the presence of garbage growth. Notice
that expenditure growth seems to do well when paired up with the market factor. This result
illustrates the main pitfall of these two tests. Both the one-stage and the pseudo-inverse tests
allow GMM to deviate from OLS betas (sample covariance over sample variance) in order
to fit the cross-section better. As a result, the tiny positive correlation between HML and
expenditure growth and the tiny negative correlation between HML and garbage growth are
heavily exploited, inducing a larger-than-OLS spread in expenditure betas and a smaller-
than-OLS spread in garbage betas among the six Fama and French (1993) portfolios. Phrased
differently, the betas estimated in these models are not exactly betas; they are deviations
from betas designed to better fit the cross-section. This leads to the suspiciously small
pricing errors shown in the tables. It also leads to the unstable premia across specifications:
as betas are stretched out or pushed in, the premia they obtain in the cross-section rise or

fall. These properties limit the usefulness of the one-stage and pseudo-inverse GMM tests.

IV. Linear Stochastic Discount Factor

Having verified that garbage growth is priced in the cross-section of returns, I now check
whether garbage growth helps to price other assets. As Cochrane (2005, p.260) points out,
these two questions are related but distinct. The latter can be answered by checking whether

garbage growth appears significantly in an estimated stochastic discount factor.

The nonlinear power utility stochastic discount factor § (¢ 1/¢;)”" can be approximated
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with the linear one
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Notice that I set F[m] = 1/R/ by construction. This forces the model to fit the sample risk-

b = (21)

free rate. Without this normalization, a discount of the form m = 1 — bf uncorrelated with
returns can satisfy the Euler equation 0 = E[mR¢] by setting E[m] = 0. This would not only
imply an infinite risk-free rate but it would also produce large estimates of b. Such a model
cannot be judged solely on the basis of the coefficient b. By contrast, forcing E[m| = 1/R’
makes E[m] = 0 impossible. The resulting bs will be estimated to fit the cross-section as

well as possible while also matching the sample risk-free rate.

To derive this linearization, observe that a first-order Taylor approximation around cyq/c; =

1 gives
C
S {1—7(—';“ —1)]. (22)
t

Since the level of the discount factor is not identified when only excess returns are used, [
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Letting

RS
b = o/ , (24)
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the implied risk aversion coefficient is
bRS
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As before, the formula for b suggests an implied risk aversion estimate against which to judge

the robustness of the results. To implement this approach, I write the set of moments

s [
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This formulation takes into account the fact that the mean risk-free rate and the mean level
of consumption growth are estimated. To make these estimates fit the sample means exactly
and thus rule out E[m] = 0, I select the second and third moments independently with the

selection matrix

dW 0 0
a = 0 10| (27)
0 0 1

where d is a consistent estimate of the matrix of partial derivatives of the moments with
respect to the parameters evaluated at the true parameter vector. I run two stages, setting
W = Iy in the first and W = S~! in the second, with S a consistent estimate of the spectral
density matrix of the top moments (the pricing errors). I use the same test assets as in
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the Fama and MacBeth (1973) section, namely, the 25 Fama and French (1993) size and

book-to-market portfolios and the 10 industry portfolios.

Table VIII shows the second-stage estimates of the linear stochastic discount factor. Taken
by themselves, both garbage growth and expenditure growth play a significant role in pricing
the test assets. The pricing errors for the garbage model are somewhat smaller than those
of the expenditure model. Perhaps surprisingly, the measures of Parker and Julliard (2005)
and Jagannathan and Wang (2007) do not come in significantly. Also note that cay comes

in positively when scaling expenditure but negatively when scaling garbage.

Using the formula for b, the coefficient on garbage growth implies a risk aversion estimate
of 21, which is well inside the range estimated in the paper. The coefficient on expenditure
growth, on the other hand, implies a risk aversion coefficient of 20, which is much lower
than the previous estimates. At this level of risk aversion, the expenditure growth leaves

unexplained 5% of the 6% sample equity premium.

