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ABSTRACT

As a consequence of optimal investment choices, a firm’s assets and growth options
change in predictable ways. Using a dynamic model, we show that this imparts
predictability to changes in a firm’s systematic risk, and its expected return. Sim-
ulations show that the model simultaneously reproduces: (i) the time-series rela-
tion between the book-to-market ratio and asset returns; (ii) the cross-sectional
relation between book-to-market, market value, and return; (iii) contrarian effects
at short horizons; (iv) momentum effects at longer horizons; and (v) the inverse
relation between interest rates and the market risk premium.

RECENT EMPIRICAL RESEARCH IN FINANCE has focused on regularities in the cross
section of expected returns that appear anomalous relative to traditional
models. Stock returns are related to book-to-market, and market value.! Past
returns have also been shown to predict relative performance, through the
documented success of contrarian and momentum strategies.? Existing ex-
planations for these results are that they are due to behavioral biases or risk
premia for omitted state variables.3

These competing explanations are difficult to evaluate without models
that explicitly tie the characteristics of interest to risks and risk premia.
For example, with respect to book-to-market, Lakonishok et al. (1994) ar-
gue: “The point here is simple: although the returns to the B/M strategy
are impressive, B/M is not a ‘clean’ variable uniquely associated with eco-
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1 See Fama and French (1992) for summary evidence.

2 See Conrad and Kaul (1998) for a recent summary of evidence on this subject.

3 See Lakonishok, Shleifer, and Vishny (1994) for arguments in favor of behavioral biases
and Fama and French (1993) for an interpretation in terms of state variable risks.
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nomically interpretable characteristics of the firms.” A similar conclusion,
though reached by a totally different line of argument, follows from Berk
(1995), who argues that the finding of a cross-sectional relationship be-
tween average return and such variables as book-to-market is neither sur-
prising nor informative in itself. Given expectations about security payoffs,
market value must be correlated with systematic risk across securities.
Thus, the size and book-to-market variables must be related to “economi-
cally interpretable characteristics of the firms.” Additional empirical work
can always enlarge our understanding of the relationships between the
variables that explain expected returns and those that have more straight-
forward interpretations. Alternatively, by understanding the role variables
such as book-to-market, size, or past returns play in a theoretical model,
we can better understand the source of their explanatory power in the
data.

In this paper we provide such a model and use it to develop an explanation
for the above-mentioned empirical findings based on changes in firms’ risks
through time. Our model relates these changes in risk to firm-specific vari-
ables that empirically explain the cross-sectional variation in expected re-
turns. In the model, firms that perform well tend to be those that have discovered
particularly valuable investment opportunities. As they exploit those oppor-
tunities, their systematic risk changes. Through simulations we show that, in
our model, time-series and cross-sectional regressions of returns on book-to-
market and market value yield results that are quantitatively similar to those
obtained by Fama and French (1992). Our simulations also reproduce quali-
tatively a number of other behaviors reported in the literature, such as an in-
verse relation between risk premia and interest rates, and the profitability of
contrarian and momentum strategies at different horizons.

Changes in risk lead to a role for book-to-market because in our model
good news is, on average, associated with lower risk and bad news is asso-
ciated with higher risk. Firms in the model own two kinds of assets: assets
that are in place and currently generating cash flows, and options to make
positive net present value (NPV) investments in the future. During each
period the cash flows from existing assets may die off, and new investment
opportunities are presented to the firm. An investment that has very low
systematic risk looks very attractive to the firm, other things equal, and
investing in it leads to a large increase in value. As a result, however, the
average systematic risk of the firm’s cash flows in subsequent periods is
lowered, which leads to lower returns on average. Similarly, when the firm
loses a particularly low-risk asset, the result is both a drop in its current
value and a rise in its average risk. In the model, book-to-market serves as
a state variable summarizing the firm’s risk relative to the scale of its asset
base.

Asset turnover leads to an explanatory role for market value because it
alters the relative importance of growth options versus existing assets within
the firm. These two sources of value in the model have different levels of
systematic risk, and firms with higher market values tend to be firms with
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larger current assets and cash flows. Thus, market value proxies for the
state variable in the model that describes the relative importance of existing
assets and growth options.

The changes in the firm’s asset portfolio over its life cycle, and the inter-
action of these changes with interest rates lead to time-series behaviors that
conform, at least qualitatively, to empirical findings in the literature. In the
model, expected returns in a given period are positively related to lagged
expected returns because the composition and systematic risk of the firm’s
assets are persistent, and they are negatively related to lagged realized re-
turns because shocks to the composition of the firm’s assets are negatively
correlated with changes in systematic risk. This leads to momentum effects
at longer horizons and contrarian effects at short horizons. At an aggregate
level, the time series of portfolio expected returns shows positive correlation
with book-to-market (as in Kothari and Shanken (1997) and Pontiff and Schall
(1998)), and excess returns are negatively related to interest rates (as in,
e.g., Breen, Glosten, and Jagannathan (1989)).

We use our model to explore the joint dynamics of the cross section of
returns and firm characteristics in two ways. First, we derive analytical
expressions for the firm’s value and conditional expected return in terms of
fundamental state variables in the model, and also in terms of book-to-
market and market value. These expressions allow us to evaluate directly
how, within the model, these variables proxy for the underlying economic
characteristics of the firm which determine differences in expected return.
In the model these underlying state variables summarize the systematic
risk of existing assets and the relative importance of growth options for the
firm. By making explicit the links between the underlying state variables
and the observables used in empirical work, the model provides new insights
into the role of market value and book-to-market. For example, we show that
when the firm has no growth options, the conditional expected returns de-
pend only on book-to-market. This may seem surprising given the tradi-
tional interpretation of book-to-market as summarizing growth potential.
The dynamic turnover of firms’ assets and the changes in firms’ relative
systematic risks also depend, through the investment decision, on the dy-
namic evolution of interest rates. In fact, we show that the present value of
growth options can be written as a portfolio of options on pure discount
bonds. Our solution for the value of these options allows us to examine the
role of interest rates in determining the behavior of risk premia in cross
section as well as time series.

Second, the closed-form expressions we obtain permit us to calibrate and
simulate realized and conditional expected returns for large panels of assets.
The simulated panels are similar in size to samples used in empirical stud-
ies based on CRSP and COMPUSTAT data.* We calibrate the model’s pa-

4 Such an experiment would be computationally infeasible without closed-form expressions
for prices and expected returns because an unmanageably large number of conditional expec-
tations would need to be evaluated numerically for thousands of firms at each point in time.
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rameters to macroeconomic and aggregate stock portfolio moments, and then
simulate large cross sections of returns. We then ask whether the model
reproduces empirically documented regularities by simply replicating the
empirical tests from past studies on the simulated data.

Our simulation results suggest that the model has the potential to explain
several important features of the data simultaneously. The calibrated model
captures most of the Fama and French (1992) regression results in magni-
tude and direction. It reproduces contrarian and momentum results in di-
rection, although within the calibrated model momentum strategies continue
to be profitable at longer horizons than in the data. Whether this model, or
similar models, can quantitatively reproduce the full range of results re-
ported in the literature will require additional research. For example, La-
konishok et al. (1994) and Haugen and Baker (1996) argue that the rewards
to certain portfolio strategies are simply too large to be usefully understood
as a rational response to risk. This paper does not definitively resolve all of
these issues. To do so would require calibration, simulation, and then repli-
cation of complicated empirical strategies that involve conditioning on many
different variables, some of which do not have direct analogues in our model.
This paper does, however, suggest that dynamic evolution of systematic risks
is both a promising source of explanatory power for understanding these
types of phenomena in returns and a methodology for verifying whether this
can be done in a quantitatively realistic setting.

This paper is related to two independent branches of the financial eco-
nomics literature. First, it shares with a number of recent papers, such as
Abel (1988), Epstein and Zin (1992), Telmer (1993), and Naik (1994), the
goal of enriching the dynamics of the classic asset pricing theories of Merton
(1973) and Lucas (1978) with the objective of explaining predictable varia-
tions in equity returns through time. However, these models focus less on
how firms’ relative risks change than on how aggregate risk premia evolve,
and they do not explicitly analyze either the corporate investment decision
or the importance of distinguishing between assets in place and growth op-
tions. Both of these features are central to our model.

A second line of research shares with our paper the recognition that the
firm’s investment policy involves the exercise of real options. (See Dixit and
Pindyck (1993) for a comprehensive review.) The existing literature focuses
on the implications this has for aggregate investment behavior. Our model
develops its implications for the dynamics of returns and risk across firms.

A few papers in the literature share with ours an emphasis on the link
between the dynamic evolution of firms’ risks and the cross section of ex-
pected returns. Jagannathan and Wang (1996) show that a version of the
conditional CAPM, in which betas depend on conditioning information, can
empirically account for the explanatory power of variables such as book-to-
market in the cross section. Chan (1988) and Ball and Kothari (1989) argue
that changing systematic risk can explain the success of contrarian strat-
egies. Bossaerts and Green (1989) show that shocks to the idiosyncratic por-
tion of the firm’s exogenous cash flow alter the systematic risk and expected
return, and these changes persist. Kadiyala (1997) argues that the informa-
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tion contained in book-to-market should interact with both interest rates
and changes in systematic risk, and analyzes the empirical evidence for these
interactions. Our model produces expressions for conditional expected re-
turns that involve all of these quantities, allowing us to evaluate their in-
teractions explicitly. It illustrates how changes in systematic risk follow from
value maximizing choices by firms. Finally, as in Berk (1995), market value
and book-to-market in our model serve as proxies for more fundamental
sources of differences in expected return.

Our paper is different in two respects, however. First, it provides indepen-
dent roles for these two variables, both of which have been shown to be
empirically important. Second, as mentioned earlier, our model reveals the
more fundamental sources of variation in expected return. This makes it
possible, for example, to simulate the model’s outcomes and evaluate quan-
titatively its ability to match the empirical results. This would be impossible
to do using Berk (1995), since no model of expected returns is specified, or
required, to make the arguments that are the focus of that paper.

A number of papers in the literature offer explanations for various empir-
ical results that our model explains, but the existing explanations involve
behavioral biases or omitted variables.? The differences that distinguish our
approach from previous explanations in the literature are twofold. First,
rather than simply considering one effect in isolation, we use a single eco-
nomic explanation—dynamic turnover of the firm’s assets—to address a range
of empirical regularities. Although these regularities do occur simulta-
neously in the data, it may not be obvious how they are related. Second, by
undertaking a simulation study we can make quantitative assessments about
how well the effects are explained by our theoretical analysis. This allows an
objective assessment of the question of whether the effects identified in this
paper are economically significant enough to explain the empirical results.

The paper is organized as follows. In the next section we set forth the
notation, assumptions, and structure of the model. In Section II we discuss
the valuation of the firm’s cash flows. Section III presents our expressions
for expected returns and a discussion of their properties. In Section IV we
present results on the model’s ability to capture important features of the
cross-sectional and time-series behavior of stock returns. The paper con-
cludes with Section V. Proofs of various lemmas used in our derivations are
contained in Appendixes A and B. Details of our simulation study are in
Appendix C.

I. The Model

The fundamental object of interest in our analysis is the individual firm.
The random evolution of the firm’s collection of projects determines how its
risk and expected return change over time. Ours is a partial equilibrium

5 As noted previously, examples are behavioral biases, as in Lakonishok et al. (1994), and
omitted state variables, as in Fama and French (1993).
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model. We take the process describing the pricing kernel to be exogenous,
and we do not clear markets to ensure that the distribution of the pricing
kernel is consistent with aggregated cash flows consequent to the invest-
ment decisions made at the firm level. This, however, gives us the tracta-
bility we need to focus on the dynamics for the relative risks of individual
firms.

A. Technology

The firm operates with an infinite horizon in discrete time. At each date,
t € {0,1, 2,...}, a project becomes available. Undertaking the project re-
quires an immediate investment that cannot be postponed or preserved. The
cash flows the project generates in future periods have a distribution gov-
erned by several parameters. Some of these are constant across projects, and
can be viewed as fixed features of the firm’s technology. Others are specific
to the project, and become known to the firm only at the date the project
becomes available. The investment required to undertake a project is de-
noted I. At date ¢, the cash flows from a project that was undertaken at date
J < t are given by the process

C;(t) = Iexp[C — 307 + 0j¢;(t)], (1)

where the innovations {¢;(¢),z > j} are serially independent standard nor-
mals. The parameter C controls the mean of the cash flow, and o; governs
the variance.

Projects may become obsolete. To model this, we define a set of indicator
variables, { x;(t),t = j}jZo, which equal 1 if the project that arrived at time j
is alive at time ¢, and zero otherwise. We assume that

xi(t+1) = x;(0)Y;(t + 1), (2)

where Y;(¢ + 1) equals one with probability 7 and equals zero with proba-
bility 1 — 7. The elements of {Y;(¢),£ > j};Z, are independent of each other
and of all other random variables in the model.¢ We start the process y;(¢) by
setting x;(j) = 1 if the project that arrives at date j is actually taken on;
X;(j) = 0 otherwise.

