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“Correlation Risk and Optimal Portfolio Choice”∗

This Internet Appendix includes five subappendices, identified by roman letters from
A to E. Internet Appendix A reports proofs for the propositions stated in the published
article. Internet Appendix B provides details about the estimation procedure that we use
in the empirical application of Section II of the article. In particular, it derives in closed
form the GMM moment restrictions. In Internet Appendix C we solve and discuss a model
specification alternative to that considered in Section I of the article, namely a specification
that comprises stochastic interest rates and constant risk premia. Internet Appendix D
reports results for the discrete-time analog of the continous-time specification of the article.
In this discrete-time setting, we also discuss the implications of short selling and VaR-type
constraints on portfolio allocations. Finally, Internet Appendix E reports tables and graphs
in support of the robustness checks and extensions provided in the article.

Propositions, lemmas, and equation numbers are prefixed with the letter that identifies
the appendix. Numbers without prefix refer to Propositions, lemmas, or equations in the
main text. Tables and figures of this appendix are labeled as “Table (Figure) IA.LX”, where
X denotes the number of the Table (Figure) and L is the letter that identifies the Appendix.
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A. Proofs

Proof of Proposition 1: The dynamics of the correlation process implied by the Wishart covariance
matrix diffusion (4) is computed using Itô’s Lemma. Let

ρ(t) =
Σ12(t)√

Σ11(t)Σ22(t)
(IA.A1)

be the instantaneous correlation between the returns of the first and second risky assets and denote by σij,
qij, and ωij the ijth component of the volatility matrix Σ1/2, the matrix Q, and the matrix Ω′Ω = kQ′Q in
equation (4), respectively. Applying Itô’s Lemma to (IA.A1) and using the dynamics for Σ11, Σ22, and Σ12,
implied by (4), it follows that

dρ =

[
ω12√

Σ11Σ22

− ρ

2Σ11
ω11 −

ρ

2Σ22
ω22 +

ρ

2

(
q211 + q221

Σ11
+
q212 + q222

Σ22

)

+(ρ2 − 2)
q11q12 + q21q22√

Σ11Σ22

+ (1 − ρ2)
m21Σ11 +m12Σ22√

Σ11Σ22

]
dt

−
[

ρ

2Σ11Σ22
(Σ22σ11q11 + Σ11σ12q12) −

σ12q11 + σ11q12√
Σ11Σ22

]
dB11

−
[

ρ

2Σ11Σ22
(Σ11σ22q12 + Σ22σ21q11) −

σ22q11 + σ21q12√
Σ11Σ22

]
dB21

−
[

ρ

2Σ11Σ22
(Σ22σ11q21 + Σ11σ12q22) −

σ11q22 + σ12q21√
Σ11Σ22

]
dB12

−
[

ρ

2Σ11Σ22
(Σ11σ22q22 + Σ22σ21q21) −

σ21q22 + σ22q21√
Σ11Σ22

]
dB22. (IA.A2)

Bij(t), i, j = 1, 2, are the entries of the 2×2 matrix of Brownian motions in (4). Therefore, the instantaneous
drift of the correlation process is a quadratic polynomial with state-dependent coefficients:

E [dρ(t)| Ft] =
[
E1(t) ρ(t)

2 +E2(t) ρ(t) +E3(t)
]
dt, (IA.A3)

where the coefficients E1(t), E2(t), and E3(t) are given by

E1(t) =
q11q12 + q21q22√

Σ11(t)Σ22(t)
−m21

√
Σ11(t)

Σ22(t)
−m12

√
Σ22(t)

Σ11(t)
, (IA.A4)

E2(t) = − ω11

2Σ11
− ω22

2Σ22
+

1

2

(
q211 + q221

Σ11(t)
+
q212 + q222

Σ22(t)

)
, (IA.A5)

E3(t) =
ω12√

Σ11Σ22

− 2
q11q12 + q21q22√

Σ11(t)Σ22(t)
+m21

√
Σ11(t)

Σ22(t)
+m12

√
Σ22(t)

Σ11(t)
. (IA.A6)

The instantaneous conditional variance of the correlation process is easily obtained from equation (IA.A2)
and is a third-order polynomial with state dependent coefficients:

E
[
dρ(t)2

∣∣Ft

]
=

[
(
1 − ρ2(t)

)
(
q211 + q221

Σ11(t)
+
q212 + q222

Σ22(t)
− 2ρ(t)

q11q12 + q21q22√
Σ11(t)Σ22(t)

)]
dt.

This concludes the proof. �

Proof of Proposition 2: Since markets are incomplete, we follow He and Pearson (1991) and represent
any market price of risk as the sum of two orthogonal components, one of which is spanned by the asset
returns. Since Brownian motion W can be rewritten as W = Bρ + Z

√
1 − ρ′ρ, for a standard bivariate

Brownian motion Z independent of B, we rewrite the innovation component of the opportunity set dynamics
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as Σ1/2[Z,B]L, with L = [
√

1 − ρ′ρ, ρ1, ρ2]
′. Let Θν be the matrix-valued extension of Θ that prices the

matrix of Brownian motions B = [Z,B]. By definition of the market price of risk, we have

Σ1/2ΘνL = Σλ, (IA.A7)

from which
Θν = Σ1/2λL′ + Σ1/2ν (IA.A8)

for any 2×3 matrix valued process ν such that ΣνL = 02×1. Since Σ is nonsingular, it follows that ν must be
of the form ν = [−ν ρ√

1−ρ′ρ
, ν]. ν is a 2× 2-matrix that prices the shocks that drive the variance-covariance

matrix process.
Given Θν , the associated martingale measure implies a process ξν of stochastic discount factors, defined

for t ∈ [0, T ] by1

ξν(t) = e−rt−tr(
R

t

0
Θ′

ν(s) dB+ 1
2

R
t

0
Θ′

ν(s)Θν (s)ds). (IA.A9)

Our dynamic portfolio choice problem allows for an equivalent static representation by means of the
following dual problem, as shown by He and Pearson (1991):

J(x,Σ0) = inf
ν

sup
π

E

[
X(T )1−γ − 1

1 − γ

]
, (IA.A10)

s.t. E [ξν(T )X(T )] ≤ x, (IA.A11)

where X(0) = x. In what follows, we focus on the solution of problem (IA.A10) to (IA.A11). The optimality
conditions for the innermost maximization are

X(T ) = (ψξν(T ))
−

1
γ , (IA.A12)

where the Lagrange multiplier for the static budget constraint is

ψ = x−γ
E

[
ξν(T )

γ−1
γ

]γ
.

It then follows that

J(x,Σ0) = x1−γ inf
ν

1

1 − γ
E

[
ξν(T )

γ−1
γ

]γ
− 1

1 − γ
. (IA.A13)

Using (IA.A9) and (IA.A13), one can see that the solution requires the computation of the expected
value of the exponential of a stochastic integral. A simple change of measure reduces the problem to the
calculation of the expectation of the exponential of a deterministic integral. Let P γ be the probability
measure defined by the following Radon-Nykodim derivative with respect to the physical measure P :

dP γ

dP
= e

−tr

„
γ−1

γ

R
T

0
Θ′

ν (s)dB(s)+ 1
2

(γ−1)2

γ2

R
T

0
Θ′

ν (s)Θν (s)ds

«

. (IA.A14)

We denote expectations under P γ by E
γ [·]. Then the minimizer of (IA.A13) is the solution to the

following problem:2

Ĵ(0,Σ0) = inf
ν

E

[
ξν(T )

γ−1
γ

]

= inf
ν

E
γ
[
e
−

γ−1
γ

rT+ 1−γ

2γ2 tr(
R

T

0
Θ′

ν (s)Θν(s)ds)
]

= inf
ν

E
γ
[
e
−

γ−1
γ

rT+ 1−γ

2γ2 tr(
R

T

0 Σ(s)(λλ′+νν′)ds)
]

= inf
ν

E
γ

[
e
−

γ−1
γ

rT+ 1−γ

2γ2 tr
“R

T

0
Σ(s)

“
λλ′+ν ′ν(I2+

ρρ′

1−ρ′ρ
)
”

ds
”]
. (IA.A15)

Notice that the expression in the exponential of the expectation in (IA.A15) is affine in Σ. By the
Girsanov Theorem, under the measure P γ the stochastic process Bγ = [Zγ , Bγ ], defined as

Bγ(t) = B(t) +
γ − 1

γ

∫ t

0

Θν(s)ds,
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is a 2 × 3 matrix of standard Brownian motions. Therefore, the process (4) is an affine process also under
the new probability measure P γ :

dΣ(t) =

[
ΩΩ′ +

(
M − γ − 1

γ
Q′(ρλ′ + ν′)

)
Σ(t) + Σ(t)

(
M − γ − 1

γ
Q′(ρλ′ + ν′)

)′
]
dt

+ Σ1/2(t)dBγ(t)Q +Q′dB(t)γ ′
Σ1/2(t). (IA.A16)

Using the Feynman Kac formula, it is known that if the optimal ν and Ĵ solve the probabilistic problem
(IA.A15), then they must also be a solution to the following Hamilton-Jacobi-Bellman (HJB) equation:

0 =
∂Ĵ

∂t
+ inf

ν

{
AĴ + Ĵ

[
−γ − 1

γ
r +

1 − γ

2γ2
tr

(
Σ

(
λλ′ + ν′ν

(
I2 +

ρρ′

1 − ρ′ρ

)))]}
, (IA.A17)

subject to the terminal condition Ĵ(T,Σ) = 1, where A is the infinitesimal generator of the matrix-valued
diffusion (IA.A16), which is given by

A = tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′(ρλ′ + ν′)

)
Σ + Σ

(
M − γ − 1

γ
Q′(ρλ′ + ν′)

)′
)
D
)

+ tr(2ΣDQ′QD), (IA.A18)

where

D :=

( ∂
∂Σ11

∂
∂Σ12

∂
∂Σ21

∂
∂Σ22

)
. (IA.A19)

The generator is affine in Σ. The optimality condition for the optimal control ν , implied by HJB equation
(IA.A17), is

− 1

γ
Σν

(
I2 +

ρρ′

1 − ρ′ρ

)
=

∂

∂ν
tr

(
(Q′ν′Σ + ΣνQ)

DĴ
Ĵ

)
=

∂

∂ν
tr

(
DĴ
Ĵ
Q′ν′Σ + ΣνQ

DĴ
Ĵ

)
.

