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This document derives versions of UPPS, EU and their derivatives that

can be directly transformed into computer programs. This is done for several

different minimization problems. For the problem with taxes there exists a

separate document.

1 Base Case: The original problem

1.1 Expected Utility EU

From our basic assumptions (equations (2) and (3) in the paper) we obtain:

EU(φ, nS, nO) = E

∙
1

1− γ
[TW + nS exp{dT}PT + nOmax{PT −K, 0}]1−γ

¸
,
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where TW = (φ+W0) exp{rfT}

PT = P0 exp

½µ
rf − d− σ2

2

¶
T + u

√
Tσ

¾
with u˜N(0, 1)

= PC exp{CV · u} with PC = P0 exp

½µ
rf − d− σ2

2

¶
T

¾

where CV = σ
√
T

This implies

EU(φ, nS, nO) =
1

1− γ

1√
2πµZ MD2

−∞
[TW + nS exp{dT}PC exp{uCV }]1−γ exp

½
−u

2

2

¾
du

+

Z +∞

MD2

[TW + (nS exp{dT}+ nO)PC exp{uCV }− nOK]
1−γ

exp

½
−u

2

2

¾
du

¶

where MD2 is the u for which

PT = K

⇔ P0 exp

½µ
rf −

σ2

2
− d

¶
T +MD2

√
Tσ

¾
= K

2



⇔
µ
rf −

σ2

2
− d

¶
T +MD2

√
Tσ = ln

µ
K

P0

¶

⇔MD2
√
Tσ = ln

µ
K

P0

¶
−
µ
rf −

σ2

2
− d

¶
T

⇔MD2 =
ln
³
K
P0

´
− (rf − d)T

σ
√
T

+
σ
√
T

2

Note that (??) holds only for γ 6= 1. For γ = 1, we obtain:

EU(φ, nS, nO) =
1√
2πµZ MD2

−∞
ln {TW + nS exp{dT}PC exp{uCV }} exp

½
−u

2

2

¾
du

+

Z +∞

MD2

ln {TW + (nS exp{dT}+ nO)PC exp{uCV }− nOK}

exp

½
−u

2

2

¾
du

¶
1.2 UPPS

UPPS is defined as:

UPPS(φ, nS, nO) =
d

dP0
exp(−rfT )E[U(WT , e

∗)] =
d

dP0
exp(−rfT )E[V (WT )]

where WT = TW + nS exp{dT}PT + nOmax{PT −K, 0}

AsWT (P0) cannot be differentiated at PT = K, we must split the integral

before differentiation at u =MD2.
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UPPS(φ, nS, nO) =
d

dP0
(exp(−rfT )Z MD2

−∞

(TW + nS exp{dT}PT (u))
1−γ

1− γ
f(u)du

!
+

d

dP0
(exp(−rfT )Z ∞

MD2

(TW + (nS exp{dT}+ nO)PT (u)− nOK)
1−γ

1− γ
f(u)du

!

=

Z MD2

−∞
(TW + nS exp{dT}PT (u))

−γ nS exp{dT}

exp

½
−dT − σ2

2
T + u

√
Tσ

¾
f(u)du

+ exp(−rfT )
(TW + nS exp{dT}PT (MD2))1−γ

1− γ

f(MD2)
dMD2(P0)

dP0

+

Z ∞

MD2

(TW + (nS exp{dT}+ nO)PT (u)− nOK)
−γ

(nS exp{dT}+ nO) exp

½
−dT − σ2

2
T + u

√
Tσ

¾
f(u)du

− exp(−rfT )
(TW + (nS exp{dT}+ nO)PT (MD2)− nOK)

1−γ

1− γ

f(MD2)
dMD2(P0)

dP0

Note that the two derivatives of the integral boundaries cancel each other

as PT (MD2) = K:
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UPPS(φ, nS, nO) =

Z MD2

−∞
(TW + nS exp{dT}PT (u))

−γ nS

exp{dT} exp
½
−dT − σ2

2
T + u

√
Tσ

¾
f(u)du

+

Z ∞

MD2

(TW + (nS exp{dT}+ nO)PT (u)− nOK)
−γ

(nS exp{dT}+ nO) exp

½
−dT − σ2

2
T + u

√
Tσ

¾
f(u)du

Using the above defined symbols and f(u) = 1√
2π
exp{−u2

2
} we obtain:

UPPS(φ, nS, nO) = LD

µZ MD2

−∞
(TW + nS exp{dT}PC exp{uCV })−γ

nS exp{dT} exp
½
uCV − u2

2

¾
du

+

Z +∞

MD2

(TW + (nS exp{dT}+ nO)PC exp{uCV }− nOK)
−γ

(nS exp{dT}+ nO) exp

½
uCV − u2

2

¾
du

¶
where LD =

1√
2π
exp

½
−dT − σ2

2
T

¾

2 Gamma distributed stock prices

2.1 Incorporating different stock price dynamics

In order to generate a program that is flexible enough to switch to differ-

ent stock price dynamics than the log-normal distribution, we rewrite the

conditions EU and UPPS in the following way:

f(u) =
1√
2π
exp

½
−u

2

2

¾
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PT (u) = P0 exp

½µ
rf − d− σ2

2

¶
T + u

√
Tσ

¾

dPT (u)

dP0
= exp

½µ
rf − d− σ2

2

¶
T + u

√
Tσ

¾

EU(φ, nS, nO) =
1

1− γ

Z MD2

−∞
[TW + nS exp{dT}PT (u)]

1−γ f(u)du

+

Z +∞

MD2

[TW + (nS exp{dT}+ nO)PT (u)− nOK]
1−γ f(u)du

UPPS(φ, nS, nO) = exp{−rfT}µZ MD2

−∞
(TW + nS exp{dT}PT (u))

−γ nS exp{dT}
dPT (u)

dP0
f(u)du

+

Z ∞

MD2

(TW + (nS exp{dT}+ nO)PT (u)− nOK)
−γ

(nS exp{dT}+ nO)
dPT (u)

dP0
f(u)du

¶
2.2 Mean, variance and skewness of the log-normally

distributed stock price

The stock price dynamic is given by

PT (u) = P0 exp

½µ
rf − d− σ2

2

¶
T

¾
u

where ln(u) + N(0, σ2T ).Using the formulae for the mean, the variance

and the coefficient of skewness for lognormally distributed random variates

(p.102 in Eavans, Hastings & Peacock, 1993), we obtain:
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E(PT (u)) = P0 exp

½µ
rf − d− σ2

2

¶
T

¾
exp

½
1

2
σ2T

¾
= P0 exp {(rf − d)T}

V ar (PT (u)) = P 2
0 exp

½
2

µ
rf − d− σ2

2

¶
T

¾
exp

©
σ2T

ª ¡
exp

©
σ2T

ª
− 1
¢

= P 2
0 exp {2 (rf − d)T}

¡
exp

©
σ2T

ª
− 1
¢

E (PT (u)− μPT )
3

σ3PT
=

P 3
0 exp

n
3
³
rf − d− σ2

2

´
T
o
E (u− μu)

3¡
P 2
0 exp

©
2
¡
rf − d− σ2

2

¢
T
ª
E (u− μu)

2¢3/2
=

E (u− μu)
3

σ3u
=
p
exp {σ2T}− 1

¡
exp

©
σ2T

ª
+ 2
¢

2.3 Gamma distributed stock prices

According to Hemmer, Kim and Verrecchia (2000), the stock price is given

byPT (v) = Pvv, where v is Gamma distributed with density function

fv(x|b, c) =
³x
b

´c−1 exp{−x/b}
bΓ(c)

Note that Hemmer et al. (2000) use a = b and k = c and assume that

k is integer, so that Γ(k) = (k − 1)!. The notation used is the notation in
Eavans, Hastings & Peacock (1993).

This distribution has three parameters (Pv, b, c). We determine these

parameters by equating the first three moments of the distribution with the

corresponding moments of the exponential distribution.

The three moments of PT (v) are:
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E(PT (v)) = Pvbc

V ar(PT (v)) = P 2
v b
2c

E
¡
PT (v)− μPT (v)

¢3
σ3PT (v)

=
E (v − μv)

3

σ3v
=

2√
c

As Pv and b only occur in the expectation and the variance and both

times as product Pvb only, these two parameters cannot be separated and

the system of equations cannot be solved. The reason is that the Gamma

distribution only has two parameters and multiplying it by a constant Pv

not only changes the mean but also the variance. We therefore set Pv =

P0 exp {(rf − d)T}and only use the first two equations, the mean and the
variance in order to identify the parameters b and c:

Pvbc = P0 exp {(rf − d)T}

P 2
v b
2c = P 2

0 exp {2 (rf − d)T}
¡
exp

©
σ2T

ª
− 1
¢

The solution is:

b =
¡
exp

©
σ2T

ª
− 1
¢

c =
¡
exp

©
σ2T

ª
− 1
¢−1

Hence, the necessary changes to the program are:

f(u) =
³u
b

´c−1 exp{−u/b}
bΓ(c)

= (uc)c−1
exp{−uc}c

Γ(c)
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PT (u) = P0 exp {(rf − d)T}u

dPT (u)

dP0
= exp {(rf − d)T}u

In addition, the threshold MD2 must be adjusted. Recall that MD2 is

defined by PT (MD2) = K. Hence:

MD2 =
K

P0 exp {(rf − d)T}
Also, the integration starts at 0 (not at −∞) and the value of the options

to the firm must be calculated numerically as the Black-Scholes formula is

not valid.