B. Pricing Kernel and Interest Rates

To value the firm’s future cash flows we employ a simple and tractable
structure for the process governing the evolution of the pricing kernel. The

6 In the expressions we derive for the firm’s value and expected return, this structure is
equivalent to assuming that projects’ expected cash flows depreciate at rate A, with 7 = e 4,
rather than randomly terminating. The other moments of the distribution of returns depend on
this choice, however. For example, the variability of returns is higher if projects die suddenly

than if they depreciate gradually.
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price at date ¢ of a random cash flow C(T') delivered at date T > ¢ is as-
sumed to be given by E,{(z(T)/z(¢))C(T)}, where

2(t+1) =z(t)exp[—r(t) — 302 — o, v(t + 1)], (3)

with z(0) = 1, and {v(¢)};2, serially independent standard normals. The dy-
namics of r(¢), the one-period, riskless, continuously compounded interest
rate, are assumed to be those from the Vasicek (1977) model. That is,

rt+1) =«r(t) +(A—-—x)iF+o.é(t+1), (4)

where {£()};2, are serially independent standard normal variates, and 0 <
k < 1. The long-run mean of the short rate is given by 7, the rate with which
it reverts to this mean is given by «, and its volatility is given by o,. Let
B, = g,0,cov(v(t),£(¢)). This parameter influences the relative pricing of
bonds in the model.

Lemma B.3 in Appendix B shows that the price at time ¢ of a discount
bond that matures at date s is given by

Bls —t,r(¢)] = exp[~ai(s = t)r(t) — ¢ (s — t)], (5)

where, for n > 0, a;(n) and (n) are functions that are recursively defined
in Appendix B (equations (B1) and (B3)).

C. Risk

The “systematic risk” of a project’s cash flows, which we refer to as its
“beta,” is given by

Bj = g0, cov(e;(t),v(t)). (6)

Note from equation (3) that a higher beta implies more negative correlation
of cash flows with the pricing kernel, and thus, “more risk.” This variable
plays a role in our model analogous to that played by the market beta in the
mean-variance CAPM, but they are not identical. In any asset pricing model
that precludes arbitrage, there exists a positive process {m,,};~; such that
for any return, R, , the following identity holds:

E,(R;1) = er(t)[l —cov,(myi1,Riiq)], (7)
where e”® is the gross return on the riskless asset. Under the mean-
variance CAPM, or conditional versions of it, m,., is a decreasing, linear
function of the market return. Thus, cov,(m,,,R,, ) is proportional to the
market beta. In our model, m,,; = (z(¢ + 1)/z(¢)). As in the CAPM, as the
covariance between the pricing kernel and a given return is more negative
the larger B; is, but this dependence is nonlinear in our model. To see this
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explicitly, consider a one-period security that can be purchased at ¢ and pays
C;(t + 1) at t + 1, which is given by the process in equation (1). The value of
this security is

z(t+1) =
Et{WCj(t-i—l)} = Iexp{C — B, — r(¢)}. (8)

It follows from the above equation that the covariance of the return on the
above claim with the pricing kernel is

TeCr0 (e B — 1) 5
covy(myi1, Rei1) = JeC—Br® =1-e” 9)

and the expected return is

Iec r(t)+pB;
JoC B0 ¢ e, (10)
Thus, the risk premium of the above security is constant and is directly
related to 8; which summarizes the systematic risk of the cash flows, just as
the market beta does in the CAPM.

The beta of the project is only revealed to the firm on the date the project
arrives, when the firm must decide whether to make the investment. Each
B; is drawn from a common distribution, denoted F, and is independent of
all other variables in the model. This distribution is a fixed feature of the
firm’s technology. It is assumed that E[exp(—p;)] < cc.

II. Valuation

In this section we derive the value of the firm. The development here
focuses on those results that highlight the role of the firm’s changing sys-
tematic risk, as well as the arguments that allow us to price explicitly the
firm’s growth options. In the interest of brevity, the details of the following
derivations are provided in Appendixes A and B.7

7 The propositions and lemmas in Appendixes A and B are proved for a more general version
of the model where the required investment, I, follows a stochastic process. Most of the impor-
tant cross-sectional features of the model can be understood without a stochastic I, so we focus
on the simpler case here. Holding the required investment fixed limits the model in two ways.
First, once firms reach a steady state, there is no expectation of growth. Second, the risk
premium on the component of the firm’s return associated with the present value of growth
opportunities is relatively low because the only systematic risk it exhibits is interest rate risk.
Modeling the required investment as a stochastic process allows the model to accommodate
aggregate stochastic growth and different levels of risk for growth options relative to assets in
place. This generality is important if the returns are interpreted in nominal terms because it
allows for the possibility that some of this stochastic growth results from inflation.
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Valuing the firm involves two steps. First, we provide an expression for
the value of the cash flows from a given project, which we denote as

vj<t>=Et{ s @cxs)xj(s)}. (11)

s=t+1 Z(t)

Note that if x;(¢) = 0, because the project has expired or was never under-
taken, then x;(s) = 0 for all s > ¢ and V;(¢) must be zero. Next, we calculate the
value of the options to invest in such projects in the future. Since the invest-
ment decision cannot be postponed, the value of each option on the investment
date is just the maximum of the NPV of the project or zero. The value at date
t is thus

Vi) = Et{ 21 ZE—: max|[V,(s) — 1,0]|. (12)

Finally, the value of the firm at time ¢, denoted P(¢), equals the value of
future cash flows of all projects that are still “alive” plus the value of future
investment opportunities:

P(t) = ;VJ-(t)xj(t) + V*(@). (13)

A. The Valuation of Assets in Place

Consider, now, the value at time ¢ of cash flows from the project that
arrived at date j. Proposition A.1 in Appendix A shows that this can be writ-
ten as

V;(t) = Iexp[C — B;1D[r(t)], (14)
where
D[r(t)] = i 7 UB[s — t,r(t)] (15)
s=t+1

is the value of a perpetual, riskless consol bond, where the payments on this
bond depreciate at a constant rate 1 — 7.

Equation (14) gives the value of a project as the risk-adjusted discounted
value of the perpetual stream of expected cash flows. The risk adjustment
replaces the expected cash flow 7 “Ie€, with its certainty equivalent
7 DeC P which is then discounted at the riskless rate.
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The value of all the firm’s assets in place is given by summing across its

projects that are currently “alive.” This can be expressed using the “book
value,” the capital invested in projects that are still alive:8

b(t) EI;)Xj(t)EIn(t), (16)

where n(t) is the number of projects alive. The value of the firm’s assets in
place is

t

S Vit) x;(t) = b(t)eCPOD[r(t)], (17)
J=0
where
_ xi(@
B(t) = —ln[}% Yo e A } (18)

summarizes the average systematic risk of the firm’s existing assets. The
beta of the assets-in-place of the firm is obtained by averaging across the
betas of individual projects that are currently alive, and it varies through
time depending on the optimal exercise of growth options and the obsoles-
cence of existing projects.®

B. The Valuation of Growth Options

To value the firm’s growth options, consider a particular term in the in-
finite sum, V*(¢), given in equation (12):

Et{ﬁmax[Vs(s) —I,O]}. (19)
z(t)

This is the value at ¢ of the option to invest at date s > ¢. The decision to
take on the project at time s depends on its NPV, V.(s) — I. From equation
(14) we have

Vi(s) =1 = I(exp[C — B,ID[r(s)] — D). (20)

The NPV, therefore, depends on two variables that are not known at date ¢:
r(s) and B,. By conditioning on B, the problem of valuing the investment
option can be reduced to valuing a portfolio of options on interest rates alone.
In a single-factor model of interest rates, such as the Vasicek model, where

8 The valuation formulas are unchanged if we view 1 — 7 as a depreciation rate. For that
specification, b(¢) corresponds very closely to what accountants would call “book value.”
9 Under the CAPM, this averaging would be linear rather than geometric.
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prices of all discount bonds are monotonic in the short rate, the above ex-
pectation can be evaluated using the procedure Jamshidian (1989) intro-
duces to value an option on a portfolio of discount bonds.

For a given B, let r; be defined implicitly as the unique solution to the
equation:

exp[C — B,]1 >, w*Blk,rj]= 1. (21)
E=1
We can use this expression and equation (20) to compute the following:

.

E, { 2(s )max[V (s) —

()
- IE, {ZE ;max[exp[c B.] 2 7Bk, r(s)] — 1 o} } 22)
_ IEt{% max {exp[C 8. 2 7 (Blk,r(s)] - B[k,rgs]),o} /33}. (23)
By the definition of rj,, we know that
explC ~ £,] 3, 7Bk r(5)] - Blh,rj ) = 0 (24)

if and only if r(s) = rg . But by monotonicity of the bond prices, r(s) = rg_if
and only if B[k,r(s)] — B[k,rz ] = 0 for every k. It follows that

max {exp[é — Bt (BIk,r(s)] - B[k,rEs]),O}
k::o (25)
— explC — B,] S, max{B[k,r(s)] - Blk,r4, 1,00,
k=1

and so the option on the portfolio is expressed as a portfolio of European
options. All the options have the same exercise date s. Each is a call on a
pure discount bond maturing at a different date, s + k&, with strike price
B[k,rg, ]. Substituting equation (25) into equation (23) provides

5)

=IE, { Et; exp[C — B;] 2 max{B[k,r(s)] —

E, {ﬂ max[V,(s) —
(t)

} . (26)
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Let

J[r(t),s —tk,rg]= Et{@ max[B[k,r(s)] — B[k,rj 1,0]

20) /33} (27)

denote the value of each option at time #. This value can be calculated in
closed form under the Vasicek model. Lemma B.5 in Appendix B yields

J[r(t),s —t,k,rg ] = B[s —t+ k,r(¢t)IN(dy) — Blk,rz |1B[s — t,r(t)IN(d2),

(28)

where B[ -,-] is given by equation (5), N(-) denotes the cumulative standard
normal distribution function, and

B InB[s —t+ k,r(t)] —InB[s — t,r(¢)] — InB[k,r; | + 1al(k)oi(s —t)
b ay(k)oa(s — t) ’

(29)
dy =dy — ay(k)oy(s — ), (30)

with a4(-) and o,(-) as defined in equation (B1).

To obtain the unconditional present value, we integrate over B, in equa-
tion (26). We can then sum across future investment dates to obtain the
present value of all growth opportunities:

V*(t) = Ie© i iwk J[r(t),s — t,k,r; le P dFy(B,)
B

s=t+1k=1

= IeCT* [r(t)]. 31)

Here J*[r(t)] is defined implicitly by the above identity as the per unit
present value of all future growth options.

C. The Value of the Firm
Combining the value of assets in place and the value of growth options

gives the value of the firm:

P(t) = b(t)eCPOD[r(¢)] + eCT*[r(2)]. (32)

Equation (32) is the analog, in an uncertain environment, of the pricing
model under certainty that is often used as a standard introduction to cor-
porate finance (see, e.g., Ross, Westerfield, and Jaffe (1988), p. 130). The
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price of a stock is described, in such treatments, as the value of future flows
from ongoing projects, valued as a perpetuity, plus the value of growth op-
portunities. Under certainty, the value of growth opportunities is simply the
present value of all future positive NPV projects. When there is no uncer-
tainty, there is no option component.

III. Expected Returns

The objective of this section is to derive expressions for the expected
return of the firm that show how empirically observed determinants of
returns are related to underlying economic characteristics of the firm. The
firm’s (gross) return is given by the cash flow plus the future price, di-
vided by the current price. To evaluate the conditional expected return we
must obtain expressions for the conditional expectation of the next period’s
cash flow and the next period’s price. Next period’s price, in turn, consists
of the value in the next period of existing projects, and the value of growth
opportunities.

Appendix A derives analytical expressions for each of these conditional
expectations in terms of the state variables, the parameters, and the follow-
ing two quantities:

D,[r(¢)] = EAD[r(t + )]} (33)
and
Jor@))=EAJ [r(¢t + D]}, (34)

where D[r(¢)] is defined in equation (15), and J *[r(¢)] is the value of growth
options defined in equation (31). The first of these is the expectation, given
current interest rates, of the value of a depreciating perpetuity next period.
It can be calculated in closed form and is given by equation (A20) in Appen-
dix A. The second expression is the expectation, given the current interest
rate, of the value next period of the portfolio of bond options embedded in
the firm’s growth options. It can be written as

Trl= S St | s -tk e b dF(B), (35)
B

s=t+1k=1

where J,[r(t),s — t,k,r5 ] is, analogously, the expectation of the value of one
of these options next period,

TIr(t),s = tk,r4 ] = EAI[1(¢ + 1,5 = k7]

Bs}- (36)
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Under the Vasicek model, equation (36) can be calculated in closed form.
From Proposition A.3 in Appendix A, it follows that

Jelr(t),s = t,k,rp ]

B-r
(1-«x)

— or® (B[s — 4+ k,r(t)]exp[— (1- K8t+k1)]N(df)

B:r
(1-«)

— Blk,rp 1B[s — t,r(t)]eXp[— 1- Ks”)]N(dé‘)), 37

where B[ -,-] is given by equation (5), N(-) denotes the cumulative standard
normal distribution function, and

B K57t71
di =dq— 1)’ (38)
ds =di — ay(k)oy(s — 1), (39)

with d; as in equation (29) and a4(-) and o4(-) as defined in equation (B1).
We can now write, using Proposition A.4 in Appendix A, the conditional
expected return on a proportional claim on the firm as

mn(¢)[D,[r(¢)]e PP + 1]+ J;[r(2)]
n()D[r(t)e PO +J*[r@)]

Et[l +Rt+1] = (40)

where n(t) = b(t)/I is the number of ongoing projects. The first term in the
numerator of equation (40) measures the expected (gross) return on the firm’s
assets in place and the second takes account of the firm’s growth options.
These two components of firm value respond differently to changes in the
environment, which can be summarized through three state variables:

e B(t), the average systematic risk of the firm’s existing assets
e r(t), the current interest rate
® n(t), the number of active projects.