Applying rules for the derivative of trace operators, the right-hand side can be written as Σ
(

D bJ
bJ + D bJ′

bJ

)
Q′.

It follows that

ν = −γ
(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Q′

(
I2 +

ρρ′

1 − ρ′ρ

)−1

. (IA.A20)

Note that
(
I2 + ρρ′

1−ρ′ρ

)−1

= I2 − ρρ′. Substituting the expression for ν in equation (IA.A18), we obtain

the generator

A = tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′ρλ′

)
Σ + Σ

(
M − γ − 1

γ
Q′ρλ′

)′
)
D + 2ΣDQ′QD

)

+ (γ − 1)Ĵ tr

(
(I2 − ρρ′)

(
Q′Q

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Σ + Σ

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Q′Q

)
D
)

= tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′ρλ′

)
Σ + Σ

(
M − γ − 1

γ
Q′ρλ′

)′
)
D + 2ΣDQ′QD

)

− (1 − γ)Ĵ tr

(
(I2 − ρρ′)Σ

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Q′Q

(D
Ĵ

+
D′

Ĵ

)′
)
.

Substitution of the last expression for A into the HJB equation (IA.A17) yields the following partial

differential equation for Ĵ :

−∂Ĵ
∂t

= tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′ρλ′

)
Σ + Σ

(
M − γ − 1

γ
Q′ρλ′

)′
)
D + 2ΣDQ′QD

)
Ĵ

+
γ − 1

γ
Ĵ

(
−r − tr(Σλλ′)

2γ

)
− 1 − γ

2
Ĵ tr

(
(I2 − ρρ′)Σ

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Q′Q

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)′)
,
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subject to the boundary condition Ĵ(Σ, T ) = 1. The affine structure of this problem suggests an exponentially
affine functional form for its solution,

Ĵ(t,Σ) = exp(B(t, T ) + tr(A(t, T )Σ),

for some state-independent coefficients B(t, T ) and A(t, T ). After inserting this functional form into the

differential equation for Ĵ , the guess can be easily verified. The coefficients B and A are the solutions of the
following system of Riccati equations:

−dB
dt

= tr(AΩΩ′) − γ − 1

γ
r,

−tr
(
dA

dt
Σ

)
= tr

(
Γ′AΣ +AΓΣ + 2AQ′QAΣ − 1 − γ

2
(A′ +A)Q′(I2 − ρρ′)Q(A′ + A)Σ + CΣ

)
,

with terminal conditions B(T, T ) = 0 and A(T, T ) = 02×2, where

Γ = M − γ − 1

γ
Q′ρλ′ (IA.A21)

C =
1 − γ

2γ2
λλ′. (IA.A22)

For a symmetric matrix function A, the second differential equation implies the following matrix Riccati
equation:

02×2 =
dA

dt
+ Γ′A+ AΓ + 2AΛA+C, (IA.A23)

where
Λ = Q′(I2γ + (1 − γ)ρρ′)Q. (IA.A24)

This is the system of matrix Riccati equations in the statement of Proposition 2. These differential
equations are completely integrable, so that closed-form expressions for Ĵ (and hence for J) can be computed.
For convenience, we consider coefficients A and B parameterized by τ = T−t. This change of variable implies
the following simple modification of the above system of equations:

dB

dτ
= tr(AΩΩ′) − γ − 1

γ
r, (IA.A25)

dA

dτ
= Γ′A+ AΓ + 2AΛA+C, (IA.A26)

subject to initial conditions A(0) = 02×2 and B(0) = 0. Given a solution for A, function B is obtained by
integration:

B(τ ) = tr

(∫ τ

0

A(s)Ω Ω′ ds

)
− γ − 1

γ
r τ.

To solve equation (IA.A26), we use Radon’s Lemma. Let us represent the function A(τ ) as

A(τ ) = H(τ )−1K(τ ), (IA.A27)

where H(τ ) and K(τ ) are square matrices, with H(τ ) invertible. Pre-multiplying (IA.A26) by H(τ ), we
obtain

H
dA

dτ
= HΓ′A+HAΓ + 2HAΛA+HC. (IA.A28)

Where no confusion may arise, we suppress the argument τ for brevity. On the other hand, in light of
(IA.A27), differentiation of

HA = K (IA.A29)

results in

H
dA

dτ
=

d

dτ
(HA) − dH

dτ
A, (IA.A30)
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and
d

dτ
(HA) =

dK

dτ
. (IA.A31)

Substituting (IA.A29), (IA.A30), and (IA.A31) into (IA.A28) we get

dK

dτ
− dH

dτ
A = HΓ′A+KΓ + 2KΛA+HC.

After collecting coefficients of A, we conclude that the last equation is equivalent to the following matrix
system of ODEs:

dK

dτ
= KΓ +HC, (IA.A32)

dH

dτ
= −2KΛ −HΓ′, (IA.A33)

or
d

dτ
(K H) = (K H)

(
Γ −2Λ
C −Γ′

)
.

The above ODE can be solved by exponentiation:

( K(τ ) H(τ ) ) = ( K(0) H(0) ) exp

[
τ

(
Γ −2Λ
C −Γ′

)]

= ( A(0) I2 ) exp

[
τ

(
Γ −2Λ
C −Γ′

)]

= ( A(0)F11(τ ) + F21(τ ) A(0)F12(τ ) + F22(τ ) )
= ( F21(τ ) F22(τ ) ).

We conclude from equation (IA.A27) that the solution to (IA.A26) is given by

A(τ ) = F22(τ )
−1F21(τ ). (IA.A34)

This concludes the proof. �

Proof of Proposition 3: To recover the optimal portfolio policy, we have, from the proof of Proposition
2,

X∗(t) =:
1

ξν∗(t)
E[ξν∗(T )X∗(T ) |Ft] = ψ−

1
γ ξν∗(t)−

1
γ Ĵ(t,Σ(t)). (IA.A35)

For the Wishart dynamics (4), Itô’s Lemma applied to both sides of (IA.A35) gives, for every state Σ,

X∗(t) tr
([
π1 π2

]
Σ1/2dBL

)
= X∗(t) tr

(
1

γ
Θ′

ν∗dB +
DĴ ′

Ĵ

(
Σ1/2dBUQ+Q′U ′dB′Σ1/2

))
. (IA.A36)

where matrix U is given by:

U =



0 0
1 0
0 1


 .

This implies

L
[
π1 π2

]
Σ1/2 =

1

γ
(Lλ′ + ν ′)Σ1/2 + 2UQAΣ1/2.

Pre-multiplying both sides by L′, post-multiplying them by Σ1/2, and recalling that L′ν ′Σ = 01×2, we
conclude that portfolio weight π = (π1, π2)

′ is

π =
λ

γ
+ 2AQ′ρ =

1

γ

[
λ1

λ2

]
+ 2

[
(q11ρ1 + q21ρ2)A11 + (q12ρ1 + q22ρ2)A12

(q12ρ1 + q22ρ2)A22 + (q11ρ1 + q21ρ2)A12

]
. (IA.A37)

This concludes the proof of the proposition. �

Proof of Proposition 4: We apply the following lemma, similar to a result in Buraschi, Cieslak and
Trojani (2007), to which we refer for a proof.
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LEMMA IA.A1: Consider the solution A(τ ) of matrix Riccati equation (IA.A26). If matrix C is negative
semidefinite, then A(τ ) is negative semidefinite and monotonically decreasing for any τ , that is, A(τ2)−A(τ1)
is a negative semidefinite matrix for any τ2 > τ1.

