
Internet Appendix for “Information Immobility and

the Home Bias Puzzle” ∗

This technical appendix comprises three sections. The first provides step-by-step mathematical
guidance on how to solve the model. It derives expected utility, expected portfolio holdings, the
strategic substitutability and equilibrium uniqueness results, and the cost of foreign information
in the model without increasing returns. The second section explores the model’s assumptions. In
particular, it looks at the foundations for expected mean-variance preferences, it allows investors
to choose how much to learn, and it considers investors who can learn about risk factors other than
principal components. The third section derives the formal links between the theory’s predictions
and the empirical evidence we offer in its support. Exploring these links also reveals why some
findings that purportedly refute the information-based explanation for underdiversification are not,
in fact, inconsistent with the predictions of a rational information-based theory.

A. Deriving the Model’s Main Results

A.1. Taking the Expectation of the Utility Function

Recall that expected utility (equation (7) in the main text) is given by

U = E

[
1

2
(µ̂j − pr)′(Σ̂j)−1(µ̂j − pr)|µ,Σ

]
. (IA.1)

At time 1, (µ̂j −pr) is a normal variable, with mean (−A) = ρΣ̂ax̄ (equation (13) in the main text)
and variance Σp − Σ̂j. To derive this variance, note that var(µ̂|µ) = Σ − Σ̂, var(pr|µ) = Σ + Σp,
and cov(µ̂, pr) = Σ.

Thus, expected utility is the mean of a noncentral χ2. If a generic random variable z is normally
distributed z ∼ N(µ,Σ), then E[z′z] = trace(Σ) + µ′µ. Applying this formula yields

U =

{
1

2
Tr

(
Σ̂−1(Σp − Σ̂)

)
+

1

2
A′Σ̂−1A

}
. (IA.2)

Since Σ̂ and Σp have the same eigenvectors Γ, we can rewrite the trace term as Tr
(
Σ̂−1(Σp − Σ̂)

)
=

Tr
(
ΓΛ̂−1Γ′Γ(Λp − Λ̂)Γ′

)
. Recall that the trace of an N×N matrix is the sum of its N eigenvalues.

Therefore, the trace term is equal to
∑N

i Λ̂−1

i (Λpi − Λ̂i).
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The second term in equation (IA.2) above can be rewritten as well. Substituting in for A yields
ρ2x̄′Σ̂aΣ̂−1Σ̂ax̄. Rewriting the variance matrices in terms of the eigen-decomposition results in
ρ2(Γ′x̄)′(Λ̂a)2Λ̂−1Γ′x̄. Note that Γ′x̄ is a vector and (Λ̂a)2Λ̂−1 is a diagonal matrix. Therefore, this
matrix product can be written as a sum of the products, entry-by-entry. The resulting expression
for expected utility is

U =
1

2

∑

i

(Λ̂−1

i Λpi − 1) +
ρ2

2

∑

i

(Γ′
ix̄)2(Λ̂a

i )
2Λ̂−1

i .

Rearranging this expression and dropping the constant delivers the utility function in equation (9)
of the main text.

A.2. Strategic Substitutability

Strategic substitutability in learning means that the value of learning about a risk factor declines
as others learn more about it. Since the value of learning about a risk factor i to an investor j
is summarized by the learning index Lj

i and the amount others know about that risk factor i is

summarized by the average precision matrix (Λ̂a
i )

−1, strategic substitutability means that

∂Lj
i

∂(Λ̂a
i )

−1
< 0.

Substituting the definitions of Λ̂a and Λp from equations (A5) and (A6) of the main text into
the definition of the learning index yields

Lj
i =

(Λj
i )

−1 + Λ−2

ηi /(ρ2σ2
x)

(Λ−1

ηi + Λ−2

ηi /(ρ2σ2
x))2

ρ2(Γ′
ix̄)2 + ρ2σ2

x

(Λ−2

ηi )−1

Λj
i

.

Taking a partial derivative reveals that ∂Lj
i/∂Λ

−1

ηi < 0.

Taking a partial derivative of equation (A6) in the text reveals that ∂(Λ̂a
i )

−1/∂Λ−1

ηi > 0. Ap-

plying the chain rule tells us that ∂Λ−1

ηi /∂(Λ̂a
i )

−1 > 0 as well. Applying the chain rule once more

tells us that ∂Lj
i/∂(Λ̂

a
i )

−1 = ∂Lj
i/∂Λ

−1

ηi · ∂Λ−1

ηi /∂(Λ̂a
i )

−1 < 0.