Each of these sources of variation in expected returns changes in predictable
ways and imparts predictability to returns. The riskiness of the firm’s as-
sets, for instance, tends to revert toward the mean implicit in its investment
opportunity set. The interest rate process we use obviously has a predictable
component. The number of ongoing projects will be small early in the life of
a firm, as well as after periods of high interest rates when the high discount
rate will imply that relatively few attractive investments have been available.

Thus, our model captures the ideas that expected returns depend on the
firm’s life cycle and returns of mature firms behave differently from those of
growth firms. Note that, in equation (40), n(¢) reflects the importance of
existing assets relative to growth opportunities in the firm’s value. It there-
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fore determines how much of the expected return is attributable to each
component of the value of the firm. When there are no ongoing projects and
the value of the firm is all in its growth opportunities,

Jo[r(e)]

B+ Realluo=o = o 07

(41)

In this situation, the expected return only depends on r(¢) and not on B(¢).
As the number of ongoing projects goes to infinity, the growth component in
expected return becomes negligible. In this case, the expected return of the
firm is

: _ w[e?” + D, (rt))]
n}tlgooEt [1+R; 1] = D(r(2)) . (42)

This is increasing in B(¢), which summarizes the firm’s systematic risk, rel-
ative to other firms with similar opportunities for future growth. Time vari-
ation in the firm’s systematic risk thus plays an important role in determining
expected returns of mature firms, but is less important for growth firms.
Since n(t) is also a measure of the physical size (as opposed to market value)
of the firm, this model predicts that the expected returns of smaller firms
differ from those of larger firms.

From equations (41) and (42), we can also conclude that the expected re-
turns of high growth and low growth firms both depend on the level of in-
terest rates in nonlinear and functionally different ways. For this reason we
would expect the magnitude, and possibly the direction, of the premium to
size to depend on the level of interest rates. This is consistent with the
results in Kadiyala (1997).

If asset returns are consistent with our model and if an empiricist pro-
ceeds under the mistaken assumption that firms’ expected returns are con-
stant, then she will find that abnormally high returns are followed by
abnormally low subsequent returns and vice versa. By inspecting equation
(32) it is clear that the price of the firm is decreasing in B(¢). Consequently,
an increase in the riskiness of the firm is associated with a current price
decrease and subsequently higher returns. This is consistent with the “con-
trarian” evidence recently documented by empiricists. (See, e.g., Jegadeesh
and Titman (1993).) Portfolios of recent winners underperform portfolios of
recent losers. Informal appeals to “changing betas” as an explanation for
contrarian strategies have been made in Chan (1988) and Ball and Kothari
(1989). Our analysis makes this dependence explicit. Within our model, the
returns to contrarian or momentum strategies are not “abnormal.” They are
compensation for bearing systematic risks that change in predictable ways.

Although equation (40) reveals the state variables driving expected re-
turns in our model, to compute the average systematic risk of the firm’s
existing assets, B(¢), one would need to know a great deal about the firm.
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This risk is a function of each ongoing project’s covariance with the pricing
kernel. To measure B(t), it is not only necessary to know what the value of
this covariance is for each project, it is also necessary to know which projects
are ongoing at the time. A useful feature of our model, however, is that the
expected returns equation can also be written in terms of observable vari-
ables. These variables are precisely those that have received so much atten-
tion in the empirical literature on the cross-sectional properties of expected
returns: market value and book-to-market. This step allows us to make ex-
plicit the relationship between these variables and the underlying, econom-
ically interpretable firm characteristics that determine expected returns.

First, note that the risk-adjusted future expected cash flows are the source
of any difference between the value, P(¢), and the value of the growth op-
portunities. That is, from equation (32):

_7,C 1%
eé—ﬁ(t)b(t) = Q) DI[er(;])] [r(t)]. (43)

Substituting this into our expression for expected returns, equation (40),
allows us to eliminate the state-variable, 8(¢). The following expression for
conditional expected returns is obtained:

E,[1+R,.,]= M + Wec[@]

D(r(2)) P(t)

(44)

+18 g2trn - 1 ren A | .

D(r(t)) ILP(t)

Equation (44) decomposes the expected return into three parts. The first
term is the expected rate of appreciation on the declining perpetuity, and it
summarizes the effects of changing interest rates on the value of the cash
flows produced by the firm’s existing assets.

The second term is proportional to book-to-market. As new projects are
adopted and old projects expire, this term varies in response to changes in
the systematic risk of the firm. This systematic risk changes both because
the firm’s assets turn over and because the importance of the firm’s existing
assets relative to growth options varies. Since 7e® is a positive constant, the
firm’s expected return is positively correlated, in time series, with book-to-
market. This is consistent with the empirical evidence reported in Kothari
and Shanken (1997) and Pontiff and Schall (1998). Note that since me b (t)
is the expected cash flow of ongoing projects, this term can also be inter-
preted as the earnings-to-price ratio, or (in the case of no retained earnings)
the dividend yield. The positive dependence on book-to-market also leads to
cross-sectionally higher average returns for firms with high book-to-market
ratios across firms that share common technologies. We explore these rela-
tions between book-to-market and expected returns further in Section IV
through simulation.
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The third term reflects the value of the firm’s growth options. It changes
in response to interest rate movements and the relative importance of growth
options in the firm’s value. The quantity  *[r(¢)] is the value of a portfolio
of bond options. The term J.[r(¢)] is the expected value of this portfolio one
period hence. Thus, the final term in equation (44) is proportional to the
difference between the expected price of the portfolio of bond options and its
current price accumulated at the appropriate risk-free rate—the expected
return on the declining perpetuity. Hence it can be viewed as a certainty
equivalent. This certainty equivalent is multiplied by the scale of invest-
ment opportunities, which quantifies the number of such bond options the
firm has. Normalizing by the current price expresses this certainty equiva-
lent as a risk premium.

The separate roles for book-to-market and market value in equation (44)
derive directly from the dynamic evolution of the firm’s assets. To illustrate,
note that when a firm consists of just one long-lived project, the last term
drops out leaving only the book-to-market ratio. In this case, the book-to-
market ratio remains as a determinant of return despite the fact that the
firm has no growth opportunities. Because of the existence of the third term
in equation (44) it is quite possible for two firms to have identical book-to-
market ratios and still have different growth potentials. In light of this, it
might be worth questioning the current standard of using the book-to-
market ratio as the de facto measure of a firm’s growth potential.

Finally, note that the form of equation (44) does not depend on our appeal
to the Vasicek (1977) model. A particular model is, of course, required to
obtain the specific functional forms of J*, J;, D, and D,. To express the
relevant functions in terms of a single state variable, the short rate, a single
factor process of the interest rate is required. Although a more general (e.g.,
multifactor) specification of the interest rate process would produce differ-
ent functional forms for J*, J,;, D, and D,, many of the qualitative implica-
tions of equation (44) can be expected to hold more generally.

A. Constant Interest Rates

We can better evaluate the separate roles of the state variables that de-
termine expected returns by considering the special case of the model that
holds interest rates fixed. Any dynamics in the expected returns, in this
case, are due entirely to the changing characteristics of the firm’s assets.

When interest rates are constant, the value of growth is constant, so the
functions J* and D are constant. Accordingly, the intercept and the coeffi-
cients in equation (44) are all constant, which allows us to simplify it to

E,1+R,  ]=m+me (45)

abt) [1—7Te_’] 1
o) "Bl 1o [P0y

where K = IEt{max[eé_BS[l/(e 7 — 1)] — 1,0]} does not depend on time be-
cause the B, variables are independent and identically distributed.
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In this case the expected return is a linear function of the two firm-
specific variables that Fama and French (1993) argue effectively summarize
the cross section of expected returns. By studying their role in a structural
model we can relate these variables to the underlying state variables: B3(¢),
which summarizes the relative risk of the firm’s existing assets, and b(¢),
which summarizes their importance relative to the firm’s growth opportu-
nities. Further, we see that both book-to-market and market value are im-
portant. In our dynamic model, even with interest rates constant, there are
two state variables that determine expected returns. This contrasts with the
static model in Berk (1995), where one of these variables would be redundant.

B. The Impact of Interest Rates on Expected Returns

Interest rates affect the expected returns attributable to assets in place as
well as those attributable to growth opportunities. First, with higher inter-
est rates future cash flows are obviously discounted more heavily, leading to
lower prices and higher expected returns. The second effect of higher inter-
est rates is through their influence on current expectations about future
values of B(t). Fewer projects are undertaken when rates are high, and the
rejected projects will be precisely the ones with relatively high systematic
risks. This feedback effect represents an empirical prediction that might
easily be overlooked in models where the firm’s investment decision is sim-
plified. Periods of high interest rates should be followed by lower risk pre-
mia in equities, because fewer high-risk investments will have been
undertaken.

Interest rate movements also influence expected returns through the value
of growth options. The risk premium of an option depends on the value of
the underlying assets. Deep in-the-money options have lower risk premia
than out-of-the-money options. Through this mechanism the expected excess
return of the firm can change even if the asset base of the firm remains
unchanged.

IV. Simulation Evidence

The purpose of this section is to evaluate the model’s ability to reproduce
quantitatively some important features of stock return data in simulation.
Our model is nonlinear in the important state variables. As a result, some of
the moments of interest, such as the unconditional expected return or the
cross-sectional correlation between expected return and market value or book-
to-market, are difficult to obtain analytically. We can, however, use the model
to generate artificial data, and then calculate statistics similar to those re-
ported by empirical researchers. Since conditional expected returns are ob-
servable in the simulation, and since we can generate very long artificial
time series, we can determine whether the population moments of the re-
turns generated by our model are, for appropriate parameter choices, simi-
lar in sign and magnitude to those measured by empirical researchers.
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Some of the qualitative effects we discuss in previous sections involve dy-
namic effects that are too complex to be obvious from inspection or simple
comparative statics. For example, conditional on a project being accepted, its
systematic risk is likely to be lower in higher interest rate environments,
leading to a complex, dynamic interaction between risk premia and interest
rates. Similarly, the model’s ability to produce contrarian effects in returns
depends on the dynamic interaction between unexpected news about the
systematic risk of new or expiring assets and subsequent expected returns.
To determine whether these types of dynamic effects are quantitatively im-
portant for parameter values that lead to realistic behaviors on other di-
mensions, simulations are needed.

Our approach is in the spirit of the methodology recommended by Kydland
and Prescott (1996). We first calibrate the model using the unconditional
moments of interest rates and aggregate stock returns. Then, we compare
the model’s simulated outcomes to the features present in the data that are
of particular interest to our study. These features include the cross-sectional
relation between returns and firm-specific variables such as book-to-market
and market value, the comovement of risk premium and interest rates in
time series, and contrarian and momentum effects. We assume identical tech-
nology parameters across firms. All firms are therefore ex ante identical,
but shocks to the cash flows, the death process, and g; are drawn separately
across firms. Thus, any cross-sectional effects are attributable to the endog-
enous evolution of their assets, which is our focus here.

The parameters for the pricing kernel and interest rate processes are cal-
ibrated to match sample yield volatilities and term premia from U.S. term
structure data. Using the same simulated process for the pricing kernel and
interest rate process, we generate 20,000 months of data for 50 individual
firms, and examine the average risk premia, volatility, and the degree of
predictability of an equally weighted portfolio of these firms’ returns. These
values are compared to actual empirical estimates of these moments, in or-
der to calibrate those parameters for the firms’ technology that do not have
obvious relationships to macroeconomic variables.

Having thus calibrated the model, we confront it with the empirical re-
sults. First, we run time-series regressions of the equally weighted portfolio
of the simulated firms’ returns against interest rates and book-to-market.
Then we turn to the cross-sectional properties of expected returns produced
by the model. We repeatedly simulate panel data sets of returns similar in
number of firms and number of months to the data sets used in existing
empirical studies of cross sections of returns. On each simulated database,
we perform cross-sectional tests similar to those in the literature. Across
many simulations (1422), this produces a sampling distribution for the sta-
tistics of interest, under the null that our model holds with the calibrated
parameter values. Using these sampling distributions, we can ask whether
the estimates obtained by existing research could have been generated by
our model with high probability. Finally, we evaluate the profitability of
momentum and contrarian strategies at different horizons in our model.
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A. Calibration of the Pricing Process

We interpret the model as applying to nominal returns, nominal interest
rates, and the nominal pricing kernel, all at monthly frequencies,® and we
use estimates from the term structure literature to obtain calibrated values
for parameters governing the interest rate and pricing kernel process.