Since C = (1 − γ)/(2γ2)λλ′, if γ > 1 then C is negative semidefinite. From Lemma IA.A1, A(τ ) is also
negative semidefinite. It follows that A11(τ ) ≤ 0 and A22(τ ) ≤ 0. Inequality |A12| ≤ |A11 + A22|/2 follows
from the properties of negative semidefinite matrices. Now consider a neighborhood of τ = 0 of arbitrary
small length ε. By the fundamental theorem of calculus, we have

A(ε) = A(0) +
dA(τ )

dτ

∣∣∣∣
τ=0

ε+ o(ε). (IA.A38)

But A(0) = 0 and
dA(τ)

dτ

∣∣∣
τ=0

= C. If λ1 and λ2 agree in sign and γ > 1, then C12 < 0 and A12(ε) < 0. If,

in addition, |λ1| > |λ2|, we have λ2
1 > λ1λ2 > λ2

2, that is, |C11| > |C12| > |C22|. We conclude from (IA.A38)
that |A11| > |A12| > |A22|. This concludes the proof of the proposition. �
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B. Moment Restrictions for the GMM Estimation

This Appendix provides detailed expressions for the moment conditions used in the GMM estimation
of our model. The following computations make use of the closed-form expressions for the moments of the
Wishart process, which can be found, for example, in the Appendix of Buraschi, Cieslak, and Trojani (2007).

Let τ denote data sampling frequency. We have τ = 5/250 for weekly data and τ = 22/250 for monthly
data.

1) Unconditional risk premia of log returns.
The conditional risk premia of asset i’s logarithmic returns, at frequency τ , i = 1, 2, are given by

Et

[
logSi(t + τ ) − logSi(t)

]
−
∫ t+τ

t

rds = Et

[∫ t+τ

t

e′iΣ(s)(λ − 1

2
ei)ds

]
. (IA.B1)

The unconditional risk premia are thus

M1 =

(
E[Σ(t)]λ− 1

2

[
e′1E[Σ(t)]e1
e′2E[Σ(t)]e2

])
τ. (IA.B2)

2) Unconditional mean of the realized variance-covariance matrix of log returns.

M2 = vech (E[Σ(t)]) τ, (IA.B3)

where vech(X) denotes the lower triangular vectorization of a square matrix X.

3) Unconditional second moment of the realized variance-covariance matrix of log-returns.

E

[(∫ t+τ

t

vec (Σ(s)) ds

)(∫ t+τ

t

vec (Σ(s)) ds

)′
]

= 2

∫ τ

0

dr2

∫ r2

0

dr1E [vec(Σ(r1))vec(Σ(r2))
′](IA.B4)

= 2

∫ τ

0

dr2

∫ r2

0

dr1E [vec(Σ(r1))Er1 [vec(Σ(r2))
′]]

= 2

(
E [vec(Σ(r1))vec(Σ(r1))

′]

∫ τ

0

dr2

∫ r2

0

dr1(exp(M ′(r2 − r1)) ⊗ exp(M ′(r2 − r1)))

+E[vec(Σ(r1))]

∫ τ

0

dr2

∫ r2

0

dr1vec

(∫ r2−r1

0

exp(sM)kQ′Q exp(sM ′)

)′

ds

)
.

Therefore,

M3 = vech

(
E

[(∫ t+τ

t

vec (Σ(s)) ds

)(∫ t+τ

t

vec (Σ(s)) ds

)′
])

.

4) Unconditional covariance between assets’ simple excess returns and the variance-covariance matrix of log
returns. For asset i, i = 1, 2, and s > t, we have

lim
t→∞

Et

[
exp

(∫ s+τ

s

eiΣ(u)dW (u) +

∫ s+τ

s

eiΣ(u)λdu− 1

2

∫ s+τ

s

eiΣ(u)e′idu

)
⊗
∫ s+τ

s

Σ(u)du

]
=

exp
(
Al(τ ) + Ãl(∞)

)(∫ τ

0

exp(M̃(u)u)E [Σ(t)] exp(M̃(u)′u)du+

∫ τ

0

∫ s

0

exp(M̃(u)u)kQ′Q exp(M̃(u)′u)du ds

)
,

(IA.B5)

where
M̃(τ ) = M +Q′ρe′i +Q′QBl(τ )
Al(τ ) = k

∫ τ

0 tr (Bl(s)Q
′Q) ds

Ãl(∞) = k
∫∞

0
tr
(
B̃l(s)Q

′Q
)
ds

Bl(t) = B22(t)
−1B21(t)

B̃l(t) = (Bl(t)B̃12(t) + B̃22(t))
−1Bl(t)B̃11(t)

8



and (
B11(t) B12(t)
B21(t) B22(t)

)
= exp

[
t

(
M +Q′ρe′i −2Q′Q

λe′i −(M +Q′ρe′i)
′

)]

(
B̃11(t) B̃12(t)

B̃21(t) B̃22(t)

)
= exp

[
t

(
M −2Q′Q
0 −M ′

)]
.

The last set of moment conditions is therefore given by

M3+i = vech
(
exp

(
Al(τ ) + Ãl(∞)

)
×(∫ τ

0
exp(M̃(u)u)E [Σ(t)] exp(M̃(u)′u)du+

∫ τ

0

∫ s

0
exp(M̃(u)u)kQ′Q exp(M̃(u)′u)du ds

)) (IA.B6)

for i = 1, 2. Summarizing, the vector-valued function µτ (M,Q, λ, ρ, k) of theoretical moment conditions, for
sampling frequency τ , is given by

µτ (M,Q, λ, ρ, k) =




M1

M2

M3

M4

M5



.

In our GMM estimation, this is compared to its empirical counterpart µ̂τ based on historical returns,
volatilities, and covariances.
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C. Constant Risk Premia and Stochastic Interest Rate

A direct way to study pure variance-covariance hedging demands is by assuming a constant risk premium.
For analytical purposes, this comes at the cost of specifying a Wishart state process for the precision matrix
Σ−1, which implies a less transparent interpretation of some model parameters. This can be achieved even
in a setting with a stochastic interest rate, where the interest rate can also depend on some of the risk factors
driving the covariance matrix of asset returns.3

ASSUMPTION IA.C1: Let the process Y satisfy the following Wishart dynamics:

dY (t) = [ΩΩ′ +MY (t) + Y (t)M ′]dt+ Y 1/2(t)dBQ+Q′dB′Y 1/2(t), (IA.C1)

where matrices Ω, M , and Q are now of dimension 3 × 3 and where B is a 3 × 3 matrix of independent
standard Brownian motions. We model Σ−1 as a projection of matrix Y :

Σ−1 = SY S′,

where the 2 × 3 matrix S is such that SS′ = id2×2.
4 The stochastic riskless rate r(t) is defined by

r(t) = r0+tr(Y (t)D), (IA.C2)

where r0 > 0 and D is a 3 × 3 matrix.

Notice that the nonnegativity of r(t) can be easily ensured simply by assuming that matrix D is positive
definite. Since Σ−1 = SY S′, we define Σ−1/2 as the 2 × 3 matrix SY −1/2. Since Σ−1/2Σ1/2′ = id2×2, it is
natural to define Σ1/2 as the 2× 3 matrix SY 1/2. We introduce the following process for asset returns:

dS(t) = IS

[(
r(t) + µe

1

r(t) + µe
2

)
dt+ Σ1/2(t)dW (t)

]
, (IA.C3)

where the excess return vector µe = (µe
1, µ

e
2)

′ ∈ R
2 is constant and r(t) is given by equation (IA.C2). To

model leverage effects, we define the standard Brownian motion W as

W (t) =
√

1 − ρ′ρZ(t) +B(t)ρ, (IA.C4)

where Z is a three-dimensional standard Brownian motion independent of B and ρ = (ρ1,ρ2, ρ3)
′ is a vector

of correlation parameters such that ρi ∈ [−1, 1] and ρ′ρ ≤ 1.
This setting is effectively a six-factor model with some interest rate risk factors that might be linked

to the covariance matrix of stock returns, depending on the form of the matrix D in equation (IA.C2).
The squared Sharpe ratio in this model is affine in Y . Therefore, we can solve in closed form the dynamic
portfolio choice problem in this extended dynamic setting as well.

PROPOSITION IA.C1: The solution to the portfolio problem for the return dynamics (IA.C1) to (IA.C3)
and under a stochastic interest rate (IA.C2) is

J(X0, Y0) =
X1−γ

0 Ĵ (0, Y0)
γ − 1

1 − γ
,

where
Ĵ(t, Y ) = exp (B(t, T ) + tr (A(t, T )Y )) ,

with B(t, T ) and the symmetric matrix-valued function A(t, T ) solving in closed form the following system
of matrix Riccati differential equations:

−dB
dt

= −γ − 1

γ
r0 + tr(AΩΩ′), (IA.C5)

−dA
dt

= Γ′A +A′Γ + 2A′ΛA +C, (IA.C6)
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subject to B(T, T ) = 0 and A(T, T ) = 0. In these equations, the coefficients Γ, Λ, and C are given by

Γ = M − γ

γ − 1
Q′ρµe′S

Λ = Q′(γI3 + (1 − γ)ρρ′)Q

C =
1 − γ

2γ2
S′µeµe′

S − γ − 1

γ
D.

Finally, the optimal policy for this portfolio problem reads

π =
1

γ
Σ−1µe + 2Σ−1SAQ′ρ . (IA.C7)

Proof. Analogous to the proof of Proposition 2, we rewrite the innovation component of the opportunity
set dynamics as Σ1/2[Z,B]L, with L = [

√
1 − ρ′ρ, ρ1, ρ2, ρ3]

′. By definition, the market price of risk Θν

satisfies
Σ1/2ΘνL = µe , (IA.C8)

from which
Θν = Σ−1/2′

µeL′ + Y 1/2ν , (IA.C9)

where Σ−1/2 = SY 1/2 and ν is a 3×4 matrix-valued process such that νL = 03×1, that is ν = [−ν ρ√
1−ρ′ρ

, ν].

