
Internet Appendix to
“Financial Flexibility, Bank Capital Flows, and Asset Prices”∗

A. Financial Flexibility and Real Growth

The financial development literature has identified two main channels through which the pres-
ence of financial development, and intermediaries in particular, can lead to growth. First, inter-
mediaries can help investors make better investment decisions by reducing transaction costs; this
could be by producing information or by providing a more efficient monitoring technology. For ex-
ample, Greenwood and Jovanovic (1990) present a model in which financial intermediaries provide
information that allows investors to earn a higher rate of return on capital, which promotes growth.
The greater the growth, the more intermediaries invest in information production, reinforcing their
benefits. Intermediaries also provide efficient information processing in Ramakrishnan and Thakor
(1984). Similarly, in Bencivenga and Smith (1993), intermediaries reduce adverse selection costs
and foster growth. In de la Fuente and Marin (1996), intermediaries reduce the cost of optimal
monitoring and therefore increase investment efficiency.

The second channel in the financial development literature is risk-related: intermediaries, by
pooling investments, can help investors achieve efficient diversification. Once diversified, investors
may be willing to invest in riskier projects with higher returns, leading to growth. Papers in this vein
include Bencivenga and Smith (1991), who illustrate that banks, by aggregating deposits, encourage
investment in growth-enhancing illiquid assets by effectively allowing investors to diversify liquidity
risk. Bencivenga, Smith, and Starr (1995) argue that liquid financial markets allow investors to
supply capital to illiquid but productive investment opportunities, which spurs growth. Their
work provides a natural link between stock market liquidity and economic growth. Acemoglu and
Zilibotti (1997) present a model in which project indivisibility leads to inefficient investment as
investors cannot diversify away all idiosyncratic risk. A developed financial system allows agents
to hold a diversified portfolio of risky projects and therefore encourages more risky investment,
leading to higher growth. Finally, Allen and Gale (1997) present a model in which, because financial
markets are incomplete, there is not enough investment in reserves that could be used to smooth
asset returns over time. A long-lived financial intermediary issuing less risky claims could improve
social welfare.

Our model provides a framework that could be useful to this debate on the relationship between
financial flexibility, intermediation, and real growth. To make our point cleanly, we consider an
economy in which the risk for jump events is p = 0. As we have established, in this case capital flows
will be equal to capital flexibility, that is, the solution to the control problem will be “bang-bang.”
Further, observe that in our model, the empirical proxy for GDP is B+D, or current consumption.

Our results fit into the long-running debate about the relationship between economic growth
rates and financial innovation. Rather than view financial flexibility as a cause (Schumpeter (1911))
or a consequence (Robinson (1952)) of economic growth, we focus on economic growth as the natural
consequence of the equilibrium risk appetite of a representative consumer. Specifically, the existence
of high financial flexibility may induce a large banking sector and, consequently, a low stationary
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growth rate. It is important in what follows to distinguish between the exogenous characteristics
of the entrepreneurial sector, including the growth rate and volatility (µ and σ), and the overall
growth rate of the economy, which depends only on the size of the entrepreneurial sector.

Within our framework, economies facing different levels of financial flexibility (λ) will have
different optimal bank shares, z∗. Further, z∗ depends on financial flexibility nonmonotonically. In
fact, z∗ increases in λ if the growth rate in the risky sector is sufficiently high and decreases in λ
if the growth rate is sufficiently low. This suggests that there is not a simple causal link between
the size of the intermediated sector and growth rates. To see this, consider Figure IA.1, which
illustrates the relationship between z∗ and λ. Consider first the case where µ̂ = 0.01. If this is the
growth rate of the risky sector, then the central planner optimally keeps half of the economy in
the intermediated sector and half in the risky sector, irrespective of the speed with which capital
moves between the sectors.
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Figure IA.1. The optimal size of the banking sector, z∗, as a function of financial
flexibility, λ, for different values of the growth rate of the risky asset, µ̂. Parameters:
σ = 0.141, ρ = 0.02, γ = 1, and T = 500.

If the growth rate in the risky sector is high (say µ̂ = 0.014), then increasing the rate at
which capital moves increases the optimal size of the banking sector. In this case the social cost of
having an inordinately large banking sector (and therefore forgone growth) is very high. Therefore,
as insurance against this state, the central planner decreases the size of the banking sector to
maintain a “buffer,” compared with the fully flexible case, λ =∞. Because of this, for very low λ,
the size of the banking sector is smaller. As λ increases, the central planner is willing to increase
the size of the banking sector (alternatively, to decrease the size of the buffer) because the chance
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of the economy spending a long time in the low-growth state is small. Thus, when the growth rate
in the risky sector is high, the optimal size of the banking sector is increasing in the flexibility of
capital, λ.

The situation is reversed when the growth rate of capital is quite low (say µ̂ = 0.006). In
this case, the cost to the central planner of ending up with too much capital in the risky sector is
high because the return is low relative to the risk. Therefore, he hedges against this possibility by
maintaining a somewhat larger banking sector. As the flexibility of capital increases, he is willing
to reduce the size of the banking sector as he no longer needs a buffer against the possibility that
the risky sector will become too large.

The relationship between the size of the banking sector and the flexibility of capital is therefore
nontrivial. Specifically, financial innovation or government policy that increases the speed with
which funds can be reallocated between sectors may, in equilibrium, either decrease the size of the
banking sector or increase it. Moreover, increasing financial flexibility may decrease the growth
rate of the economy.

These results can be formalized. Specifically, the key variable is κ = µ̂
γσ2 . If κ < 1/2, then an

increase in λ leads to a lower z∗, whereas if κ > 1/2, an increase in λ leads to a higher z∗. Since κ
is increasing in µ̂ and decreasing in σ, this immediately leads to the following hypotheses regarding
growth and growth volatility across economies:

PREDICTION 1: All else equal,

a) in low-growth economies, the growth rate increases with financial flexibility,

b) in high-growth economies, the growth rate decreases with financial flexibility,

c) in high-volatility economies, the growth rate increases with financial flexibility, and

d) in low-volatility economies, the growth rate decreases with financial flexibility.

Thus, in high growth economies, increasing λ, for example, through financial innovation, will ac-
tually decrease the growth rate of the economy. This suggests that cross-country regressions of
economic performance (including growth rates) on proxies for financial innovation or variables that
measure the speed with which capital flows between the banking and entrepreneurial sectors are
complex to interpret. For example, the work of Levine (1998), drawing on that of La Porta et al.
(1998), considers the effect of legal protections on the development of banks and subsequent growth
rates. Our analysis suggests that unambiguous causal links are difficult to find because increasing
the efficiency of the banking sector may lead to an overall larger or smaller sector, depending on
the fundamentals of the economy.

