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B1. Roadmap

This Internet Appendix contains material of technical nature that is relevant to the published article.

This material is organized as follows. Section B2 discusses the general definition of the predictive

system and establishes some notation. Section B3 details the filtering-and-sampling procedure for

drawing the time series of the unobservable conditional expected return �t conditional on the pa-

rameter values. Section B4 characterizes the dependence of estimated expected returns on the full

history of returns and predictor realizations. Section B5 describes the prior and posterior distribu-

tions of the parameters in the predictive system. Section B6 presents the procedure for maximum

likelihood estimation of the predictive system. Section B7 analyzes the R2 ratio from equation

(29) in the paper. Finally, Section B8 provides details regarding the variance decomposition whose

results are reported in Table IV in the paper.

Let us summarize the Bayesian analysis of the predictive system upfront. Let D denote the

data available to the investor, let � denote the set of parameters in the predictive system, and let �

denote the full time series of �t , t D 1; : : : ; T . To obtain the joint posterior distribution of � and

�, denoted by p.�; �jD/, we use an MCMC procedure in which we alternate between drawing

� from the conditional posterior p.�j�;D/ and drawing the parameters � from the conditional

posterior p.� j�;D/. The procedure for drawing � from p.�j�;D/ is described in Section B3.

The procedure for drawing � from p.� j�;D/ / p.�/p.D;�j�/ is described in Section B5.

B2. Predictive System: General framework

We begin working with multiple assets, so that rt and �t are vectors (recall xt can be a vector in

any case). We define the predictive system in its most general form as a VAR for rt , xt , and �t ,

with coefficients restricted so that �t is the conditional mean of rtC1. We also assume that xt and
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�t are stationary with means Ex and Er . The first-order VAR, for example, is
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The predictive system in (IA.1) can be viewed alternatively as simply an unrestricted VAR for

returns and predictors when some predictors are unobserved. Specifically, consider an unrestricted

VAR for rt , xt , and �t , where �t has the same dimensions as rt and contains additional unobserved

predictors:
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When B13 is nonsingular, (IA.1) and (IA.2) are equivalent. It is immediate that (IA.1) implies

(IA.2). To see the converse, define

�t D Er CB11.rt �Er/CB12.xt � Ex/CB13.�t �E�/; (IA.3)

which implies

�t �E� D �B�1
13 B11.rt �Er/ � B�1

13 B12.xt �Ex/C B�1
13 .�t �Er/: (IA.4)

Pre-multiplying both sides of (IA.2) by ŒB11 B12 B13�, using (IA.3) and (IA.4), gives
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Combining (IA.2), (IA.3), and (IA.4) gives
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where

A21 D B21 � B23B
�1
13 B11

A22 D B22 � B23B
�1
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A23 D B23B
�1
13 : (IA.7)

Combining (IA.5) and (IA.6) gives (IA.1).

We assume the disturbances in (IA.1) are distributed identically and independently across t as
2

4

ut

vt

wt

3

5 � N

0

@

2

4

0

0

0

3

5 ;

2

4

˙uu ˙uv ˙uw

˙vu ˙vv ˙vw

˙wu ˙wv ˙ww

3

5

1

A : (IA.8)

Define the vector

�t D

2

4

rt

xt
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3

5 ;

and let V�� denote its unconditional covariance matrix. Also let NA denote the entire coefficient

matrix in (IA.1), and let ˙ denote the entire covariance matrix in (IA.8). Then
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which can be solved as

vec .V�� / D ŒI � . NA˝ NA/��1vec .˙/; (IA.10)

using the well known identity vec .DFG/ D .G 0 ˝D/vec .F /.

Let zt denote the vector of the observed data at time t ,
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�
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�

:
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Denote the data we observe through time t as Dt D .z1; : : : ; zt /, and note that our complete data

consist of DT . Also define
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�
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�

; Vzz D
�
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�

; Vz� D
�
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�

: (IA.11)

B3. Drawing the Time Series of �t

To draw the time series of the unobservable values of �t conditional on the current parameter

draws, we apply the forward filtering, backward sampling (FFBS) approach developed by Carter

and Kohn (1994) and Frühwirth-Schnatter (1994). See also West and Harrison (1997, chapter 15).