ν is a 3 × 3 matrix that prices the shocks that drive the Wishart state variable Y .
It turns out, that the value function can be written in the form:

J(x, Y0) = xγ inf
ν

1

1 − γ
E

[
ξν(T )

γ−1
γ

]γ
− 1

1 − γ
=
x1−γ Ĵ(0, Y0)

γ − 1

1 − γ
,

where

E

[
ξν(T )

γ−1
γ

]
= E

γ

[
e
−

γ−1
γ

R
T

0
r(s)ds+ 1−γ

2γ2 tr(
R

T

0
Σ(s)−1dsµeµe ′+

R
T

0
Y (s)ds ν′ν(I3+

ρρ′

1−ρ′ρ
))
]

= E
γ

[
e
−

γ−1
γ

(r0+tr(
R

T

0
Y (s)dsD))+ 1−γ

2γ2 tr(
R

T

0
Y (s)ds(S′µeµe ′S+ν′ν(I3+

ρρ′

1−ρ′ρ
))
]
, (IA.C10)

for a probability measure P γ defined by the density

dP γ

dP
= e

−tr

„
γ−1

γ

R
T

0
Θ′

ν (s)dB+ 1
2

(γ−1)2

γ2

R
T

0
Θ′

ν(s)Θν (s)ds

«

.

The dynamics of Y under the probability P γ are

dY (t) =

[
ΩΩ′ +

(
M − γ − 1

γ
Q′(ρµe′S + ν′)

)
Y (t) + Y (t)

(
M − γ − 1

γ
Q′(ρµe′S + ν′)

)′
]
dt

+ Y 1/2(t)dBγ(t)Q+Q′dB(t)γ ′
Y 1/2(t). (IA.C11)

These dynamics are affine in Y . It follows that the function Ĵ is a solution of the following HJB equation:

0 =
∂Ĵ

∂t
+ inf

ν

{
AĴ + Ĵ

[
−γ − 1

γ
(r0 + tr(Y D)) +

1 − γ

2γ2
tr

(
Y

(
S′µeµe′

S + ν′ν

(
I3 +

ρρ′

1 − ρ′ρ

)))]}
,

(IA.C12)

subject to the terminal condition Ĵ(T, Y ) = 1, where A is the infinitesimal generator of the matrix-valued
diffusion (IA.C11), which is given by

A = tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′(ρµe′S + ν′)

)
Y + Y

(
M − γ − 1

γ
Q′(ρµe′S + ν ′)

)′
)
D
)

+ tr(2Y DQ′QD). (IA.C13)
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The generator is affine in Y . As in the proof of Proposition 2, the optimality condition for the optimal
control ν yields

ν = −γ
(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Q′

(
I3 +

ρρ′

1 − ρ′ρ

)−1

. (IA.C14)

Note that
(
I3 + ρρ′

1−ρ′ρ

)−1

= I3 − ρρ′. Substituting the expression for ν into equation (IA.C12), we

obtain the following partial differential equation for Ĵ :

− ∂Ĵ

∂t
= tr

((
ΩΩ′ +

(
M − γ − 1

γ
Q′ρµe′S

)
Y + Y

(
M − γ − 1

γ
Q′ρµe′S

)′
)
D + 2Y DQ′QD

)
Ĵ

+
γ − 1

γ
Ĵ

(
−r0 − tr(Y D) − tr(Y S′µeµe′

S)

2γ

)

− 1 − γ

2
Ĵ tr

(
(I3 − ρρ′)Y

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)
Q′Q

(
DĴ
Ĵ

+
DĴ ′

Ĵ

)′)
,

subject to the boundary condition Ĵ(Σ, T ) = 1. The affine structure of this problem suggests an exponentially
affine functional form for its solution:

Ĵ(t,Σ) = exp(B(t, T ) + tr(A(t, T )Y ),

for some state-independent coefficients B(t, T ) and A(t, T ). After inserting this functional form into the

differential equation for Ĵ , the guess can be easily verified. The coefficients B and A are the solutions of the
following system of Riccati equations:

−dB
dt

= tr(AΩΩ′) − γ

γ − 1
r0,

−tr
(
dA

dt
Y

)
= tr

(
Γ′AY +AΓY + 2AQ′QAY − 1 − γ

2
(A′ + A)Q′(I3 − ρρ′)Q(A′ +A)Y + CY

)
,

with terminal conditions B(T, T ) = 0 and A(T, T ) = 03×3, where

Γ = M − γ − 1

γ
Q′ρµe′S (IA.C15)

C =
1 − γ

2γ2
S′µeµe′

S − 1 − γ

γ
D. (IA.C16)

Explicit solutions for B(t, T ) and A(t, T ) are computed as in the proof of Proposition 2. By the same
argument applied in the Proof of Proposition 3, the following equality must hold:

X∗(t) tr
([
π1 π2

]
Σ1/2dBL

)
= X∗(t) tr

(
1

γ
Θ′

ν∗dB +
DĴ ′

Ĵ

(
Y 1/2dBUQ+Q′U ′dB′Y

))
. (IA.C17)

where matrix U is given by

U =




0 0 0
1 0 0
0 1 0
0 0 1


 .

This implies

L
[
π1 π2

]
Σ1/2 =

1

γ

(
Lµe′Σ−1/2 + ν ′Y 1/2

)
+ 2UQAY 1/2.

Pre-multiplying both sides by L′, post-multiplying them by Σ−1/2′

, and recalling that L′ν ′ = 01×3 and
Σ−1/2 = SY 1/2, we conclude that portfolio weight π = (π1, π2)

′ is

π =
1

γ
Σ−1µe + 2Σ−1SAQ′ρ.
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This concludes the proof of Proposition IA.C1:. �

The optimal policy (IA.C7) consists of a myopic and an intertemporal hedging portfolio, which are both
proportional to the stochastic inverse covariance matrix. As noted by Chacko and Viceira (2005), in the
univariate setting the relative size of the hedging and myopic demands is independent of the current level of
volatility. This property also holds in the multivariate case, in the sense that both policies are proportional
to the inverse covariance matrix Σ−1.

We investigate the empirical implications of this specification in a scenario where, for simplicity, a
constant interest rate (D = 0) has been assumed. This setting is the exact multivariate extension of
the univariate model considered in Chacko and Viceira (2005). We use the same basic GMM estimation
procedure and the same data used for the empirical application in the main text,5 but we now apply it to
the information matrix Σ−1. The GMM moment restrictions for the variance-covariance matrix process are
replaced by those for the precision process, which is assumed to follow a Wishart diffusion process. Table
CI, Panel A, presents estimation results for the model with a constant risk premium. Panel B summarizes
the estimated hedging demands.

Insert Table IA.CI about here

The myopic portfolio is time varying, via the variation of the inverse covariance matrix Σ−1. This time
variation is also partly reflected in the time variation of hedging demands. All in all, the absolute size
of total hedging demands is comparable to that obtained in the main text for a constant market price of
variance-covariance risk. For example, for a risk aversion parameter γ = 6 and an investment horizon of
T = 5 years, the average hedging demand is approximately 23% of the myopic portfolio. Similar demands
obtain for higher risk aversions and investment horizons.
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D. Discrete-time Solution and Portfolio Constraints

D.1 Discrete-time Solution

In our model, the optimal dynamic trading strategy is given by a portfolio that must be rebalanced con-
tinuously over time. In practice, this can at best be an approximation, because trading is only possible at
discrete trading dates. Moreover, transaction costs, liquidity constraints, or policy disclosure considerations
might further constrain investors from frequent portfolio rebalancing. Even if we do not model these fric-
tions explicitly in our setting, it is interesting to study the impact of discrete trading on the optimal hedging
strategy in the context of our model.

Several studies have found that, as long as the investment opportunity set does not contain derivatives,
the gains/losses of the optimal discrete-time portfolio policy with respect to a naively discretized continuous-
time policy are small. See, for instance, Campbell et al. (2004) and Branger, Breuer, and Schlag (2006). We
study whether similar conclusions hold in our multivariate portfolio choice setting. We consider the exact
discrete-time process implied by the continuous-time model (1) to (4) of the main text, in which observations
are generated at fixed, evenly spaced, points in time. The parameters of the continuous-time model have
been estimated by GMM using the exact discrete-time moments of this process. The moments are easily
obtainable in closed form for each sampling frequency because the Wishart process allows for aggregation
over time. By construction, the estimated parameters are then consistent with the discrete time transition
density of the process, which is the one relevant to study optimal portfolio choice in discrete-time.

The discrete-time portfolio choice problem does not allow for closed-form solutions. Therefore, we rely
on standard numerical methods to compute the optimal portfolio strategies. Table IA.DI presents the total
hedging demands in S&P500 Futures (π1) and Treasury Futures (π2), as fractions of the myopic demand.
The transition density used for the discrete time portfolio optimization is the one implied by the estimated
continuous time model with monthly returns, realized volatilities, and realized correlations.