V. Value-weighted Garbage Index

One advantage of expenditure is that it is measured in dollars. If goods are indivisible and
demand locally insatiable, market prices reveal marginal values and might therefore give a
better basis for measuring consumption. Note, however, that once levels are converted to
growth rates, the units are less important. To the extent that measurement in tons might
bias garbage as a measure of consumption, it is likely that garbage underweighs expensive
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luxury goods in favor of necessities. Ait-Sahalia, Parker, and Yogo (2004) show that luxury
goods purchases are more volatile and more procyclical, so in this sense garbage may actually
be biased towards understating the true covariance between consumption and the market

return.

In this section, I use a shorter 30-year set of garbage data that includes a detailed breakdown
of the waste stream. I match as many of the components as possible to categories of NIPA
expenditure to obtain a measure of the price per ton of waste generated for each component.
I use 1990 as the base year for this calibration. I then use the relative prices thus obtained
to create a value-weighted garbage index stretching back to the beginning of the sample
in 1960. Finally, I run the same GMM equity premium test as before, this time using the

value-weighted index.

Table IX shows the category matches I use to create a value-weighted garbage index. Since
the EPA waste components are largely commodity-based, there is not a unique correspon-
dence between them and the NIPA expenditure categories. However, the matching in Ta-

ble IX was the only matching considered, and so it does not suffer from pre-test bias.

Table X shows summary statistics for the value-weighted garbage index. At 50%, the growth
in value-weighted garbage index is still one and a half times more correlated with the excess
market return than expenditure growth, although its correlation is lower than that of the
weight-based index. With a standard deviation of 5%, the value-weighted garbage growth is
also much more volatile than both expenditure and the weight-based garbage growth. Once

again, these features allow for a lower risk aversion estimate and a more reasonable implied
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risk-free rate.

The results of a GMM equity premium test using the value-weighted garbage index are in
Table XI. The value-weighted garbage index leads to a risk aversion estimate of 11, which is
seven times smaller than that for the NIPA expenditure model and roughly equal to that for
the weight-based garbage index used in the main part of the paper. The results from this

exercise suggest that value-weighting does not have a significant impact on my results.

VI. A Comparison of Two Measures

In this section, I compare the statistical and economic differences between the two measures
of consumption, National Income and Product Accounts (NIPA) expenditure and garbage.
I focus on the relative differences that can explain the central result in this paper, namely,
that garbage growth, by virtue of being more volatile and more correlated with stock returns,
can match the equity premium with a coefficient of relative risk aversion that is significantly

lower than that with NIPA expenditure.

A. Expenditure

The statistical properties of NIPA expenditure are often overlooked. Triplett (1997) offers
a good review of the main issues. These include benchmarking, non-reporting bias, and the

residual method. NIPA expenditure is benchmarked once every five years,? drawing on the
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Economic Census from the U.S. Census Bureau. The benchmarking process is described
in the latest methodology paper from the Department of Commerce (U.S. Department of
Commerce (1990)). In the intervening non-benchmark years, the Retail Trade Survey® from
the Census Bureau forms the backbone of the annual and higher-frequency updates. Types
of expenditure not in the survey are interpolated from the benchmark years or forecast since

the last benchmark year of 2002.

The high sample autocorrelation of 39% in the expenditure growth series may be evidence
of interpolation. Another possibility is time aggregation, but it should also induce a positive

autocorrelation in garbage growth, which is not the case.

Benchmarking creates a serious problem when it comes to measuring the volatility of con-
sumption growth. Interpolation naturally smoothes the path from one benchmark year to
the next. In addition, it is reasonable to suppose that the most volatile sectors of the econ-
omy will be the ones most likely to be interpolated or forecast. This is because the Retail

Trade Survey focuses on large, long-established retail firms.