Our analysis also shows that there is a complex relation between the equilibrium size of the
banking sector and economic fundamentals, an important consideration for regulators. For example,
the equilibrium banking sector size is particularly small in high-growth economies with low financial
flexibility, as can be seen in Figure IA.1.
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B. Value for Extreme Cases, λ = 0 and λ =∞
Lemma 1: Suppose that capital is fully flexible, λ ≡ ∞, and that the central planner chooses a
constant bank share, z. Then the expected utility of the representative agent is

U∞(z) =

{ 1
1−γ ×

1
ρ+(1−γ)((1−z)µ̂−γ(1−z)2σ2/2)

γ > 1

1
ρ2

(
(1− z)µ̂− (1− z)2 σ2

2

)
γ = 1,

which takes on its maximal value, 1
1−γ ×

1

ρ+ γ−1
γ
× µ̂

σ2

for γ > 1 and µ̂2

2ρ2σ2 for γ = 1, respectively, at

z∗ = 1− µ̂
γσ2 .

Proof of Lemma 1: The optimal solution follows immediately from the unconstrained portfolio
problem; see, for example, Merton (1969).

Lemma 2: In the infinite horizon economy, T =∞, define q =
√
µ2 + 2ρσ2. Suppose that

(i) γ = 1. Then, if the initial bank share is 0 < z < 1, the expected utility of the representative
agent is

w(z) =
1

2ρ

( (
2µ2 + σ2(2ρ+ q) + µ(σ2 + 2q)

)
2F1

(
1,
q − µ
σ2

,
q − µ
σ2

+ 1,
z

z − 1

)
+ 2

z − 1

z

(
µ2 + ρσ2 − µq

)
2F1

(
1,
q + µ

σ2
+ 1,

q + µ

σ2
+ 2,

z − 1

z

))
/
(
µ2 − µq + 2ρ(σ2 + q)

)
,

where 2F1 is the hypergeometric function. Also, w(1) = 0 and w(0) = µ
ρ2

.

(ii) If γ > 1, then if the initial bank share is 0 < z < 1, the expected utility of the representative
agent is

w(z) =
z1−γ

q(1− γ)

×

[(
z

1− z

)µ−q
σ2
(
V

(
z

1− z
, γ +

q − µ
σ2

, 1− γ
)

+ V

(
z

1− z
, γ +

q − µ
σ2

− 1, 1− γ
))

+

(
1− z
z

)− q+µ
σ2
(
V

(
1− z
z

,
q + µ

σ2
, 1− γ

)
+ V

(
1− z
z

,
q + µ

σ2
+ 1, 1− γ

))]
.

Here, V (y, a, b)
def
=
∫ y
0 t

a−1(1 + t)b−1dt is defined for a > 0. Also, w(1) = 1
ρ(1−γ) . Moreover, define

x
def
= ρ + (γ − 1)µ − (γ − 1)2 σ

2

2 . Then, if x > 0, w(0) = − 1
x . If, on the other hand, x ≤ 0, then

w(0) = −∞.

We note that the definition of z in Parlour et al. (2011) is as the risky share, which corresponds
to 1− z in our notation.

Proof of Lemma 1: See Parlour et al. (2011).
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C. Prices

Define

Q(B,D, t) ≡ Et
[

GT
(BT +DT )γ

∣∣∣Bt = B,Dt = D

]
. (IA.1)

From equation (19), we have

Q(B,D, t) =
eρ(T−t)P (B,D, t)

(B +D)γ
− Et

[∫ T

t
eρ(T−s)

δs
(Bs +Ds)γ

ds

]
. (IA.2)

By iterated expectations,
E(dQ) = 0. (IA.3)

Also,

Et

[
d

(
E

[∫ T

t
eρ(T−s)

δs
(Bs +Ds)γ

ds

])]
= − eρ(T−t)δt

(Bt +Dt)γ
dt,

so

Et

[
d

(
eρ(T−t)P (B,D, t)

(B +D)γ

)]
+

eρ(T−t)δt
(Bt +Dt)γ

dt = 0. (IA.4)

Now,

Et

[
d

(
eρ(T−t)P (B,D, t)

(B +D)γ

)]
= eρ(T−t)

[
−ρ P

(B +D)γ
dt+

Pt
(B +D)γ

dt+
PB

(B +D)γ
dB

− γP

(B +D)γ+1
dB +

PD
(B +D)γ

E[dD]− γP

(B +D)γ+1
E[dD]

+
1

2

(
PDD

(B +D)γ
− 2γ

PD
(B +D)γ+1

+ γ(1 + γ)
P

(B +D)γ+2

)
(dD)2

]
.

Substituting this into (IA.4), noting that when ρ = 0 and r = 0 equation (4) reduces to dB = aB dt,
and multiplying by e−ρ(T−t)(B + D)γ leads to the following PDE, which must be satisfied by P ,
subject to the terminal boundary condition P (B,D, T ) = G(B,D, T ):

Pt +
1

2
σ2D2PDD +

[
µ̂D − aB − γ σ

2D2

B +D

]
PD + aBPB

−
(
ρ+ γµ̂

D

B +D
− 1

2
γ(γ + 1)σ2

D2

(B +D)2

)
P + δ(B,D, t) = 0. (IA.5)
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For the special case where δ is of the form δ(B,D, t) = g(z, t)(B +D) and G(B,D) = 0, we have

P (B,D, t) = P

(
z

1− z
, 1, t

)
(B +D)

≡ p(z, t)(B +D);

Pt = pt(B +D);

PB = pz
∂z

∂B
(B +D) + p = pz

D

B +D
+ p;

PD = pz
∂z

∂D
(B +D) + p = pz

−B
B +D

+ p;

PDD = pzz
B2

(B +D)3
.

Plugging this into (IA.5) yields

pt +
1

2
σ2z2(1− z)2pzz +

[
az − µ̂z(1− z) + σ2γz(1− z)2

]
pz

−
[
ρ− µ̂(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

]
p+ g(z) = 0. (IA.6)

We can use this to calculate the value of the dividends paid by the bank sector, using g(z) = z, and
by the risky sector, using g(z) = 1− z. Finally, plugging in g(z) = 1, we can calculate the value of
the total economy, P = p× (B +D).