Insert Table IA.DI about here

We focus on optimal portfolios that can be rebalanced monthly, but we also compute optimal strategies using
a weekly and daily rebalancing frequency in order to verify the convergence of our numerical solution to the
continuous-time portfolio problem solution. At a daily frequency, the hedging demands in the discrete-time
model are virtually indistinguishable from the continuous-time hedging demands reported in Table III of
the main text. Consistent with the findings in the literature, the discrete-time optimal hedging demands
for the monthly frequency are close to the hedging demands computed from the continuous-time model: the
mean absolute difference between the hedging demands using daily and monthly rebalancing is less than
10% of the hedging demand implied by a monthly rebalancing frequency. These findings suggest that the
main implications derived from the continuous-time multivariate portfolio choice solutions are realistic even
in the context of monthly rebalancing.

D.2 Portfolio Constraints

Portfolio constraints are useful to avoid unrealistic portfolio weights, which can potentially arise due to some
extreme assumptions on expected returns, volatilities, and correlations, or from inaccurate point estimates
of the model parameters. The empirical results of the previous sections can imply, for instance, levered
portfolios in settings of low risk aversion. For instance, for a relative risk aversion of γ = 2, the optimal
portfolio of an investor with horizon T = 5 years implies an investment of approximately 260% of the total
wealth in stocks and 170% in bonds. Intuitively, constraints on short selling or on the portfolio VaR tend
to constrain the investor from selecting optimal portfolios that are excessively levered. Therefore, it is
interesting to study these types of portfolio constraints and their impact on the volatility and correlation
hedging demands in our setting. We solve the discrete-time portfolio choice problem in the last section
and additionally impose, in two separate steps, short- selling and VaR constraints. In order to quantify the
correlation and volatility hedging components, we numerically compute the projection of the total hedging
demand on the implied elasticity of the indirect marginal utility of wealth with respect to volatilities and
covariances.

In the first exercise, we consider state-independent constraints on the optimal portfolio weights. For
every fraction πi of total wealth invested in the risky asset i, we first enforce a short-selling constraint
πi ≥ 0. In a second step, we also consider a less severe position limit πi ≥ −1. Table IA.DII presents the
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optimal volatility and covariance hedging demands implied by these two settings. Note that even in cases
where the current constraint might not be binding, the optimal hedging strategy is different from the one
implied by the unconstrained solution. This feature exists because the future opportunity set is restricted
by the fact that the constraint might be binding, with some probability, in the future. The indirect marginal
utility of wealth in the constrained problem depends on the strength of this effect. Therefore, the optimal
intertemporal hedging demand is different.

Insert Table IA.DII about here

Table IA.DII shows that the more severe the constraint is, the smaller are the absolute demands for volatility
and covariance hedging as a percent of the myopic portfolio. However, the impact of the constraint is quite
moderate, even in the short-selling case, and does not greatly influence the relative size of the hedging
demands against volatility and covariance risk across assets. For instance, for an investment horizon of
T = 10 years and a risk aversion of γ = 2, the average covariance (volatility) hedging demand is 10.5% (7%)
in the unconstrained case and 8.5% (6.5%) in the setting with short selling constraints. For a higher risk
aversion of γ = 8, the average covariance (volatility) hedging demand is 13.25% (10.25%) in the unconstrained
case and 10.75% (9%) in the setting with short-selling constraints. These findings are consistent with the
state-independent nature of the constraint used, which is not a function of the conditional covariance matrix
of returns. The slightly larger percentage decrease in the hedging demands of low risk-aversion investors in
the constrained case is mainly due to their large myopic demands in the unconstrained portfolio problem.

The results are different when we study the effects of (state-dependent) VaR constraints. At each trading
date, we impose a constant upper bound on the VaR of the optimally invested wealth at the next trading
date. We use a VaR at a confidence level of 99%. Since the VaR is computed for a monthly rebalancing
frequency and investment horizons longer than one month, the VaR constraint is dynamically updated, as
in Cuoco, He, and Isaenko (2008). Table IA.DIII summarizes our findings for the optimal VaR-constrained
portfolios. For computational tractability of our numerical solutions, we focus on investment horizons up to
T = 2 years.

Insert Table IA.DIII about here

The VaR constraint has a more significant effect on the optimal portfolios of investors with low risk aversion,
which are those with the largest exposure to risky assets in the unconstrained setting. For instance, for a risk
aversion coefficient of γ = 2 and an investment horizon of T = 2 years, the mean total allocation to stocks
(bonds) shrinks from approximately 250% (160%) to about 175% (115%) of the total wealth. At the same
time, the relative importance of the covariance hedging demand increases: even for a moderate investment
horizon of T = 2 years and a low risk aversion of γ = 2, the correlation and volatility hedging demands
are on average 11% and 7% of the myopic portfolio, respectively. With the same choice of parameters, the
corresponding hedging demands in the unconstrained case are 7.7% and 10.7%, respectively. For a higher
risk aversion of γ = 8 and the same investment horizon, the covariance hedging demand is on average about
11% of the myopic portfolio both in the VaR-constrained and VaR-unconstrained cases.

The VaR-constrained investor dislikes more volatile or extreme portfolio values than the unconstrained
agent does, since (ceteris paribus) the VaR constraint becomes more restrictive when the volatility on the op-
timally invested portfolio increases. It follows that the investor is more concerned about the total volatility of
the portfolio, which can cause the VaR constraint to be hit with a probability that is too large. Therefore, the
VaR-constrained investor reduces the size of the myopic demand. Furthermore, since changes in correlation
have a first-order impact on the VaR of the portfolio, the investor increases the covariance hedging demand,
exploiting the spanning properties of the risky assets. Thus, in this setting, which is relevant for institutions
subject to capital requirement or for asset managers with self-imposed risk management constraints, the
impact of covariance risk is economically significant.
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E. Additional Empirical Results

Figure IA.E1. The Effect of the Investment Horizon

Figure IA.E1 reports intertemporal hedging demands for the S&P500 Index futures and the 30-year Trea-
sury futures, as functions of the investment horizon, using the GMM parameter estimates for the underlying
opportunity set dynamics reported in Table I of the main text.

Figure IA.E2. The Effect of the Risk Aversion Parameter

Figure IA.E2 plots hedging demands as a function of the coefficient of Relative Risk Aversion.

Table IA.EI. Estimation Results for Univariate Stochastic Volatility Models

We compare the portfolio implications of our setting with those of univariate portfolio choice models
with stochastic volatility; see Heston (1993) and Liu (2001), among others. These models are nested in our
setting in the special case in which the dimension of the investment opportunity set is set equal to one.
For each risky asset in our data set, we estimate these univariate stochastic volatility models by GMM.
The moment restrictions employed are the univariate counterpart of the moment conditions used in the
estimation of the multivariate model. Panel A of Table IA.EI presents parameter estimates, whereas Panel
B reports the estimated volatility hedging demands as a percentage of the myopic portfolio.

Table IA.EII. Estimation Results for Model with Three Risky Assets

Using GMM we estimate the three-dimensional version of model (1) to (4) in the main text obtained by
including also the Nikkei225 Index futures contract in the opportunity set consisting of the S&P500 futures
and the 30-year Treasury futures contracts. We use monthly time series of returns, realized volatilities, and
realized covariances for these three risky assets. GMM moment restrictions are obtained in closed form as for
the bivariate case above using the properties of the Wishart process. It is also straightforward to extend the
proofs of Propositions 2 and 3 in the main text to cover the general setting with n risky assets. With these
results, we compute the estimated optimal portfolios for the model with three risky assets. Table IA.EII,
Panel A, presents the results of our GMM model estimation. The implied hedging demands for covariance
and pure volatility hedging on each asset are given in Panel B.

Table IA.EIII. Estimation Results for Model with Two Risky Assets Using Daily Data

Table IA.EIII reports estimates for the parameters of model (1) to (4) in the main text, obtained with
daily data and using the GMM procedure discussed in Internet Appendix B.

Table IA.EIV. Optimal Hedging Demands with Two Risky Assets Using Weekly Data

Table IA.EIV reports estimated optimal covariance and volatility hedging demands obtained using the weekly
parameter estimates reported in Table I of the main text.
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Notes

1Remember that W = BL.
2Strictly speaking, this holds for γ ∈ (0, 1). For γ > 1, minimizations are replaced by

maximizations and all formulas follow with the same type of arguments.
3In this way, local asymmetries in the covariance matrix dynamics can be introduced in

the model. To model asymmetric correlations across regimes, Ang and Bekaert (2002) use
an i.i.d. regime-switching setting, in which one of the regimes is characterized by greater
correlations and volatilities.

4A possible choice for S is a 2 × 3 selection matrix, for example,

S =

[
1 0 0
0 1 0

]
.