The Retail Trade Survey and consequently the NIPA expenditure measure also suffer from
selection bias due to non-reporting. Non-reporting occurs when a survey participant fails to
fill out parts or all of the survey. The Census Bureau estimates that around 7% of the annual
data currently suffers from this problem, down from 14% 10 years ago, and likely more in
the preceding decades. In addition, there is no fixed method for the discovery and inclusion
of new retail establishments. Again, it is likely that the non-reporting and newly formed

retailers are precisely the ones with the most volatile sales, causing the annual volatility of
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expenditure growth to be understated.

Finally, for most commodities, personal expenditure is computed residually. This is done
by subtracting government and business purchases from total estimated domestic supply.
But as stated by the U.S. Department of Commerce (1990, p. 33), “Estimates of business
purchases are derived in part from Census Bureau data on purchased materials and services,
but because such data are not available for all business, most business purchases must be
estimated using other data and, where necessary, judgment in place of data.” The data on
government purchases are also known to be unreliable. Having to use estimates or “judg-
ment” to compute the expenditures of businesses and government agencies could be another
reason why NIPA personal expenditure appears too smooth and not highly correlated with

stocks.

In addition to the statistical issues of benchmarking, non-reporting bias, and the residual
method, expenditure data by definition also fail to capture non-market consumption. Aguiar
and Hurst (2005) refer to this problem in the context of measuring the drop in consumption
at retirement. By accounting for non-market activities like the extra time seniors spend
looking for cheaper goods and collecting coupons, they are able to show that in spite of the
observed precipitous drop in expenditure, food consumption does not fall at all at retirement.

This suggests that non-market consumption is as important as Becker (1965) argued.

Household and other non-market consumption can only help rationalize risk prices if they
covary with stock returns more strongly than does market expenditure. This requires that

for non-market consumption, the income effect from a shock to wealth must dominate the
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substitution effect. Thus, if household activities are cut more than market activities in
bad times, and increased more in good times, total consumption will be more volatile than
market expenditure. Intuitively, a loss of income could be accompanied by a more-than-
commensurate loss in leisure. Along these lines, Aguiar and Hurst (2005) note that total
consumption (not just expenditure) seems to respond more when income shocks are unan-
ticipated, as with job loss, than when it is anticipated, as with retirement. To the extent
that stock market downturns are unanticipated, this evidence suggests that consumption
might indeed fall substantially with the stock market. The data in this paper do not allow
me to identify whether this intuition holds. Although the results in this paper indicate that
garbage works better than market expenditure for understanding asset prices, I do not take
a stand on whether my results are due to data problems, or to the omission of household

production in expenditure.

B. Garbage

No published methodology paper details the construction of the garbage data from the
EPA. Data collection is in part from surveys of landfills, incinerators, and recycling plants,
and also in part from industry commodity flow estimates; the relative use of these two
methods is unspecified. Benchmarking and forecasting are not an issue since data collection
is equally detailed each year. This could explain why garbage growth exhibits a lower sample
autocorrelation than NIPA expenditure. Survey bias may exist in the garbage data but it

is not clear how the survey responses of disposal facilities would correlate with economic
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conditions. Finally, there is no residual method to speak of in this data.

The major criticism of the EPA’s garbage measure refers to the level of waste generation.
Kaufman, Goldstein, Millrath, and Themelis (2004) find that the only alternative compre-
hensive measure of garbage generation in America, a biennial survey by the journal Biocycle,
arrives at much higher total waste numbers.* This discrepancy may be due to the EPA’s
incentive to report improving environmental conditions or to Biocycle’s incentive to do the
opposite. In either case, any bias in the level of consumption is peripheral to this study since

asset pricing is concerned with growth rates, not levels.

