The Journal of Finance

The Journal of Finance publishes leading research across all the major fields of finance. It is one of the most widely cited journals in academic finance, and in all of economics. Each of the six issues per year reaches over 8,000 academics, finance professionals, libraries, and government and financial institutions around the world. The journal is the official publication of The American Finance Association, the premier academic organization devoted to the study and promotion of knowledge about financial economics.

AFA members can log in to view full-text articles below.

View past issues


Search the Journal of Finance:






Search results: 8.

Momentum, Business Cycle, and Time‐varying Expected Returns

Published: 12/17/2002   |   DOI: 10.1111/1540-6261.00449

Tarun Chordia, Lakshmanan Shivakumar

A growing number of researchers argue that time‐series patterns in returns are due to investor irrationality and thus can be translated into abnormal profits. Continuation of short‐term returns or momentum is one such pattern that has defied any rational explanation and is at odds with market efficiency. This paper shows that profits to momentum strategies can be explained by a set of lagged macroeconomic variables and payoffs to momentum strategies disappear once stock returns are adjusted for their predictability based on these macroeconomic variables. Our results provide a possible role for time‐varying expected returns as an explanation for momentum payoffs.


Trading Volume and Cross‐Autocorrelations in Stock Returns

Published: 12/17/2002   |   DOI: 10.1111/0022-1082.00231

Tarun Chordia, Bhaskaran Swaminathan

This paper finds that trading volume is a significant determinant of the lead‐lag patterns observed in stock returns. Daily and weekly returns on high volume portfolios lead returns on low volume portfolios, controlling for firm size. Nonsynchronous trading or low volume portfolio autocorrelations cannot explain these findings. These patterns arise because returns on low volume portfolios respond more slowly to information in market returns. The speed of adjustment of individual stocks confirms these findings. Overall, the results indicate that differential speed of adjustment to information is a significant source of the cross‐autocorrelation patterns in short‐horizon stock returns.


Brokerage Commission Schedules

Published: 09/01/1993   |   DOI: 10.1111/j.1540-6261.1993.tb04758.x

MICHAEL J. BRENNAN, TARUN CHORDIA

It is generally optimal for risk‐sharing reasons to base a charge for information on the signal realization. When this is not possible, a charge based on the amount of trading, a brokerage commission, may be a good alternative. The optimal brokerage commission schedule is derived for a risk‐neutral information seller faced with risk‐averse purchasers who may differ in their risk aversion. Revenues from the brokerage commission are compared with those from a fixed charge for information and the optimal mutual fund management fee.


True Spreads and Equilibrium Prices

Published: 12/17/2002   |   DOI: 10.1111/0022-1082.00390

Clifford A. Ball, Tarun Chordia

Stocks and other financial assets are traded at prices that lie on a fixed grid determined by the minimum tick size. Observed prices and quoted spreads do not correspond to the equilibrium prices and true spreads that would exist in a market with no minimum tick size. Using Monte Carlo Markov Chain methods, this paper estimates the equilibrium prices and true spreads. For large stocks, most of the quoted spread is attributable to the rounding of prices and the adverse selection component is small. The true spread and the adverse selection component are greater for mid‐sized stocks.


Liquidity and Autocorrelations in Individual Stock Returns

Published: 09/19/2006   |   DOI: 10.1111/j.1540-6261.2006.01060.x

DORON AVRAMOV, TARUN CHORDIA, AMIT GOYAL

This paper documents a strong relationship between short‐run reversals and stock illiquidity, even after controlling for trading volume. The largest reversals and the potential contrarian trading strategy profits occur in high turnover, low liquidity stocks, as the price pressures caused by non‐informational demands for immediacy are accommodated. However, the contrarian trading strategy profits are smaller than the likely transactions costs. This lack of profitability and the fact that the overall findings are consistent with rational equilibrium paradigms suggest that the violation of the efficient market hypothesis due to short‐term reversals is not so egregious after all.


