
Internet Appendix for

“Free Cash Flow, Issuance Costs, and Stock Prices”∗

This document is organized as follows. In Section I, we show that Proposition 1, which

describes the dynamics of stock prices in the first-best benchmark, can be generalized to a

broad class of dividend processes. Section II contains proofs omitted from the paper.

I. A Generalization of Proposition 1

Formulas (12) through (16) can be generalized to more general dividend processes. To

see that, fix some nondecreasing process L̂ such that L̂0 = m, which for simplicity we shall

assume is continuous. To obtain the analogue of formula (13), we must ensure that the stock

price exhibits no bubble, in the sense that it grows at an expected rate strictly lower than

r, as in (12). This will be the case if the dividend process L̂ grows at a fast enough rate.

Specifically, we have the following result.

Proposition IA.1: Suppose that there are no issuance costs, that is, f = 0 and p = 1.

Consider a continuous dividend process L̂ such that

lim
T→∞

E

[
exp

(
−1

2

(
σr

µ

)2

T +
σr

µ
WT − r

µ
L̂T

)]
= 0. (IA.1)

Then, at any time t > 0, the market capitalization of the firm is

N̂tŜt =
µ

r
, (IA.2)

the instantaneous return on the shares issued by the firm satisfies

dŜt + dL̂t/N̂t

Ŝt

= rdt +
σr

µ
dWt, (IA.3)
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and the stock price is the present value of future dividends per share,

Ŝt = E

[∫ ∞

t

e−r(s−t) dL̂s

N̂s

|Ft

]
, (IA.4)

P–almost surely.

Proof : From (4), the requirement that cash reserves be constant and equal to zero after

time 0 yields the following analogue of (10):

Ît = L̂t − µt− σWt (IA.5)

for all t ≥ 0. Using (11) along with (IA.5) then yields

dŜt

Ŝt

= rdt +
σr

µ
dWt − r

µ
dL̂t (IA.6)

for all t > 0. The value of the firm at any time t > 0 is the present value of future cash

flows, hence (IA.2). This allows us to rewrite (IA.6) as (IA.3). The following lemma holds.

Lemma IA.1: Given an initial condition Ŝ0+ > 0, the stochastic differential equation (IA.6)

has a unique strong solution, given by

Ŝt ≡ Ŝ0+ exp

([
r − 1

2

(
σr

µ

)2
]
t +

σr

µ
Wt − r

µ
L̂t

)
(IA.7)

for all t > 0.

Proof : As L̂ is continuous, any solution to (IA.6) is P–almost surely continuous. Using

Itô’s formula (Protter (1990, Chapter II, Theorem 32)), it is easy to check that the process

Ŝ ≡ {Ŝt; t > 0} defined by (IA.7) solves the stochastic differential equation (IA.6). Consider

another solution S̃ ≡ {S̃t; t > 0} to (IA.6) with the same initial condition Ŝ0+ as Ŝ. Applying

Itô’s formula again, one can verify that, for each t > 0,

E[(Ŝt − S̃t)
2] =

(
2r +

σ2r2

2µ2

)∫ t

0

E[(Ŝs − S̃s)
2] ds− 2r

µ
E

[∫ t

0

(Ŝs − S̃s)
2 dL̂s

]
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≤
(

2r +
σ2r2

2µ2

)∫ t

0

E[(Ŝs − S̃s)
2] ds

≤ 0,

where the first inequality follows from the fact that L̂ is a nondecreasing process, and the

second from the first and Gronwall’s lemma. Thus, one has Ŝt = S̃t, P–almost surely, for all

t > 0. As the processes Ŝ and S̃ are P–almost surely continuous, the result follows (Karatzas

and Shreve (1991, Chapter 1, Problem 1.5)). Q.E.D.

It should be noted that the initial condition for Ŝ in Lemma IA.1 is stipulated at time 0+,

that is, immediately after the special dividend m is distributed at time 0. Letting N̂0+ ≡ 1

without loss of generality, (14) yields Ŝ0+ = µ/r. To conclude the proof, one only needs to

check that (IA.4) holds. This requires the following lemma.