Backus, Foresi, and Zin (1994) provide monthly sample moments for the
continuously compounded zero-coupon yields constructed by McCulloch and
Kwon (1993) for 1982 to 1992. We set 7 = 0.07483/12, the sample mean of
the monthly rate over that period. (This choice is important in determining
levels of average returns, but is not important to the behavior of risk premia
in the model.) The first-order autocorrelation of the short rate is given by «.
Using the one-month yields from McCulloch and Kwan, this autocorrelation
in the data is 0.906. Using the Fama Treasury bill data from CRSP, which
covers the longer period from June 1952 to December 1995, the one-month
T-bill rate has a sample autocorrelation of 0.969, and this autocorrelation
increases with maturity. We set x = 0.95, which lies within the range these
estimates suggest. In the Vasicek (1977) model, the standard deviation of
the yield on a bond with maturity 7T is given by:

1-«7 o,
Q-wT 1= x2

A well-known deficiency of the Vasicek model, however, is its inability to
reproduce the term structure of volatilities. Calibrating o, using longer ma-
turity instruments produces higher values. Using T = 1, for example, and
the Fama CRSP one-month T-bill yields with x = 0.95 gives o, = 0.0007.
Using the fitted 60-month yields for 1946 through 1987, Backus and Zin
(1993) estimate the monthly standard deviation as 0.00275, which for our
value of « yields o, = 0.0027. We choose a value that reflects a longer rate,
given the nature of the assets we value in the model, and use 0.002 for o,..1

What remains is the choice of B,,. In our model the limiting yield (or the
limiting forward rate) as maturity increases, is given by!2

o o[(Ba\? (B, 1 Y2
T, =7+ 2 [(Ur2> _<a'r2 + 1_K> } (47)

The average yield differential between the 10-year zero coupon bond and the
one-month T-bill reported by Backus et al. (1994) is 2.319 percent. We choose
a value for B,, of —0.00014, which gives a spread between the average short

(46)

19 In the general form of our model, the cash flows from individual projects do not grow, but
the investment scale process, I(¢), does. Thus, the general form of the model can accommodate
growth in cash flows due to inflation at the firm level.

11 Experiments with small values of o, produced returns with very little predictability.

12 This computation is carried out explicitly, using different notation, in equation (10) of
Backus et al. (1994).
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Table I

Parameter Values for Simulations

Listed are the values chosen for all parameters required to simulate the model: the long-run mean
of the short rate (7), the rate of mean reversion (), the volatility of the short rate (o,), the co-
variance between the pricing kernel and the short rate (8,,), the volatility of the pricing kernel
(0,), the investment required to initiate a project (I), the log of the mean cash flow yield from a
project (C), the range of the distribution from which cash flow volatility is drawn (o), and the prob-
ability a project’s cash flows terminate (1 — ). The final two values are the probabilities that a
new project will be acceptable (x,(¢) = 1), conditional on the interest rate. These probabilities de-
termine the parameters of the distribution from which project risks are drawn.

Interest Rate Process Firm’s Technology
Parameter Value Parameter Value
7 0.006236 I 1.0
K 0.95 C -3.7
o, 0.002 o 0.3|C|
B., —0.00014 T 0.99
o, 0.4 Pr(x,(¢t) =1|r(t) =7) 0.05
Pr(x,(t) =1|r(¢) =0) 0.10

rate and the limiting yield of 2.4 percent. As a separate parameter, o, is not
directly identified by the pricing relationships in our model.13 Thus, the choice
of o, is somewhat arbitrary, and is only needed to ensure that the param-
eters we do use are mutually consistent. We set o, to 0.4, which implies
correlation between the pricing kernel and interest rate processes of —0.175.
The first panel of Table I summarizes our choices of parameter values for
the interest rate process.

B. Calibration of Technology

A few of the parameters characterizing the firm’s technology can be re-
lated to simple macroeconomic statistics. The quantity 1 — 7 has a natural
interpretation as the depreciation rate for the firm. Real business cycle mod-
els are generally calibrated with depreciation rates of 8 to 10 percent per
year. (See, for example, Kydland and Prescott (1982), and for estimates of
such a model see Christiano and Eichenbaum (1992).) We choose 0.99 for 7.
The model is calibrated to monthly intervals, which implies a depreciation
rate slightly above 10 percent per year.

We experimented with the remaining parameters to bring the time-series
behavior of portfolio returns into line with estimates of moments for aggre-
gate stock portfolios. Once a project is undertaken, me® is an expected rate
of cash return. Choosing this rate of return to be about 30 percent per year
gives C = log(0.3/127) ~ —3.7.

13 This can be seen by noting that in the bond pricing formula in equation (5) all that is
required is the function #(-), which, through recursive substitution from equation (B1), can be
shown to depend on S,, but not on o,. Neither do the formulas we derive for the value of cash
flows or growth opportunities involve o,.
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Table II
Descriptive Statistics for Aggregate Portfolios

The mean (Mean), standard deviation (Std), and excess kurtosis (Ex. Kurtosis) of the return on
a one-month bond (Short bond return) and the expected (Portfolio expected return) and realized
(Portfolio realized return) monthly returns of an equally weighted portfolio using 20,000 sim-
ulated monthly returns on 50 firms are reported under “Monthly Returns.” The mean and
standard deviation of the compounded monthly returns for each year are reported under “An-
nual Returns.” Predictability of return is defined to be the R? of the regression of realized
return onto expected return.

Monthly Returns Annual Returns
Variable Mean Std. Ex. Kurtosis Mean Std.
Short bond return 0.60% 0.65% -0.01 7.40% 2.37%
Portfolio expected return 1.25% 0.66% -0.05 - -
Portfolio realized return 1.28% 4.12% 3.02 16.43% 16.35%

R? coefficient

Predictability of return 2.38%

New projects differ in their systematic risk, which is given by g;. Each
B; is assumed to have a translated exponential distribution with support

(—o0,B8"] and density
=
B* -
B —B

i

fB)=——F—% (48)

for B < B*. This distribution is tractable since truncation preserves its form.
It also implies that for any set of parameters, risky, low value projects will
be relatively more common. For given values of 7 and C, 8 and B* govern
project turnover within the firm. We chose them by fixing the conditional
probability that a new project has positive NPV at r(¢) = 7 (1 in 20) and
r(t) = 0 (1 in 10). These parameter values are summarized in the bottom
panel of Table I. Together, these parameters give a project half-life of ap-
proximately 5% years.

In our simulations we draw o;, the standard deviation of the project’s shock,
from a distribution that is conditional on B;. Since these two variables de-
termine the correlation between the pricing kernel and the project’s cash
flow, their quotient must have a bounded support. We assume that the con-
ditional distribution of o; is uniform with support [|8;|/0.,(|8,|/0,) + o]. We
set o equal to 30 percent of the value of C.

Using these parameters, we simulate 20,000 months of data for 50 firms.
We restrict attention to firms that have reached a steady state distribution
for the number of ongoing projects by dropping the first 200 observations.
Table II contains descriptive statistics for the equally weighted portfolio of
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these 50 firms and the interest rate, which can be compared with empirical
estimates. For example, Ibbotson Associates (1994) report an average an-
nual risk premium of 8.6 percent for the period 1926-1994, and a standard
deviation of 20.5 percent for the S&P 500 index.

In the postwar period, however, the standard deviation of annual returns
tends to be somewhat lower. Using annual returns for the period 1951-1993
in Ibbotson Associates (1994), the standard deviation of annual returns is
16.76 percent, and Fama and French (1992) report monthly standard devi-
ations of 4.47 percent for the value-weighted index for the period 1963-1990
and of 5.49 percent for the equally weighted index. Campbell, Lo, and Mac-
Kinley (1997, Table 1.1) report a monthly average return of the equally
weighted portfolio of 1.25 percent with a standard deviation of 5.77 percent
for the period 1962-1994. We searched for parameters that produced aver-
age risk premia for annual returns in the range of seven to ten percent, and
a standard deviation of annual returns between 13 percent and 20 percent.
We also sought parameters that produced a level of predictability in monthly
returns consistent with empirical experience. For example, Pontiff and Schall
(1998) report R-squared statistics of two to four percent in time-series re-
gressions of monthly portfolio returns against book-to-market, dividend yield,
and interest rate variables. Regressions of returns on their true conditional
expectations provide an upper bound on the forecast ability of returns using
such variables. Although we do not use excess kurtosis to calibrate the model,
the parameterization nevertheless exhibits excess kurtosis relative to the
normal distribution of approximately the order of magnitude observed (Camp-
bell et al. (1997) report an excess kurtosis of 5.77 (4.33) for the equal-
weighted (value-weighted) portfolio for the period 1962-1994).

Some other details of the simulations regarding the approximations used
to compute the infinite sums and integrals appearing in our pricing equa-
tions are described in Appendix C.

C. Results

We begin our examination of the calibrated model by comparing the model
numerically to valuations that ignore the dynamic evolution of the firm’s
assets. This provides some information about the economic significance of
valuation errors that would come from treating the systematic risk as fixed,
as do most applied valuation procedures. We then evaluate the model’s dy-
namic and cross-sectional properties through simulation.

C.1. Changing Risk

To evaluate the quantitative importance of ignoring the dynamics of the
firm’s systematic risk, in Figure 1 we plot, for different values of beta and
book-to-market, the difference between the expected return on the firm and
the expected return that will be earned if all future projects have the same
beta. Thus, the plot shows the error a researcher makes if he incorrectly
assumes that the future beta of the firm is given by its current beta. The
short interest rate is assumed to be seven percent.
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Error

Figure 1. Error induced in expected returns by ignoring the dynamic evolution of the
firm’s risk. The (correct) annualized expected return (in percent) of a firm is calculated for a
given current value of beta (B(¢)). The annualized expected return is then recalculated holding
the book value of the firm’s assets fixed, and assuming the firm’s beta remains at the current
level forever (i.e., all future projects have the current beta). The correctly calculated expected
return is subtracted from the incorrect one and the result is plotted as a function of the current
beta and the correct book-to-market ratio. The short interest rate is assumed to be seven per-
cent. The empty horizontal box marks a difference of zero.

It is quite evident from the figure that, when the firm is mostly growth
options, the error in the expected return is increasing in the current beta. By
ascribing the low current beta to future growth as well, the riskiness of the
future assets the firm will acquire is understated—and the reverse holds at
higher beta. With high current systematic risk, the error falls with book-to-
market. Larger firms, where the growth component is a smaller fraction of
value, will be misvalued less dramatically by standard methods. The fact
that the error in the plot depends on book-to-market suggests that this vari-
able will have additional explanatory power if a misspecified model that
assumes a constant systematic risk is used to predict expected returns. The
error in the misspecified model will also depend on interest rates, suggest-
ing they too will show explanatory power.

C.2. Time-Series Simulation

Table III displays the results of several time-series regressions using the
equally weighted portfolio of 50 firms generated in the simulation described
in subsection B. These illustrate that conditional expected returns exhibit a
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Table IIT

Time-Series Regressions Using Simulated Aggregate Stock Portfolio
Estimated coefficients are reported from regressions using simulated expected returns (E,(R,, ))
and excess expected returns (E,(R,, ;) — r(¢)) of an equally weighted portfolio of 50 firms for
20,000 months as the dependent variable. The independent variables are book-to-market (b(¢)/
P(t)), the risk-free rate (r(¢)), one-period lagged expected returns (E,_;(R,)), and the current
realized return (R,). The final line in the table uses the model’s pricing kernel as the dependent
variable. The last column in the table lists the R? coefficient of each regression.

Dep. Variable Intercept b(t)/P(t) r(t) E, (R, R, R?
E,(R,.,) —0.0387 0.0638 — — — 0.6845
E,(R,,;) —r() 0.0011 0.0067 — — — 0.4523
E,(R,,1) —0.0044 0.0147 0.8601 — — 0.9992
E,(R,,;) —r(t) —0.0044 0.0147 —0.1399 — — 0.9543
E,(R;.,) 0.0007 — — 0.9463 — 0.8956
E,R,.,) 0.0128 — — — —0.0228 0.0206
z(t)/z(t — 1) 1.084 — — — —3.985 0.1454

number of behaviors that have been documented empirically. The #-statistics
(not reported) in these regressions are extremely high, suggesting that we
are close to the population moments.

The first two regressions in the table show that the conditional expected
returns and excess expected returns are positively related in time series to
book-to-market, as is suggested by equation (44), and as is shown empiri-
cally by Kothari and Shanken (1997) and Pontiff and Schall (1998). Pontiff
and Schall report a coefficient of 0.0600 in a univariate regression of the
equally weighted index return on book-to-market. This is quite similar in
magnitude to our coefficient of 0.0638. The third regression shows that al-
most all of the movement in expected returns can be explained with a linear
model using book-to-market and the interest rate. The fourth regression
shows that risk premia are negatively related to interest rates, as has been
shown empirically by, for example, Breen et al. (1989) and Ferson (1989).
The univariate regression on interest rates yields a positive slope. This is
because interest rates and book-to-market are correlated (correlation coeffi-
cient of 0.72): when rates rise, holding fixed the assets of the firm, market
value must fall relative to book. In multivariate regressions, however, it is
clear that interest rates are negatively related to risk premia. High interest
rates in our model lead the firm to accept only low-risk projects. Further,
interest rates are highly persistent. A firm facing high interest rates is un-
likely to have undertaken high-risk projects in the recent past, and is un-
likely to do so in the near future. Thus, both the cash flows from existing
projects and those from anticipated future projects have lower expected risk
and expected return. It is also the case in our model that lagged interest
rates explain aggregate risk premia. Regressing the risk premium against
lagged interest rates (not reported) produces negative coefficients beyond
the first lag. This intuition seems to be robust to alternative specifications
and parameterizations.
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The fifth and sixth regressions in Table III show that returns are posi-
tively related to past expected returns and negatively related to past real-
ized returns. This explains the model’s ability to capture contrarian and
momentum effects in returns. Jegadeesh and Titman (1993) and others show
that past returns predict future returns, but that the direction of these pre-
dictions depends on the horizon. Over short horizons contrarian strategies
generate returns superior to buy and hold. Over longer horizons, momentum
strategies perform well. Our model suggests an economic rationale for this.
In our model, conditional expected returns are positively autocorrelated be-
cause they depend on interest rates and on the systematic risk of the firm,
both of which are persistent. Yet conditional expected returns depend nega-
tively on realized past returns because the unanticipated component of past
returns conveys information about changes in interest rates and the relative
systematic risk of the firm’s assets. We examine the implications of this for
contrarian and momentum strategies in greater detail in Section C.4.