3 Problem with two types of options

In this section, we derive the expected utility and UPPS with stock and two

types of options A and B. The two types of options differ in their strike price

KA andKB , KB > KA , but have the same maturity T . Hence, the principal

chooses four parameters (φ, nS, nAO, n
B
O) in order to minimize the total costs

π = φ+ nSP0 + nAOBSA + nBOBSB.

By setting nBO = 0 it is easy to derive the corresponding formula for a

quadratic bonus scheme.
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3.1 Expected Utility EU

Analogous to the derivation for the case with only one type of options, we

get:

EU(φ, nS, n
A
O, n

B
O) =

1

1− γ

1√
2π

µZ MD2A

−∞
[TW + nS exp{dT}PC exp{uCV }]1−γ exp

½
−u

2

2

¾
du

+

Z MD2B

MD2A

£
TW +

¡
nS exp{dT}+ nAO

¢
PC exp{uCV }− nAOKA

¤1−γ
exp

½
−u

2

2

¾
du

+

Z +∞

MD2B

£
TW +

¡
nS exp{dT}+ nAO + nBO

¢
PC exp{uCV }− nAOKA − nBOKB

¤1−γ
exp

½
−u

2

2

¾
du

¶
where

MD2A =
ln
³
KA

P0

´
− (rf − d)T

σ
√
T

+
σ
√
T

2

and

MD2B =
ln
³
KB

P0

´
− (rf − d)T

σ
√
T

+
σ
√
T

2
.

For γ = 1, we obtain:

EU(φ, nS, n
A
O, n

B
O) =

1√
2π

µZ MD2A

−∞
ln {TW + nS exp{dT}PC exp{uCV }} exp

½
−u

2

2

¾
du

+

Z MD2B

MD2A

ln
©
TW +

¡
nS exp{dT}+ nAO

¢
PC exp{uCV }− nAOKA

ª
exp

½
−u

2

2

¾
du

¶
+

Z +∞

MD2B

ln
©
TW +

¡
nS exp{dT}+ nAO + nBO

¢
PC exp{uCV }− nAOKA − nBOKB

ª
exp

½
−u

2

2

¾
du

¶
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3.2 UPPS

Analogous to the derivation for the case with only one type of options, we

get:

UPPS(φ, nS, n
A
O, n

B
O) =

LD

µZ MD2

−∞
(TW + nS exp{dT}PC exp{uCV })−γ nS exp{dT} exp

½
uCV − u2

2

¾
du

+

Z MD2B

MD2A

¡
TW +

¡
nS exp{dT}+ nAO

¢
PC exp{uCV }− nAOKA

¢−γ
¡
nS exp{dT}+ nAO

¢
exp

½
uCV − u2

2

¾
du

¶
+

Z +∞

MD2B

¡
TW +

¡
nS exp{dT}+ nAO + nBO

¢
PC exp{uCV }− nAOKA − nBOKB

¢−γ
¡
nS exp{dT}+ nAO + nBO

¢
exp

½
uCV − u2

2

¾
du

¶
where LD =

1√
2π
exp

½
−dT − σ2

2
T

¾

4 Estimation of the theoretical solution

This section considers the estimation of the parameters α0 and α1 of the

theoretical solution (19) in the paper. The theoretical solution is (where

δ > 0 is a small number):

πT =

½
(α0 + α1 lnPT )

1/γ −W0 exp (rfT ) if PT ≥ P
−W0 exp (rfT ) + δ if PT < P

,

where P = exp ((δγ − α0) /α1) .

Hence we obtain for WT =W0 exp(rfT ) + πT :

WT =

½
(α0 + α1 lnPT )

1/γ if PT ≥ P
δ if PT < P

.
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4.1 Expected Utility EU

For the expected utility, we get:

E(U(WT )) = E

∙
1

1− γ

½
(α0 + α1 lnPT )

(1−γ)/γ if PT ≥ P
δ1−γ if PT < P

¸
=

1

1− γ

1√
2π

∙Z ∞

M

(α0 + α1 (lnPC + CV u))(1−γ)/γ exp

µ
−u

2

2

¶
du

+

Z M

−∞
δ1−γ exp

µ
−u

2

2

¶
du

¸
,

where the threshold M is given by

PT (M) = exp ((δ
γ − α0) /α1)

⇔ PC exp (CV ·M) = exp ((δγ − α0) /α1)

⇔M =
(δγ − α0) /α1 − ln(PC)

CV

For γ = 1, we get:

E(U(WT )) =
1√
2π

∙Z ∞

M

ln (α0 + α1 (lnPC + CV u))1/γ exp

µ
−u

2

2

¶
du

+

Z M

−∞
ln(δ) exp

µ
−u

2

2

¶
du

¸
,

4.2 Expected costs for the firm

For the costs of the contract, we get:

E(WT ) = E

∙½
(α0 + α1 lnPT )

1/γ if PT ≥ P
δ if PT < P

¸
=

1√
2π

∙Z ∞

M

(α0 + α1 (lnPC + CV u))1/γ exp

µ
−u

2

2

¶
du

+

Z M

−∞
δ exp

µ
−u

2

2

¶
du

¸
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4.3 UPPS

UPPS =
d

dP0
exp(−rfT )E(U(WT ))

=
d

dP0
exp(−rfT )

"Z ∞

M

(α0 + α1 (lnPC + CV u))(1−γ)/γ

1− γ
f(u)du+

Z M

−∞

δ1−γ

1− γ
f(u)du

#

= exp(−rfT )
Z ∞

M

(α0 + α1 (lnPC + CV u))(1−γ)/γ−1

γ

α1
PC

exp

½µ
rf − d− σ2

2

¶
T

¾
f(u)du

=
α1LD

γPC

Z ∞

M

(α0 + α1 (lnPC + CV u))(1−2γ)/γ exp

µ
−u

2

2

¶
du

Note that the threshold M depends on the variable P0 with respect to

which we differentiate the integral. The two additional terms cancel each

other (just like in the base case further above), because the integrand is

continuous at the boundary.

4.4 Numerical problems and reformulation of EU and
UPPS

The above derived formulae for expected utility and UPPS are numerically

unstable, because the threshold M cannot be computed accurately. The

reason is that δγ is small, because δ is measured in percent of the firm value

P0. δγ is especially small if γ becomes large. From this very small quantity

(like 0.0016 = 10−18) large numbers like α0 and especially PC (which is of

the order of the firm value) are deducted, so that δγ is effectively set to

zero. Rescaling does not help, because both δ and PC would be rescaled.

Therefore, we reformulate the integrals using a substitution that leaves only

δγ as the lower boundary of the integral. We define:
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u = g(x) =
(x− α0) /α1 − ln(PC)

CV
x = g−1(u) = α0 + α1 (lnPC + CV u)

g0(x) = (α1CV )
−1

g−1(M) = δγ, g−1(∞) =∞ (if α1 > 0), g−1(−∞) = −∞

Using the substitution rule for integrals, we obtain:

UPPS =
α1LD

γPC

Z g−1(∞)

g−1(M)

(α0 + α1 (lnPC + CV g(x)))(1−2γ)/γ exp

µ
−g(x)

2

2

¶
g0(x)dx

=
LD

γPC · CV

Z ∞

δγ
x(1−2γ)/γ exp

Ã
−1
2

µ
(x− α0) /α1 − ln(PC)

CV

¶2!
dx

For expected utility, we get:

E(U(WT )) =
1

1− γ

1√
2π

"Z g−1(∞)

g−1(M)

(α0 + α1 (lnPC + CV g(x)))(1−γ)/γ exp

µ
−g(x)

2

2

¶
g0(x)dx

+

Z g−1(M)

g−1(−∞)
δ1−γ exp

µ
−g(x)

2

2

¶
g0(x)dx

#

=
1√

2π (1− γ)α1CV

"Z ∞

δγ
x(1−γ)/γ exp

Ã
−1
2

µ
(x− α0) /α1 − ln(PC)

CV

¶2!
dx

+

Z δγ

−∞
δ1−γ exp

Ã
−1
2

µ
(x− α0) /α1 − ln(PC)

CV

¶2!
dx

#
For the expected costs to the firm, we get:

E(WT ) =
1√

2πα1CV

"Z ∞

δγ
x1/γ exp

Ã
−1
2

µ
(x− α0) /α1 − ln(PC)

CV

¶2!
du

+

Z M

δγ
δ exp

Ã
−1
2

µ
(x− α0) /α1 − ln(PC)

CV

¶2!
du

#
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4.5 Further numerical details

Depending on α0, α1, and PC the peak in the integrands can be very ”sharp”,

so that they might not be found by the integration routines. This can be

prevented by providing the approximate point where the integrand reaches

its maximum. For our integrands, this is the point, where g(x) = 0, i.e. for

x ≈ α1 ln(PC) + α0.

If the variable α2 varies slightly, the other two variables α0 and α1 vary

markedly while the objective function does not change much. As this causes

numerical instability, we use a nested algorithm. The inner algorithm finds

those α0 and α1 which satisfy the two constraints for a given α2, while the

outer algorithm optimizes the objective function over α2 only.

For the inner optimization, the starting value turned out to be important.

(-10,10) turned out to be very successful.
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