B3.1. Filtering

The first stage follows the standard methodology of Kalman filtering. Define

at D E.�t jDt�1/ bt D E.�t jDt / et D E.zt j�t ;Dt�1/ (IA.12)

ft D E.zt jDt�1/ Pt D Var.�t jDt�1/ Qt D Var.�t jDt / (IA.13)

Rt D Var.zt j�t ;Dt�1/ St D Var.zt jDt�1/ Gt D Cov.zt ; �
0
t jDt�1/ (IA.14)

Conditioning on the (unknown) parameters of the model is assumed throughout but suppressed in

the notation for convenience. First observe that

�0jD0 � N.b0;Q0/; (IA.15)

where D0 denotes the null information set, so that the unconditional moments of �0 are given by

b0 D Er and Q0 D V��. Also,

�1jD0 � N.a1; P1/; (IA.16)

where a1 D Er and P1 D V��, and

z1jD0 � N.f1; S1/; (IA.17)

where f1 D Ez and S1 D Vzz . Note that

G1 D Vz� (IA.18)

and that

z1j�1;D0 � N.e1; R1/; (IA.19)

where

e1 D f1 CG1P
�1
1 .�1 � a1/ (IA.20)

R1 D S1 �G1P
�1
1 G 0

1: (IA.21)
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Combining this density with equation (IA.16) using Bayes rule gives

�1jD1 � N.b1;Q1/; (IA.22)

where
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1 .z1 � f1/ (IA.23)
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�1
1 G1/

�1P1: (IA.24)

Continuing in this fashion, we find that all conditional densities are normally distributed, and we

obtain all the required moments for t D 2; : : : ; T :

at D .I � A31 � A33/Er � A32Ex C A31rt�1 C A32xt�1 CA33bt�1 (IA.25)

ft D
�
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�

(IA.26)
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The values of fat ; bt ;Qt ; St ; Gt ; Ptg for t D 1; : : : ; T are retained for the next stage. Equations

(IA.27) through (IA.29) are derived as
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B3.2. Sampling

We wish to draw .�0; �1; : : : ; �T / conditional onDT . The backward-sampling approach relies

on the Markov property of the evolution of �t and the resulting identity,

p.�0; �1; : : : ; �T jDT / D p.�T jDT /p.�T �1j�T ;DT �1/ � � �p.�1j�2;D1/p.�0j�1;D0/: (IA.35)

We first sample �T from p.�T jDT /, the normal density obtained in the last step of the filtering.

Then, for t D T � 1; T � 2; : : : ; 1; 0, we sample �t from the conditional density p.�t j�tC1;Dt /.

(Note that the first two subvectors of �t are already observed and thus need not be sampled.) To

obtain that conditional density, first note that
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Therefore,
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where

ht D E.�t jDt /C
�

Cov.�t ; �
0
tC1jDt /

�

ŒVar.�tC1jDt/�
�1 Œ�tC1 � E.�tC1jDt /�

D

2

4

rt

xt

bt

3

5C

2

4

0 0 0

0 0 0

Qt QtA
0
23 QtA

0
33

3

5

�

StC1 GtC1

G 0
tC1 PtC1

��1 �
ztC1 � ftC1

�tC1 � atC1

�

and

Ht D Var.�t jDt /�
�

Cov.�t ; �
0
tC1jDt/

�

ŒVar.�tC1jDt /�
�1
�

Cov.�t ; �
0
tC1jDt /

�0

D

2

4

0 0 0

0 0 0

0 0 Qt

3

5�

2

4

0 0 0

0 0 0

Qt QtA
0
23 QtA

0
33

3

5

�

StC1 GtC1

G 0
tC1 PtC1

��1

2

4

0 0 Qt

0 0 A23Qt

0 0 A33Qt

3

5

6



The mean and covariance matrix of �t are taken as the relevant elements of ht and Ht .