In this case, SS ′ = id2×2 and SY S ′ is the 2 × 2 upper diagonal sub-block of Y .
5Discussed in Internet Appendix B.
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Table IA.CI

Estimation Results and Hedging Demands for the Model with Constant Risk Premia

Panel A: We report parameter estimates, Hansen’s statistics, and hedging demands for the following model specifica-
tion:

dS(t) = IS µ dt + IS Y −1/2(t)(dB(t)ρ+
p

1 − ρ′ρ dZ(t))

dY (t) =
ˆ

ΩΩ′ + MY (t) + Y (t)M ′
˜

dt + Y 1/2(t)dB(t)Q+ Q′dB(t)′Y 1/2(t),

S(t) is the two-dimensional vector of the prices of S&P500 Index and 30-year Treasury bond futures. µ is a bivariate
vector of constants and the interest rate r is also constant. Y (t) models the information matrix Σ(t)−1 and follows
a Wishart diffusion. B(t) is a 2 × 2 matrix of standard Brownian motions and Z(t) is a 2 × 1 vector of Brownian
motions independent of B(t). Vector ρ and matrices M and Q are the remaining model parameters. Parameters
are estimated with the same GMM method discussed in Appendix B, that is now applied to the information matrix
Y = Σ−1 sampled at a monthly frequency. An asterisk denotes parameter estimates that are not significant at the 5%
significance level. Panel B: Optimal hedging demands in percentages of the myopic portfolio are given for different
investment horizons and relative risk aversion parameters. Each entry of the array of Panel B is a two-dimensional
vector, the first component of which is the hedging demand for the S&P500 Index futures, while the second one is the
hedging demand for the 30-year Treasury futures.

Panel A

M Q ρ µ

point estimates
(standard errors)

−0.149 0.114∗

(0.074) (0.081)

0.070 −0.112
(0.036) (0.055)

0.706 0.494∗

(0.34) (0.312)

0.806 0.641∗

(0.371) (0.591)

0.381
(0.161)

0.392
(0.189)

0.0616
(0.008)

0.0114
(0.0009)

p-value for
Hansen’s J-test

0.254

Panel B

RRA T 3m 6m 1y 2y 5y 7y 10y

2 −0.034
−0.036

−0.061
−0.053

−0.111
−0.095

−0.151
−0.135

−0.172
−0.144

−0.173
−0.145

−0.174
−0.146

6 −0.049
−0.048

−0.105
−0.090

−0.175
−0.160

−0.240
−0.207

−0.251
−0.213

−0.252
−0.214

−0.253
−0.214

8 −0.057
−0.053

−0.115
−0.104

−0.182
−0.164

−0.258
−0.212

−0.262
−0.224

−0.263
−0.224

−0.264
−0.224

11 −0.061
−0.055

−0.119
−0.108

−0.189
−0.170

−0.260
−0.219

−0.263
−0.228

−0.264
−0.229

−0.265
−0.230

16 −0.063
−0.063

−0.120
−0.110

−0.190
−0.171

−0.261
−0.220

−0.270
−0.230

−0.271
−0.231

−0.271
−0.231

21 −0.065
−0.064

−0.121
−0.111

−0.191
−0.172

−0.262
−0.221

−0.272
−0.231

−0.273
−0.232

−0.273
−0.232

41 −0.065
−0.065

−0.121
−0.112

−0.192
−0.173

−0.262
−0.221

−0.273
−0.233

−0.274
−0.235

−0.275
−0.236
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Table IA.DI

Optimal Hedging Demands in the Discrete-Time Model

Using standard numerical dynamic programming methods, we compute optimal hedging demands in per-
centages of the myopic portfolio for the exact discretization of the continuous-time model (1) to (4) of the
main text, for different investment horizons and relative risk aversion parameters. The parameters used to
compute the exact discrete-time transition density of the model are the monthly estimates in Table II of
the main text. We compute optimal discrete-time hedging demands for a daily (d), a weekly (w), and a
monthly (m) rebalancing frequency, and denote by π1 and π2 the hedging demands for the S&P500 Index
and the 30-year Treasury bond futures, respectively.

RRA T 3m 6m 1y 2y

2

π1 π2

d 0.0304 0.0344
w 0.0295 0.0401
m 0.0291 0.0449

π1 π2

d 0.0541 0.0650
w 0.0561 0.0702
m 0.0570 0.0759

π1 π2

d 0.0910 0.1151
w 0.0917 0.1189
m 0.0918 0.1240

π1 π2

d 0.1250 0.1661
w 0.1243 0.1715
m 0.1248 0.1879

8

π1 π2

d 0.0525 0.0589
w 0.0515 0.0605
m 0.0525 0.0632

π1 π2

d 0.0972 0.1123
w 0.1021 0.1162
m 0.1078 0.1208

π1 π2

d 0.1550 0.1915
w 0.1545 0.1955
m 0.1533 0.1803

π1 π2

d 0.1975 0.2543
w 0.1969 0.2636
m 0.1966 0.2566

21

π1 π2

d 0.0573 0.0640
w 0.0569 0.0641
m 0.0580 0.0665

π1 π2

d 0.1069 0.1209
w 0.1134 0.1259
m 0.1266 0.1365

π1 π2

d 0.1686 0.2045
w 0.1705 0.2078
m 0.1761 0.1993

π1 π2

d 0.2111 0.2685
w 0.2099 0.2645
m 0.2076 0.2705
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Table IA.DII

Optimal Hedging Demands in the Discrete-time Model with Short-selling Constraints

Using standard numerical dynamic programming methods, we compute optimal hedging demands as a percentage of the myopic portfolio for the exact discretization of the
continuous-time model (1) to (4) of the main text, when short-selling constraints are applied, for different investment horizons and relative risk aversion parameters. The
parameters used to compute the exact discrete-time transition density of the model are the monthly estimates in Table II of the main text, and the rebalancing frequency is
monthly. We denote by π1 and π2 the hedging demands for the S&P500 Index and the 30-year Treasury bond futures, respectively, and distinguish the cases u, c1, and c2
corresponding to the unconstrained solution, the solution for a position limit of the form π ≥ −1, and the solution in the short-selling constrained case (π ≥ 0), respectively.
Total hedging demands are decomposed into covariance and volatility hedging components by means of a cross-sectional regression of simulated hedging demands on the
wealth-scaled ratios of simulated indirect marginal utilities of covariance and variances.

Covariance hedging
RRA T 3m 6m 1y 2y 5y 7y 10y

2

π1 π2

u 0.0071 0.0352
c1 0.0081 0.0254
c2 0.0054 0.0253

π1 π2

u 0.0168 0.0521
c1 0.0154 0.0448
c2 0.0136 0.0387

π1 π2

u 0.0319 0.0814
c1 0.0298 0.0695
c2 0.0283 0.0591

π1 π2

u 0.0406 0.1281
c1 0.0393 0.1280
c2 0.0385 0.0932

π1 π2

u 0.0512 0.1293
c1 0.0515 0.1091
c2 0.0486 0.1043

π1 π2

u 0.0571 0.1382
c1 0.0528 0.1125
c2 0.0513 0.1084

π1 π2

u 0.0562 0.1394
c1 0.0498 0.1121
c2 0.0514 0.1089

8

π1 π2

u 0.0140 0.0435
c1 0.0100 0.0322
c2 0.0084 0.0316

π1 π2

u 0.0298 0.0924
c1 0.0291 0.0812
c2 0.0215 0.0760

π1 π2

u 0.0452 0.1244
c1 0.0425 0.1021
c2 0.0392 0.0951

π1 π2

u 0.0619 0.1859
c1 0.0592 0.1635
c2 0.0496 0.1486

π1 π2

u 0.0603 0.1924
c1 0.0532 0.1765
c2 0.0524 0.1522

π1 π2

u 0.0612 0.1929
c1 0.0581 0.1818
c2 0.0525 0.1533

π1 π2

u 0.0612 0.1929
c1 0.0581 0.1819
c2 0.0525 0.1534

21

π1 π2

u 0.0165 0.0484
c1 0.0139 0.0491
c2 0.0125 0.0367

π1 π2

u 0.0371 0.0842
c1 0.0363 0.0715
c2 0.0342 0.0683

π1 π2

u 0.0510 0.1328
c1 0.0481 0.1296
c2 0.0413 0.1198

π1 π2

u 0.0671 0.1828
c1 0.0623 0.1768
c2 0.0556 0.1541

π1 π2

u 0.0651 0.1985
c1 0.0632 0.1812
c2 0.0561 0.1599

π1 π2

u 0.0662 0.2001
c1 0.0679 0.1858
c2 0.0588 0.1615

π1 π2

u 0.0679 0.2003
c1 0.0679 0.1858
c2 0.0588 0.1615

Volatility hedging
RRA T 3m 6m 1y 2y 5y 7y 10y

2

π1 π2

u 0.0198 0.0076
c1 0.0171 0.0074
c2 0.0151 0.0067

π1 π2

u 0.0381 0.0190
c1 0.0342 0.0185
c2 0.0284 0.0183

π1 π2

u 0.0578 0.0330
c1 0.0538 0.0325
c2 0.0478 0.0318

π1 π2

u 0.0790 0.0459
c1 0.0750 0.0455
c2 0.0690 0.0420

π1 π2

u 0.0801 0.0588
c1 0.0765 0.0581
c2 0.0711 0.0571

π1 π2

u 0.0802 0.0589
c1 0.0766 0.0583
c2 0.0712 0.0572

π1 π2

u 0.0803 0.0591
c1 0.0766 0.0583
c2 0.0714 0.0574

8

π1 π2

u 0.0354 0.0131
c1 0.0321 0.0118
c2 0.0290 0.0111

π1 π2

u 0.0755 0.0254
c1 0.0712 0.0252
c2 0.0673 0.0250

π1 π2

u 0.1031 0.0499
c1 0.0945 0.0489
c2 0.0891 0.0451

π1 π2

u 0.1287 0.0655
c1 0.1189 0.0631
c2 0.1121 0.0612

π1 π2

u 0.1344 0.0698
c1 0.1255 0.0677
c2 0.1150 0.0633

π1 π2

u 0.1345 0.0700
c1 0.1255 0.0677
c2 0.1150 0.0633

π1 π2

u 0.1345 0.0700
c1 0.1255 0.0677
c2 0.1150 0.0633

21

π1 π2

u 0.0389 0.0154
c1 0.0366 0.0149
c2 0.0312 0.0143

π1 π2

u 0.0711 0.0294
c1 0.0657 0.0291
c2 0.0621 0.0281

π1 π2

u 0.1201 0.0525
c1 0.1088 0.0523
c2 0.1061 0.0511

π1 π2

u 0.1375 0.0705
c1 0.1301 0.0701
c2 0.1145 0.0671

π1 π2

u 0.1439 0.0710
c1 0.1354 0.0704
c2 0.1201 0.0691

π1 π2

u 0.1439 0.0710
c1 0.1354 0.0704
c2 0.1201 0.0691

π1 π2

u 0.1439 0.0710
c1 0.1354 0.0704
c2 0.1201 0.0691
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Table IA.DIII