For assets that pay dividends δ(z, t), with G(B,D, T ) = Ĝ(z), we can make a similar argument.
This is an interesting special case. For example, a zero-coupon bond is obtained when δ ≡ 0, with
Ĝ(z) ≡ 1. By homogeneity, we can write

P (B,D, t) = P

(
z

1− z
, 1, t

)
≡ p(z, t);

Pt = pt;

PB = pz
∂z

∂B
= pz

D

(B +D)2
;

PD = pz
∂z

∂D
= pz

−B
(B +D)2

;

PDD = pzz

(
∂z

∂D

)2

+ pz
∂2z

∂D2
= pzz

B2

(B +D)4
+ pz

2B

(B +D)3
.

Substituting these into equation (IA.5) and simplifying, we obtain

pt +
1

2
σ2z2(1− z)2pzz +

[
az − µ̂z(1− z) + σ2(1 + γ)z(1− z)2

]
pz

−
[
ρ+ µ̂γ(1− z)− 1

2
σ2γ(1 + γ)(1− z)2

]
p+ δ(z, t) = 0. (IA.7)

We use this formula to calculate value of the bank sector, PB = p × B, by using δ(z, t) = 1 and
Ĝ(z) = 0 in (IA.7). We note that p here is what in the paper we refer to as qB.
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Similarly, we would like to calculate the value of the equity sector, PD. This sector grows
according to

dD̂ = D̂(µ̂ dt+ σ dω),

and the value of such a sector is, from (19),

P (Bt, Dt, D̂t, t) = (Bt +Dt)
γEt

[∫ T

t
e−ρ(s−t)

D̂t

(Bs +Ds)γ
ds

]
. (IA.8)

An argument similar to that leading to (IA.4) shows that

Et

[
d

(
eρ(T−t)P (B,D, D̂, t)

(B +D)γ

)]
+

eρ(T−t)D̂

(Bt +Dt)γ
dt = 0.

We can then expand

Et

[
d

(
eρ(T−t)P (B,D, D̂, t)

(B +D)γ

)]
= eρ(T−t)

[
−ρ P

(B +D)γ
dt+

Pt
(B +D)γ

dt+
PB

(B +D)γ
dB

+
PD̂

(B +D)γ
E[dD̂]− γP

(B +D)γ+1
dB +

PD
(B +D)γ

E[dD]

− γP

(B +D)γ+1
E[dD] +

1

2

PD̂D̂
(B +D)γ

(dD̂)2

+ 2
1

2

(
PDD̂

(B +D)γ
− γ

PD̂
(B +D)γ+1

)
(dD̂)(dD)

+
1

2

(
PDD

(B +D)γ
− 2γ

PD
(B +D)γ+1

+ γ(1 + γ)
P

(B +D)γ+2

)
(dD)2

]
.

From (IA.8) and homogeneity, it follows that P (Bt, Dt, D̂t, t) = p(z)D̂, for some function p : [0, 1]→
R, implying that

Pt = ptD̂;

PB = pz
D

(B +D)2
D̂;

PD = pz
−B

(B +D)2
D̂;

PD̂ = p;

PD̂D̂ = 0;

PDD̂ = pz
−B

(B +D)2
;

PDD =
(
pzz

B2

(B +D)4
+ pz

2B

(B +D)3

)
D̂.
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Substituting yields

pt +
1

2
σ2z2(1− z)2pzz +

[
az − µ̂z(1− z) + σ2(1 + γ)z(1− z)2

]
pz

−
[
ρ+ µ̂γ(1− z)− 1

2
σ2γ(1 + γ)(1− z)2

]
p+ (µ̂− γ(1− z)σ2)p− z(1− z)σ2pz + 1 = 0. (IA.9)

Thus, since B̂ = B at t = 0, PD = p(z)×D. We note that p here is what in the paper is referred
to as qD.

Now, to calculate P I , we can use either P I = P −PB −PD or (7) to derive P I = p× (B +D),
where p solves

pt +
1

2
σ2z2(1− z)2wzz +

[
az − µ̂z(1− z) + σ2γz(1− z)2

]
pz

−
[
ρ− µ̂(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

]
p = a

(
qB − qD

)
. (IA.10)

D. Proofs

Proof of Proposition 1: We first prove Corollary 1, and then show how the analysis generalizes
to the general proposition. For completeness, we also analyze the case in which γ = 1, that is, in
which the representative investor has log-utility.

Proof of Corollary 1: We proceed by characterizing the central planner’s problem for a finite
T by finding a locally optimal control or reallocation (a) that will also be globally optimal. The
infinite horizon case follows immediately. Given the central planner’s objective, for γ > 1, the
Bellman equation for optimality is

sup
a∈A

[
Vt +

1

2
σ2D2VDD + [µ̂D − aB]VD + aBVB − ρV +

(B +D)1−γ

1− γ

]
= 0. (IA.11)

Equation (IA.11) can be simplified by observing that, by homogeneity, we can write

V (B,D, t) = −(B +D)1−γ

1− γ
w(z, t), (IA.12)

where the normalized value function w(z, t) ≡ V (z, 1− z, t). The derivatives of V in terms of
derivatives of w are given by

Vt = −(B +D)1−γ

1− γ
wt, (IA.13)

VB = −(B +D)1−γ

1− γ

(
w

1− γ
B +D

+ wz
D

(B +D)2

)
, (IA.14)

VD = −(B +D)1−γ

1− γ

(
w

1− γ
B +D

− wz
B

(B +D)2

)
, (IA.15)

VDD = −(B +D)1−γ

1− γ

(
−w γ(1− γ)

(B +D)2
+ wz

2γB

(B +D)3
+ wzz

B2

(B +D)4

)
. (IA.16)

This step allows us to write derivatives of V in terms of derivatives of w. Substituting these into
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equation (IA.11), we obtain

sup
a∈A

wt +
1

2
σ2z2(1− z)2wzz +

[
az − µ̂z(1− z) + σ2γz(1− z)2

]
wz

−
[
ρ− µ̂(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

]
w − 1 = 0. (IA.17)

The derivation for γ = 1 is slightly different. Define

V (B,D, t) ≡ sup
a∈A

Et

[∫ T

t
e−ρ(s−t) log(B +D) ds

]
.

The Bellman equation for optimality is

sup
a∈A

[
Vt +

1

2
σ2D2VDD + [µ̂D − aB]VD + aBVB − ρV + log(B +D)

]
= 0. (IA.18)

By homogeneity, we can write V and its derivatives in terms of D and z:

V (B,D, t) =
log(B +D)

(
1− e−ρ(T−t)

)
ρ

+ V (z, 1− z, t)

≡
log(B +D)

(
1− e−ρ(T−t)

)
ρ

+ w(z, t).