Aggregate allocation of capacity is unique: Suppose that a mass of investors deviates from the
equilibrium allocation and learns more about some risk k. If k is not in the investors’ indifference
set, then it is not an optimal information choice. Learning about some other risk with a higher
index delivers greater expected utility. If k is the only risk in the investors’ indifference set, then
learning about it is the unique equilibrium strategy; this is not a deviation. If k was one of multiple
risks in the investors’ indifference set, then the additional mass of investors learning about it would
lower Lk, below the level of the other risk factors in the indifference set. Thus, learning about k
would no long be optimal.

A.3. Expected Portfolio Holdings

The first-order condition for investment choice reveals that the optimal portfolio, conditional
on an investor j’s posterior beliefs µ̂ and Σ̂, is

qj =
1

ρ
(Σ̂j)−1(µ̂j − pr). (IA.3)
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This equation is the chosen portfolio at time 2. We want to know the expected portfolio at
time 1, based only on prior information. Since signals are chosen based on prior information, the
investor knows what his posterior variance Σ̂j will be. The investor needs to take an expectation
over (µ̂j − pr). The fact that Bayesian beliefs are unbiased implies that E[µ̂j − pr] = E[f − pr].
From Appendix C in the paper, we know that prices take the form pr = A + f + Cx, where x is a
mean-zero random asset supply. Therefore, E[f − pr] = −A, where A = −ρΣ̂ax̄ (equation (A2) in
the main text). Substituting this in to (IA.3) yields

E[qj ] =
1

ρ
(Σ̂j)−1ρΣ̂ax̄ = (Σ̂j)−1Σ̂ax̄.

Replacing Σ̂j and Σ̂a with their eigen-decompositions, and using the facts that Γ−1 = Γ′ and
Γ′Γ = I, delivers

E[qj ] = Γ(Λ̂j)−1Λ̂aΓ′x̄, (IA.4)

which is the portfolio expression E[q"] that appears in equation (10) of the main text. When
investors have no capacity to learn (K = 1), then Λ̂j = Λj and we obtain the no-learning portfolio
E[qno learn]. When investors have no capacity to learn (K = 1) and there are no initial information
differences, then Λ̂j = Λj = Λ̂a = Λa and we obtain the world market portfolio E[qdiv].

A.4. The Required Price of Foreign Information without Increasing Returns

This section considers the model of Section II in the main text, where investors choose what to
learn, taking their expected portfolio holdings as given. Specifically, each investor expects to hold
an equal amount of home and foreign assets (qh = qf ). We ask the question: How much higher
must the processing cost for foreign information be in order to quantitatively explain the degree of
home bias in the data?

Suppose there is one home and one foreign asset, with prior variances σ2
h and σ2

f , posterior

variances σ̂2
h and σ̂2

f , identical expected returns (µ̂h − phr) and (µ̂f − pfr), and zero covariance.
Replace the original capacity constraint (3) with a capacity constraint that requires ψ times more
capacity to process foreign than home information: (σh/σ̂h) · (σf/σ̂f )ψ ≤ K.

The optimal learning choice is described by the first-order conditions for σ̂2
h and σ̂2

f . Combining
the two first-order conditions tells us that, capacity permitting, an investor sets the ratio of posterior
variances to σ̂2

f/σ̂2
h = ψq2

h/q2
f . This optimal learning choice implies the following optimal portfolio

holdings: q"
h = ρ−1σ−2

h (µ̂h−phr) and q"
f = ρ−1σ−2

f (µ̂f −pfr). An investor in this world who chooses
a portfolio for which q"

h/q"
f = 7.3, as the average U.S. investor in the data does, has beliefs that

satisfy q"
h/q"

f = σ−2

h /σ−2

f = 7.3. From the first-order conditions for the optimal learning choice

σ̂2
f/σ̂2

h = ψq2
h/q2

f and the fact that qh = qf , we see that such an investor must have ψ = 7.3.
This implies that the observed home bias can only be explained by the model of Section II when
processing foreign information takes 7.3 times more capacity than processing the same amount of
home information.