Interestingly, Biocycle’s measure exhibits the same stock market correlation (59%) as the
EPA’s measure but is even more volatile (its standard deviation is 4.1% versus 2.9% for the
EPA measure). Biocycle’s garbage measure thus matches the equity premium with a lower
risk aversion estimate of 11 versus 17 for the EPA’s measure. In this study, I use the EPA’s
data because they cover a 47-year range, whereas there are only 10 years of Biocycle data
available. Nevertheless, Biocycle’s measure confirms the result that the consumption model
has an easier time with the equity premium when consumption is measured with garbage
growth as opposed to NIPA expenditure. Furthermore, to the extent that Biocycle’s measure
is more volatile and produces lower risk aversion estimates, the equity premium results in

this paper may be conservative.

On the conceptual side, it may be the case that garbage provides a truer measure of con-
sumption than expenditure. One reason is in the timing of garbage relative to consumption.

For one thing, goods are only disposed of right after their usefulness is exhausted, providing
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a tight link between consumption and waste generation. In contrast, expenditure may be
incurred well ahead of consumption. This could happen if, for example, consumers continue
to purchase goods in a recession only to consume them later when times are good. Clearly,
such a “precautionary spending” effect would have to be small, or there would not be a

recession in the first place.

Perhaps more importantly, it is likely that garbage accounts at least in part for the household
production sector of the economy. Given some economies of scale in market production, a
good produced at home will generate waste at a higher rate than its closest market substitute,
which in turn typically costs more in dollar terms. This argument holds true for the informal

economy as a whole.

For example, a restaurant meal may generate waste at a lower rate per calorie served than
a home-cooked meal if all waste-generating activities associated with cooking a meal are
included. For example, home-cooked ingredients are packaged separately whereas restaurants
buy supplies in bulk. In addition, the restaurant meal likely costs more in dollar terms than
its home-cooked counterpart. This is because market expenditure does not account for the
opportunity cost of the time spent cooking that meal. In sum, expenditure is likely to
overemphasize the restaurant meal whereas garbage will weigh the home-cooked meal more

heavily, thus picking up household production as posited by Becker (1965).

Together, this line of reasoning offers some possible explanations for why garbage growth
performs better than expenditure growth in standard asset pricing tests. Which explanation

is the relevant one remains to be seen.
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Footnotes

1 As an example, the set of moments in Pastor and Stambaugh (2003, eq. 17) can be viewed as a special
case of this approach. In that paper, the third set of moments is essentially A — E[f], which can be obtained
here by imposing the restriction under the null a = 0 (the factors are traded portfolios), subtracting the top

set of moments from the bottom ones before L is applied, and finally letting L = (3’8)~14".

2The last several benchmark years were 2002, 1997, 1992, and so on.

3See http://www.census.gov/svsd/www /artstbl.html.

4The EPA’s response to this criticism is that Biocycle’s characterization of municipal solid waste includes

construction debris and some industrial wastes that are not considered by the EPA (see Horinko (2003)).
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Figure captions

Figure 1. Betas against average excess returns for the 25 double-sorted garbage and expen-
diture beta portfolios. The betas are from a multivariate regression of portfolio returns on
garbage growth and expenditure growth. The portfolios are created using sorts on full-sample
multivariate garbage growth and expenditure growth betas. Specifically, after regressing the
return series of every firm in the CRSP database jointly on garbage growth and expenditure
growth, the firms are independently sorted into garbage beta and expenditure beta quintiles
using NYSE breakpoints. The dots in this figure are the 25 portfolios obtained from this
double sort. Note that due to data limitations, only stocks with a full series of annual returns
over the 1960-2007 period are used, which leads to survivorship bias in the construction of

these portfolios. The vertical intercepts should not be used to draw inferences.
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Table 1
Summary Statistics: The 25 Double-sorted Garbage and Expenditure Beta
Portfolios

The table presents average excess returns, Newey-West t-statistics, and betas for the 25
double-sorted beta portfolios and the high beta minus low beta long-short strategies. LG
is low garbage growth beta, HE is high expenditure growth beta, and H—L is high beta
minus low beta. The portfolios are created using full-sample multivariate garbage growth
and expenditure growth betas. Specifically, after regressing the return series of every firm in
the CRSP database jointly on garbage growth and expenditure growth, the firms are inde-
pendently sorted into garbage beta and expenditure beta quintiles using NYSE breakpoints.
Note that due to data limitations, only stocks with a full series of annual returns over the
1960 through 2007 period are used. Reported betas are multivariate. Portfolio returns are
value-weighted.