For the remainder of the Appendix, we deal with the special case in which the coefficient matrix

in (IA.1) is restricted as
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B4. Expected Returns and Past Values

This section derives equations (8), (11), and (26). We continue to treat the multiple-asset case,

in which rt is a vector of returns. Denoting matrices by uppercase letters, we replace m by M , n

by N , � by �, � by ˚ , ı by �, ! by ˝, and � by K.

Below, we express the vector of conditional expected returns, bt D E.rtC1jDt /, as a function

of past returns and predictors. Denote

ŒMt Nt � � Pt .Pt CG 0
tR

�1
t Gt/

�1G 0
tR

�1
t D G 0

tS
�1
t ; (IA.41)

so that, from equation (IA.32), for t > 1,

bt D at C ŒMt Nt �.zt � ft/

D .I � B/Er C Bbt�1 C ŒMt Nt �

�

rt � bt�1

xt � .I � A/Ex � Axt�1

�

D .I � B/Er C .B �Mt /bt�1 CMtrt CNtvt ; (IA.42)

or

bt �Er D B.bt�1 � Er/CMt.rt � bt�1/CNtvt : (IA.43)

For t D 1, we obtain

b1 �Er D M1.r1 � b0/CN1v1;

where v1 denotes x1 �Ex. Repeated substitution for the lagged values of .bt �Er/ gives

bt D Er C
tX

sD1

�s.rs � bs�1/C
tX

sD1

˚svs; (IA.44)

where

�s D B t�sMs (IA.45)

˚s D B t�sNs: (IA.46)
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That is, the expected return conditional on data observed through period t can be written as the

unconditional mean Er plus a linear combination of past return forecast errors, �s D rs � bs�1,

plus a linear combination of past innovations in the predictors. This is equation (8) in the text.

The conditional expected return bt can be rewritten so that past forecast errors are replaced by

returns in excess of the unconditional mean Er . To do so, modify equation (IA.42) as

bt �Er D .B �Mt/.bt�1 �Er/CMt .rt �Er/CNtvt (IA.47)

so that repeated substitution for the lagged values of .bt �Er/ then yields

bt D Er C
t
X

sD1

˝s.rs �Er/C
t
X

sD1

�svs (IA.48)

where
˝s D

�

.B �Mt /.B �Mt�1/ � � � .B �MsC1/Ms for s < t

Ms for s D t
(IA.49)

�s D
�

.B �Mt /.B �Mt�1/ � � � .B �MsC1/Ns for s < t

Ns for s D t
(IA.50)

That is, bt is then equal to the unconditional mean return Er plus linear combinations of past

returns in excess of Er and past innovations in the predictors. This is equation (11) in the text.

If Er is replaced by the sample mean in equation (11), then the estimate of bt becomes

Obt D
tX

sD1

Ksrs C
tX

sD1

�svs; (IA.51)

where

Ks D 1

t

 

I �
t
X

lD1

˝l

!

C˝s; (IA.52)

and
Pt

sD1 Ks D I . This is a generalized version of equation (26) in the text.

In the rest of the Appendix, we discuss the special case (implemented in the paper) in which

rt is a scalar. This simplification turns �t , Er , and B into scalars as well. Therefore, we now turn

back to the notation from the text in which B is replaced by ˇ and the relevant˙ ’s by � ’s.

B5. Drawing the Parameters

This section describes how we obtain the posterior draws of all parameters conditional on the

current draw of the time series of �t .

B5.1. Prior distributions

First, we discuss the prior on .Ex; A;Er ; ˇ/. We require both xt and �t to be stationary, so

that all eigenvalues of Amust lie inside the unit circle and ˇ 2 .�1; 1/. Apart from this restriction,

8



our prior is noninformative about A but informative about ˇ, ˇ � N.0:99; 0:152/ (see Figure 5).

We put a mildly informative prior on Er , Er � N. N�; �2
Er
/, centered at the sample mean return

with a large prior standard deviation of 1% per quarter. We use a noninformative prior for Ex ,

Ex � N.0; �2
Ex
IK/ with a large �Ex

. All four parameters, A, ˇ, E�, and Ex, are independent a

priori.