Vt = −e−ρ(T−t) log(B +D) + wt, (IA.19)

VB =
1− e−ρ(T−t)

ρ(B +D)
+ wz

D

(B +D)2
, (IA.20)

VD =
1− e−ρ(T−t)

ρ(B +D)
− wz

B

(B +D)2
, (IA.21)

VDD = −1− e−ρ(T−t)

ρ(B +D)2
+ wz

2B

(B +D)3
+ wzz

B2

(B +D)4
. (IA.22)

Substituting these into equation (IA.18), we obtain

wt +
1

2
σ2z2(1− z)2wzz +

[
az − µ̂z(1− z) + σ2z(1− z)2

]
wz − ρw

+
1− e−ρ(T−t)

ρ

[
µ̂(1− z)− σ2(1− z)2

2

]
= 0.

In sum, we therefore have

sup
a∈A

wt +
1

2
σ2z2(1− z)2wzz +

[
az − µ̂z(1− z) + σ2γz(1− z)2

]
wz

−
[
ρ− µ̂(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

]
w + Fγ(t, z) = 0, (IA.23)

where

Fγ(t, z) =

{
−1, γ > 1,
1−e−ρ(T−t)

ρ

(
µ̂(1− z)− σ2(1−z)2

2

)
, γ = 1.

(IA.24)
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We study the case γ = 1. The case γ > 1 can be treated in an identical way. We first note
that azwz = λ(z) sign(wz)wz = λ(z)|wz|, so (16) is the same as (IA.23). We define a solution to
the central planner’s optimization to be interior if a(t, 0) > 0 and a(t, 1) < 0 in a neighborhood of
the boundaries for all t < T , where the radii of the neighborhoods do not depend on t. A solution
is thus interior if it is always optimal for the central planner to stay away from the boundaries,
z = 0 and z = 1. From our previous argument, we know that any smooth interior solution must
satisfy (16). What remains to be shown is that the solution to the central planner’s problem is
indeed interior, and that, given that the solution is interior, equations (16) and (17) have a unique,
smooth solution, that is, that (16) and (17) provide a well-posed PDE (Egorov and Shubin (1992)).1

We begin with the second part, that is, the well-posedness of the equation, given that the
solution is interior. As usual, we first study the Cauchy problem, that is, the problem without
boundaries, on the entire real line z ∈ R (or, equivalently, with periodic boundary conditions).
We then extend the analysis to the bounded case, z ∈ [0, 1]. Equation (16) has the structure of a
generalized KPZ equation, which has been extensively studied in recent years (see Kardar, Parisi,
and Zhang (1986), Gilding, Guedda, and Kersner (2003), Ben-Artzi, Goodman, and Levy (1999),
Hart and Weiss (2005), Laurencot and Souplet (2005), and references therein). The Cauchy problem
is well posed, that is, given bounded, regular initial conditions, there exists a unique, smooth
solution. Specifically, given continuous, bounded initial conditions, there is a unique solution that
is bounded, twice continuously differentiable in space, and once continuously differentiable in time,
that is, w ∈ C2,1[0, T ]× R (see, for example, Ben-Artzi et al. (1999)).

Given that the Cauchy problem is well posed and that the solution is smooth, it is clear that
az = λ(z) sign(wz) will have a finite number of discontinuities on any bounded interval at any point
in time. Moreover, given that the solution is interior, a is continuous in a neighborhood of z = 0
and also in a neighborhood of z = 1. The PDE

0 = wt − ρw + (az − z(1− z)µ̂+ z(1− z)2σ2)wz +
σ2

2
z2(1− z)2wzz + q(t, z)

is parabolic in the interior but hyperbolic at the boundaries, since the σ2

2 z
2(1−z)2wzz-term vanishes

at boundaries. For example, at the boundary z = 1, using the transformation τ = T−t, the equation
reduces to

wτ = −ρw − λ(1)wz.

Similarly, at z = 0, the equation reduces to

wτ = −ρw + λ(0)wz + q(t, 0).

Both these equations are hyperbolic and, moreover, both correspond to outflow boundaries. Specif-
ically, the characteristic lines at z = 0 are τ + z/λ(0) = const, and at z = 1 they are τ − z/λ(1) =
const. For outflow boundaries to hyperbolic equations, no boundary conditions are needed, that
is, if the Cauchy problem is well posed, then the initial boundary value with an outflow boundary
is well posed without a boundary condition (Kreiss and Lorenz (1989)). This suggests that no
boundary conditions are needed.

To show that this is indeed the case, we use the energy method to show that the operator

Pw
def
= ρw+ (a− z(1− z)µ̂+ z(1− z)2σ2)wz + σ2

2 z
2(1− z)2wzz is maximally semi-bounded, that is,

1The concept of well-posedness additionally requires the solution to depend continuously on initial and boundary
conditions. This requirement is natural, since we cannot hope to numerically approximate the solution if it fails.
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we use the L2 inner product 〈f, g〉 =
∫ 1
0 f(x)g(x)dx and the norm ‖w‖2 = 〈w,w〉 to show that for

any smooth function, w, 〈w,Pw〉 ≤ α‖w‖2 for some α > 0.2 This allows us to bound the growth of
d
dτ ‖w(t, ·)‖2 by d

dτ ‖w(t, ·)‖2 ≤ α‖w‖2, since 1
2 ×

d
dτ ‖w(t, ·)‖2 = 〈w,Pw〉. Such a growth bound, in

turn, ensures well-posedness (see Kreiss and Lorenz (1989), Gustafsson, Kreiss, and Oliger (1995)).
We define I = [ε, 1− ε]. Here, ε > 0 is chosen such that wz is nonzero outside of I for all τ > 0.

By integration by parts, we have

〈w,Pw〉 = −ρ‖w‖2 + 〈w, cwz〉+ 〈w, dwzz〉

= −ρ‖w‖2 +
1

2

(
〈w, cwz〉 − 〈wz, cw〉 − 〈w, czw〉+ [w2c]10

)
− 〈wz, dwz〉 − 〈w, dzwz〉+ [w dwz]

1
0

= −ρ‖w‖2 − 〈w, czw〉 − λ(1)w(t, 1)2 − λ(0)w(0, t)2 − 〈wz, dwz〉 − 〈w, dzwz〉
≤ (r − ρ)‖w‖2 + γmax

z∈I
w(z)2 − 〈wz, dwz〉 − 〈w, dzwz〉

≤
(
r + σ2 − ρ

)
‖w‖2 + γmax

z∈I
w(z)2 − σ2

2

∫ 1

0
z2(1− z)2w2

zdz,

where c(t, z) = az − µ̂z(1 − z) + σ2z(1 − z)2 and d(z) = σ2z2(1 − z)2/2. Also, γ = 2 maxz∈I λ(z)
and r = max0≤z≤1 |µ̂z(1− z)− σ2z(1− z)2|. The last inequality follows from