The zero covariance assumption in the above example biases ψ downward by overestimating
home bias in two ways. First, it makes gains to diversification large. Second, if home signals are
informative about correlated foreign assets, home bias would fall. For both reasons, the required
cost differential would have to be even higher in the realistic case with positive covariance. Adding
an initial home advantage does not alter this required processing cost unless the advantage alone
can account for the home bias. Of course, home bias could arise if an investor anticipated holding
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lots of home assets: qh > qf . But then home bias comes not from processing costs, but from
portfolio expectations. This is the mechanism explored in the model of Section III.

B. The Model: Technical Details

B.1. The Role of Preferences

The mean-variance preferences in the main text follow from investors with CARA preferences
for terminal wealth and a preference for early resolution of uncertainty. Written as a function of
terminal wealth, U = E [− log (E [exp (−ρW ) |µ̂, µ]) |µ]. This form of preferences is not needed for
the substitutability force that makes investors want to learn about different risks. It is required
for the specialization result, where investors learn about one risk factor, in order to reduce their
portfolio risk more efficiently.

These preferences make sense when considering information choice because investors with stan-
dard expected utility are not averse to the risk they face at the time when they form their portfolios.
Acquiring information does not change asset fundamentals. In particular, it cannot change the total
amount of uncertainty about the assets’ payoffs. All it does is cause that uncertainty to be resolved
sooner. It reduces the risk that an investor faces at the interim stage, after learning but before
investing. Peress (2009) uses these same preferences for the same reason.

Because standard expected utility delivers no preference for early resolution of uncertainty, we
use a utility function that makes early resolution desirable, similar to Epstein-Zin preferences. This
formulation keeps the exponential structure of preferences that makes the problem tractable. It
also has the advantage that learned information and prior information have the same effect on
expected utility.

If we instead use standard expected utility, the learning choice is indeterminate (see Van
Nieuwerburgh and Veldkamp (2008), Proposition 1). Capacity increases expected utility linearly,
but how it is allocated makes no difference. In a sense, this is already a success because the strict
preference for diversification dictated by standard theory has been undone. But because there
would be no testable implications, this does not make for a satisfying theory. The indeterminacy
can be resolved by introducing an arbitrarily small preference for early resolution of uncertainty.

Using these preferences is not in any way assuming the result. The fixed-portfolio model in
Section II generates the opposite conclusion, despite having the same preferences. That model
also illustrates why using preferences for early resolution of uncertainty is the most sensible way
to analyze learning choices. Without a preference for early resolution of uncertainty, the investor
who takes his portfolio as fixed when he chooses what to learn wouldn’t care what he learned
about, or if he learned at all. With a preference for late resolution of uncertainty, the fixed-
portfolio investor would be averse to observing new information (ignorance is bliss). In order to
meaningfully understand the information choices investors make, we start not with investors who
prefer ignorance, but with investors who prefer to learn. Our investors are asking, “What variance
of beliefs would I most like to have in period 2, when I decide how to invest?”

An alternative interpretation of our solution is that we are solving a standard expected utility
model, resulting in multiple equilibria. We select the equilibrium that gives the investor the highest
period 2 utility. Using anticipatory utility, as in Brunnermeier and Parker (2006), would result in
the same equilibrium selection. Another way to break indifference is to use constant relative risk
aversion (CRRA) preferences. The problem with CRRA is that the model is no longer analytically
tractable. The numerical solution of the CRRA partial equilibrium problem produces specialization
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for every set of parameters we tried.

B.2. Relaxing the Risk Factor Assumption

This paper’s main result, that investors learn about risks that they have an initial advantage
in, relies on gains to specialization and strategic substitutability in learning. In this appendix, we
show that neither force depends on the assumption that investors learn about risk factors that are
principal components.

Specialization persists with arbitrary risk factors: Let the posterior covariance matrix be Σ̂ =
Γ̂′Λ̂Γ̂, where Γ̂ is an arbitrary posterior eigenvector matrix of Σ̂. This relaxes the constraint that
signals must be about principal components of payoffs. Imposing the existence of some eigenvectors
for Σ̂ is not restrictive because every variance-covariance matrix is positive definite and has an
eigen-representation of this form. The objective function then becomes

max
Λ̂

1

2
Tr

(
Γ̂Λ̂−1Γ̂′Σp − I

)
+

1

2
E[f − pr]′Γ̂Λ̂−1Γ̂′E[f − pr]. (IA.5)

Note that this objective is still a linear function of the form U = α+
∑

i L̂iΛ̂−1, for positive con-

stants α and {L̂}i. The learning constraints (3) and (4) are still inequality and product constraints
on the eigenvalues of posterior beliefs:

∏
i Λ̂

−1 ≤ K|Σ|−1. Since the problem takes the same form
of maximizing a sum, subject to a product constraint, specialization will still arise. Furthermore,
the new learning index is L̂iΛ

−1

i , which is increasing in prior precision Λ−1

i . Thus, investors prefer
to learn about risks that they already know well.