Optimal Hedging Demands in the Discrete-time Model with VaR constraints

This table reports optimal VaR-constrained volatility and covariance hedging demands in percentages of the myopic
portfolio for the exact discretization of the continuous-time model (1) to (4) of the main text, as a function of different
investment horizons and relative risk aversion parameters. The parameters used to compute the exact discrete-time
transition density of the model are the monthly estimates in Table II of the main text, and the rebalancing frequency
is monthly. As in Cuoco, He, and Isaenko (2008), the VaR constraint is updated at each trading date, by imposing
a constant upper bound on the 99%-VaR of next-trading-date wealth. Total hedging demands are decomposed into
covariance and volatility hedging components by means of a cross-sectional regression of simulated hedging demands
on the wealth-scaled ratios of simulated indirect marginal utilities of variances and covariances. Each entry of the two
arrays in the table is a two-dimensional vector, the first component of which is the hedging demand for the S&P500
Index futures, while the second one is the hedging demand for the 30-year Treasury bond futures.

Volatility Hedging Covariance Hedging

RRA T 3m 6m 1y 2y

2
0.023
0.014

0.048
0.026

0.064
0.040

0.086
0.058

8
0.028
0.019

0.052
0.031

0.069
0.045

0.092
0.061

21
0.031
0.023

0.055
0.032

0.072
0.047

0.095
0.062

RRA T 3m 6m 1y 2y

2
0.019
0.043

0.035
0.073

0.048
0.101

0.069
0.130

8
0.021
0.046

0.041
0.081

0.051
0.102

0.082
0.138

21
0.032
0.059

0.052
0.097

0.072
0.121

0.082
0.149
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Panel 1: total hedging demands
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Panel 2: covariance and volatility hedging demands

Figure IA.E1. The effect of the investment horizon. Panel 1: Total hedging demands for the S&P500 Index
futures (solid line) and 30-year Treasury futures (dotted line) as a percentage of the Merton myopic portfolio are
plotted as a function of the investment horizon (in years). These hedging demands are computed using the monthly
parameter estimates in Table I of the main text, for a relative risk aversion parameter of γ = 6. Panel 2: Volatility
hedging and covariance hedging demands for the 30-year Treasury bond futures (dotted and solid lines, respectively)
and the S&P500 Index futures (dashed and dashed-dotted lines, respectively) are plotted as functions of the investment
horizon (in years). Both hedging demands are expressed as a percentage of the Merton myopic portfolio. The same
parameters as for Panel 1 are used to computed them.
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Panel 3: total hedging demands (absolute weights)
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Figure IA.E2. The effect of the risk aversion parameter. Panel 1: Total hedging demands for the S&P500
Index futures (solid line) and 30-year Treasury futures (dotted line) as a percentage of the Merton myopic portfolio are
plotted as functions of the relative risk aversion coefficient for a fixed investment horizon of five years. To compute
these policies, we use the monthly parameters estimates in Table I of the main text. Panel 2: Volatility hedging
and covariance hedging demands for the 30-year Treasury bond futures (dotted and solid lines, respectively) and
the S&P500 Index futures (dashed and dashed-dotted lines, respectively) as a percentages of the Merton myopic
portfolio are plotted as functions of the relative risk aversion coefficient. The same parameters as in Panel 1 are used
to compute these policies. Panel 3: Same plots as in Panel 1, but with percentage hedging demands replaced by
actual hedging portfolio weights. Panel 4: Total portfolio weights for covariance hedging (solid line) and for volatility
hedging (dotted line), aggregated over risky assets, are plotted as functions of the Relative risk aversion parameter.
The same parameters as in Panel 1 are used to compute these policies.
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Table IA.EI

Estimation Results and Hedging Demands for Univariate Stochastic Volatility Models

Panel A: We report point estimates and standard errors (in parentheses) for the parameters of the following univariate
stochastic volatility model:

dSt = St(r + λσ2
t )dt + σt(ρdWt +

p

1 − ρ2dZt)

dσ2
t = (k b2 + 2m σ2

t )dt + 2 b σtdWt . (1T)

St is the futures price of either the S&P500 futures, the 30-year Treasury bond futures, or the Nikkei 225 Index futures.
σt is the stochastic volatility process of returns, modeled by a Heston (1993)-type model. Wt and Zt are independent
scalar Brownian motions and (k, λ, ρ, b, m) is the vector of parameters of interest. We estimate model (1T) by GMM
using monthly time series of returns and realized volatilities for the S&P500 futures, 30-year Treasury bond futures,
and Nikkei 225 Index futures returns. Panel B: We compute optimal (volatility) hedging demands for the univariate
stochastic volatility model (1T), as a percentage of the myopic portfolio, using the parameter estimates in Panel A and
for different investment horizons and relative risk aversion coefficients. The last column reports optimal myopic demands.
The notation S&P500, Trea, and Nik225 corresponds to the hedging demands in the univariate models for the S&P500
Index futures, the 30-year Treasury Bond futures, and the Nikkei225 Index futures, respectively.

Panel A

k m b ρ λ

S&P500 1.18
(0.36)

−2.39
(0.42)

0.36
(0.08)

−0.88
(0.05)

0.72
(0.21)

Treasury 2.45
(0.84)

−2.10
(0.24)

0.29
(0.07)

−0.56
(0.04)

1.05
(0.34)

Nikkei 4.33
(1.16)

−2.82
(0.55)

−0.28
(0.08)

−0.67
(0.19)

0.64
(0.19)

Panel B

RRA T 6m 1y 5y 10y
Myopic
demand

2
S&P500 0.022
Trea 0.018
Nik225 0.012

S&P500 0.025
Trea 0.021
Nik225 0.019

S&P500 0.027
Trea 0.023
Nik225 0.023

S&P500 0.027
Trea 0.024
Nik225 0.025

S&P500 0.360
Trea 0.525
Nik225 0.320

4
S&P500 0.034
Trea 0.028
Nik225 0.016

S&P500 0.038
Trea 0.032
Nik225 0.021

S&P500 0.041
Trea 0.034
Nik225 0.031

S&P500 0.041
Trea 0.034
Nik225 0.033

S&P500 0.180
Trea 0.262
Nik225 0.160

8
S&P500 0.041
Trea 0.033
Nik225 0.019

S&P500 0.045
Trea 0.038
Nik225 0.025

S&P500 0.048
Trea 0.040
Nik225 0.036

S&P500 0.048
Trea 0.040
Nik225 0.038

S&P500 0.090
Trea 0.131
Nik225 0.080
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Table IA.EII

Estimation Results and Hedging Demands for the Model with 3 Risky Assets

We present parameter estimates, Hansen’s statistics and optimal hedging demands for model (1)-(4) with 3 risky
assets. Panel A: We report parameter estimates for M , Q, λ and ρ (with standard errors in parentheses) in the
returns dynamics (1)-(4), where ΩΩ′ = kQQ′ for k = 10. The parameters are estimated using monthly returns,
realized volatilities and correlations of S&P 500 index, 30-year US Treasury bond, and Nikkei 225 index future returns
sampled at a monthly frequency. The GMM estimation procedure is similar to the one used to estimate the bivariate
model and detailed moment restrictions are given in Appendix B. Parameters that are not significant at the 5%
significance level are marked with an asterisk. Panel B: We report optimal covariance and volatility hedging demands
in percentage of the myopic portfolio. Each entry of the array in Panel B consists of three components, the first of
which is the demand for the S&P500 Index Futures, the second one the demand for the 30-year Treasury bond Futures
and the third one the demand for the Nikkei 225 Index Futures, respectively.