−〈wz, dwz〉 − 〈w, dzwz〉 =
σ2

2

∫ 1

0
z(1− z)

(
−z(1− z)w2

z − (2− 4z)wwz
)
dz

≤ σ2

2

∫ 1

0
z(1− z)

(
−z(1− z)w2

z + 2|w||wz|
)
dz

≤ σ2

2

∫ 1

0
z(1− z)

(
−z(1− z)w2

z +
z(1− z)

2
w2
z +

2

z(1− z)
w2

)
dz

= σ2‖w‖2 − σ2

2

∫ 1

0
z2(1− z)2w2

zdz,

where we use the relation |u||v| ≤ 1
2(δ|u| + |v|/δ) for all u, v for all δ > 0. Finally, a standard

Sobolev inequality implies that

γmax
z∈I

w(z)2 ≤ γ
(
ξ

∫
I
wz(z)

2dz +

(
1

ξ
+ 1

)∫
I
w(z)2dz

)
for arbitrary ξ > 0. Specifically, we can choose ξ = ε2(1− ε)2/(2γ) to bound

γmax
z∈I

w(z)2 − σ2

2

∫ 1

0
z2(1− z)2w2

zdz ≤ γ
(

1

ξ
+ 1

)
‖w‖2,

and the final estimate is then

d

dτ
‖w‖2 ≤

(
r + σ2 − ρ+

γ

ξ
+ γ

)
‖w‖2.

We have thus derived an energy estimate for the growth of ‖w‖2, and well-posedness follows from
the theory in Kreiss and Lorenz (1989) and Gustafsson et al. (1995). Notice that we also used that
a(0, ·) > 0 and a(1, ·) < 0 in the first equation, to ensure the negative sign in front of the λ(0) and

2Since we impose no boundary conditions, it immediately follows that P is maximally semi-bounded if it is
semi-bounded.
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λ(1) terms.
What remains is to show that if Condition 1 is satisfied, then the solution is indeed an interior

one. We first note that an argument identical to that behind Proposition 1 in Longstaff (2001)
implies that the central planner will never choose to be in the region z < 0 or z > 1, since the
nonzero probability of ruin in these regions always makes such strategies inferior. Since any solution
will be smooth, the only way in which the solution can fail to be interior is thus if a = 0 for some
t, either at z = 0 or at z = 1.

We note that close to time T , the solution to (IA.23) will always be an interior one, since

µ̂(1− z)− σ2

2 (1− z)2 is strictly concave, with an optimum in the interior of [0, 1] and

wz(T − τ, z) =

∫ τ

0
qz(T − s, z)ds+O(τ3) =

τ2

2

(
−µ̂+ σ2(1− z)

)
+O(τ3),

so the solution to wz = 0 lies at z∗ = 1− µ̂
σ2 +O(τ), which from Condition 1 lies strictly inside the

unit interval for small τ . Thus, if a solution degenerates into a non-interior one, it must happen
after some time.

We next note that for the benchmark case in which λ(z) ≡ 0, that is, for the case with no
flexibility, the solution is increasing in z at z = 0 and decreasing in z at z = 1 for all t. For
example, at z = 0, by differentiating (16) with respect to z and once again using the transformation
τ = T − t, it is clear that wz satisfies the ODE

(wz)τ = −(ρ+ µ̂− σ2)wz + qz(T − τ, 0), (IA.25)

and since qz(T − τ, 0) > 0 and (wz)(0, 0) = 0, it is clear that (wz) > 0 for all τ > 0. In fact, the
solution to (IA.25) is

e−(µ̂+ρ)τ
(
−e−τσ2

ρ+ eτµ̂(µ̂+ ρ− σ2) + eτ(µ̂+ρ)(−µ̂+ σ2)
)

ρ(µ̂+ ρ− σ2)
,

which is strictly increasing in τ as long as Condition 1 is satisfied. An identical argument can be
made at the boundary z = 1, showing that wz(τ, 1) < 0, for all τ > 0. Now, standard theory
of PDEs implies that, for any finite τ , w depends continuously on parameters for the lower-order
terms, so wz 6= 0 at boundaries for small but positive λ(z).

For large τ , we know that w converges to the steady-state benchmark case, which has wz 6= 0 in
a neighborhood of the boundaries. Moreover, for small τ it is clear that wz 6= 0 in a neighborhood
of the boundaries according to the previous argument. Since the solution is smooth in [0, T ]× [0, 1],
and wz 6= 0 at the boundaries for all τ > 0, it is therefore clear that there exists an ε > 0 such that
wz(t, z) > 0 for all τ > 0, for all z < ε, and wz(t, z) < 0 for all z > 1− ε. Thus, for λ ≡ 0, and for
λ close to zero by continuity, the solution is interior.

Next, it is easy to show that for any λ, the central planner will not choose to stay at the
boundary for a very long time. To show this, we will use the obvious ranking of value functions
implied by their control functions: λ1(z) ≤ λ2(z) for all z ∈ [0, 1] ⇒ w1(τ, z) ≤ w2(τ, z) for all
τ ≥ 0, z ∈ [0, 1], where w1 is the solution to the central planner’s problem with control constraint
λ1, and similarly for w2.

Specifically, let’s assume that λ1 ≡ 0, and λ2 > 0. Next, let’s assume that for all τ > τ0,
the optimal strategy in the case with some flexibility (λ2) is for the central planner to stay at
the boundary z = 1 for some τ0 > 0. From (16), it is clear that w2(τ, 0) = e−ρ(τ−τ0)w2(τ0, 0),
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which will become arbitrarily small over time. Specifically, it will become smaller than w1(1− ε, τ)
for arbitrarily small ε > 0, in line with the previous argument, since w1(τ, 0) ≡ 0 for all τ and
w1
z(τ, 0) < −ν for large τ , for some ν > 0. It cannot therefore be optimal to stay at the boundary

for arbitrarily large τ , since w2(τ, 1− ε) ≥ w1(τ, 1− ε) > w2(τ, 0). A similar argument can be made
for the boundary z = 0.