Average excess returns t-statistics

LE (2 (3 (4 HE H-L LE (2 (3 (4 HE H-L

LG 9.06 7.42 861 9.61 16.41 7.67 4.24 3,51 455 317 261 1.17
(2) 9.61 891 7.53 10.12 14.27 4.66 4.40 4.03 3.8 349 371 1.13
(3) 8.67 9.61 9.01 11.11 13.35 4.68 3.70 420 4.02 4.08 362 1.23
(4) 11.81 13.29 10.44 12.87 15.69 3.88 3.66 3.22  3.89 393 4.03 0.87
HG 1545 13.06 14.89 12.06 21.54 6.09 3.39 233 375 295 381 098
H-L 633 6.04 628 245 5.13 1.55 1.04 189 059 0.88
Garbage growth betas Expenditure growth betas
LE (2) (3) (4) HE LE (2) (3) (4) HE
LG 0.75 0.78 099 0.88 -1.29 -3.56 131 274 718 19.10
(2) 249 242 221 265 2.67 -5.78  -0.99 0.88 5.73 9.42
(3) 3.63 359 370 344 3.65 -6.24 -3.68 0.77 4.52 11.71
(4) 486 510 517 490 5.54 -10.23  -8.69 -243 335 7.19
HG 8.60 9.25 8.69 835 883 -20.64 -10.56 -8.27 -3.67 5.62
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Table 11
Fama-Macbeth Regressions: The 25 Double-sorted Garbage Beta and
Expenditure Beta Portfolios

The portfolios are created using sorts on full-sample multivariate garbage growth and expen-
diture growth betas. Specifically, after regressing the return series of every firm in the CRSP
database jointly on garbage growth and expenditure growth, the firms are independently
sorted into garbage beta and expenditure beta quintiles using NYSE breakpoints. The test
assets in this table are the 25 portfolios obtained from this double sort. Note that due to
data limitations, only stocks with a full series of annual returns over the 1960 through 2007
period are used, which leads to survivorship bias in the construction of these portfolios. As
a result, the intercepts in these regressions should not be used to draw inferences. The table
shows factor premia, Newey-West t-statistics, and cross-sectional R?.

Constant Garbage beta  Expenditure beta R?
7.61 1.04 57
(4.07) (2.14)
10.62 0.22 22
(4.75) (1.00)
7.66 1.03 0.25 58
(4.07) (2.13) 1.17
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Table 111
Fama-Macbeth Regressions: The 25 Fama-French Portfolios

The test assets are the 25 Fama and French (1993) size and book-to-market portfolios.
There is no cross-sectional intercept. The estimates follow the Fama and MacBeth (1973)
cross-sectional procedure. R.m.s is the root-mean-squared pricing error with an associated
p-value for the hypothesis that all pricing errors are zero in parentheses. Three-lag Newey-
West t-statistics are also in parentheses. P—J is three-year expenditure growth as in Parker
and Julliard (2005); Q4—Q4 is the fourth-quarter year-over-year growth in expenditure as
in Jagannathan and Wang (2007); and cay is the consumption-to-wealth ratio proxy from

Lettau and Ludvigson (2001).

Garbage Expen- Expen- r.m.s.