Panel A

M Q ρ λ

point estimates
(standard errors)

−0.762 −0.251∗ 0.390
(0.293) (0.162) (0.180)

0.511 −0.872 0.120∗

(0.240) (0.281) (0.110)

0.286∗ 0.425 −0.968
(0.153) (0.212) (0.394)

0.005∗ 0.064 0.069∗

(0.060) (0.029) (0.051)

0.059∗ 0.105∗ 0.060∗

(0.048) (0.074) (0.100)

0.070 0.055 0.004∗

(0.033) (0.022) (0.180)

−0.210
(0.090)

−0.230∗

(0.140)

−0.170
(0.075)

2.482
(0.380)

2.327
(0.490)

1.561
(0.160)

p-value for
Hansen’s J-test 0.115

Panel B

Volatility Hedging

RRA T 3m 6m 1y 2y 5y 7y 10y 20y
Myopic
demand

2
0.005
0.007
0.004

0.009
0.011
0.008

0.017
0.016
0.014

0.027
0.020
0.023

0.034
0.021
0.029

0.035
0.021
0.030

0.035
0.021
0.030

0.035
0.021
0.030

1.2410
1.1635
0.7805

6
0.014
0.019
0.013

0.028
0.033
0.025

0.051
0.050
0.044

0.077
0.059
0.065

0.090
0.061
0.076

0.091
0.061
0.077

0.091
0.061
0.077

0.091
0.061
0.077

0.4137
0.3878
0.2602

8
0.018
0.026
0.018

0.037
0.045
0.034

0.066
0.065
0.059

0.097
0.076
0.083

0.110
0.078
0.093

0.110
0.078
0.094

0.110
0.078
0.094

0.110
0.078
0.094

0.3103
0.2909
0.1951

11
0.025
0.036
0.025

0.050
0.061
0.046

0.088
0.087
0.077

0.123
0.100
0.105

0.134
0.101
0.114

0.134
0.101
0.114

0.135
0.101
0.115

0.135
0.101
0.115

0.2256
0.2115
0.1419

16
0.037
0.052
0.035

0.071
0.087
0.065

0.122
0.121
0.106

0.158
0.133
0.136

0.167
0.134
0.143

0.167
0.134
0.144

0.167
0.134
0.144

0.167
0.134
0.144

0.1551
0.1454
0.0976

21
0.048
0.068
0.047

0.092
0.113
0.085

0.150
0.152
0.132

0.187
0.163
0.161

0.194
0.164
0.167

0.194
0.164
0.167

0.194
0.164
0.167

0.194
0.164
0.167

0.1182
0.1108
0.0743

41
0.092
0.130
0.090

0.166
0.200
0.153

0.242
0.250
0.215

0.275
0.260
0.237

0.278
0.260
0.240

0.279
0.260
0.240

0.279
0.260
0.240

0.279
0.260
0.240

0.0605
0.0568
0.0381

Covariance Hedging

RRA T 3m 6m 1y 2y 5y 7y 10y 20y
Myopic
demand

2
0.010
0.004
0.008

0.017
0.008
0.016

0.030
0.013
0.029

0.041
0.019
0.042

0.046
0.021
0.048

0.048
0.022
0.048

0.048
0.022
0.049

0.049
0.022
0.049

1.2410
1.1635
0.7805

6
0.029
0.013
0.026

0.050
0.025
0.046

0.087
0.041
0.079

0.117
0.058
0.114

0.125
0.061
0.133

0.130
0.065
0.138

0.130
0.065
0.138

0.130
0.065
0.138

0.4137
0.3878
0.2602

8
0.041
0.016
0.031

0.068
0.031
0.061

0.119
0.051
0.102

0.151
0.068
0.148

0.163
0.072
0.159

0.163
0.073
0.159

0.164
0.073
0.160

0.164
0.073
0.160

0.3103
0.2909
0.1951

11
0.054
0.022
0.044

0.102
0.040
0.085

0.158
0.071
0.144

0.182
0.087
0.184

0.195
0.094
0.191

0.195
0.095
0.191

0.196
0.096
0.192

0.196
0.096
0.192

0.2256
0.2115
0.1419

16
0.078
0.031
0.063

0.138
0.062
0.122

0.211
0.098
0.196

0.253
0.125
0.247

0.265
0.128
0.247

0.267
0.130
0.268

0.267
0.130
0.268

0.268
0.132
0.270

0.1551
0.1454
0.0976

21
0.095
0.041
0.082

0.178
0.083
0.159

0.269
0.128
0.251

0.291
0.145
0.310

0.310
0.152
0.321

0.310
0.154
0.322

0.310
0.154
0.322

0.310
0.154
0.323

0.1182
0.1108
0.0743

41
0.172
0.081
0.167

0.331
0.159
0.271

0.422
0.193
0.391

0.450
0.205
0.431

0.451
0.206
0.432

0.451
0.206
0.432

0.451
0.206
0.432

0.451
0.206
0.432

0.0605
0.0568
0.0381
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Table IA.EIII

Estimation Results for the Model with Two Risky Assets Using Daily Data

This table shows estimated matrices M and Q and vectors λ and ρ for the returns dynamics (1) in the
main text, under the Wishart variance covariance diffusion process:

dΣ(t) = (ΩΩ′ + MΣ(t) + Σ(t)M ′)dt + Σ1/2(t)dB(t)Q+ Q′dB(t)′Σ1/2(t),

where ΩΩ′ = kQ′Q and k = 10. Parameters are estimated by GMM using time series of returns and realized
variance-covariance matrices for S&P 500 Index and 30-year Treasury bond futures returns, computed for
a daily frequency. The detailed set of moment restrictions used for GMM estimation is given in Internet
Appendix B. We report parameter estimates and their standard errors (in parentheses), together with the
p-values for Hansen’s J-test of overidentifying restrictions.

M Q λ ρ

point estimates
(p-values)

−1.098 0.42
(0.0002) (0.001)

0.21 −1.58
(0.002) (0.0035)

−0.16 0.028
(0.01) (0.3435)

0.0049 0.103
(0.4534) (0.024)

4.89
(0.03)

5.54
(0.04)

0.1296
(0.0035)

−0.24
(0.0121)

p-value for
Hansen’s J-test

0.03
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Table IA.EIV

Optimal Hedging Demands in the Model with Two Risky Assets Using Weekly Data

This table shows optimal covariance and volatility hedging demands as a percentage of the myopic
portfolio, for different investment horizons and relative risk aversion parameters. The last column
of each panel reports the myopic portfolio. We compute these demands for the weekly parameters
estimates reported in Table I of the main text. Each entry in the table is a vector with two components,
nemely the demand for the S&P500 Index futures and the demand for the 30-year Treasury futures.

Covariance Hedging

RRA T 3m 6m 1y 2y 5y 7y 10y
Myopic
demand

2 0.0186
0.0121

0.0310
0.0202

0.0441
0.0290

0.0512
0.0334

0.0523
0.0342

0.0523
0.0342

0.0523
0.0342

2.3610
1.6585

6 0.0311
0.0203

0.0520
0.0340

0.0732
0.0480

0.0835
0.0541

0.0848
0.0554

0.0848
0.0555

0.0848
0.0555

0.7870
0.5528

8 0.0327
0.0214

0.0545
0.0357

0.0768
0.0502

0.0874
0.0571

0.0888
0.0580

0.0888
0.0580

0.0888
0.0580

0.5903
0.4146

11 0.0340
0.0222

0.0568
0.0371

0.0797
0.0521

0.0906
0.0592

0.0920
0.0610

0.0920
0.0610

0.0920
0.0610

0.4293
0.3015

16 0.0351
0.0229

0.0586
0.0383

0.0822
0.0537

0.0933
0.0618

0.0947
0.0621

0.0947
0.0621

0.0947
0.0621

0.2951
0.2073

21 0.0359
0.0233

0.0595
0.0389

0.0835
0.0545

0.0947
0.0623

0.0961
0.0626

0.0961
0.0626

0.0961
0.0626

0.2249
0.1580

41 0.0366
0.0239

0.0610
0.0400

0.0855
0.0556

0.0969
0.0633

0.0983
0.0642

0.0985
0.0642

0.0985
0.0642

0.1152
0.0809

Volatility Hedging

RRA T 3m 6m 1y 2y 5y 7y 10y
Myopic
demand

2 0.0116
0.0194

0.0188
0.0336

0.0256
0.0500

0.0289
0.0599

0.0294
0.0617

0.0294
0.0617

0.0294
0.0617

2.3610
1.6585

6 0.0195
0.0327

0.0314
0.0564

0.0425
0.0830

0.0477
0.0977

0.0477
0.0999

0.0477
0.0999

0.0477
0.0999

0.7870
0.5528

8 0.0205
0.0343

0.0330
0.0593

0.0446
0.0871

0.0494
0.1023

0.0500
0.1046

0.0500
0.1046

0.0500
0.1046

0.5903
0.4146

11 0.0213
0.0357

0.0343
0.0617

0.0463
0.0905

0.0513
0.1061

0.0518
0.1084

0.0518
0.1084

0.0518
0.1084

0.4293
0.3015

16 0.0219
0.0368

0.0354
0.0636

0.0477
0.0933

0.0528
0.1092

0.0533
0.1105

0.0533
0.1105

0.0533
0.1105

0.2951
0.2073

21 0.0223
0.0374

0.0360
0.0647

0.0484
0.0947

0.0536
0.1108

0.0541
0.1132

0.0541
0.1132

0.0541
0.1132

0.2249
0.1580

41 0.0229
0.0384

0.0369
0.0663

0.0496
0.0970

0.0548
0.1134

0.0554
0.1157

0.0554
0.1157

0.0554
0.1157

0.1152
0.0809
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