
Internet Appendix to “Cash Flow, Consumption Risk, and the

Cross-Section of Stock Returns”∗

This document contains supplementary material to the paper titled “Cash Flow, Consumption
Risk, and the Cross Section of Stock Returns.” It contains six sections. Section A details why the
two-factor cash flow model captures the relation between risk premium and cash flow characteristics
in the simple economy discussed in the paper. Section B solves the risk premium on an asset using
the usual return-based beta representation, reinforcing the intuition behind the two-factor cash
flow model and also relating the cash flow characteristics directly to the standard return-based
consumption beta. Section C examines a slightly modified simple economy where the cash flow
of an asset is also exposed to long-run consumption risk and shows that the two-factor cash flow
model is still valid. Section D shows that the empirical long-run earnings-based measures identify
their theoretical counterparts up to scaling factors in the simple economy. Section E examines
the performance of the cash flow models on industry portfolios. Section F contrasts two related
variables: cash flow duration and the book-to-market ratio.

A. Two-factor Cash Flow Model as an Approximation

This section provides the details for Section I.D in the paper and explains why the two-factor
cash flow model captures the relation between risk premium and cash flow characteristics in the
simple economy discussed in the paper. Proposition 1 in the paper shows that the risk premium
on an equity strip with a maturity n in the simple economy is

RP i(n) = (1 + φn−1λi)
[
1 + (γ − 1)

1− ρ2δ

1− ρ1δ

]
σ2
w.

The risk premium on a stock is just the value-weighted average of risk premia of all equity strips
and can be approximated as

Et
[
Rit+1 −Rft

]
≈
∞∑
n=1

wi(n)RP i(n).

Consider a linear approximation of the risk premium on individual equity strip RP i(n) around
some fixed maturity n∗:

RP i(n) ≈ RP i(n∗) +RP in
′(n∗)(n− n∗),

∗Citation format: Da, Zhi, 2009, Internet Appendix to “Cash Flow, Consumption Risk, and the Cross-Section
of Stock Returns,” Journal of Finance, Vol 64, 925-959, http://www.afajof.org/IA/2009.asp. Please note: Wiley-
Blackwell is not responsible for the content or functionality of any supporting information supplied by the authors.
Any queries (other than missing material) should be directed to the corresponding author for the article.
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where RP in
′(n∗) denotes the first derivative of RP in with respect to n, evaluated at n∗; the risk

premium on a stock then becomes

Et
[
Rit+1 −Rft

]
≈ RP i(n∗) +RP in

′(n∗)

[ ∞∑
n=1

wi(n)n− n∗
]

. (IA.1)

Direct computation shows that

RP i(n∗) = a0 + a1λ
i, (IA.2)

RP in
′(n∗) = a2λ

i, (IA.3)
∞∑
n=1

wi(n)n− n∗ ≈ a3z
i
t, (IA.4)

a0 =
[
1 + (γ − 1)

1− ρ2δ

1− ρ1δ

]
σ2
w,

a1 = φn
∗−1

[
1 + (γ − 1)

1− ρ2δ

1− ρ1δ

]
σ2
w,

a2 = φn
∗−1 log φ

[
1 + (γ − 1)

1− ρ2δ

1− ρ1δ

]
σ2
w.

Given a risk-averse agent with γ > 1 and n∗ > 1, it can easily be verified that a0 > 0, a1 > 0,
and a2 < 0.

To understand a3, define a function f(zit) as

f(zit) =
∞∑
n=1

wi(n)n.

Consider a linear approximation of f(zit) around zit = 0:1

f(zit) ≈ f(0) + f ′(0)zit.

Choosing n∗ = f(0), which can be interpreted as the Macaulay duration of an asset with zit = 0
(for example, the aggregate consumption portfolio), then

∞∑
n=1

wi(n)n− n∗ ≈ a3z
i
t,

a3 = f ′(0).

Finally, it has to be verified that a3 = f ′(0) > 0. Direct calculation of f ′(0) shows that

f ′(0) > 0⇔∑
n exp

[
Ai(n)

]
(1− φn)

∑
exp

[
Ai(n)

]
>
∑

n exp
[
Ai(n)

]∑
(1− φn) exp

[
Ai(n)

]
⇔∑

n exp
[
Ai(n)

]∑
exp [Ai(n)]

>

∑
n exp

[
Ai(n)

]
φn∑

exp [Ai(n)]φn
. (IA.5)

1The cash flow covariance measure λi also enters wi(n) through the convexity adjustment terms in Ai(n). Its
impact on

∑
wi(n)n, however, is relatively small.
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Define function g(x) as

g(x) =
∑
n exp

[
Ai(n)

]
exp(nx)∑

exp [Ai(n)] exp(nx)
.