The prior on ˙ is more complicated. Recall that, with rt being a scalar, ˙ is defined as

˙ �

2

4

�2
u �uv �uw

�vu ˙vv �vw

�wu �wv �2
w

3

5 :

We divide the elements of ˙ into two subsets: first, the 2 � 2 submatrix˙11, where

˙11 �
�

�2
u �uw

�wu �2
w

�

;

and second, the elements of ˙ that involve v: ˙.v/ � .˙vv; �vu; �vw/. We choose a prior that

is informative about ˙11 but noninformative about ˙.v/. Such a prior is obtained as a posterior

of ˙ when a noninformative prior is updated with a hypothetical sample in which there are T0

observations of .u;w/ but only S0 � T0 observations of v (see Stambaugh, 1997). We choose

T0 equal to one fifth of the sample size, which makes the prior on ˙11 informative (five times less

informative than the actual sample). We choose S0 D KC3, whereK is the number of predictors,

which makes the prior on ˙.v/ virtually noninformative (as informative as a sample of only KC 3

observations, where K D 1 or 3).

The prior on ˙11 is inverted Wishart, ˙11 � IW.T0
Ȯ

11;0; T0 � K/, so the prior mean is

E.˙11/ D Ȯ
11;0 .T0=.T0 �K � 3//. Denote the .i; j / element of Ȯ

11;0 by Mij , for i D 1; 2 and

j D 1; 2. The value ofM11 is chosen such that the prior mean of �2
u is equal to 95% of the sample

variance of market returns. The value ofM22 is chosen to deliver the prior mean of �2
w which, com-

bined with ˇ of 0.97, sets the variance of �t equal to 5% of the sample variance of market returns.

These values of M11 and M22 lead to a prior for the R2 from the regression of rtC1 on �t that we

find plausible (see Figure 5). To be able to put different priors on �uw while keeping the same prior

on �2
u and �2

w , we adopt a hyperparameter approach. We assume thatM12 is an unknown hyperpa-

rameter with a uniform prior distribution on the interval .�c
p
M11M22; c

p
M11M22/. Since the

prior mean of �uw is approximately equal to M12=
p
M11M22, this prior mean is approximately

uniformly distributed as U.�c; c/. For all three priors on �uw , we specify c D �0:90 and we vary

c as follows: 0.9 for the noninformative prior, -0.35 for the less informative prior, and -0.87 for the

more informative prior. These choices produce the priors on �uw plotted in Figure 5.

The prior on˙.v/ is obtained by changing variables from (˙vv; �vu; �vw) to the slope C (K�2)

and the residual covariance matrix ˝ (K � K) from the regression of vt on .ut ; wt/, with zero

intercept. That is, C D Œ�vu �vw �˙
�1
11 , and ˝ D ˙vv � C˙11C

0. We then put a normal-inverted-

Wishart prior on C and ˝: ˝ � IW.S0
Ő

0; S0/ and vec .C /j˝ � N. Oc0;˝ ˝ .X 0
0X0/

�1/, where

9



Ő
0, Oc0, andX 0

0X0 represent estimates from the S0 periods in the hypothetical sample in which both

vt and .ut ; wt/ are available. The choices of Ő
0 and Oc0 are inconsequential because they represent

means of distributions with large variances. We choose a very small value for S0, as explained

above, so the prior variance of ˝ is large . We then choose the 2� 2 matrixX 0
0X0 equal to a small

positive number times the identity matrix, so .X 0
0X0/

�1, and thus the prior variance of C , is large.

As a result, the priors on C and ˝ are noninformative.

As mentioned above, these priors on ˙11, C , and ˝ can be thought of as posteriors. After

changing variables from˙ to .˙11; C;˝/, the diffuse prior on˙ , p.˙/ / j˙ j�.KC3/=2, translates

into p.˙11; C;˝/ / j˙11j.K�3/=2j˝j�.KC3/=2. When this noninformative prior is updated with

the hypothetical sample of T0 observations of .u;w/ and S0 observations of v, the posteriors of

˙11, C , and ˝ are exactly the same as the priors described above. See Stambaugh (1997), with

the additional restriction that the population means of ut and wt are zero.