The final regression in Table III gives some indication of how much the
standard CAPM explains in our model. Per se, nothing in our theory implies
that the market portfolio is mean-variance efficient. From an empirical stand-
point it is nevertheless interesting to know how well the static CAPM prices
assets in our model. This question is addressed in detail in the next section,
however the last regression does provide some preliminary evidence. It shows
that about 15 percent of the variation in the equally weighted market port-
folio can be explained by variation in the pricing kernel, which can be rep-
resented by a minimum-variance portfolio in this model. The correlation
between the kernel and the market return is —0.38. These numbers indicate
that the single beta market model might have at least some explanatory
power in this context.

C.3. Cross-Sectional Simulations

Next we turn to whether the cross-sectional predictions of our model are
consistent with the linear regression results widely reported in the litera-
ture on the cross section of expected returns. We perform these regression
tests using data simulated with our model.

Each simulated data set consists of 2,000 firms for 600 months. As before,
we then drop the first 200 observations leaving a sample period in each
simulation of 400 months (333 years). This is similar in size to the data sets
used in a number of existing empirical studies.!* For each simulation we
then replicate four regression tests reported in Fama and French (1992,
Table III). For each of the 400 months we run cross-sectional regressions of
the monthly realized return against: (1) the firm’s CAPM beta (as defined by
Fama and French—hereafter, FF), (2) the log of market value of the firm,
(3) the log of book-to-market and the log of market value, and (4) the CAPM
beta and the log of market value, and then we calculate the time-series

14 For example, Fama and French (1992) use an average of 2,267 firms over 318 months.
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averages and ¢-statistics of the coefficients. The CAPM beta is calculated
using the procedure outlined in FF.15 Firms with zero book values are as-
signed a book value of 10”816 The only other point of departure between our
simulations and the empirical procedure followed by FF is that they update
their independent variables annually, but we update ours each month, since
the full information set is observable in our model.1?

We then repeat the simulation, and accompanying regression tests, 1,422
times. The relative frequencies estimate the distributions of the coefficients
and ¢-statistics, given that our model holds with the parameters in Table I.
We then investigate where the coefficients reported by FF fall within this
distribution.

We begin with the first regression result reported in Fama and French
(1992), Table III—the univariate regression of return on CAPM (or market)
beta. Figure 2 shows two things. First, the population value of the regres-
sion coefficient in our model is clearly of the same sign as the empirical
result. Second, the magnitude of the coefficient and #-statistic that FF ob-
tained is well within the body of the frequency distribution from the simu-
lations. This is confirmed by the summary statistics in Table IV. The last
column reports the fraction of observations that deviate from the mean sim-
ulated outcome by more than the FF coefficient does. This corresponds to
the p-value of the FF outcome when our model is taken to be the null. This
value is large for both the coefficient (45.9 percent) and the ¢-statistic (35.8
percent). The other columns in the table report other characteristics of the
distribution. Column 4 shows the frequency of positive coefficients (90 per-
cent). The fifth column shows the frequency of deviations from zero of greater
than the deviation of the FF observation from zero. In both cases this value
is high (79.8 percent and 86.6 percent). Thus, the empirical outcomes could
have occurred with high probability were the actual data generated by the
calibrated model.

Figure 3 provides similar plots for the univariate regression of return on
the logarithm of market value. Again, the model produces coefficients that
reproduce the empirical results in terms of sign. Although the ¢-statistic is
well within the body of the frequency distribution, the magnitude of the
reward to market value is large relative to the coefficients typically pro-
duced by the parameterized model. Panel B of Table IV confirms this.

Figure 4 and Panel C of Table IV report on the multivariate regression of
return on the logarithm of market value and book-to-market. Here the mod-
el’s outcomes appear to conform closely to the empirical results. The table
shows that the mean outcomes in the simulations are very close, in magni-

15 The prebetas are calculated from the previous 60 monthly returns, so we use part of the
first 200 observations to calculate the prebetas for the first 60 months of the sample. Details
are in Appendix C.

16 Simply removing the zero observations, the usual procedure in the cross-sectional litera-
ture, produces qualitatively similar results.

17 Annual updating provides qualitatively similar results.
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Figure 2. Frequency distribution of the coefficients and ¢-statistics of the Fama-
Macbeth regression of return on beta. Panel A (B) is a histogram of the realized coefficients
(t-statistics) over 1,422 simulations of univariate cross-sectional regressions of return on the
CAPM beta. The coefficients (Panel A) are measured in percentage. The arrow marks the co-

The Journal of Finance

A: Coefficient
FF

“{ lm’] l“lm [
2

-0.38 0.15 0.68 I.
Coefficient

B: t—Statistic

FF

kbl .|I|*lihm! l llllml.l[.u
2.5 3.5 4.6

-1.8 -0.76 0.31 1.4
t-statistic

efficient (¢-statistic) obtained by Fama and French (1992, Table III).



Optimal Investment, Growth Options, and Security Returns 1581

Table IV

Summary Statistics of Cross-Sectional Regressions
over 400 Months and 2,000 Firms

Summary statistics are listed for the coefficient (Coef.) and the ¢-statistic of Fama and French
(FF) regressions across 1,422 independent simulations. The dependent variable is the realized
return. Independent variables are market beta (8), log of market value (P(¢)), and log of book
to market (b(¢)/P(¢)). The FF column gives the empirical results obtained by Fama and French
(1992, Table III), using the actual returns of 2,267 firms over 318 months. Columns 2 and 3 list
means and standard deviations of the coefficient and the ¢-statistic over the simulations. The
remaining columns give occurrence frequencies (in percentage) from the distribution of simu-
lated outcomes. Column 4 gives the fraction of simulations for which the simulated coefficient
(t-statistic) is greater than zero. Column 5 gives the fraction of simulations for which the co-
efficient (z-statistic) deviates from zero by more than the FF coefficient (¢-statistic). Column 6
gives the fraction of simulations for which the simulated coefficient (¢-statistic) deviates from
the mean (column 2) by more than the FF coefficient (¢-statistic) deviates from the mean. The
rows labeled “Joint” provide these frequencies for both coefficients jointly. The measure of
deviation in this case is the square root of the sum of the squared deviations, where coefficients
are standardized by dividing by the standard deviations (column 3).

(1) (2) (3) (4) (5) (6)
FF Mean Std. Dev. Plx > 0] P[|x| > |FF|] P[|x — x| > |FF — x|]

Panel A: Univariate Regression on

B
Coef. 0.15 0.377 0.295 90.01 79.82 44.94
t-stat. 0.46 1.542 1.166 90.01 86.64 35.79
Panel B: Univariate Regression on log[P(¢)]
log[P(t)]
Coef. -0.15 —0.035 0.048 20.96 0.77 1.82
t-stat. —2.58 —0.956 1.172 20.96 7.95 15.68
Panel C: Multivariate Regression on log[P(¢)] and log[b(¢)/P(t)]
log[P(¢)]
Coef. -0.11 —0.093 0.071 5.63 36.85 82.77
t-stat. -1.99 —2.237 1.449 5.63 54.92 87.69
log[b(2)/P(¢)]
Coef. 0.35 0.393 0.422 98.95 41.49 93.46
t-stat. 4.44 2.641 1.050 98.95 4.92 8.93
Joint
Coef. 39.24 94.51
t-stat. 12.73 22.22
Panel D: Multivariate Regression on 8 and log[P(¢)]
B
Coef. -0.37 0.642 0.312 98.87 80.80 0.14
t-stat. -1.21 2.273 0.942 98.87 87.34 0.00
log[P(t)]
Coef. -0.17 0.053 0.057 83.12 2.39 0.21
t-stat. -3.41 1.001 1.041 83.12 1.20 0.00
Joint
Coef. 23.91 0.07

t-stat. 25.46 0.00
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Figure 3. Frequency distribution of the coefficients and ¢-statistics of the Fama-
Macbeth regression of return on market value. Panel A (B) is a histogram of the realized
coefficients (¢-statistics) over 1,422 simulations of univariate cross-sectional regressions of re-
turn on log market value. To enhance readability, one outlying coefficient at —0.71 percent in
Panel A is not shown. The coefficients (Panel A) are measured in percentage. The arrow marks
the coefficient (¢-statistic) obtained by Fama and French (1992, Table III).
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Figure 4. Frequency distribution of the coefficients and #-statistics of the Fama-Macbeth regression of return on market value
and book-to-market. The left (right) panel is a histogram of the realized coefficients (¢-statistics) over 1,422 simulations of multivariate
cross-sectional regressions of return on log market value and log book-to-market. Both histograms are projected onto a plane to form the shadow
plot above each histogram. The shadow plot is a contour plot where the darkness of a region indicates its height. To enhance readability, Panel
A does not show one outlying observation which has a book-to-market coefficient of 1.88 percent and market value coefficient of —0.91 percent.
The other outliers determine the plot ranges. The coefficients (Panel A) are measured in percentage. The arrow marks the coefficients
(t-statistics) obtained by Fama and French (1992, Table III).
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tude and in sign, to the coefficients Fama and French produce. Figure 4
shows that the coefficients are in the center of the distribution. The results
for the ¢-statistics are less definitive, but based on the joint distribution
from the model, the FF estimates have a p-value of 22.22 percent, and so are
well within the range of probable outcomes.

The final regression, of return on both market value and market beta (see
Figure 5 and Table IV), is one case where the model’s outcomes seem clearly
at odds with FF. When the log of market value is included in the regression
along with market beta, the sign of the coefficient on market beta becomes
negative (though insignificant) in the FF regressions. In our model, curi-
ously, it is the reverse—the sign on market value becomes positive (though,
based on the mean ¢-statistic, “insignificant”). Further, the FF outcomes are
well outside the body of the frequency distribution generated by the simu-
lations. Thus, although our model captures quite well the risk premia at-
tributable to each variable independently, and also replicates the joint behavior
of market value and book-to-market in the cross section, it has difficulty in
matching the joint distribution of market beta and market value, at least for
the particular parameterization that we use.

As a final point, it is worth noting the range of outcomes that may occur
with significant probability in our model. The regression statistics resulting
from the simulated data sets of length similar to historical experience are
still quite volatile. Yet the model is calibrated with levels of volatility sug-
gested by matching the moments of large portfolios. In light of this, it should
not be surprising, perhaps, that such cross-sectional results often fail to
prove empirically robust.

C.4. The Performance of Momentum and Contrarian Strategies

The role of asset turnover in the relationship between current returns and
past returns is discussed in Section III. In Table III we see that in aggregate
portfolios there is positive dependence on past expected returns and nega-
tive dependence on past realized returns. This suggests that contrarian and
momentum strategies will be profitable at different horizons. In this section
we evaluate this by simulation.

As Jegadeesh and Titman (1993) and Conrad and Kaul (1998) point out, in
a world with no predictability in returns, but with cross-sectional differences
in expected return due to risk, momentum strategies, which buy winners
and sell losers, should perform well. Past returns estimate expected returns,
so momentum strategies will tend to be long in higher expected return
securities.

Consider, then, the effect of introducing asset turnover of the sort in our
model. All firms are ex ante identical. All cross-sectional variation in ex-
pected returns arises endogenously as projects are accepted or lost. The ex-
pected return of the firm then evolves slowly as old projects die and are
replaced with new ones. At time horizons that are comparable to the average
life of a project, the momentum strategy is likely to be profitable for the
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Figure 5. Frequency distribution of the coefficients and #-statistics of the Fama-Macbeth regression of return on market value
and beta. The left (right) panel is a histogram of the realized coefficients (¢-statistics) over 1,422 simulations of multivariate cross-sectional
regressions of return on log market value and CAPM beta. Both histograms are projected into a plane to form the shadow plot above each
histogram. The shadow plot is a contour plot where the darkness of a region indicates its height. To enhance readability, Panel A does not show
an outlying observation that has a market value coefficient of 0.48 percent and beta coefficient of 3.37 percent. The other outliers determine the
plot ranges. The coefficients (Panel A) are measured in percentage. The arrow marks the coefficients (¢-statistics) obtained by Fama and French
(1992, Table III).
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same reason noted above—past returns are a measure of expected returns,
which do not change much over such horizons. As is evident from Table IIT
expected returns are highly persistent over short horizons. As the horizon
lengthens, however, the probability that the projects in the earlier horizon
will be around in the following horizons decreases, and this should lower the
expected profits from momentum strategies.

At very short horizons the informational effect of a change in the firm’s
assets will be more important. In cross section, firms that have experienced
the largest price increases are likely to be those firms that have found a low
risk project. The net effect of taking on such projects is to reduce the overall
riskiness of the firm, thus lowering the expected return. Similarly, the set of
firms with the largest price decreases will contain a disproportionate num-
ber of firms that have lost low risk projects. In this case the net effect of
losing these projects is to increase overall firm riskiness leading to higher
returns. This reasoning suggests that contrarian strategies will be profit-
able, but only over shorter horizons. Since the information associated with
asset evolution is reflected immediately in prices, the importance of this
effect is diminished as the horizon lengthens and the return associated with
the period in which the change occurs becomes a progressively smaller com-
ponent of the overall horizon return.