Then inequality (IA.5) is equivalent to g(0) > g(log φ), which will be true if g(x) is increasing in x
or g′(x) > 0. Direct calculation of g′(x) shows that

g′(x) > 0⇔∑
n2a(n) >

[∑
na(n)

]2
, (IA.6)

where a(n) =
exp

[
Ai(n)

]
exp(nx)∑

exp [Ai(n)] exp(nx)
.

Given a(n) > 0,
∑
a(n) = 1, and h(n) = n2 is a convex function, inequality (IA.6) then follows from

Jensen’s inequality. The intuition behind the positive a3 is clear. The term zit can be interpreted as
the expected cash flow growth rate (relative to aggregate consumption growth). A higher zit means
that more cash flow will occur in the future, thus increasing the present value-weighted time as in∑
wi(n)n.
Substituting (IA.2), (IA.3), and (IA.4) into (IA.1) gives us the two-factor cash flow model:

Et
[
Rit+1 −Rft

]
≈ γ0 + γ1λ

i + γ2(zitλ
i),

γ0 = a0 > 0, γ1 = a1 > 0 and γ2 = a2a3 < 0.

B. Beta Representation in a Return Log-linearization Framework

In this section, I provide an alternative derivation of the risk premium using the usual return
based beta-representation framework to achieve three objectives: (1) to reinforce the intuition
behind the two-factor cash flow model; (2) to relate the cash flow characteristics directly to the
standard return-based consumption beta; and (3) to relate the cash flow characteristics to the “cash
flow risk” and “discount rate risk.”

Under the usual assumption that the return and the Stochastic Discount Factor (SDF) are
jointly log-normally distributed (conditionally), the conditional expected excess return of an asset
can be expressed as2

Et
[
rit+1 − rft

]
+
σ2
t

[
rit+1

]
2

= −covt(rit+1,mt+1). (IA.7)

I then use a log-linear approximation to write the return on asset i as

rit+1 = κi0 + κi1x
i
t+1 − xit + dit+1 − dit,

κi1 =
exp(xi)

1 + exp(xi)
,

κi0 = log
[
1 + exp(xi)

]
− κi1xi,

where xit is the log price-to-cash flow ratio
(

log Pt
Dt

)
at time t and xi is its time-series average.

Conjecture xit+1 = ai + bizt+1 and use the cash flow process, consumption growth process, and

2See Campbell (1993), for example.
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the SDF specified in the simple economy to evaluate the following relation:

Et
[
exp(mt+1 + rit+1)

]
= 1.

After collecting the terms on zit, we have

φκi1b
i − bi + (1− φ) = 0,

which implies

bi =
1− φ

1− φκi1
.

Then,

rit+1 = Et
[
rit+1

]
+ βiwt+1 +

1− κi1
1− φκi1

εit+1, where

βi = 1 +
1− κi1

1− φκi1
λi.

Equation (IA.7) can also be rewritten using a beta representation in my economy:

Et
[
rit+1 − rft

]
+
σ2
t

[
rit+1

]
2

= βiλc, (IA.8)

βi = 1 +
1− κi1

1− φκi1
λi,

λc =
[
1 + (γ − 1)

1− ρ2δ

1− ρ1δ

]
σ2
w,

where βi denotes the beta of asset i, and λc denotes consumption risk premia. The term κi1 =
exp(xi)

1+exp(xi)
is a log-linearization constant where xi is usually chosen to be equal to the average log

price-to-cash flow ratio. The term βi can be rewritten using xi as

βi = 1 + λi − (1− φ) exp(xi)λi. (IA.9)

Since the average log price-to-cash-flow ratio should be directly related to cash flow duration (see
Proposition 1), (IA.9) also gives us the two-factor cash flow model. On the other hand, the usual
practice of assuming a constant κi1 across all stocks effectively eliminates the impact of cash flow
duration when examining cross-sectional variation in risk premia.

Campbell and Shiller (1988) decompose the return on an asset into a component (NCFi,t+1)
related to cash flow news and a component (NDRi,t+1) related to discount rate news, written as:

rit+1 − Et
[
rit+1

]
= NCFi,t+1 −NDRi,t+1, where (IA.10)

NCFi,t+1 = (Et+1 − Et)
∞∑
j=0

(
κi1
)j ∆dit+1+j ,

NDRi,t+1 = (Et+1 − Et)
∞∑
j=1

(
κi1
)j
rit+1+j .