B5.2. Posterior distributions

B5.2.1. Drawing .Ex; A; Er; ˇ/ given ˙

Equations (4) and (5) can be written as

�

xtC1

�tC1

�

„ ƒ‚ …

qtC1

�
�

A 0

0 ˇ

�

„ ƒ‚ …

L1

�

xt

�t

�

„ ƒ‚ …

qt

�
�

IK � A 0

0 1 � ˇ

�

„ ƒ‚ …

L2

�

Ex

E�

�

„ ƒ‚ …

Ex�

D
�

vtC1

wtC1

�

;

where the covariance matrix of the residuals is

˙.vw/ �
�

˙vv �vw

�wv �2
w

�

:

The prior for Ex� is

Ex� � N
�

Ex�0
; Vx�0

�

;

where

Ex�0
�

�

0

N�

�

Vx�0
�

�
�2

Ex
IK 0

0 �2
E�

�

:

Since both the prior and the likelihood are normally distributed, the full conditional posterior dis-

tribution of Ex� is also normal,

Ex�j� � N
� QEx�; QVx�

�

; (IA.53)

10



where QVx� D .V �1
x�0

C.T�1/L0
2˙

�1
.vw/

L2/
�1 and QEx� D QVx�

h

V �1
x�0
Ex�0

C L0
2˙

�1
.vw/

PT �1
tD1 .qtC1 � L1qt /

i

.

Let xk � .xk
2 ; : : : ; x

k
T /

0 denote the .T � 1/ � 1 vector of realizations of predictor k in periods

2; : : : ; T , for k D 1; : : : ;K. Also, let x.l/ denote the .T � 1/ �K vectors of realizations of all K

predictors in periods 1; : : : ; T � 1. Similarly, let � � .�2; : : : ; �T /
0 and �.l/ � .�1; : : : ; �T �1/

0,

and let Exk be the k-th element of Ex . Denote

z D

0

B
B
B
@

x1 � �T �1Ex1

:::

xK � �T �1ExK

�� �T �1E�

1

C
C
C
A
; Z D

0

B
B
B
@

x.l/ � �T �1E
0
x 0 0 0

0
: : : 0 0

0 0 x.l/ � �T �1E
0
x 0

0 0 0 �.l/ � �T �1E�

1

C
C
C
A
;

where �T �1 is a .T � 1/� 1 vector of ones, the dimensions of z are Œ.T � 1/.K C 1/�� 1, and the

dimensions of Z are Œ.T � 1/.K C 1/�� .K2 C 1/. Then we can write the equations (4) and (5) as

z D Zb C errors ;

where b D .vec .A0/0 ˇ/0 and the covariance matrix of the error terms is ˙.vw/ ˝ IT �1. The prior

distribution on b is given by

b � N .b0; Vb0
/ � 1b2S ;

where b0 and Vb0
are chosen as explained earlier and 1b2S is equal to one when xt and �t are

stationary and zero otherwise. Let OVb D
h

Z0.˙�1
.vw/

˝ IT �1/Z
i�1

and Ob D OVbZ
0.˙�1

.vw/
˝IT �1/z.

The full conditional posterior distribution of b is then given by

bj� � N
�

Qb; QVb

�

� 1b2S ; (IA.54)

where QVb D .V �1
b0

C OV �1
b
/�1 and Qb D QVb

�

V �1
b0
b0 C OV �1

b
Ob
�

. We obtain the posterior draws of b

by making draws fromN
�

Qb; QVb

�

and retaining only draws that satisfy b 2 S . The posterior draws

of A and ˇ are constructed from the posterior draws of b from the definition b D .vec .A0/0 ˇ/0.

B5.2.2. Drawing ˙ given .Ex; A; Er ; ˇ/

Recall that we change variables from˙ , where

˙ �

2

4

�2
u �uv �uw

�vu ˙vv �vw

�wu �wv �2
w

3

5 ;

to the set of .˙11; C;˝/, where

˙11 �
�

�2
u �uw

�wu �2
w

�

;
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and C and ˝ are the slope and the residual covariance matrix from the regression of v on .u;w/.