In fact, a similar argument shows that the condition wz = 0 can never occur at boundaries.
For example, focusing on the boundary z = 0, assume that wz = 0 at z = 0 for some τ and
define τ∗ = infτ>0wz(τ, 0) = 0. Similarly to the argument leading to (IA.25), the space derivative
of (IA.23) at the boundary z = 0 is

(wz)τ = −(µ̂+ ρ− σ2)wz + qz + awzz, (IA.26)

where qz = (−µ̂ + σ2)1−e
−ρτ

ρ is strictly positive for all τ > 0. Since, per definition, wz(τ
−
∗ , 0) > 0

and wz(τ∗, 0) = 0, it must therefore be the case that qz + awzz ≤ 0, which, since a(τ, 0) > 0, for
τ < τ∗, implies that w is strictly concave in a neighborhood of τ∗ and z = 0. Moreover, just before
τ∗, say at τ∗ −∆τ , wz is zero at an interior point close to z = 0 because of the strict convexity of
w, that is, wz(τ∗ − ∆τ,∆z) = 0. However, at ∆z, wz satisfies the following PDE, which follows
directly from (IA.23):

(wz)τ = −(µ̂+ ρ− σ2 +O(∆z))wz + (1 +O(∆z))qz +O((∆z)2), (IA.27)

and, since wz = 0, this implies that

(wz)τ = qz +O((∆z)2) > 0, (IA.28)

so at time τ∗, wz(τ∗,∆z) = qz(τ∗−∆τ,∆z)∆τ +O((∆z)2∆τ) +O((∆τ)2) > 0. However, since wzz
is strictly concave on z ∈ [0,∆z], it cannot be the case that wz(τ∗, 0) = 0 and wz(τ∗,∆z) > 0, so
we have a contradiction. A similar argument can be made at the boundary at z = 1.

We have thus shown that the solution to (IA.23) must be an interior one and that, given that
the solution is interior, the formulation as an initial value problem with no boundary conditions,
(16) and (17), is well posed. We are done.

Since a is a bang-bang control, az = λ(z)sign(wz).

Full statement of Proposition 1: Suppose that Condition 1 is satisfied. Then for a solution to
the social planner’s problem V (B,D, t) ∈ C2

(
R2
+ × [0, T ]

)
, with control a : [0, 1]× [0, T ]→ [−1, 1],

we have:
a) if γ = 1,

V (B,D, t) =
log(B +D)

ρ
+ w

(
B

B +D
, t

)
,

where w : [0, 1]× [0, T ]→ R solves the PDE

0 = wt +
1

2
σ2z2(1− z)2wzz +

(
az − µ̂z(1− z) + σ2γz(1− z)2

)
wz

−(ρ+ p)w +
1− e−ρ(T−t)

ρ

(
µ̂(1− z)− σ2(1− z)2

2

)
+p

[
log(1− |a|z)(1− e−ρ(T−t))

ρ
+ w

(
(1− |a|)z
1− |a|z

, t

)]
, (IA.29)
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where a(z, t) = α(z, t) sign(wz) and, for each z and t,

α = arg max
α∈[0,1]

α|wz|+ p

[
log(1− αz)(1− e−ρ(T−t))

ρ
+ w

(
(1− α)z

1− αz
, t

)]
; (IA.30)

b) if γ > 1,

V (B,D, t) = −(B +D)1−γ

1− γ
w

(
B

B +D
, t

)
,

where w : [0, 1]× [0, T ]→ R− solves the PDE

0 = wt +
1

2
σ2z2(1− z)2wzz +

(
az − µ̂z(1− z) + σ2γz(1− z)2

)
wz

−
[
ρ+ p− µ̂(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

]
w

−1 + p

[
1− (1− |a|z)1−γ + w

(
(1− |a|)z
1− |a|z

, t

)]
, (IA.31)

where a(z, t) = α(z, t) sign(wz) and, for each z and t,

α(z, t) = arg max
α∈[0,1]

α|wz|+ p

[
(1− αz)1−γ + w

(
(1− α)z

1− αz
, t

)]
. (IA.32)

For all γ ≥ 1, the terminal condition is

w(z, T ) = 0.

Proof of Proposition 1: We have

dB = aB dt− αB dJ,
dD = −aB dt+D (µ̂ dt+ σ dω) .

For γ = 1, define

V (B,D, t) ≡ sup
a∈A

Et

[∫ T

t
e−ρ(s−t) log(B +D) ds

]
.

The Bellman equation for optimality with jump-diffusion processes is then

sup
a∈A

[
Vt +

1

2
σ2D2VDD + [µ̂D − aB]VD + aBVB − (ρ+ p)V + log(B +D) + pV ((1− |a|)B,D, t)

]
= 0.

As before, by homogeneity, we can write V and its derivatives in terms of D and z:

V (B,D, t) =
log(B +D)

(
1− e−ρ(T−t)

)
ρ

+ w(z, t).
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Using (IA.19) to (IA.22), and substituting into (IA.11), we obtain

0 = wt +
1

2
σ2z2(1− z)2wzz +

[
az − µ̂z(1− z) + σ2z(1− z)2

]
wz − (ρ+ p)w

+
1− e−ρ(T−t)

ρ

[
µ̂(1− z)− σ2(1− z)2

2

]
+ p

[
1− e−ρ(T−t)

ρ
log(1− |a|z)) + w

(
(1− |a|)z
1− |a|z

, t

)]
.

A similar argument as in the proof of Proposition 1 implies that no boundary conditions are needed,
and the natural terminal condition is w(z, T ) = 0.

For γ > 1, define

V (B,D, t) ≡ sup
a∈A

Et

[∫ T

t
e−ρ(s−t)

(B(s) +D(s))1−γ

1− γ
ds

]
.

Th Bellman equation for optimality is

0 = sup
a∈A

[
Vt +

1

2
σ2D2VDD + [µ̂D − aB]VD + aBVB − (ρ+ p)V +

(B +D)1−γ

1− γ
+ pV ((1− |a|)B +D)

]
.

By homogeneity, we can write

V (B,D, t) = −(B +D)1−γ

1− γ
w(z, t),

which, using (IA.13) to (IA.16), leads to

0 =
1

2
σ2z2(1− z)2wzz +

(
az − µ̂z(1− z) + σ2γz(1− z)2

)
wz

−
[
ρ+ p− µ̂(1− γ)(1− z) +

1

2
σ2γ(1− γ)(1− z)2

]
w

−1 + p

[
(1− |a|z)1−γ − 1 + w

(
(1− |a|)z
1− |a|z

, t

)]
.

A similar argument as in the proof of Proposition 1 implies that no boundary conditions are needed,
and the natural terminal condition is w(z, T ) = 0.