We may have the impression thatNCFi,t+1 is related to cash flow covariance risk and thatNDRi,t+1 is
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related to cash flow duration. By substituting (IA.10) into (IA.7), the beta can also be decomposed
into two parts: a cash flow beta (βiCF ) and a discount rate beta (βiDR) similar to those in Campbell
and Mei (1993) and Campbell, Polk, and Vuolteenaho (2003). Specifically,

βi = βiCF + βiDR,

βiCF =

(
1− κi1

)
λi

1− φκi1
+

1− ρ2κ
i
1

1− ρ1κi1
,

βiDR = 1− 1− ρ2κ
i
1

1− ρ1κi1
.

In my model, discount rate news is driven by risk-free rate dynamics, which are in turn driven
by innovations in consumption growth. This, together with ψ equaling one, explains why the
second terms in the cash flow beta and in the discount rate beta offset each other. The cash flow
covariance measure λi enters the expression of βi directly whereas the cash flow duration measure
zit enters only indirectly through κi1. The impact of the duration on beta and expected return is
therefore difficult to examine. Although the return decomposition approach has many theoretical
advantages (e.g., economically intuitive, allows for time-varying risk premium), it does not allow
us to see clearly the linkage between risk/return and fundamental cash flow characteristics. This
is why I choose to examine each equity strip separately in this paper.

C. Cash Flow Models with Long-run Risk

In the paper, I model the cash flow covariance as the contemporaneous covariance between
innovations in cash flow share and innovations in the aggregate consumption growth. This simple
specification allows for both analytical tractability and easy economic interpretation. In this section,
I model the cash flow covariance as the exposure of cash flow share to both long-run and short-run
consumption risk and show that a similar two-factor cash flow model can still be derived in the
simple economy.

In the simple economy considered in the paper, the log aggregate consumption growth in the
economy follows an ARMA(1,1) process:

∆ct+1 = µc(1− ρ1) + ρ1∆ct + wt+1 − ρ2wt,
wt ∼ N(0, σ2

w).

Define xt = Et [∆ct+1]− µc. The ARMA(1,1) process can be rewritten as

∆ct+1 = µc + xt + wt+1,

xt+1 = ρ1xt + (ρ1 − ρ2)wt+1.

As a result, xt, which captures the conditional expected consumption growth rate, can be inter-
preted as the “long-run” consumption risk. The term wt+1, which measures the contemporaneous
innovation in consumption growth, can be interpreted as the “short-run” consumption risk.

I next model the cash flow growth rate on a stock (portfolio) i as

∆dit+1 = ∆ct+1 + (1− φ)zit + λi(∆ct+1 − µc) + εit+1

= ∆ct+1 + (1− φ)zit + λi(xt + wt+1) + εit+1,
zit+1 = φzit − λi(xt + wt+1)− εit+1.

The only difference between this specification and the specification used in the paper is that cash
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flow covariance (λ) is now modeled as the exposure of cash flow share to both long-run and short-
run consumption risk, rather than the exposure to short-run consumption risk alone. To keep the
algebra simple, I assume the cash flow share has the same exposure to both long-run and short-run
consumption risk. This assumption is also made implicitly in the co-integration specification of
Bansal, Dittmar, and Lundblad (2002).

Having specified the cash flow and aggregate consumption growth process, I proceed to solve for
the risk premium expression on an equity strip as a function of its maturity (n). The risk premium
is

RP i(n) =
{

1 + λi
[
φn−1 + (ρ1 − ρ2)A(n− 1)

]} [
1 + (γ − 1)

1− ρ2δ

1− ρ1δ

]
σ2
w, (IA.11)

where A(n) evolves according to the following difference equation with an initial condition that
A(0) = 0:

φn−1 + ρ1A(n− 1) = A(n).

The risk premium expression is obtained by following the exact same procedure as described
in Appendix A of the paper and the details are thus omitted. Due to the presence of the long-run
risk, the algebra is more complicated and an analytical expression cannot be obtained. Compared
to the equity strip risk premium in the paper, the presence of long-run risk results in one additional
term — (ρ1 − ρ2)A(n− 1).