The prior for˙11 is conditional on the hyperparameterM12. This hyperparameter can be drawn

from its full conditional posterior density, p.M12j�;Dt /, which is given by

p.M12j˙11/ / j Ȯ
11;0j

T0�K

2 exp

�

�T0

2
tr.˙�1

11
Ȯ

11;0/

�

; M12 2 .�c
p

M11M22; c
p

M11M22/;

(IA.55)

where M12 is the .1; 2/ element of Ȯ
11;0. Although this is not a density of a well known distri-

bution, we can make posterior draws of M12 easily. We approximate this density by a piecewise

linear function, using a fine (250-point) grid on the interval .�c
p
M11M22; c

p
M11M22/. For a

random draw z � U.0; 1/, we find the points on the grid whose cumulative probability densities

are immediately above and below z, and we compute the value of M12 by linear interpolation.

Conditional on M12, we have the matrix Ȯ
11;0 in the prior distribution for ˙11. In addition,

conditional on .Ex; A;Er ; ˇ/, we have the sample of the residuals .ut ; vt ; wt/, t D 2; : : : ; T . Let

X denote the .T � 1/ � 2 matrix of Œut wt �, let Y2;T �1 denote the .T � 1/ � K matrix of vt .

The sample estimates from the regression of Y2;T �1 on X are given by OC D .X 0X/�1X 0Y2;T �1,
Ő D .Y2;T �1 � X OC/0.Y2;T �1 � X OC/=.T � 1/, and Ȯ

11 D X 0X=.T � 1/. The posterior of ˙11

has an inverted Wishart distribution:

˙11j� � IW.T0
Ȯ

11;0 C .T � 1/ Ȯ
11; T � 1C T0 �K/: (IA.56)

In addition, let VC D .X 0
0X0 C X 0X/�1, QC D VC

h

.X 0
0X0/ OC0 C .X 0X/ OC

i

, Qc D vec . QC/, and

D D OC 0
0X

0
0X0

OC0 C OC 0X 0X OC � QC 0V �1
C

QC . The posterior of˝ has an inverted Wishart distribution:

˝j� � IW.S0
Ő

0 C .T � 1/ Ő CD;T � 1C S0/; (IA.57)

and the conditional posterior of c D vec .C / is normal:

cj˝; � � N. Qc;˝ ˝ VC /: (IA.58)

Given the posterior draws of .˙11; C;˝/, we construct the remaining (non-˙11) elements of˙ as

follows: Œ�vu �vw � D C˙11 and ˙vv D ˝ C C˙11C
0.

Our inference is based on 25,000 draws from the posterior distribution. First, we generate a

sequence of 76,000 draws. We discard the first 1,000 draws as a “burn-in” and take every third

draw from the rest to obtain a series of 25,000 draws that exhibit little serial correlation. The

posterior draws of the relevant quantities such as �uw , �x�, R2.�t on xt /,R
2.rtC1 on �t /, etc. are

constructed easily from the posterior draws of the basic parameters in the model.

B6. Maximum Likelihood Estimation

Denote the variance-covariance matrix of the disturbances in equations (4) and (28) as

Cov.

�

�t

vt

�

;
�

�t vt

�

/ D ˙� D
�

�2
� � 0

v�

�v� ˙vv

�

: (IA.59)
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Maximum likelihood estimates are computed as the values of Ez , ˇ, m, n, A, �2
� , �v� , and ˙vv

that minimize

�2 lnL D
TX

tD1

�

ln
ˇ
ˇVtjt�1

ˇ
ˇC .zt � Oztjt�1/

0V �1
tjt�1.zt � Oztjt�1/

�

; (IA.60)

where Oz1j0 D Ez ,

V1j0 D
�

�2
r � 0

xr

�xr Vxx

�

;

�2
r D .1� ˇ2/�1

�

n0˙vvnC .1 � ˇ2 Cm2/�2
� C 2m� 0

v�n
�

;

�xr D .I � ˇA/�1 ŒA˙vvnC ŒI � .ˇ �m/A��v�� ;

Oztjt�1 D Ez C F11.zt�1 �Ez/C F12˙
�V �1

t�1jt�2

�

zt�1 � Ozt�1jt�2

�

; t D 2; : : : ; T;

Vtjt�1 D F12

�

˙� �˙�V �1
t�1jt�2˙

�
�

F 0
12 C˙�; t D 2; : : : ; T;

F11 D
�

ˇ 0

0 A

�

; F12 D
�

�.ˇ �m/ n0

0 0

�

;

and Vxx is given by (IA.9), (IA.10), and (IA.40).