To understand the relative importance of the above effects in our model we
examine the performance, in simulation, of momentum strategies at 1-, 3-,
6-, and 9-month horizons and at 1-, 2-, 3-, 4-, 5-, 10-, 20-, and 30-year hori-
zons. In each simulation we drop the first 200 months, leaving a data set
consisting of 2,400 months and 500 firms. The realized return over each
horizon is then calculated by multiplying together the gross realized return
of each stock over the months that make up the horizon, denoted H. Firms
are then sorted by this horizon return and equally weighted portfolios are
formed out of the top 10 percent (high portfolio) and bottom 10 percent (low
portfolio). The gross return of both of these portfolios over the following
horizon is then calculated and expressed on an annual basis by taking the
12/H th power. The annualized payoff of the zero cost momentum strategy of
investing $100 in the high portfolio and financing this by shorting the low
portfolio is calculated by subtracting the annual gross return of the low
portfolio from the high portfolio and multiplying by 100. For each horizon
the average performance of the strategy over the whole simulation is calcu-
lated by averaging the annualized payoff over the (2400/H) — 1 investment
periods in the simulation. This is then repeated over 284 independent sim-
ulations. The overall mean performance of the momentum strategy at each
horizon interval is plotted in Figure 6.

As expected, the momentum strategy yields negative payoffs at very short
horizons, namely one, three, and six months. The payoff is increasing in H,
so by nine months it is essentially zero. It becomes positive by the one-year
horizon and continues to increase until the five-year horizon, after which it
steadily declines. The fact that the payoff from the strategy reaches a max-
imum at approximately five years accords well with the expected life of a
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Figure 6. Mean payoffs of momentum strategy at different horizons. Each point plots
the mean annualized payoff over 284 independent simulations of investing $100 in the portfolio
consisting of the top 10 percent performers over the previous horizon and shorting the bottom
10 percent. Payoffs are annualized. The left vertical axes marks the annualized payoff. The
curve plots the fraction of projects that are expected to survive over each horizon. The right
vertical axes marks this survival fraction.

project. To see this, the project survival probability (as a function of the
horizon) is plotted on the same figure. From this curve one can infer that
about one-half of the projects last five years or longer.1®

The figure confirms that our model can qualitatively reproduce the pat-
terns widely reported in the literature of contrarian profits at shorter hori-
zons and momentum profits at intermediate horizons. On a quantitative
level, however, the model clearly has shortcomings. For one thing, the hori-
zon with the maximum momentum strategy return is considerably shorter
in the data—the horizon payouts usually reach a maximum between nine
months and one year. (See Jegadeesh and Titman (1993), Table 1.) Similarly,
empirical studies report that the contrarian strategies are only profitable at
horizons of about three months or less. (See Conrad and Kaul (1998),
Table 1.) These horizons are determined in our model largely by the rate of
turnover of the firms’ assets. By decreasing the average life of a project (by
increasing the depreciation rate), it would be possible to shorten them. How-
ever, even if further experimentation were to reveal that a higher depreci-

18 The variability of these results across simulations is much larger for the one-month case.
This appears to be due to the high volatility of the stocks this strategy selects (firms with few
assets, where the information effects of acquiring or losing projects are most pronounced). This
volatility is further exaggerated by our method of annualizing the payoff. To be sure that the
outcome reported above was robust, we ran 2,004 additional simulations over a shorter time
interval. The mean payoff obtained was very close, in sign and magnitude, to the one-month
payoff in Figure 6.
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ation rate could produce time horizons more in line with what is actually
observed, this would still leave open the question of why the required de-
preciation rate is higher than that suggested by the macroeconomic data
used to calibrate the model initially.

On the positive side, the model does seem to generate profits of the same
order of magnitude as that previously observed. For example, Conrad and
Kaul (1998, Table 1), find that the payoff to the momentum strategy reaches
a maximum at about one year and ranges between 0.2 and 0.7, depending on
the sample period. Although our maximum payoff occurs at the five-year
horizon, the size of the (annualized) profits of 0.4 are within the range that
Conrad and Kaul report.1®

V. Conclusions

The model developed in this paper describes investment decision making by
individual firms. The valuation of the cash flows that result from these deci-
sions, along with the firm’s options to grow in the future, leads to dynamics for
conditional expected returns. Our model of expected returns helps explain a
number of the important features of the cross-sectional and time-series be-
havior of stock returns, and the biases that might be induced by a model that
ignores these dynamics. Within the model, firms’ assets turn over as new in-
vestment opportunities with differing risk characteristics arrive, existing as-
sets expire, interest rates change, and firms respond optimally through their
investment choices. In the expression for conditional expected returns that we
derive, book-to-market appears explicitly, and changes in this variable sum-
marize the effects of movements in the systematic risk of the firm due to asset
turnover. Our simulation results show that the model can reproduce simulta-
neously several important cross-sectional and time-series behaviors that re-
searchers have documented for stock returns, including the explanatory power
of book-to-market, market value, and interest rates, and the success of con-
trarian and momentum strategies at different horizons.

Appendix A. Derivation of the Model with Stochastic Investment

Here we derive closed-form expressions for the value and expected return on
the firm for a generalized version of the model presented in the text. We allow
the investment and scale of the cash flows to evolve as a stochastic process:

I(t +1) = I(t)exp[u; — 307 + ord (¢ + 1)]. (A1)

The members of the sequence {/(#)};=, are serially independent and nor-
mally distributed with mean zero and variance one.

19 Direct comparisons to other numbers in their table as well as to other studies are uninfor-
mative because, since the portfolios require zero net investment, the profits cannot be inter-
preted as returns. This implies that a fair comparison of magnitudes must ensure that such
features as how the returns are compounded and the time period over which the profits are
standardized are consistent.
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The value of I(¢) determines the cost of the project arriving at ¢. The cash
flows from this project at some future date s also depend on I(¢), as in
equation (1) in the text where I(¢) = I. We allow the investment process to
have systematic risk. Let B,;, = o,0,cov({(¢),v(t)), and B,; = o, 07cov({(t),£(2)).

Finally, to ensure that the value of future growth opportunities is finite,
we must require that

Bri
1—-«

T > p — Bai — and o, > 0. (A2)

This inequality is the equivalent of the assumption in the Gordon growth
model that the firm’s growth rate not exceed its discount rate. Here, the
limiting, risk-adjusted discount rate must exceed the growth rate of the in-
vestment process, I(z).

A. Valuation

Prorosition A.1: The time-t value of the cash flows of a project that is alive
and arrived at date j < t is

Vi(t) = I(j)exp[C - B;] i 7 OB[s — £, (1))

= 1(j)exp[C — B,1D[r(¢)], (A3)

where D[r(t)] is defined in equation (15) and B[-,-] is defined in equa-
tion (5).

Proof: For a project that is currently alive, consider a particular term
E,[(2(s)/(2(t))C;(s) x;(s)] in the infinite sum in equation (11) defining V().
This equals

z(s—1) z(s)
EH 20) Hz(s -1 Cf'(s)’“(s)}]

-9 z(s—l)} { z(s) ' H
o 2 e S o

= ¢ 01(j)exp[C - B,-]Et[% e““}

= W(S_t)I(j)eXp[é - BJ]B[S - t’r(t)]5 (A4)

where

_ = @ — z(s—l) —r(s—)}
Bls t,r(t)]—Et[z(t)}—Et[ ey e 1

is the price at time ¢ of a riskless pure discount bond (with face value 1) that
matures in s — ¢ periods. In equation (A4), the first equality follows from the
law of iterated expectations and from two other facts: (i) x;(s) is independent



1590 The Journal of Finance

of all other random variables in the model, and (ii) E,[ x;(s)|x;(t) = 1] =
778 The second equality follows from the lognormality of the cash flows
and the pricing kernel, which yields

Esl{ 205) cj(s)} = exp[r(s — D]I(j)exp[C — B;]. (A5)
z(s—1)

Substituting each term in equation (A4) back into equation (11) gives equa-
tion (A3). [ |

The value of assets in place is then the sum of the values of the individual
projects times the indicator function for whether they are currently alive:

t Vi) x,(t) = b(t)eCPOD[r(t)], (A6)
j=0
where
I R (0 PO
B(t) = —In 20 e , (A7)
and
b(t) = ;)I(.j)/\/j(t)- (A8)

Next we must compute the value of growth options. As in Section II.B of
the text, conditioning on S, take a particular term in the infinite sum, V*(¢),

given in equation (12), and using equation (A3) we get
z(s)

Et TN max[Vs(s) - I(S),O] Bs
z(t)

= Et{@ I(s)max [exp[C_’ - Bs] i 7*Blk,r(s)] — 1,0]
2(t) E=1

.

- Et{“—s)us)max {exp[é B 7 (BlEr(s)] - B[k,r;.h,o] Bs}
z(t) h=1 °
= exp[C — B;] i WkEt{ZE—j; max|[I(s)B[k,r(s)] — I(s)B[k,rj 1,0] Bs}
=1
= I(¢)exp[pur(s — t)]exp[C — B]
® z(s) I(s) I(s) ;
X k§=:1 wkEt{% maX[EtI(s) Blk,r(s)] — E1(s) B[k,rﬁs]70:| Bs}

= I0)explis(s ~ D]explC ~ ] 3 whT[r()s = 1.k 1. (A9
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The value of the growth opportunity at s, conditional on B, is given by a
portfolio of European bond options which expire at s. The value of each
option is implicitly defined in equation (A9) to be J[r(¢),s — t,k,r; ]. Each
option delivers I(s)/E,[I(s)] pure discount bonds with remaining maturity %
and each has a strike price (for each bond) of B[k, 7 ]. Note that because the
value of I(s) only becomes known at time s, the number of bonds that the
option delivers is stochastic.

ProposiTion A.2: The value at t, given the spot interest rate r(t), of a Euro-

pean option on I1(s)/E,[I(s)] pure discount bonds with k periods to maturity,
that expires at date s and has strike price (I(s)/E,[I(s)])B(k,rj ) is

J[r(t),s - t’k;rgs] = B[S —t+ k’r(t)]Gl(S - tyk)N(gil(r(t)’S - t’kyﬁs))
— Blk,rj 1B[s — t,r(t)]Ga(s — t)N(dyo(r(t),s — t,k, By)),

(A10)

where B[-,-] is as in equation (5), N(-) is the standard normal distribution
function, and where G(-), Gy(-), d ( ), and dy(-) are functions defined in
Lemma B.8 in Appendix B.

Proof: From equation (A9) we have that

Jlr(t),s tkr]-&{“” [I()Bw r6 - 22 Bk, ]0]3}
°? s () E(s) E ) DT ')
(A11)
so the result follows directly from Lemma B.8 in Appendix B. |

The present value of all growth opportunities is then the sum of these
option values across all future dates s integrated over all values of 3,:

[e’e}

V) =1t)eC S explus(s —t)] i ﬂkf J[r(t),s — t,k,rj le P dFp(B,)
k=1 B

s=t+1

=I(t)eCJ*[r(2)]. (A12)

The following lemma shows that the infinite sums in this expression con-
verge under our assumptions, which in turn justifies reversing the order of
integration and summation.

LEmMmA A.1: The infinite sum in equation (A12) converges.
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Proof: The following proof shows that under equation (A2) the sum in
equation (A12) converges. First, note from Proposition A.2 that

Bri

J[r(t),s —t,k,rg]= Kexp[—( - + )( — t)}B[s —t+k,r(t) (A13)

for K = exp[B,;/(1 — k)?].

For some m >0, let o; = u; — B,; — [B;/(1 — k)], e =(r,, — o;)/m and y_=
r,, — €. Equation (A2) implies that ¢ > 0 and y_ > f[i;. Pick m large enough
the ensure that y_ = 0. Since, under the Vasicek model, yields converge to r.,
at long maturities, there exists an N, such that for all n = N_, B[n,r(¢)] =
exp[—y. n]. Using (A13), this means that equation (A12) is bounded by

KS explags— 0] 3 ot [ Bt~ ¢+ rwye ara,
k=1 B

s=t+1

+K i explir(s —t)] f: ij exp[—y.(s — t + k)]e P dF(B,) (A14)
s=N.+1 k=1 B

- K 2 expl us(s — 0)] 2 7" Bls — t + k,r(1)E[e ]

FK S explig(s— 0] S, wtexpl-y.s — t + BIE[e®]  (AL5)
s=N.+1 k=1
N,
=K E exp[ fiz(s — t)]E[e #: Z Bls —t +k,r(t)]

+K 2 exp[ (s —t) —y.(s —t)|E[e ] 2 (mexp[—y. )" (A16)

s=N.+1

In the final expression above, the first term is finite because the consol price
(Xf21B[s — t + k,r(t)]) is finite in the Vasicek model. The second term above
is finite because y. > f[i; by equation (A2), and because (7 exp[—y.]) < 1.
Similar arguments imply that J; is finite as well. u

Combining the value of assets in place, equation (A6), and the value of
growth options, equation (A12), gives the value of the firm:

P(t) = b(t)eCPOD[r(£)] + I(t)eCT* [r(2)]. (A17)

B. Derivation of the Expected Return of the Firm

To evaluate the conditional expected return, we must obtain expressions
for the conditional expectations of next period’s cash flow, of the value next
period of existing projects, and of the value of growth opportunities.
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We begin with the cash flow.