Garbage . diture x P-J Q4-Q4 MRF SMB HML
x cay  diture (p)

cay

2.56 3.64
(3.53) (0.00)
2.83 -0.16 3.46
(2.95)  (0.39) (0.00)
1.35 3.33
(3.55) (0.00)
1.24 0.08 3.19
(2.54)  (0.16) (0.00)
1.81 1.38 3.33
(2.69) (2.87) (0.00)
6.06 1.54
(4.03) (0.00)
2.18 2.11
(3.87) (0.00)
8.41 3.88
(3.49) (0.00)
5.71 7.86 3.45
(5.17) (3.29) (0.00)
1.62 6.92 3.30
(3.14) (3.08) (0.00)
5.85 3.18 6.36 1.49
(2.69) (1.44) (3.48)  (0.00)
1.82 5.86 3.24 6.23 1.44
(3.10) (2.69)  (1.46) (3.41)  (0.00)
0.47 5.97 3.10 6.32 1.48
(1.54) (2.75)  (1.40)  (3.45)  (0.00)
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Table IV
Fama-Macbeth Regressions: Size and Book-to-market Decile Portfolios

The test assets are the Fama and French (1993) 10 size decile and 10 book-to-market decile
portfolios. There is no cross-sectional intercept. The estimates follow the Fama and Mac-
Beth (1973) cross-sectional procedure. R.m.s is the root-mean-squared pricing error with an
associated p-value for the hypothesis that all pricing errors are zero in parentheses. Three-lag
Newey-West t-statistics are also in parentheses. P—J is three-year expenditure growth as in
Parker and Julliard (2005); Q4—Q4 is the fourth-quarter year-over-year growth in expendi-
ture as in Jagannathan and Wang (2007); and cay is the consumption-to-wealth ratio proxy
from Lettau and Ludvigson (2001).

Garbage Expen- Expen- r.m.s.

Garbage . diture x P-J Q4-Q4 MRF SMB HML
x cay  diture (p)

cay

2.42 1.73
(3.59) (0.22)
2.31 0.12 1.52
(2.66)  (0.25) (0.48)
1.34 1.88
(3.58) (0.08)
0.76 0.61 1.50
(1.51)  (1.10) (0.14)
2.25 0.76 1.69
(3.14) (1.38) (0.17)
2.02 1.00
(3.74) (0.01)
5.69 1.01
(3.66) (0.12)
8.01 1.87
(3.57) (0.05)
3.26 7.74 1.71
(2.64) (3.48) (0.14)
0.77 7.68 1.72
(1.45) (3.50) (0.06)
6.50 2.83 4.36 0.46
(2.99)  (1.25)  (2.32)  (0.25)
1.75 6.50 2.78 4.34 0.35
(1.96) (2.99)  (1.24)  (2.31)  (0.51)
0.41 6.56 2.77 4.46 0.43
(1.24) (3.02) (1.23) (2.38)  (0.25)
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Table V
GMM Estimates Using Cross-sectional OLS Weighting

Each row corresponds to a different specification. The moment restrictions are

R —a—pBf
E| (Rr—a—-Bf)®f | = 0.
R® — B

The Bs, as, and As are all set to their OLS estimates. The test assets are the six Fama
and French (1993) size and book-to-market portfolios and five industry portfolios. The table
shows factor premia (\s) with three-lag GMM t-statistics in parentheses. The last column
shows root-mean-squared pricing errors.

Garbage Expen- Expen-

Garbage . diture x P-J Q4-Q4 MRF SMB HML  r.ms.
X cay  diture

cay
2.32 2.88
(2.63) (0.00)
2.88 -0.36 2.73
(2.26)  (0.38) (0.00)
1.26 3.04
(2.11) (0.00)
0.64 0.71 2.76
(1.47)  (0.97) (0.00)
2.21 0.65 2.87
(2.18) (1.61) (0.00)
5.55 3.24
(1.35) (0.00)
1.99 2.17
(1.66) (0.03)
7.75 2.93
(3.51) (0.00)
2.11 7.57 2.88
(1.59) (3.46) (0.00)
0.60 7.47 2.87
(1.54) (3.38) (0.00)
6.91 1.78 4.66 1.64
(3.10)  (0.81) (2.24)  (0.00)
-0.21 6.97 1.76 4.81 1.60
(0.16) (3.11)  (0.82)  (2.33)  (0.00)
0.42 6.85 1.84 4.88 1.62
(1.14) (3.07)  (0.85)  (2.47)  (0.00)
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Table VI
GMM Estimates Using One-stage Weighting

Each row corresponds to a different specification. The moment restrictions are

R —a—pBf
E| (RF—a-8f)af | = 0.
R — B\

The estimation uses an identity weighting matrix. The test assets are the six Fama and
French (1993) size and book-to-market portfolios and five industry portfolios. The table
shows factor premia (\s) with three-lag GMM t-statistics in parentheses. The last column
shows root-mean-squared pricing errors.