Lemma IA.2: Suppose that condition (IA.1) holds. Then, for each t ≥ 0,

lim
T→∞

E

[
exp

(
−1

2

(
σr

µ

)2

T +
σr

µ
WT − r

µ
L̂T

)
|Ft

]
= 0,

P–almost surely.

Proof : Denote by {XT ; T ≥ 0} the random variables within the expectations in (IA.1),

and fix for each t ≥ 0 and T ≥ t a random variable XT,t in the equivalence class of E[XT |Ft].

We first show that the random variables XT,t, T ≥ t, have a P–almost surely well-defined

limit as T goes to ∞. For each t ≥ 0, define

Zt ≡ exp

(
−1

2

(
σr

µ

)2

t +
σr

µ
Wt

)
.

The process Z ≡ {Zt; t ≥ 0} is a martingale, and E[Zt] = 1 for all t ≥ 0. Now suppose that

T2 ≥ T1 ≥ t. Then one has

XT2,t = E

[
ZT2 exp

(
− r

µ
L̂T2

)
|Ft

]
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= E

[
E

[
ZT2 exp

(
− r

µ
L̂T2

)
|FT1

]
|Ft

]

≤ E

[
E[ZT2 |FT1 ] exp

(
− r

µ
L̂T1

)
|Ft

]

= E

[
ZT1 exp

(
− r

µ
L̂T1

)
|Ft

]

= XT1,t,

P–almost surely, where the inequality follows from the fact that L̂ is a nondecreasing process,

and the third equality from the fact that Z is a martingale. Therefore, the random variables

XT,t, T ≥ t, P–almost surely decrease as a function of T . As they are strictly positive, they

have a P–almost surely well-defined limit as T goes to∞, as claimed. We now show that this

limit is P–almost surely zero, which concludes the proof. As the process L̂ is nonnegative,

XT,t ≤ E[ZT |Ft] = Zt,

P–almost surely, where the equality follows again from the fact that Z is a martingale.

Because E[Zt] = 1, the strictly positive random variables XT,t, T ≥ t, are uniformly bounded

above by an integrable random variable. As they converge P–almost surely to a well-defined

limit as T goes to ∞,

E
[

lim
T→∞

XT,t

]
= lim

T→∞
E[XT,t] = lim

T→∞
E[XT ] = 0,

where the first equality follows from Lebesgue’s dominated convergence theorem, and the last

from (IA.1). As limT→∞ XT,t is a nonnegative random variable, the result follows. Q.E.D.

We are now ready to complete the proof of Proposition IA.1. Using (IA.2) and (IA.6), it

is easy to verify that, for each t ≥ 0 and T ≥ t,

e−rtŜt = E[e−rT ŜT |Ft] + E

[∫ T

t

e−rs dL̂s

N̂s

|Ft

]
, (IA.8)

P–almost surely. Lemmas IA.1 and IA.2 imply that the first term on the right-hand side of
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(IA.8) goes to zero as T goes to ∞, P–almost surely. Because L̂ is a nondecreasing process

and N̂ remains strictly positive, letting T go to ∞ in (IA.8) yields (IA.4) by the monotone

convergence theorem. Q.E.D.

II. Omitted Proofs

Proof of Lemma A.1 : Because Vm1 is smooth over [0,m1), differentiating (28) and using

the definition (20) of L yields −λV ′
m1

+ LV ′
m1

= 0 over [0,m1). Using this along with (29)

and (30), one obtains that V ′′′
m1−(m1) = 2λ/σ2 > 0. As V ′′

m1
(m1) = 0 and V ′

m1
(m1) = 1,

it follows that V ′′
m1

< 0, and thus V ′
m1

> 1 over some interval (m1 − ε,m1), where ε > 0.

Now suppose by way of contradiction that V ′
m1

(m) ≤ 1 for some m ∈ [0,m1 − ε], and let

m̃ ≡ sup{m ∈ [0,m1 − ε] | V ′
m1

(m) ≤ 1}. Then V ′
m1

(m̃) = 1 and V ′
m1

> 1 over (m̃, m1), so

that Vm1(m1) − Vm1(m) > m1 −m for all m ∈ (m̃,m1). As Vm1(m1) = [(r − λ)m1 + µ]/r,

this implies that for any such m,

V ′′
m1

(m) =
2

σ2
{rVm1(m)− [(r − λ)m + µ)]V ′

m1
(m)}

<
2

σ2
{r[m−m1 + Vm1(m1)]− (r − λ)m− µ}

=
2

σ2
λ(m−m1)

< 0,

which contradicts the fact that V ′
m1

(m̃) = V ′
m1

(m1) = 1. Therefore, V ′
m1

> 1 over [0,m1),

from which it follows as above that V ′′
m1

< 0 over [0, m1). Q.E.D.