Strategic substitutability persists with arbitrary risk factors: Next, we show that investors still
prefer to learn about different risks. Risks that other investors learn about will still have lower
returns. That is what makes one investor want to make her information set as different as possible
from the other investors’.

First, we introduce new “aggregate risk factors.” Note that Admati’s (1985) proof of the equi-
librium price does not depend on any particular risk structure. The key information variables in the
price formulas, (A1), (A2), and (A3), will have the same forms as in Appendix B of the paper, but
with the eigenvectors of the average investor’s posterior beliefs Γ̃, s.t. Σa

η = Γ̃Λa
ηΓ̃

′. The columns Γ̃i

are “aggregate risks” and no longer have to be the same as the eigenvectors of prior beliefs (Γ̃ &= Γ)
or the posterior risk factors of any given investor (Γ̃ &= Γ̂).

An individual’s value of learning about a risk Γ̂i correlated with Γ̃j is decreasing in the precision
of the average investor’s beliefs about the payoffs of aggregate risk j. The average investor’s
information enters an individual’s utility function (IA.5) in two places: through Σp in the first term
and through E[f − pr] in the second term.

Define a weighting matrix M such that Γ̂ = Γ̃M . Then Mij describes how much the individual’s
risk factor j weights on the aggregate risk factor i, and thus how much their payoffs covary. Let
Mi be the ith row of M .

The first term in utility is 1

2
Tr

(
Γ̂′Λ̂−1Γ̂Σp − I

)
. Then, the marginal utility of increasing the

precision of beliefs about private risk i, Λ̂−1

ii , is 1

2
Tr(M ′

iMiΛp). The partial derivative of this
marginal utility with respect to Λpjj is the (j, j)th entry of (1/2M ′

iMi), which is 1/2(Mij)2 =

1/2(Γ̃′
j Γ̂i)2, the squared covariance of private risk i with aggregate risk j. Since the squared
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covariance is always positive, the value of learning is increasing in the exploitable pricing error.
The last step links this to the average investor’s uncertainty: ∂Λpjj/∂Λa

ηj > 0 because equation

(A5) tells us that Λpjj = (Λa
η)

2, times a positive constant, and Λa
η is always positive. Thus, the first

component of the value of learning about Γ̂i is always weakly increasing in aggregate uncertainty
Λa

ηj . This substitutability is stronger the more Γ̂i and Γ̃j covary.

The second term can be rewritten as
∑

i(Γ̂
′
iE[f − pr])2Λ̂−1

i . The marginal utility of increasing

the precision of beliefs about private risk i is (Γ̂′
iE[f − pr])2. The expected return on risk factor

Γ̂i is a weighted sum of the expected returns on each risk Γ̃j : Γ̂′
iE[f − pr] =

∑
j MijΓ̃′

jE[f −

pr]. Manipulating equation (A1) reveals the expected return on aggregate risk j: Γ̃′
jE[f − pr] =

ρ[ 1

ρ2σ2
x

(Λa
ηj)

−2 + (Λa
ηj)

−1]−1Γ̃′
jx̄. This converges to zero as the average investor’s precision of beliefs

(Λa
ηj)

−1 rises. Thus, the utility gain (Γ̂′
iE[f − pr])2 from learning about the payoff of Γ̂i decreases

in the aggregate amount learned about each of its aggregate risk components because the expected
return on each Γ̃j converges to zero as (Λa

ηj)
−1 increases.

In other words, no matter what risk factor an investor learns about, when others learn about
correlated risks, it reduces the expected returns and exploitable pricing errors on that risk factors
and makes it less desirable for to learn about. Strategic substitutability does not depend on how
that risk factor is constructed.

B.3. Introducing Endogenous Capacity Choice

The choice of how much capacity to acquire would not change the decision of how to allocate
that capacity, as long as cost was any increasing function of the reduction in generalized variance.
This is simply a duality result. For any choice of capacity cost, there is a capacity endowment κ
that produces identical outcomes. But once an amount of capacity is chosen, it will be allocated
according to the results in this paper. Endogenizing capacity can produce other insights. Peress
(2004) and Turmuhambetova (2005) show that the quantity of information chosen can explain
realistic features of the relationship between income and investment patterns. But that problem
can be neatly decomposed from our capacity allocation problem.