Garbage Expen- Expen-
Garbage . diture x P-J Q4-Q4 MRF SMB HML  r.ms.
x cay  diture
cay
2.68 0.00
(2.77)
9.30 -5.03 0.00
(0.84)  (0.68)
2.50 0.00
(1.44)
-4.31 6.56 0.00
(0.35)  (0.44)
5.29 -3.33 0.00
(1.32) (0.83)
8.42 0.00
(0.98)
3.04 0.00
(1.27)
8.74 0.24
(3.83)
-6.89 10.11 0.00
(1.61) (2.71)
1.54 7.59 0.00
(3.32) (3.28)
7.04 0.70 6.73 0.04
(3.11)  (0.32)  (3.13)
-3.31 7.19 0.99 6.99 0.00
(1.82) (2.95)  (0.44) (3.17)
1.65 6.50 1.41 8.17 0.00
(3.20) (2.87)  (0.60)  (3.71)
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Table VII

GMM Estimates Using a Pseudo-inverse of the Moment Covariance Matrix

Each row corresponds to a different specification. The moment restrictions are

Rt —a—pBf
E| (RF—a-8f)f | = 0.
R¢ — B\

The estimation uses a Moore-Penrose (Moore (1920)) pseudo-inverse of the analytically sin-
gular moment covariance matrix as the weighting matrix. The test assets are the six Fama
and French (1993) size and book-to-market portfolios and five industry portfolios. The table
shows factor premia (As) with three-lag GMM t-statistics in parentheses. The last column

shows root-mean-squared pricing errors.

Garbage Expen- Expen-
Garbage . diture x P-J Q4-Q4 MRF SMB HML  r.m.s.
X cay  diture
cay
2.73 0.17
(2.80)
9.79 -4.90 1.93
(2.54)  (2.37)
2.52 0.09
(4.04)
-3.93 6.81 3.44
(0.89)  (0.90)
5.53 -3.24 0.90
(3.21) (3.97)
8.46 0.05
(0.98)
3.08 0.09
(4.09)
8.74 3.90
(3.83)
-7.09 8.89 1.24
(1.64) (2.51)
1.61 8.03 0.48
(4.45) (3.65)
7.05 0.58 6.75 0.16
(3.11)  (0.26)  (2.19)
-3.23 7.15 1.01 6.91 0.06
(1.74) (3.05)  (0.45)  (1.48)
1.66 6.53 1.40 8.11 0.04
(2.53) (2.62)  (0.35)  (1.93)
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Table VIII

Linear Stochastic Discount Factor Estimates

The test assets are the 25 Fama and French (1993) size and book-to-market portfolios and
10 industry portfolios. The discount factor is constructed to match the sample average risk-
free rate (see text for details), that is m = 1/R/ — V'(f — E[f]). Reported coefficients are
estimates of the loadings b. E[f] and R/ are restricted to their simple sample averages.

R.m.s is the root-mean-squared pricing error for each model with an associated p-value for
the joint test that all pricing errors are zero directly below. Three-lag GMM t-statistics are

in parentheses.