Proof of Lemma A.2 : Consider the solutions H0 and H1 to the linear second-order

differential equation −rH + LH = 0 over [0,∞) characterized by the initial conditions

H0(0) = 1, H ′
0(0) = 0, H1(0) = 0, and H ′

1(0) = 1. We first show that H ′
0 and H ′

1 are strictly

positive over (0,∞). Consider H ′
0. As H0(0) = 1 and H ′

0(0) = 0, one has H ′′
0 (0) = 2r/σ2 > 0,

so that H ′
0 > 0 over some interval (0, ε), where ε > 0. Now suppose by way of contradiction

that m̃ ≡ inf {m ≥ ε | H ′
0(m) ≤ 0} < ∞. Then H ′

0(m̃) = 0 and H ′′
0 (m̃) ≤ 0. Because

−rH0 + LH0 = 0, it follows that H0(m̃) ≤ 0, which is impossible as H0(0) = 1 and H0
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is strictly increasing over [0, m̃]. Thus, H ′
0 > 0 over (0,∞), as claimed. The proof for

H ′
1 is similar and is therefore omitted. Note that both H0 and H1 remain strictly positive

over (0,∞). Next, let WH0,H1 ≡ H0H
′
1 − H1H

′
0 be the Wronskian of H0 and H1. We have

WH0,H1(0) = 1 and

W ′
H0,H1

(m) = H0(m)H ′′
1 (m)−H1(m)H ′′

0 (m)

=
2

σ2
(H0(m){rH1(m)− [(r − λ)m + µ]H ′

1(m)}

− H1(m){rH0(m)− [(r − λ)m + µ]H ′
0(m)})

= −2[(r − λ)m + µ]

σ2
WH0,H1(m)

for all m ≥ 0, from which Abel’s identity follows by integration:

WH0,H1(m) = exp

(
−(r − λ)m2 + 2µm

σ2

)
(IA.9)

for all m ≥ 0. Because WH0,H1 > 0, H0 and H1 are linearly independent. As a result,

(H0, H1) is a basis of the two-dimensional space of solutions to the equation −rH +LH = 0.

It follows in particular that for each m1 > 0, Vm1 = Vm1(0)H0 +V ′
m1

(0)H1 over [0,m1]. Using

the boundary conditions Vm1(m1) = [(r − λ)m1 + µ]/r and V ′
m1

(m1) = 1, one can solve for

Vm1(0) and V ′
m1

(0) as follows:

Vm1(0) =
H ′

1(m1)[(r − λ)m1 + µ]/r −H1(m1)

WH0,H1(m1)
, (IA.10)

V ′
m1

(0) =
H0(m1)−H ′

0(m1)[(r − λ)m1 + µ]/r

WH0,H1(m1)
. (IA.11)

Using the explicit expression (IA.9) for WH0,H1 along with the fact that H0 and H1 are

solutions to −rH + LH = 0, it is easy to verify from (IA.10) and (IA.11) that

dVm1(0)

dm1

= −λ

r
exp

(
(r − λ)m2

1 + 2µm1

σ2

)
H ′

1(m1),

d2Vm1(0)

dm2
1

= −2λ

σ2
exp

(
(r − λ)m2

1 + 2µm1

σ2

)
H1(m1)
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and that

dV ′
m1

(0)

dm1

=
λ

r
exp

(
(r − λ)m2

1 + 2µm1

σ2

)
H ′

0(m1).

d2V ′
m1

(0)

dm2
1

=
2λ

σ2
exp

(
(r − λ)m2

1 + 2µm1

σ2

)
H0(m1).

The result then follows immediately from the fact that λ > 0 and that H0, H ′
0, H1, and H ′

1

are strictly positive over R++. Q.E.D.