It can be shown that for reasonable parameter values of φ and ρ1 (close to but smaller than
one), A(n − 1) first increases, then decreases in n. The term φn−1, on the other hand, always
decreases in n. A typical long-run risk model sets ρ1 to be close to one and slightly greater than ρ2.
Such parameter choice allows consumption growth to closely resemble an i.i.d. process empirically.
At the same time, the persistent expected consumption growth rate leads to a larger risk premium
and a potential solution to the equity risk premium puzzle. In this case, ρ1 − ρ2 will be very small
and φn−1 + (ρ1 − ρ2)A(n − 1), dominated by the first term (φn−1), is likely to be decreasing in n
when n is not too small. This pattern has been confirmed in Figure IA.1.

Figure IA.1 plots φn−1, (ρ1 − ρ2)A(n − 1), and their sum separately as a function of n (in
number of months). The ARMA(1,1) parameters (ρ1 = 0.965 and ρ2 = 0.851) are taken from
Bansal and Yaron (2000) and φ is chosen as 0.98 for the plot. As shown in the figure, the value of
φn−1 + (ρ1 − ρ2)A(n− 1) peaks around year 2 (month 24), and is decreasing in n after that. As in
the simple economy, for an equity strip with infinite maturity (n =∞), the risk premium becomes[
1 + (γ − 1)1−ρ2δ

1−ρ1δ

]
σ2
w, again due to the mean-reversion in cash flow share, such that the impact of

cash flow covariance diminishes with maturity.
A similar two-factor cash flow model can be derived in this economy where cash flow is also

exposed to long-run risk. Higher cash flow covariance (λi) should lead to higher risk premium as
in (11). Since φn−1 + (ρ1−ρ2)A(n− 1) is decreasing in n after year 2, the interaction between cash
flow covariance and duration will be very similar to that in the simple economy. When cash flow
covariance (λi) is positive, the risk premium of an individual equity strip generally decreases with
maturity. When this happens, high duration assets will have lower returns since a long-maturity
cash flow with lower return receives higher present-value weight and the weighted average is lower.
The reverse logic holds for negative cash flow covariance, with a higher duration leading to a higher
return. Consequently, the product of cash flow covariance and duration is negatively related to the
risk premium on a stock.
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Figure IA.1. Equity strip risk premium terms as functions of maturities. This
figure plots various terms as functions of maturities (n) in the equity strip risk premium
expression. The top plot corresponds to φn−1. The middle plot corresponds to (ρ1 −
ρ2)A(n− 1). The bottom plot corresponds to their sum. The parameters (at the monthly
frequency) used in this figure are: ρ1 = 0.965, ρ2 = 0.851, and φ = 0.98.
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D. Theoretical and Empirical Cash Flow Characteristics

This section proves that the empirical long-run earnings-based measures (Cov and Dur) identify
their theoretical counterparts (λ and z) up to scaling factors in the simple economy.

D.1. Cash Flow Duration

By definition,

∞∑
n=0

ρn∆si(t, n+ 1) =
∞∑
n=0

ρn∆di(t, n+ 1)−
∞∑
n=0

ρn∆ct+n+1.

Taking the expectation at each portfolio formation time t on both sides,

Et

{ ∞∑
n=0

ρn∆s(t, n+ 1)

}
= Et

[ ∞∑
n=0

ρn(1− φ)z(t, n)

]

=
1− φ
1− ρφ

zt,

cash flow duration E [zt] can be identified (up to a scaling factor) by

Duri = E
[
Durit

]
= E

{
Σe
t
i − κ

1− ρ
− ξit − Et

[
Σ∆c
t

]}
= E

{
Et

[
Σe
t
i
]
− κ

1− ρ
− ξit − Et

[
Σ∆c
t

]}
=

1− φ
1− ρφ

E [zt] ,

where Σe
t
i =

∞∑
n=0

ρnei(t, n+ 1) and Σ∆c
t =

∞∑
n=0

ρn∆ct+n+1.

D.2. Cash Flow Covariance

To estimate the cash flow covariance λi, consider

cov

( ∞∑
n=0

ρn∆si(t, n+ 1),
∞∑
n=0

ρnwt+n+1

)
= cov

( ∞∑
n=0

ρn
[
ei(t, n+ 1)−∆ct+n+1

]
,
∞∑
n=0

ρnwt+n+1

)
.

In my model specification, the LHS is

1
(1− φρ) (1 + ρ)

λiσ2
w.

Therefore, by regressing
∞∑
n=0

ρn
[
ei(t, n+ 1)−∆ct+n+1

]
on

∞∑
n=0

ρnwt+n+1, the regression coefficient

Cov identifies cash flow covariance (λi) up to a scaling factor.