C. Connecting the Model to the Empirical Evidence

This section looks at how the model connects precisely to the empirical literature on portfolio
outperformance. Outperformance is measured as either excess return or excess risk-adjusted return.
We show that depending on how that risk adjustment is done, the results may or may not be a
valid test of our model.

By outperformance, we mean the profits on a portfolio of assets. Informed investors do not
earn higher returns on any given asset. Their outperformance comes from the covariance of the
portfolio holdings with the asset returns cov(q, f − pr). If this covariance is high, it means that
the investor is buying assets that are likely to have high returns and selling ones that are likely to
have low returns. In other words, outperformance arises because good information allows investors
to pick the right assets to buy. In Hau (2001), Dvorak (2007), and Choe, Kho, and Stulz (2005),
out-performance is based on such portfolio returns, connecting cleanly with our theory.
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C.1. High Capacity Investors Earn High Returns

The following shows formally that higher capacity investors earn higher expected returns on
their portfolios.

As in Admati (1985), we define the return on asset i as (fi − pir). Similarly, we define the
expected portfolio return to be q′(f −pr). The expected portfolio q is the only term in the expected
return that is affected by an individual’s K: one individual’s capacity does not affect the aggregate
variable A that determines f − pr, or the given exogenous risks Γ or prior beliefs Λ.

Furthermore, within the optimal portfolio, only the holdings of assets that load on the risk factor
the investor learns about are affected by the investors capacity. Let i be the risk factor that the
investor learns about: i = arg max&∈{1,··· ,N} L

j
&. To see why this is true, we pre-multiply the optimal

portfolio (equation (4) above) by the risk factor weights for risk factor i: E[Γ′
iq] = Λ̂−1

i Λ̂a
i Γ

′
ix̄. By

Proposition 2, the investor always devotes his capacity to one risk factor. Therefore, capacity allows

the investor to increase his posterior precision for the risk factor he learns about (
∂Λ̂

−1

i

∂K > 0), but
does not affect the posterior variance of any other risk factor j. Thus, it does not affect E[Γ′

jq] for
any j &= i.

It follows that capacity increases the investor’s expected portfolio return if and only if the return
on the component of the portfolio that loads on risk factor i increases. The expected portfolio return
on a risk factor i is E[(Γ′

iq)
′Γ′

i(f − pr)]. By the definition of covariance, this expected return can
be expressed as the expected portfolio weight times the expected return of the factor, plus their
covariance:

E[(Γ′
iq)

′Γ′
i(f − pr)] = E[Γ′

iq]
′E[Γ′

i(f − pr)] + Γ′
icov(q, f − pr)Γi. (IA.6)

Using E[Γ′
iq] = −ρ−1Λ̂−1

i Λ̂a
i Γ

′
iA and f −pr = −A−Cx, it can be shown that E[Γ′

i(f −pr)] = −Γ′
iA

and cov(q, f − pr) = 1

ρ(Σ̂−1Σ− I). Canceling out orthogonal eigenvectors, we can rewrite

E[(Γ′
iq)

′Γ′
i(f − pr)] =

1

ρ

(
Λ̂−1

i (Γ′
iA)2 + Λ̂−1

i Λi − 1
)

, (IA.7)

Recall that capacity allows the investor to increase his posterior precision for risk i:
∂Λ̂

−1

i

∂K > 0.
Since the expected return is increasing in this posterior precision, capacity increases the expected
portfolio return.

C.2. Portfolio Concentration and Outperformance

Another popular way of empirically testing the asymmetric information hypothesis for portfolio
underdiversification is to determine whether concentrated portfolios outperform diversified ones.

First, we show that investors with more underdiversified portfolios have higher capacity. Then,
we invoke the argument from the previous section that links higher capacity to outperformance.
Proposition 2 reveals that if investor j has higher capacity K, he uses it to further reduce the
variance of Λ̂i where i = arg max& L

j
& . Pre-multiplying both sides of equation (4) above by the

risk-factor weighting matrix Γ reveals the link between this posterior variance and the optimal
portfolio:

Γ′
iE[q] = Λ̂−1

i Λ̂a
i Γ

′x̄.