Proof of Lemma A.3 : Recall that (32) holds whenever m̂1 > m̃1 and Vm̂1(mp(m̂1)) −
p[mp(m̂1) + f ] > 0. Equation (A.2) can be rewritten as ϕ(m̄1) = 0, where

ϕ(m1) ≡ Vm1(mp(m1))− Vm1(0)− p[mp(m1) + f ].

The function ϕ is well-defined and continuous over [m̃1, m̂1], with ϕ(m̃1) = −pf < 0 and

ϕ(m̂1) = Vm̂1(mp(m̂1)) − p[mp(m̂1) + f ] > 0 by condition (32). Thus, ϕ has at least a zero

over (m̃1, m̂1). To prove that it is unique, we show that ϕ is strictly increasing over (m̃1, m̂1).

Using the envelope theorem to evaluate the derivative of ϕ, this amounts to showing that

∂W

∂m1

(mp(m1),m1) >
∂W

∂m1

(0,m1)

for all m1 ∈ (m̃1, m̂1), where W (m,m1) ≡ Vm1(m) for all (m,m1) ∈ [0,∞) × (m̃1, m̂1).

Because mp(m1) ∈ (0,m1) for all m1 ∈ (m̃1, m̂1), all that needs to be established is that for

any such m1, (∂W/∂m1)(·,m1) is strictly increasing over [0, m1]. From (28) through (30),

it is straightforward to verify that (∂W/∂m1)(·,m1) is the unique solution to the following

Cauchy problem over [0,m1]:

−r
∂W

∂m1

(m,m1) + L ∂W

∂m1

(m,m1) = 0; 0 ≤ m ≤ m1, (IA.12)

∂2W

∂m∂m1

(m1,m1) = 0, (IA.13)

∂3W

∂2m∂m1

(m1,m1) = −2λ

σ2
. (IA.14)
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We are interested in the sign of (∂2W/∂m∂m1)(m,m1) for m ∈ [0,m1). Because of (IA.13)

and (IA.14), (∂2W/∂m∂m1)(·,m1) > 0 over some interval (m1 − ε,m1), where ε > 0.

Now suppose by way of contradiction that (∂2W/∂m∂m1)(m, m1) ≤ 0 for some m ∈
[0,m1 − ε], and let m̃ ≡ sup{m ∈ [0,m1 − ε] | (∂2W/∂m∂m1)(m,m1) ≤ 0}. Then

(∂2W/∂m∂m1)(m̃,m1) = 0 and (∂2W/∂m∂m1)(m,m1) > 0 for all m ∈ (m̃, m1), so that

(∂W/∂m1)(m,m1) < 0 for all m ∈ (m̃,m1) as (∂W/∂m1)(m1,m1) = −λ/r < 0 by (IA.12)

through (IA.14). This implies that for any such m, one has

∂3W

∂2m∂m1

(m,m1) =
2

σ2

{
r

∂W

∂m1

(m,m1)− [(r − λ)m + µ]
∂2W

∂m∂m1

(m,m1)

}
< 0,

which is impossible as (∂2W/∂m∂m1)(m̃,m1) = (∂2W/∂m∂m1)(m1,m1) = 0. Therefore,

(∂2W/∂m∂m1)(·,m1) > 0 over [0, m1), and the result follows. Note for further reference

that the above argument also establishes that (∂W/∂m1)(·,m1) < 0 over [0,m1]. Q.E.D.

Proof of Proposition A.1 : We first establish the existence and uniqueness of V . As

explained above, any solution V to (24) through (27) that is twice continuously differentiable

over (0,∞) must coincide with some Vm1 over [0,∞). Because V (0) is nonnegative by (25),

one must have m1 ≤ m̂1. Suppose first that m̂1 ≤ m̃1, and that m1 < m̂1. Then V (0) =

Vm1(0) > 0. But, as m1 < m̃1, one has V ′
+(0) = V ′

m1
(0) < p. It follows that the maximum

of the mapping m 7→ V (m) − p(m + f) over [f,∞) is either attained at −f , for a value of

zero, or at zero, for a value of V (0)− pf . In either case, this is inconsistent with condition

(25). It follows that m1 = m̂1, and thus V is given by (A.1). Suppose next that m̂1 > m̃1.