E. Performance of the Cash Flow Models on Industry Portfolios

This section examines the performance of the cash flow models on industry portfolios.
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Every June, I sort all stocks of industrial firms (excluding financials and utilities) traded on
NYSE, Amex, and NASDAQ into industry portfolios according to a 17 Fama-French industry classi-
fication.3 The resulting 15 portfolios are: Food, Mines(mining and minerals), Oil(oil and petroleum
products), Clths(textiles, apparel, and footware), Durbl(consumer durables), Chems(chemicals),
Cnsum(drugs, soap, perfumes, and tobacco), Cnstr(construction), Steel, FabPr(fabricated prod-
ucts), Machn(machinery and business equipment), Cars, Trans(transportation), Rtail(retail stores),
and Other.

Table IA.I presents various portfolio characteristics including the portfolio book-to-market ratio
(BM), market equity (ME, measured in millions) at formation, and annual return during the first
year after portfolio formation. All values are time-series averages across a sampling period from
1964 to 2002.

I also directly test the validity of the AR(1) assumption on the cash flow share for the 15
portfolios. I first fit an AR(1) process for the cash flow share and compute the residuals. I then
test whether these residuals violate the white noise condition using the Ljung-Box Q test. Both the
Ljung-Box (LB) Q test statistics and the associated p-values are reported. In addition, I also test
the stationarity of the cash flow share using the Augmented Dickey-Fuller test with a constant and
a lag of one. The t-values are reported (** means the hypothesis of a unit root can be rejected at
the 99% confidence level and * means the hypothesis can be rejected at the 95% confidence level).
The cash flow share in year t is computed as the log of the ratio between the portfolio cash flow
(sum of common dividend and common share repurchase) and aggregate consumption during year
t.

For seven out of the 15 industry portfolios, I am not able to reject the unit root hypothesis,
indicating that the key assumption that cash flow share is mean-reverting might not be very ap-
propriate for industry portfolios. As a result, the cash flow covariance defined in my paper might
not be measuring the true consumption risk on the industry portfolio.

Table IA.I also presents the cash flow covariance and duration estimates for the 15 portfolios.
As expected, a “growing” industry such as Cnsum is associated with a higher cash flow duration
while an industry with little “growth” potential such as Steel has a lower cash flow duration.

I then investigate the performance of cash flow models on industry portfolios in a cross-sectional
analysis. The coefficient or the risk premium estimates on the cash flow models are obtained from
OLS regressions. However, the robust t-values are computed using GMM standard errors that
account for both cross-sectional and time-series error correlations with the Newey-West formula of
seven lags. The one-stage GMM estimation is carried out by stacking moment conditions of both
time-series regressions and cross-sectional regressions. The results are presented in Table IA.II. The
cash flow models do a reasonably good job in describing the cross-sectional variation of average
excess returns on the 15 industry portfolios. The one-factor cash flow model with only cash flow
covariance has a R2 of 42.5% (adjusted-R2 is 38.1%). The two-factor cash flow model with only
cash flow covariance and duration has a R2 of 59.8% (adjusted-R2 is 53.1%). Similar to the findings
in the paper, the inclusion of cash flow duration improves the R2 by about 17%.

The risk premium on cash flow covariance (Cov) is positive while the risk premium on the
interaction term (Cov ×Dur) is negative, consistent with the prediction of the theory. However,
once the time-series estimation errors on cash flow covariance and duration are accounted for, both
Cov and Cov ×Dur are associated with insignificant risk premia.

Overall, the performance of the cash flow models on industry portfolios are qualitatively similar
although the associated statistical significance is much weaker, possible due to misspecification
of the cash flow share process, large time-series estimation errors, and small sample size in the

3I do not consider a finer industry classification since that would result in too few stocks in certain industry
portfolios, rendering the estimation of cash flow characteristics very imprecise.
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Table IA.II
Performance of Cash Flow Models on Industry Portfolios

This table reports the results of cross-sectional regressions of average excess returns on the 15 portfolios on
cash flow duration and covariance measures. The coefficient estimates are obtained from OLS regressions.
However, the robust t-values are computed using GMM standard errors, which account for both cross-
sectional and time-series error correlations, with the Newey-West formula of seven lags. The one-stage
GMM estimation is carried out by stacking moment conditions of both time-series regressions and cross-
sectional regressions. Finally, both R2s and adjusted-R2s of the regressions are reported. The sampling
period is from 1964 to 1995.

intercept Cov Dur × Cov R2 / adj R2

One factor:
Coefficient 0.066 0.020 0.425
Robust t-value 2.08 1.76 0.381

Two Factors:
Coefficient 0.067 0.031 -0.038 0.598
Robust t-value 2.08 1.90 -1.26 0.531

cross-section.