B7. The R2 Ratios

The numerator of the R2 ratio in equation (29) is computed as

R2.�t on xt / D Var.E.�t jxt //

Var.�t/
D Var.E.�t/C V�xV

�1
xx .xt � E.xt///

Var.�t /
D
V�xV

�1
xx V

0
�x

V��

;

(IA.61)

where Vxx, V��, and Vx� are given by (IA.9), (IA.10), and (IA.40).

The denominator of the R2 ratio in equation (29) is computed as

R2.�t on Dt/ D Var.E.�t jDt //

Var.�t/
D Var.�t / � Var.�t jDt /

Var.�t/
D 1 � Qt

V��

; (IA.62)

where Qt is given in equation (IA.34). We replace Qt by its steady-state value, Q, which can be

shown to be equal to a solution of a quadratic equation:

Q D
p

�2
1 � 4�2 � �1

2
; (IA.63)

�1 D .1 � ˇ2/.�2
u � �uv˙

�1
vv �vu/C 2ˇ.�uw � �wv˙

�1
vv �vu/ � .�2

w � �wv˙
�1
vv �vw/

D .1 � ˇ2/Var.ujv/C 2ˇCov.u;wjv/ � Var.wjv/
�2 D .�uw � �wv˙

�1
vv �vu/

2 � .�2
u � �uv˙

�1
vv �vu/.�

2
w � �wv˙

�1
vv �vw/

D Cov.u;wjv/2 � Var.ujv/Var.wjv/ < 0
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The value of Q is also used in computing the steady-state values of Mt and Nt from equation

(IA.41), denoted by mt and nt in the scalar case:

m D .ˇQC Cov.u;wjv//.QC Var.ujv//�1 (IA.64)

n D .�wv �m�uv/˙
�1
vv : (IA.65)

B8. Variance Decomposition of Expected Return

In equation (34), the conditional expected return �t depends on three time-varying variables:

1. C1 D xt , the current predictor values

2. C2 D
P1

iD0 ˇ
iut�i , an infinite sum of current and lagged unexpected returns

3. C3 D
P1

iD0

�

ˇiIK � Ai
�

vt�i , an infinite sum of current and lagged predictor innovations ,

plus an error term. In the variance decomposition in Table IV, we consider regressions of �t on

various subsets of .C1;C2;C3/. Let C denote a given subset of .C1;C2;C3/. The R2 from the

regression of �t on C is equal to

R2.�t on C/ D
V 0

�CV
�1

C V�C

V��

: (IA.66)

The matrix VC , the covariance matrix of C , is pieced together from

Var.C1/ D Vxx

Var.C2/ D �2
u.1 � ˇ2/�1

vec .Var.C3// D
�

.1� ˇ2/�1IK2 � .IK � ˇA/�1 ˝ IK � IK ˝ .IK � ˇA/�1C
C .IK2 � A˝ A/�1

�

vec .˙vv/

Cov.C1, C2/ D .IK � ˇA/�1�vu

Cov.C2, C3/ D
�

.1� ˇ2/�1IK � .IK � ˇA/�1
�

�vu

vec .Cov.C1, C30// D
�

IK ˝ .IK � ˇA/�1 C .IK2 � A˝A/�1
�

vec .˙vv/;

and V�C , the vector of covariances between �t and C , is built from

Cov.�t ;C10/ D 	vVar.C1/C 	uCov.C1, C2/0 C 	vCov.C1, C30/0

Cov.�t ;C2/ D 	uVar.C2/C 	vCov.C1, C2/C 	vCov.C2, C3/

Cov.�t ;C30/ D 	vVar.C3/C 	vCov.C1, C30/C 	uCov.C2, C3/0:
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