Garb. cayxGarb. Expend. cayxExp. P-J Q4-Q4 MRF SMB HML r.ms. (p)
29.67 3.25
7.57 0.00
51.30 -115.88 3.04
9.38 7.94 0.00
34.44 3.95

3.53 0.00

60.60 59.76 3.07

6.96 6.63 0.00

14.47 32.05 3.25
2.82 2.64 0.00
-3.06 2.93

0.61 0.00

25.51 2.21

1.59 0.00

9.39 3.28

11.57 0.00

49.95 1.69 3.24
8.60 1.62 0.00
53.99 6.66 3.25

4.97 7.48 0.00

5.26 043 8.31 1.86

751 046  9.18 0.00

-9.32 5.30 1.66  5.79 1.83
2.25 6.14 188 6.94 0.00
-25.43 6.39 -0.73  7.57 1.85

2.08 7.80 0.81 8.76 0.00
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Table IX
Personal Consumption Expenditure Categories Matched to Components of the
Waste Stream

This table shows the mapping between garbage and NIPA consumption expenditure cate-
gories. This mapping allows for the construction of a value-weighted garbage index, taking
into account the relative value of the different components. While there are many other
possible matchings, no other combinations were considered.

Expenditure Category Garbage Category

1 Tires, tubes, accessories, and other parts Tires
2 Furniture, including mattresses and bedsprings Furniture
3 Carpets
4 Kitchen and other household appliances Major Appliances
5 Small Appliances
6 Video and audio goods, and computer goods Electronics
7 Batteries
8 Other durable house furnishings Towels and Sheets
9 Other durable goods Corrugated
10 Wood packaging
11 Books and maps Books and Magazines
12 Food Beer and Soft Drink
13 Wine and Liquour
14 Food and Other
15 Paper Plates, Cups
16 Plastic Plates, Cups
17 Milk Cartons
18 Bags and Sacks
19 Other Paper
20 Milk Bottles
21 Alluminum Foil and Closures
22 Soft Drinks
23 Clothing and shoes Clothing, Footwear
24 Other nondurable goods Folding Cartons
25 Other Paperboard
26 Other Plastic
27 Toilet articles and preparations Tissue Towels
28 Magazines, newspapers, and sheet music Newspapers
29 Services excluding transportation Office Papers
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Table X
Summary Statistics: The Value-weighted Garbage Index

Expenditure is the annual growth in NIPA personal consumption expenditure on nondurable
goods and services. Garbage is the annual growth in per capita waste generation. Value-
Weighted uses a match between garbage and NIPA consumption categories to create a rel-
ative price-weighted garbage index. The table shows descriptive statistics using the annual
growth in this index. The data cover the years from 1960 through 1990.

Market FExpenditure Garbage Value-Weighted

Corr. RM 34 71 50
Cov. RM 7 38 44
St. dev. 17 1 3 5
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Table XI
GMM Test and Estimates of Relative Risk Aversion Using the Value-weighted
Garbage Index

VW Garbage uses the annual growth in the relative price-weighted garbage index as a mea-
sure of consumption growth. The moment restriction is

Ct+1 - e
o t+1
RRA is the GMM estimate of relative risk aversion coefficient v. The implied risk-free rate

is evaluated at the GMM estimate of the RRA coefficient. The data in this table cover the
years from 1960 through 1990.

E = 0.

Expenditure = Garbage VW Garbage

RRA 7 11 10
St. err. (460) (35) (34)
Implied Ry 327 22 34
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Figure TA.1. Betas against average excess returns for the 25 double-sorted garbage and expenditure beta
portfolios. The betas are from a multivariate regression of portfolio returns on garbage growth and expenditure growth. The
portfolios are created using sorts on full-sample multivariate garbage growth and expenditure growth betas. Specifically, after
regressing the return series of every firm in the CRSP database jointly on garbage growth and expenditure growth, the firms
are independently sorted into garbage beta and expenditure beta quintiles using NYSE breakpoints. The dots in this figure
are the 25 portfolios obtained from this double sort. Note that due to data limitations, only stocks with a full series of annual
returns over the 1960 through 2007 period are used, which leads to survivorship bias in the construction of these portfolios.
The vertical intercepts should not be used to draw inferences.
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