Et|: ;}Cj(t + D x;(t + 1)] =7 ;}I(j)eXp[é]Xj(t)

7 exp(C)b(t). (A18)

We can compute the expectation at ¢ of the value of ongoing projects next
period as

Et{ ;Vj(t +1) x; ()Y (¢ + 1)] = w{ ;)I(j)xj(t)exp[é - ﬁj]}De[r(t)]
= 7eCPOR @)D, [r(2)], (A19)

where D, [r(¢)] is defined in equation (33). Under the Vasicek model,

i 1
D, [r()] = kglﬂ-k exp[—al(k)[xr(t) +A—-w)F]—y¢(k) + 2 a%(k)crf]. (A20)

Finally, we calculate the expectation, at time ¢, of the value of growth
opportunities at time ¢ + 1:

E,[V*(t+1)+max[V, (¢t +1)—I(t+1),0]]

& z(s)
= s%lEt[Z(t ) max|[V,(s) — I(s),O]]. (A21)

Note that in the summation on the right-hand side, at s = ¢ + 1,
z(s)/z(t + 1) = 1, so that it includes the expected NPV of the potential
investment at time ¢ + 1. Now consider a single term in this summa-
tion. Conditioning on B,, and substituting from equation (A3) for V,(s), we

have
5]

max[I(s)B[k,r(s)] — I(s)B[k,rg; ],0]

Et{z(j(i)l) max(1(s)e* g‘l mBl el 9.0

z(s)
z(t+1)

;)
.|

= I(t)eCPer16=0 S 7k [r(t),s — t,k,rj]. (A22)
k=1

0 _
> ﬂkecBSEt{
=1

— I(t)eéiﬁse’”(s*”
& z(s) I(s)
< Et{zu F1) E[1s)]

max|[B[k,r(s)] — Blk,rz 1,0]
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The first equality exploits the arguments that lead to equation (25). The
second relies on the relation between I(s) and E,[I(s)]. The final equality
implicitly defines J,[r(¢),s — t,k,r; ]. Taking expectations across possible
values of B, and summing across future dates, s, gives

E,[V*(t +1) + max[V,,,(t + 1) — I(t + 1),0]]

[o2]

=I1(t)e® X explps(s — )] i vrkf J[r(t),s —t,k,Bsle P dF(B,)
1 k=1 B

s=t+

= I(t)eCJ [r(t)]. (A23)

Under the Vasicek model we can compute o/,[-] explicitly. Lemma B.10 in
Appendix B can be applied directly to yield the following proposition.

ProrosITION A.3:

J[r(t),s —t,k,r;]=e"V[B[s —t+k,r(t)H:(s — t, )N(di(r(t),s — t,k,B,))
— Blk,r; |B[s — t,r(¢)]Hy(s — t)
X N(d3(r(t),s — t,k,Bs))] (A24)

where B[-,-] is defined in equation (5), N(-) is the cumulative standard nor-
mal distribution function, and where H{(-), Hy(-), di(-), and d5(-) are func-

tions defined in Lemma B.10. By setting B,; = B,, = 0 in these functions,
J [r(t),s — t,k,rs | for the special case when I(t) is constant can be obtained.

5

(A25)

Proof: Equation (A22) implicitly defines J, [r(t),s — ¢,k,r; | to be

z(s) I(s)
z2(t+1) E,[I(s)]

Je[r(t)ys - tak7rgs] = Et{ maX[B[k,r(s)] - B[kargs]’o]

So J,[r(t),s — t,k,rz ] corresponds to the time ¢ expectation of the price at
t + 1 of a call option that matures at s, which, upon exercise, delivers
I(s)/(E,[I(s)]) riskless discount bonds maturing at time s + &, and has strike
price (I(s)/(E,[1(s)]))B[k,rg ] (i.e., you have to pay B[k,r; | for each bond).
The result then follows by applying Lemma B.10 in Appendix B. |

Combining equations (A23), (A19), and (A18) yields the following expres-
sion for the current expectation of the cum-dividend value of the firm at ¢ + 1:

7eCPOL D, [r(t)] + meChb(t) + I(¢)eCT [r ()] (A26)
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ProrositTioNn A.4: The following two expressions describe the expected return
earned by holding a proportional claim on the firm’s assets from t to t + 1:

T %[De[r(t)]e‘“” + 1]+ J7[r(2)]

% Dlr(t)le " + J*[r(t)]

E,[1+ R, 4] = (A27)

and

E,[1+R,;.,]= M + Wec[@]

D(r(2)) P(t)

WDe(r(t))]eé[ I(t)]' (A28)

+ [Je*[r(t)]—J*[r(t)] D(rt) P)

The comparable expressions for the special case when I1(t) = I Ut are obtained
by setting 1(t) = I in the above expressions.

Proof: Dividing equation (A26) by the current price at ¢ as given in equa-
tion (A17) yields

7eC PO ()D,[r(t)] + meCb(t) + 1(£)eCI [r(t)]

EJ1+R,.]= - _
L+ Bial b(t)eCBOD[r(t)] + I(£)eCT*[r(2)]

(A29)

The above equation can be rewritten as equation (A27). The expression for
the value of the firm in equation (A17) implies that

P(t) — I(t)eCT*[r(t)]

b0 = ]

(A30)
Substituting this in equation (A29), gives equation (A28). u

Appendix B. Bond and Bond Option Prices in the Vasicek Model

The prices of riskless pure discount bonds in the Vasicek model can be
expressed using the following recursively defined functions, which depend
on maturity but are constant across interest rates. For n > 0, define

ai(n +1) = ay(n) + az(n);

$1(n +1) = ¢1(n) + da(n) + 307;

as(n + 1) = kay(n);
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b2(n +1) = kdo(n) + (1 - K7

of(n +1) = af(n) + 03 (n) + 2012(n) + 0;

o3 (n+1) = *af(n) + o7;

o12(n + 1) = koa(n) + kod(n) + B,,. (B1)

Additionally, the following useful random variables can be recursively
defined:

6.(t,n +1) = kb,(¢,n) + 0. &(t +n + 1)
S,(t,n+1)=6,(t,n)+6,.(t,n) +o,v(t +n+1), (B2)

where {v(¢),t > 0} and {&¢(¢),t > 0} are the shocks to the pricing kernel
and the interest rate processes respectively (as defined in equations (3)
and (4)).

To complete the preceding definitions, impose the boundary conditions that
a5(0) = 1 and ;(0) = $1(0) = ¢5(0) = 0(0) = 03(0) = 745(0) = §,(£,0) =
8,(t,0) = 0. We denote, for n > 0, the function

$(n) = ¢(n) — 3ot (n). (B3)

This function is used in the bond pricing formula, equation (B5).
Using these definitions, the following series of lemmas derives bond and
bond option prices in the Vasicek model.

Lemma B.1: Let x and y be jointly normally distributed with Ex = u,,

Ey = u,, var(x) = o2, var(y) = a'yz, and cov(x,y) = o,,. Then, for any con-
stants A and K,

E[exp(y)max[A exp(x) — K,O]]

InA - InK+ (u, +o2+ axy)]

Oy

1
= Aexp [,ux + o, + 5 (02 + 20, + (ryQ)]N{

InA—-—InK+ (u, + a’xy)} (B4)

Ox

1,
— Kexp [.Ly+§0'y N

where N(-) is the cumulative standard normal distribution function.
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Proof: First write y = u, + (ny/axz)(x — u,.) + €, where € is normally
distributed with Ee = 0, var(e) = 0,7 — (03 /0?), and cov(x,e) = 0 (imply-
ing, by normality, independence). Substituting this into the left-hand side
of equation (B4) and simplifying provides

x

E{exp [,uy + % (x — py) + e]max[A exp[x] — K,O]]

ol ol Oy

=exp|pm, + 5 9g2 E|exp P (x — u,) |max[A exp(x) — K,0]
[ of 0l Oy Oy

=exp|p, + 5 T 92 gz M E|exp e max[A exp(x) — K,0] (B5)

o2 o2+ 20y, InA-InK+ (u, + 02+ Oyy)
= exp ,uy-i-? Aexp|u, + 2 N .

InA—InK+ (u, + o)
Oy

which is the right-hand side of equation (B4). The last step follows from a
standard result on truncated means of lognormal distributions. (See, e.g.,
Ingersoll (1987), pp. 14-15.) u

LemMa B.2. Let {z(t),t = 0} and {r(t),t = 0} evolve as in equations (3) and
(4). Then, for n > 0,

Inz(¢t+n)=Inz(t) — ay(n)r(t) — ¢1(n) — 8,(¢,n) (B6)
and
r(t+n) = ay(n)r(t) + ¢ao(n) + 8.(¢,n), (B7)

where 8,(t,n) and 8,(t,n) are random variables that are jointly normally dis-
tributed and that depend only on information that arrives from date t + 1
to date t + n. Moreover, ES (t,n) = ES,(t,n) = 0, var(8,(t,n)) = oi(n),
var(8,(t,n)) = oi(n), and cov(,(t,n),5,(t,n)) = oy5(n). The functions a;(-),
¢,(+), 2(-) for i = 1,2, and o,5(-) are recursively defined in equation (B1).

Proof: The proof is by induction. First write z(¢ + n + 1) in terms of
z(t + n) using equation (3). Do the same for r(¢ + n + 1) and r(¢ + n) using
equation (4). Then use the induction hypothesis to reexpress z(¢ + n) and
r(t + n). The lemma follows from applying equation (B1) to the resulting
expressions. u
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LEmMmA B.3 (BOND PRICES IN THE VASICEK MODEL): Suppose that the processes
{z(t)} and {r(t)} evolve as in equations (3) and (4). Then the price at time t of
a pure discount bond maturing on date t + n is given by Bln,r(t)] =
exp(—a,(n)r(t) — ¢ (n)) where y(n) = ¢p,(n) — 20(n) and other functions are
as defined in equation (B1).

Proof: The price at time ¢ of a riskless discount bond maturing at time n
is given by E,[z(¢ +n)/z(¢)]. Using Lemma B.2, this equals exp[—a;(n)r(t) —
¢1(n)]E, exp(—5,(t,n)). Since 8,(¢,n) is normally distributed with mean zero
and variance o(n), the result follows from the expression for the moment
generating function of the normal distribution. u

LeEMMA B.4 (MoORE VASICEK TRIVIA): The following relations hold in the Vasicek
model. For n > 0 and k > 0,

ai(n) —ay(n + k) = —ay(k)as(n) (B8)

and

g(n) = g(n + k) = —ar(k)pa(n) + 5ai (k)03 (n) + as(k)ors(n) — (k). (BY)

Proof: Note that

E[z(t+n+k)}_E[<z(t+n)>E (z(t+n+k)>] B10
! z(t) STz r\ z(t +n) (B10)

and that E, ,[z(¢t + n + k)/z(t + n)] equals exp(—a,(k)r(t + n) — ¢ (k)) from
Lemma B.3. Lemma 4 then follows from using expressions (B6) and (B7) for
r(t + n) and z(¢ + n), taking expectations and equating coefficients. |

Lemma B.5 (BOND OPTION PRICES): Suppose that z(t) and r(t) evolve as in equa-
tions (3) and (4). Then, the price at t of a call option that matures at t + n,
which has an exercise price of K and which, upon exercise, delivers a riskless
discount bond maturing at time t + n + k is given by

Bln + k,r(t)IN(di(n,k)) — KB[n,r(t)IN(dy(n,k)), (B11)

where B[-,-]is given in Lemma B.3, N(-) is the cumulative standard normal
distribution function, and where

InB[n + k,r(t)] — InB[n,r(t)] - InK + iai(k)of(n)

dl(n’ak) = al(k)o'z(n) ,

(B12)

da(n,k) = di(n, k) — ar(k) oz (n), (B13)

and a4(-) and o4(-) are as defined in equation (B1).
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Proof: The price of the option mentioned in Lemma B.5 equals

{z(t +n)

20 max[exp(—ay(R)r(t +n) — (k) — K,O]}. (B14)

Using the expressions for z(¢ + n) and r(¢ + n) given in equations (B6) and
(B7), the above expectation can be written as

exp[—a;(n)r(t) — ¢1(n)]
X Et[exp[—&z(t,n)]max[A[r(t),n,k]exp[—al(k)ér(t,n)] - K,O]], (B15)

where A[r(t),n,k] = exp[—a;(k)as(n)r(t) — ay(k)py(n) — ¥ (k)]. Lemma B.1
implies that equation (B15) equals

exp[—ai(n)r(t) — ¢1(n)]A[r(£),n, k]
X exp[3(of (n) + 2a1(k)o12(n) + ai (k)03 (n)IN(dy)

—exp[—a1(n)r(t) — ¢1(n)]K exp[307 (n)IN(d2), (B16)

with
- [InA[r(t),n,k] - lni{lz}gii(f’i)og(n) + oy (k) o15(n)] (B17)

and
dy = di — a1 (k) oa(n). (B18)

The term multiplying N(d,) in equation (B16) is B[n,r(¢)]. Lemma B.4 im-
plies that the term multiplying N(d,) in equation (B16) equals B[n + &,r(t)],
and that d; equals

[a1(n) — asy(n + R)]r(¢) + [¢(n) — ¢(n + k)] — InK + 3af (k)03 (n)
ay(k)oy(n) )

(B19)

Using the expression for bond prices in the Vasicek model, the above term is
seen to equal the equivalent term in the expression given in Lemma B.5.
This completes the proof. u

LeEmMa B.6: Let I(t), z(t), and r(t) evolve as in equations (A1), (3), and (4).
Let 2(¢) = I(t)z(t), cov({(¢),£(t)) = p,yy and cov({(t),v(t)) = p.;. Then, for
n>0,

In2(¢ +n)=1n2() — ay(n)r(t) — ¢1(n) — 8:(¢,n), (B20)
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where 6(t,n) and 8, (t,n), as in Lemma B.2, are jointly normally distributed
and depend only on information that arrives from date t + 1 to date t + n.
Moreover, ES.(t,n) = E5,.(t,n) = 0, var(8,(t,n)) = ¢&(n), var(s,(t,n)) = o0& (n),
and cov(68:(t,n),5,(t,n)) = d15(n). The functions a;(-), as(+), ¢o(-), and oo(-)
are defined as before. The remaining functions and random variables are
defined recursively as follows:

b1(n +1) = ¢i(n) + da(n) + 02 = (ur = 307), (B21)
8:(t,n +1) = 86:(¢,n) +6,.(t,n) +o,v(t+n+1)—orl(t+n+1), (B22)
62(n+1) = 68(n) + 0f(n) + 2612(n) + 02 + of — 2B.;, (B23)
G12(n + 1) = kb12(n) + k0§ (n) + B, — B, (B24)

where B,; = p,;o,07 and B,; = p,; 0,07 and where {v(t),t > 0} and {{(¢),t > 0}
are shocks to the pricing kernel and the investment outlay processes respec-
tively (as defined in equations (3) and (Al)). Moreover, the following addi-
tional boundary conditions apply: q§1(0) = 01(0) = d15(0) = 6,(¢,0) = 0.