Proof of Proposition 2: We prove the proposition for the case γ > 1. A similar argument applies
to the case γ = 1. It follows directly from the proof of Proposition 1 that w is increasing close to
z = 0 and decreasing close to z = 1, given that Condition 1 is satisfied. To prove that w is concave,
we first note that given the linear constraints in the optimization problem, the social planner could
divide the initial capital B0 and D0, corresponding to an initial bank share z0 = B0

B0+D0
, into

B0 = B1
0 + B2

0 and D0 = D1
0 + D2

0, and treat (B1
0 , D

1
0) and (B2

0 , D
2
0) as two separate allocation

problems, with z10 =
B1

0

B1
0+D

1
0

and z20 =
B2

0

B1
0+D

2
0
.

Specifically, the social planner could choose a control a1 for the (B1
0 , D

1
0) problem and another,

a2, for the (B2
0 , D

2
0) problem. In fact, he could choose the optimal controls a∗1 and a∗2, respectively,

for these two subproblems. Such a strategy, although feasible, would obviously be dominated
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compared with the one achieved by the optimal control for the global problem, a∗, that is,

1

1− γ
E

[∫ T

0
(Bt +Dt)

1−γe−ρtdt
∣∣∣a∗] ≥ 1

1− γ
E

[∫ T

0
(B1

t +D1
t +B2

t +D2
t )

1−γe−ρtdt
∣∣∣a∗1, a∗2] ,

(IA.33)
or equivalently

1

1− γ
E

[∫ T

0

(
Bt +Dt

B0 +D0

)1−γ
e−ρtdt

∣∣∣a∗] ≥ 1

1− γ
E

[∫ T

0

(
B1
t +D1

t +B2
t +D2

t

B0 +D0

)1−γ
e−ρtdt

∣∣∣a∗1, a∗2
]
,

(IA.34)
Now define

κ =
B1

0 +D1
0

B0 +D0
.

It then follows that

B1
t +D1

t +B2
t +D2

t

B0 +D0
= κ

B1
t +D1

t

B1
0 +D1

0

+ (1− κ)
B1
t +D1

t

B1
0 +D1

0

, (IA.35)

and given the concavity of the utility function U(x) = 1
1−γx

1−γ , U(κx+ (1− κ)y) ≥ κU(x) + (1−

κ)U(y) for arbitrary x and y, and more specifically for x =
B1
t+D

1
t

B0+D0
and y =

B2
t+D

2
t

B0+D0
, it then further

follows that

1

1− γ
E

[∫ T

0

(
B1
t +D1

t +B2
t +D2

t

B0 +D0

)1−γ
e−ρtdt

∣∣∣a∗1, a∗2
]
≥ κ

1− γ
E

[∫ T

0

(
B1
t +D1

t

B1
0 +D1

0

)1−γ
e−ρtdt

∣∣∣a∗1
]

+
1− κ
1− γ

E

[∫ T

0

(
B2
t +D2

t

B2
0 +D2

0

)1−γ
e−ρtdt

∣∣∣a∗2
]
.

Using the definition of the normalized value function, w = γ−1
(B0+D0)1−γ

V (B0, D0, t), this can be
rewritten as

(γ − 1)w(z0) ≥ (γ − 1)κw(z10) + (γ − 1)(1− κ)w(z20),

or
w(z0) ≥ κw(z10) + (1− κ)w(z20). (IA.36)

Finally, note that z0 = κz10 + (1− κ)z20 , so (IA.36) is indeed the condition that ensures that w is a
concave function.

The form of the capital flow function follows immediately from the shape of w. Specifically,
given that wz > 0 on some interval z ∈ (0, z`), it follows from the social planner’s optimization
problem that he will only consider risking a crash by moving capital into the bank sector in this
region, that is, az ≥ 0. A similar argument implies that for z ∈ (zr, 1), the social planner will
only consider moving capital out of the bank sector, that is, az ≤ 0. Finally, since w is smooth,
there will be an interval of positive length to the left of a point z∗ where w reaches its maximum,
(z∗ − ε, z∗), where wz is close to zero, and the term p(1 − αz)1−γ in (15)—which is decreasing in

α—therefore dominates the positive effect of the α|wz| term. The third term, pw
(
(1−α)z
1−αz , t

)
, in

the equation is also nonpositive on this interval and the optimal choice for the social planner is
therefore to choose α = 0, immediately implying that a = 0.
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Proof of Proposition 3: First, we note from Proposition 5 that the risk-free rate is

rs = ρ+ γ(1− z)µ̂− γ(γ + 1)(1− z)2σ
2

2
. (IA.37)

Now, the expected return of the bank tree is

rBdt = E

[
dqB + dt

qB

]
,

so

rBqBdt = E

[
qBz dz +

1

2
qBzz(dz)

2 + dt

]
.

From equation (10),

rBqB =
[
az − µ̂z(1− z) + σ2z(1− z)2

]
qBz

+
1

2
σ2z2(1− z)2qBzz + 1,

so

rBqB − rsqB =
[
az − µ̂z(1− z) + σ2z(1− z)2

]
qBz

+
1

2
σ2z2(1− z)2qBzz −

[
ρ+ γ(1− z)µ̂− γ(γ + 1)(1− z)2σ

2

2

]
qB + 1.

Now from (IA.7), given that pt = 0 (since T =∞) and p ≡ qB when δ ≡ 1, it follows that

(rB − rs)qB = −γz(1− z)2σ2qBz ,

so the expected excess return on the bank tree is given by

rB − rs = −γz(1− z)2σ2 q
B
z

qB
.

To calculate the bank tree’s volatility, we use the formula

(σB)2 = 〈dPB, dPB〉/(PB)2 = 〈dqB, dqB〉/(qB)2 = (qBz )2(dz)2/(qB)2,

and since dz2 = σ2z2(1− z)2, we get

σB = σz(1− z)
∣∣qBz ∣∣
qB

.

It follows that the Sharpe ratio is

SB =
rB − rs
σB

= −γσ(1− z) sign(qBz ).

A similar argument applies to the equity tree. We begin by observing that

rDdt = E

[
d(qDD̂) + D̂dt

qDD̂

]
= E

[
dqD D̂ + qD dD̂ + dqD dD̂ + D̂dt

qDD̂

]
,
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where dD̂ = D̂(µ̂dt + σdω) is the dynamics of equity capital without reallocation (see Internet
Appendix Section C), so

rDqDdt = E

[
qDz dz +

1

2
qDzz(dz)

2 + qD
dD̂

D̂
+ dqD

dD̂

D̂
+ dt

]
,

which from (10) and the expression for rs leads to

(rD − rs)qD =
[
az − µ̂z(1− z) + σ2z(1− z)2

]
qDz +

1

2
σ2z2(1− z)2qDzz

+ qDµ̂− z(1− z)σ2qDz + 1−
[
ρ+ γ(1− z)µ̂− γ(γ + 1)(1− z)2σ

2

2

]
qD.