F. Cash Flow Duration vs. Book-to-market Ratio

This section contrasts the cash flow duration to the commonly studied book-to-market ratio.
Empirically, book-to-market seems to be inversely related to cash flow duration. This pattern
should not surprise us. As Lintner (1975) and Santa-Clara (2004) point out, any measure of cash
flow duration will be related to book-to-market simply as a result of accounting identities. Making
use of the accounting clean surplus identity and return-dividend-price relation, Vuolteenaho (2002)
shows that the log book-to-market ratio (θt) can be approximated as

θt =
∞∑
j=0

ρjrt+j+1 −
∞∑
j=0

ρjet+j+1, (1)

where r denotes log returns. Therefore, an increase in future accounting earnings that increases
cash flow duration measure will at the same time decrease the book-to-market ratio. In turn, cash
flow duration is negatively correlated with the book-to-market ratio. Lettau and Wachter (2007)
study an economy in which stocks are only distinguished by the timing of their cash flows. In such
an economy, they show that stocks with cash flows weighted more to the future (high duration)
have low price ratios (book-to-market ratio, for example) and earn low return. Therefore, cash flow
duration can potentially explain value premium. My results, on the topical level, seem to support
their hypothesis since value stocks indeed have lower duration than growth stocks. However, I
would require further analysis to answer a more interesting question: can the cash flow duration
alone explain value premium? If the cash flow duration alone perfectly explains value premium, we
would expect further sorting on book-to-market to generate no spread in returns once we control
for cash flow duration.

To control for cash flow duration, I first sort all stocks according to the “ex-ante” cash flow
duration measure – D̂urt – into three groups: Low Duration, Medium Duration, and High Duration.
Within each group, I further sort stocks according to BM into three subgroups. To make sure that
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such portfolio construction is implementable, at each year, I reestimate duration using data from
1965 through the current year, so the duration measure D̂urt is only computed using information
available at year t. For this reason, I start my portfolio construction at year 1975. Table IA.III
contains the results of the double sort. Since BM and duration are negatively correlated, sorting
on BM within each duration group will likely induce a spread in cash flow durations. This is
particularly true for stocks in Low Duration groups in which low BM stocks have a cash flow
duration measure of 1.28 but high BM stocks have a cash flow duration measure of only -0.05. In
contrast, the spread is much smaller for stocks in Medium and High Duration groups. Therefore, if
cash flow duration alone explains the value premium, I should expect that further sorting on BM
generates no significant spread on returns for these stocks with similar cash flow duration. This
is not the case. Value stocks still earn much higher returns than growth stocks in the same cash
flow duration group. This finding is not necessarily inconsistent with a duration-based explanation
of value premium if we interpret price-based BM as a less noisy measure of cash flow duration.
However, under the hypothesis that duration risk alone explains value premium, we wouldn’t expect
the return spread induced by the second sort on BM to be systematically related to cash flow
covariance. This is not what we find in the data. Table IA.III shows that return spread can be
explained by the cash flow covariance risk – value stocks have indeed higher cash flow covariance
risk than growth stocks. This last finding suggests that cash flow covariance rather than duration
is more important in explaining value premium.

Table IA.III
Duration and BM-sorted Portfolios

Each year from 1975 to 1996, I sort all stocks first into three groups according to a rolling-window “ex-ante”
cash flow duration measure, and within each group, I further sort stocks into three subgroups according to
their book-to-market ratio. The book-to-market-ratio, annual excess returns, point estimates of cash flow
duration, and covariance are reported in the table.

BM Excess Return
growth value growth value

Low Dur 0.502 1.063 2.269 0.063 0.077 0.123
Med Dur 0.365 0.794 1.716 0.05 0.089 0.127
High Dur 0.24 0.539 1.184 0.058 0.115 0.131

Dur Cov
growth value growth value

Low Dur 1.28 0.22 -0.05 -3.83 -0.43 0.65
Med Dur 0.67 0.92 0.71 -0.05 -0.22 4.14
High Dur 2.41 2.77 2.76 -3.52 -1.3 0.18
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