Proof: The proof of Lemma B.6 follows the same steps as those used in the
proof of Lemma B.2. |

Lemma B.7: The functions defining the evolution of z(t + n) in equation (B6)
and those defining the evolution of 2(¢t + n) in equation (B20) are related as
follows:

$1(n) = ¢1(n) — (ur — 307)n, (B25)
. (1—«")
G12(n) = 012(n) — By < (B26)

and

52(n) = oB(n) + [0,2 ~2p, - P2 ]n " { 26 ][ (11__":)]. (B27)

Proof: The proof is by induction. Equation (B21) holds by definition. Sup-
pose equation (B25) holds for n. Then we must show these imply that equa-

tion (B25) holds for n + 1. Substituting equation (B25) into equation (B21)
gives

b1(n +1) = $1(n) + $pa(n) + 302 — (ur — 307)(n + 1)

= ¢i(n +1) = (ur — 307)(n + 1), (B28)
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where the last step simply applies the definition of ¢;(n + 1) from equation
(B1). Exactly analogous steps verify the other two equations. |

LEmMMA B.8 (VALUE OF AN OPTION ON A STOCHASTIC NUMBER OF DISCOUNT
BONDS): Suppose that 1(t), z(t), and r(t) evolve as in equations (A1), (3), and
(4). Then, the price at t of a call option that matures at t + n, which, upon
exercise, delivers I(t + n) riskless discount bonds maturing at time t +n + k
and has strike price KI(t + n),

[z(t +n)
1 z0)

max[I(¢ + n)B[k,r(t +n)] - I(¢ + n)K,O]], (B29)

is given by

I(t)exp[u;n][Bln + k,r(t)]G1(n,k)N(d:(n,k))
— KB[n,r(¢)]Gs(n)N(dy(n, k)], (B30)

where B[ -,-] is defined in Lemma B.3, N(-) is the cumulative standard nor-
mal distribution function, and

Gi(n,k) = exp[—,Bzin - 1'3_”K n+ a f’;)z k*(1 - K")}, (B31)
Gq(n) = exp[—,Bzin - 1B_riK n+ 1 [_31)2 (1- K”)], (B32)

. B _ Bul k")

diln,k) = da(n k) = (5 (B33)

dy(n,k) = dy(n,k) — ay(k)ay(n), (B34)

with d4(-,-) as defined in Lemma B.5 and a4(-) and o4(-) as defined in equa-
tion (B1).

Proof: Lemma B.5 proves this result for the case where the exercise price
on the bond is fixed. We must now generalize this argument to account for
the systematic risk associated with the I(¢) process. Using the definition
2(t + n) as well as the expression for 2(¢ + n) and r(¢ + n) given in equations
(B20) and (B7), we get

t[z(i(;n) max[I(t + n)B[k,r(t + n)] - I(t + n)K,O]]
= I(1)E, <Z(Z (+t)n) max[B[k,r(t + n)] - K,0]>

= I(t)exp[—a (n)r(t) — ¢1(n)]
X E,[exp(—8;(t,n))max[A[r(t),n,k]exp[—a;(k)5,(t,n)] — K,0]]. (B35)
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The expression in equation (B35) compares with that in equation (B15). Thus,
Lemma B.1, as before, implies that equation (B35) equals

I(t)exp[—ay(n)r(t) — $o(n)]A[7(2),n, k]
X exp[3(32(n) + 2a1(k)G15(n) + ai(k)of(n))IN(d;)
— I(t)exp[—a1(n)r(t) — ¢1(n)]K exp[ 16 (n)IN(dy), (B36)

with

a3, = [InA[r(¢),n,k] — InK + af (k)03 (n) + a1(k) 15(n)] (B37)
ai(k)oz(n)

and &2 = Ezl — a;(k)oy(n). Expression (B36) can be rewritten using the re-
lations derived in Lemma B.7. Simplifying the result using the fact that
ay(k) =[(1 — k*)/(1 — k)] gives equation (B30). u

Lemma B.9 (EvEN MORE VASICEK TRIVIA): The following relations hold. For
n=0,

6-12(” + 1) = 6-12(’7*) + a’l(n)Kna-r'2 - Kn(:Bri - Bzr)a (B38)
6-1 (n + 1) = 6_12(’1) + 0-12 - 2a1(n)(18ri - ﬁzr) - 2,82i + a%(n)a-r2 + 0-225 (B39)
$a(n) = dpa(Day(n). (B40)

Proof: Write
InZ(t+n)—In2(@)=UnZ(E+n)—1n2(t+1)+UnZ( +1) —InZ(2)),
(B41)

and use Lemma B.6 to express each difference. Matching random variables
provides

8;(t,n+1)=68:;(t+1Ln)+a(n)o,é@E+1)+o,v(t+1) — ol (2 +1). (B42)

Computing the variance provides equation (B39). Doing the same thing for
r(t) (using Lemma B.2) provides

8,(t,n +1) =6,.(t + 1L,n) + as(n)o,. &(t + 1). (B43)
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Equation (B38) follows by computing d,5(n + 1) = cov(5;(¢,n + 1),5,.(¢,n + 1))
using the above equation and equation (B42). Finally, match the constant
term in the expression for r(¢ + n):

bo(n) = da(n — 1) = ay(n — (1 = K7 = " 15(1), (B44)

where the second equality follows from manipulating equation (B1). Sum-
ming both sides of the above equation provides equation (B40). |

LemMmA B.10 (EXPECTED VALUE OF AN OPTION ON A STOCHASTIC NUMBER OF
BONDS): Suppose that 1(t), z(t), and r(t) evolve as in equations (A1), (3), and
(4). Then, the time t expectation of the price at t + 1 of a call option that
matures at t + n, which, upon exercise, delivers I(t + n) riskless discount
bonds maturing at time t + n + k and has strike price KI(¢t + n),

- I Blk I K,0 B45
t[{z(t+1)}max[ (t + n)Blk,r(t +n)] - I(t + n) ,]], (B45)

is given by

I(t)exp[pu;n +r(t)][Bln + k,r(t)]H,(n,k)N(d; (n,k))
— KB[n,r(t)]Hy(n)N(d3(n, k)], (B46)

where B[ -,-] is defined in Lemma B.3, N(-) is the cumulative standard nor-
mal distribution function, and

Hy(n,k) = G1(n,k)exp [32,- o f _Z’K) 1- K'”“)], (B47)
— BZ" n—1
Hj(n) = Gy(n)exp [ﬁzi “d-w (1-« )}, (B48)
¢ 3 Bern71
di(n,k) = di(n,k) — : (B49)
o3(n)
d;(n,k) = di(n,k) — ay(k)oy(n), (B50)

with G4(-,-), Gy(-), and cAll(-,-) as defined in Lemma B.8, and with a4(-) and
o9(+) as defined in equation (B1).
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Proof: The proof follows the same lines as the proof of Lemma B.8. Using
the definition 2(¢ + n) as well as the expression for 2(¢ + n) and r(¢ + n)
given in equations (B20) and (B7), we get

EHZ(H"“)} I(t + n)B[k,r(t + n)] — I(¢ + KO]
‘NzerD max[ (t + n)B[k,r(t + n)] (t+n) ,]

2(t+n)
Z2(t+1)

=E, (I(t - 1){ }max[B[k,r(t +n)] - K,O]>

= I(t)exp[u; — 307 1E exp[~a1(n — Dr(t + 1) — ¢y(n — 1)]
X explopl(t+1) —8;(t+ 1,n —1)]
X max[A[r(t),n,k]exp[—al(k)ér(t,n)] — K,O]}
= I(t)exp[p; — 307 — an(n — Dax(V)r(t) — ay(n — 1 a(1) — d1(n — 1)]
X Edexplorl(t +1) — 8:(t + L,n — 1) — ay(n — 1)0,. £(¢ + 1)]
X max[A[r(¢),n,k]exp[—a;(k)8,(t,n)] — K,0]}
= I(t)exp[~a1(n)r(t) — $1(n) + r(t) + 3071
X Eexplorl(t+1) — 8:(t + L,n — 1) — ay(n — D)o, £(t + 1)]
X max[A[r(t),n,k]
X exp[—ay(k)k" o, &(t + 1) — ay(k)8,.(t + 1,n — 1)] — K,0]},

(B51)

where the last step follows by using equations (B8), (B21), and (B40). Ex-
pression (B52) compares with that in equation (B35). Thus, Lemmas B.1 and
B.9 imply that the expectation in equation (B52) equals

Alr(t),n,klexp[3(52(n) + 2a1(k)G19(n) + ad(k)af(n) — 02 — 2B, ar(n — 1)
+ 2B, — 2a1(k)k" 1B, )IN(d5)
— Kexp[3(62(n) — 02 — 2B, a1(n — 1) + 28,;)|N(d3) (B52)

with

InA[7(t),n,k] — InK + aZ(k)od(n) + ay (k) G15(n) — ay(k)k" .,

di = a1 (B) 5 ()

(B53)
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and dy = di — ay(k)oy(n). The expression in equation (B53) can be substi-
tuted back into equation (B52), which can then be rewritten using the rela-
tions derived in Lemma B.7. Simplifying the result gives equation (B46). ®

Appendix C. Simulation Details

The most computationally demanding feature of the model is calculating
the option value of future investment opportunities, J*[r(¢)], in equation
(31). This involves an infinite double summation and a numerical integra-
tion. With the model calibrated to monthly data, the effects of discounting
and mean-reversion act slowly on the values in these summations. The inner
summation (over k), involves J, which goes to zero, times 7*. Thus, the
summand decreases reasonably quickly. It decreases monotonically in s — ¢.
At typical parameters and s — ¢ = 1, the summand falls below 0.01 percent
of the value of the summation up to that point by 2 = 400, our choice of a
truncation point. The summand in the outer summation goes to zero more
slowly. Experimentation at representative parameters shows it falls below
0.01 percent of the value of the summation at that point by s — ¢ = 950 and
so this is used as the truncation point in this case. The small residual effect
of these truncations on the absolute level of prices is further minimized in
the calculation of expected returns where the relative rather than the abso-
lute levels of prices are important.

To avoid the recomputation of J *[r(¢)] and J,[r(¢)] at every date, we dis-
cretize the domain of these functions and calculate the function at just those
points. We then linearly interpolate to determine a value for the function
during the simulation. The number of grid points is set to ensure the accu-
racy of prices meets a prespecified tolerance, which is set to 0.01 percent of
the price level.

At the beginning of the simulation all firms consist of no assets and
I1(0) = 1. It takes about 200 months before the number of projects stabilizes.
We therefore drop the first 200 months of the simulated data in the time-
series simulations. We also begin the cross-sectional regressions in month
200; however, because the beta estimates depend on estimates of prebetas
that are taken on the previous 60 months of data, the cross-sectional regres-
sions actually use data beginning in month 140. The details on how this is
calculated are as follows. Recall that each simulated data set consists of 600
months. For each of the last 400 months, stocks are sorted into 10 portfolios
by market value. Within each market value portfolio, stocks are sorted into
10 more portfolios by the their prebetas—their beta calculated using the
previous 60 months of data. The beta of each of these 100 portfolios over the
last 400 months is then calculated. In each of the last 400 months, we then
allocate the portfolio beta to each of the stocks that makes up the portfolio.
The cross-sectional regressions are then run monthly over the last 400 months
using these beta estimates as well as the current values for log(P(¢)) and
log(b(¢)/P(t)). All the coefficient estimates of each simulation are the aver-
age coefficients over the 400 cross-sectional regressions. The #-statistics are
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these averages divided by the standard error. All portfolios are formed using
equal weights and all betas are calculated by summing the slopes of a re-
gression of return on the (equally weighted) market portfolio return in the
current and prior month.
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