Using (IA.9), we arrive at

rD − rs = γσ2(1− z)
(

1− z(1− z)q
D
z

qD

)
.

For the variance of returns of the equity sector, we write

(σD)2 = 〈dPD, dPD〉/(PD)2 = 〈d(qDD), d(qDD)〉/(qDD)2 = 〈qDz dzD+qDdD, qDz dzD+qDdD〉/(qDD)

(including reallocation, az dt, here does not change the results since its quadratic variation is zero,
which motivates using D instead of D̂), which leads to

σD = σ

∣∣∣∣1− z(1− z)qDzqD
∣∣∣∣ .

It follows that the Sharpe ratio is

SD =
rD − rs
σD

= γσ(1− z) sign

(
1− z(1− z)q

D
z

qD

)
.

Proof of Proposition 4: In general, a central planner’s problem, possibly including consump-
tion/investment trade-offs, is

max Et

[∫ T

t
e−ρ(s−t)u(Cs)ds

]
,

subject to constraints. With CRRA utility, this can be rewritten as

1

1− γ
min Et

[∫ T

t
e−ρ(s−t)u′(Cs)Csds

]
.

In general, Ct can be chosen by the central planner. In our exchange-like economy with reallocation,
however, Ct = Bt +Dt is fixed, and the central planner can only influence future consumption.

Therefore, the optimization problem is identical to

u′(Ct)Ct
1− γ

min
1

u′(Ct)Ct
Et

[∫ T

t
e−ρ(s−t)u′(Cs)Csds

]
,
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but the Euler equations imply that

1

u′(Ct)
Et

[∫ T

t
e−ρ(s−t)u′(Cs)Csds

]
= PB + PD,

so the central planner’s problem is to solve

u′(Ct)Ct
1− γ

min
PB + PD
B +D

, that is,

(Bt +Dt)
1−γ

1− γ
min

PB + PD
B +D

.

Thus, the central planner’s problem is to minimize the market price-dividend ratio. In fact, we
have

PD + PB
B +D

= (B +D)γ−1(1− γ)Et

[∫ T

t
e−ρ(s−t)

(Bs +Ds)
1−γ

1− γ
ds

]
= −(B +D)γ−1(1− γ)

(B +D)1−γ

1− γ
w(z, t) = −w(z, t).

Proof of Proposition 5: The value function at t = 0 is

V0 = E

[∫ ∞
0

e−ρt
C1−γ
t

1− γ
dt

]
= −C

1−γ
0

1− γ
E

[
−
∫ ∞
0

e−ρt
(
Ct
C0

)1−γ
dt

]
def
= −C

1−γ
0

1− γ
w(z),

where the last definition of w(z) is possible because the terms within the expectation do not depend
on either C or T in the infinite horizon economy. A similar expression is, of course, valid at arbitrary
t because of the time-homogeneity of the problem.

In a complete-market equilibrium, the price of the market claim—through the Euler conditions—
is

P0 =
1

u′(C0)
E

[∫ ∞
0

e−ρtC−γt Ct dt

]
= −C0C

γ−1
0 E

[
−
∫ ∞
0

e−ρtC1−γ
t dt

]
= −C0E

[
−
∫ ∞
0

e−ρt
(
Ct
C0

)1−γ
dt

]
= −C0w(z).

Again, the formula extends to arbitrary t, Pt = −Ctw(z).
The pricing kernel is Mt = e−ρtC−γt and, from a standard argument, the formula for the market
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risk premium is (re − rs)dt = − cov
(
dMt
Mt

, dPt+CtdtPt

)
. We decompose the risk premium into

(re − rs)dt = −E
[
dMt − E[dMt]

Mt
,
dPt + Ctdt

Pt

]
= −(1− p dt)E

[
dMt − E[dMt]

Mt
,
dPt + Ctdt

Pt

∣∣∣No Jump

]
−p dtE

[
dMt − E[dMt]

Mt
,
dPt + Ctdt

Pt

∣∣∣Jump

]
.

Disregarding the higher-order term in the first term leads to

−(1− p dt)E
[
dMt − E[dMt]

Mt
,
dPt + Ctdt

Pt

∣∣∣No Jump

]
= γ cov

(
dC

C
,

(
dC

C
+
wz
w
dz

))
= γσ2cdt+ γ

wz
w
σcσzdt

= γσ2cdt+ γ
Xz

X
σcσzdt

= γσ2cdt+ γ
d[logX(z)]

dz
σcσzdt

= rm(1 + g(z))dt.

Similarly, disregarding higher-order terms in the second term leads to

−p dtE
[
dMt − E[dMt]

Mt
,
dPt + Ctdt

Pt

∣∣∣Jump

]
= p dtE

[(
C−γt − C−γt−

C−γt

)(
wtCt − wt−Ct−

wt−Ct−

)]

= p dtE

[(
1−

(
Ct−
Ct

)γ)(
1− wtCt

wt−Ct−

)]
.

Defining C ′
def
= Ct = Ct−(1−jc(z)), z′

def
= zt = zt−−jz(z), and qJ(z)

def
=
(

1−
(
Ct
C′

)γ)(
1− w(z′)C′

w(z)C

)
=(

1−
(
Ct
C′

)γ)(
1− X(z′)C′

X(z)C

)
therefore gives pqJ(z)dt for the second term. In sum, we have the

following expression for the market risk premium:

re − rs = (1 + g(z)) rm + p qJ(z).

A standard argument for the short risk-free rate in the economy reveals that it is

rsdt = −E
[
dMt

Mt

]
= −(1− p dt)E

[
dMt

Mt

∣∣∣No jump

]
− p dtE

[
dMt

Mt

∣∣∣Jump

]
.

Ignoring higher-order terms, the first term reduces to

−(1− p dt)E
[
dMt

Mt

∣∣∣No jump

]
=

(
ρ+ γµc(z)− γ(γ + 1)

σ2c (z)

2

)
dt.

Further, a similar argument as when deriving the formula for the market price of risk leads to
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−p dtE
[
dMt
Mt

∣∣∣Jump
]

= −p dtE
[(

C
C′

)γ − 1
]
. We therefore have

rs = ρ+ γµc(z)− γ(γ + 1)
σ2c (z)

2
− pE

[(
C

C ′

)γ
− 1

]
.

A similar argument for the instantaneous variance of market returns, σ2dt = cov
(
dP
P ,

dP
P

)
, once

again using P = XC and decomposing the return into jump and no-jump components, leads to

σ2 = σ2c (1 + g(z))2 + p

(
1− C ′

C

X(z′)

X(z)

)2

.

We are done.
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