The above argument can be used to show that m1 > m̃1. Two cases must be distinguished.

If Vm̂1(mp(m̂1))− p[mp(m̂1) + f ] > 0, then Lemma A.3 establishes the uniqueness of a value

m̄1 of m1 ∈ (m̃1, m̂1) consistent with condition (25). It follows that m1 = m̄1, and thus V

is given by (A.3). Suppose finally that Vm̂1(mp(m̂1)) − p[mp(m̂1) + f ] ≤ 0. Defining ϕ as

in the proof of Lemma A.3 and using the fact that ϕ is strictly increasing over (m̃1, m̂1),

we obtain that ϕ has no zero over (m̃1, m̂1). Thus, condition (25) cannot be satisfied for

m1 ∈ (m̃1, m̂1). It follows that the maximum of the mapping m 7→ V (m) − p(m + f) over
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[f,∞) must be attained at −f , for a value of zero. The only choice of m1 that is then

consistent with (25) is m1 = m̂1, and thus V is given by (A.1).

We now verify that our solution V to (24) through (27) satisfies the variational inequalities

(17) through (19) over (0,∞). Inequality (17) follows from (27) and Lemma A.1, whereas

inequality (19) follows from (26) and (27) along with the fact that λ > 0. As for (18), two

cases must be distinguished. Suppose first that m̂1 ≤ m̃1, and hence V ′
+(0) ≤ p. For each

m ≥ 0, the mapping m′ 7→ V (m′ − f) − p(m′ −m) is then strictly decreasing over [m,∞),

and thus (18) holds as V (m) ≥ V (m− f) for any such m. Suppose next that m̂1 > m̃1, and

hence V ′
+(0) > p. If m ≥ mp(m1) + f , the same reasoning as above applies and (18) holds.

If mp(m1) + f > m ≥ 0, the maximum of the mapping m′ 7→ V (m′ − f) − p(m′ −m) over

[m,∞) is attained at mp(m1) + f , and we must therefore check that

V (m)− pm ≥ V (mp(m1))− p[mp(m1) + f ] (IA.15)

for any such m. The mapping m 7→ V (m) − pm is strictly increasing over [0, mp(m1)] and

strictly decreasing over [mp(m1),mp(m1) + f ]. Thus, we only need to check that (IA.15)

holds at m = 0 and at m = mp(m1) + f . The latter point is immediate. For the former,

two cases must be distinguished. If (31) holds, then m1 = m̂1 and (IA.15) holds at m = 0,

because the right-hand side is at most zero, whereas the left-hand side is equal to zero as

V (0) = 0. If (32) holds, then m1 = m̄1 and (IA.15) holds as an equality at m = 0, because,

by construction, V (0) = V (mp(m̄1))− p[mp(m̄1) + f ]. Q.E.D.

Proof of Lemma 1 : We precisely show that one can find versions of the conditional

expectations in (39) such that the resulting process S∗ has P–almost surely continuous

paths. From (39), it follows that the stock price process S∗ is such that, for each t ≥ 0,

e−rtS∗t = E

[∫ ∞

0

e−rs dL∗s
N∗

s

|Ft

]
−

∫ t

0

e−rs dL∗s
N∗

s

, (IA.16)

P–almost surely. By choosing for each t ≥ 0 a random variable Yt in the equivalence class of

E
[ ∫∞

0
e−rs(1/N∗

s ) dL∗s |Ft

]
, one obtains an {Ft; t ≥ 0}–adapted martingale Y ≡ {Yt; t ≥ 0}.
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As the filtration {Ft; t ≥ 0} is complete and right-continuous, one can choose Yt for all t ≥ 0

in such a way that the martingale Y is right-continuous with left-hand limits (Karatzas

and Shreve (1991, Chapter 1, Theorem 3.13)). Because {Ft; t ≥ 0} is the P–augmentation

of the filtration generated by W , Y is in fact P–almost surely continuous (Karatzas and

Shreve (1991, Chapter 3, Problem 4.16)). To conclude the proof, observe that because the

cumulative dividend process L∗ is continuous, so is the second term on the right-hand side

of (IA.16). Q.E.D.
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