For all risk factors that the investor does not learn about, his portfolio holdings are unaffected by
changes in his own capacity.
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We define a more underdiversified portfolio to be one with a larger |E[q] − x̄|. Pre-multiplying
this distance by Γi and substituting in the formula for Γ′

iE[q] yields |(Λ̂−1

i Λ̂a
i − 1)Γix̄|. Proposition

3 shows that in equilibrium, an investor is never less informed that the average investor in the
risk factor he learns about. Therefore, Λ̂−1

i Λ̂a
i > 1. A higher K makes Λ̂−1

i Λ̂a
i larger, which

monotonically increases underdiversification. Thus, more capacity and more underdiversification
are linked one-for-one in the model.

C.3. Do High Portfolio Returns Indicate Outperformance?

Ivkovic, Sialm, and Weisbenner (2007) and Massa and Simonov (2006) document that although
more concentrated portfolios earn higher returns than diversified ones, these portfolio payoffs also
have higher standard deviations. This leads other researchers (Guiso and Jappelli (2006)) to con-
clude that the returns come from excess risk taking. The model can shed light on whether high
returns are indicative of information-based outperformance or risk-taking. All depends on how
portfolio risk is measured. Risk is a standard deviation, which is a moment based on an expecta-
tion of a demeaned, squared random variable. The expectation is conditional on an information set.
But this information set is not observed by the econometrician. According to the model, the tradi-
tional measure of portfolio risk, the unconditional standard deviation, is plagued by measurement
error. Fortunately, the model also offers a solution to this measurement problem.

Risk is the conditional, not the unconditional standard deviation: Suppose there is a series of
asset returns that follows the sequence {0.01, 0.10, 0.01, 0.10, 0.01 . . .}. This sequence has a high
standard deviation. Its unconditional Sharpe ratio is less than one. Now suppose that an investor
knows with 100% certainty that this asset pays off 0.01 in odd periods and 0.10 in even periods.
This is no longer a risky asset because its payoffs are certain. Conditional on that information, the
standard deviation is zero. The conditional Sharpe ratio is infinite. An econometrician who did
not know what the agent knows would compute historical moments of this asset payoff sequence
and would deem a portfolio comprised of this asset a very risky portfolio.

Mapping this discussion back into the model, unconditional risk is the square root of the prior
variance, Σ1/2. Think of prior information as all past payoff realizations. When researchers measure
outperformance, they are conditioning on this prior information. When investors can acquire private
information, their expectations change and so does their conditional risk. Conditional risk is the
square root of the posterior variance, Σ̂1/2. This conditional risk is the same as the unconditional
risk for the risks an investor did not learn about and is strictly less for risks the investor did learn
about. The equation that links these two is

Σ̂j ≡ V [f |µj, ηj , p] =
(
(Σj)−1 + (Σj

η)
−1 + Σ−1

p

)−1
. (IA.8)

In other words, the relevant measure of risk for the investor depends on his information set, which
the empirical researcher does not observe. In the language of our model, investor j’s optimal
portfolio qj = 1

ρ (Σ̂j)−1(µ̂j − pr) is conditioned on the information the investor knows µ̂, Σ̂. This
portfolio does not maximize the investor’s utility based on priors µ and Σ.

More specifically, a test that looks at unconditional Sharpe ratios to determine if underdiversified
portfolios reflect superior information should always reject the information hypothesis. Diversified
portfolios always have higher unconditional Sharpe ratios. The same is true in our model. But the
efficient frontier that the empiricist constructs is not the same as the investors’ frontier. Informed
investors can achieve outcomes that are unachievable without their information.

8



Theory helps to distinguish conditional from unconditional : The theory offers a way of estimat-
ing conditional standard deviations. We need to know two things about an investor: How much
capacity does he have and what risk does he assign the highest learning index to? To estimate an
individual’s information capacity, we can use their excess portfolio return, as in Section IV.B. To
estimate the learning index, we need to estimate the average investor’s learning index, as in Section
IV.D of the paper. Then, we need to adjust that index for individual characteristics, such as their
location, profession, or what school they studied at. Using this information, we can construct an
individual investor’s information using the following relationships: Σ̂ = ΓΛ̂Γ′ and Λ̂i = Λi/K for
the risk i with the highest learning index and Λ̂j = Λj for all other risks j. The construction of Γ
and Λ is described in Section IV.D of the paper. Then, we can ask whether the investor’s portfolio
maximizes the Sharpe ratio, conditional on this information set.
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