Market Liquidity and Trading Activity

Published: 12/17/2002   |   DOI: 10.1111/0022-1082.00335

Tarun Chordia, Richard Roll, Avanidhar Subrahmanyam

Previous studies of liquidity span short time periods and focus on the individual security. In contrast, we study aggregate market spreads, depths, and trading activity for U.S. equities over an extended time sample. Daily changes in market averages of liquidity and trading activity are highly volatile and negatively serially dependent. Liquidity plummets significantly in down markets. Recent market volatility induces a decrease in trading activity and spreads. There are strong day‐of‐the‐week effects; Fridays accompany a significant decrease in trading activity and liquidity, while Tuesdays display the opposite pattern. Long‐ and short‐term interest rates influence liquidity. Depth and trading activity increase just prior to major macroeconomic announcements.


Momentum and Credit Rating

Published: 09/04/2007   |   DOI: 10.1111/j.1540-6261.2007.01282.x

DORON AVRAMOV, TARUN CHORDIA, GERGANA JOSTOVA, ALEXANDER PHILIPOV

This paper establishes a robust link between momentum and credit rating. Momentum profitability is large and significant among low‐grade firms, but it is nonexistent among high‐grade firms. The momentum payoffs documented in the literature are generated by low‐grade firms that account for less than 4% of the overall market capitalization of rated firms. The momentum payoff differential across credit rating groups is unexplained by firm size, firm age, analyst forecast dispersion, leverage, return volatility, and cash flow volatility.


Nonstandard Errors

Published: 04/17/2024   |   DOI: 10.1111/jofi.13337

ALBERT J. MENKVELD, ANNA DREBER, FELIX HOLZMEISTER, JUERGEN HUBER, MAGNUS JOHANNESSON, MICHAEL KIRCHLER, SEBASTIAN NEUSÜß, MICHAEL RAZEN, UTZ WEITZEL, DAVID ABAD‐DÍAZ, MENACHEM (MENI) ABUDY, TOBIAS ADRIAN, YACINE AIT‐SAHALIA, OLIVIER AKMANSOY, JAMIE T. ALCOCK, VITALI ALEXEEV, ARASH ALOOSH, LIVIA AMATO, DIEGO AMAYA, JAMES J. ANGEL, ALEJANDRO T. AVETIKIAN, AMADEUS BACH, EDWIN BAIDOO, GAETAN BAKALLI, LI BAO, ANDREA BARBON, OKSANA BASHCHENKO, PARAMPREET C. BINDRA, GEIR H. BJØNNES, JEFFREY R. BLACK, BERNARD S. BLACK, DIMITAR BOGOEV, SANTIAGO BOHORQUEZ CORREA, OLEG BONDARENKO, CHARLES S. BOS, CIRIL BOSCH‐ROSA, ELIE BOURI, CHRISTIAN BROWNLEES, ANNA CALAMIA, VIET NGA CAO, GUNTHER CAPELLE‐BLANCARD, LAURA M. CAPERA ROMERO, MASSIMILIANO CAPORIN, ALLEN CARRION, TOLGA CASKURLU, BIDISHA CHAKRABARTY, JIAN CHEN, MIKHAIL CHERNOV, WILLIAM CHEUNG, LUDWIG B. CHINCARINI, TARUN CHORDIA, SHEUNG‐CHI CHOW, BENJAMIN CLAPHAM, JEAN‐EDOUARD COLLIARD, CAROLE COMERTON‐FORDE, EDWARD CURRAN, THONG DAO, WALE DARE, RYAN J. DAVIES, RICCARDO DE BLASIS, GIANLUCA F. DE NARD, FANY DECLERCK, OLEG DEEV, HANS DEGRYSE, SOLOMON Y. DEKU, CHRISTOPHE DESAGRE, MATHIJS A. VAN DIJK, CHUKWUMA DIM, THOMAS DIMPFL, YUN JIANG DONG, PHILIP A. DRUMMOND, TOM DUDDA, TEODOR DUEVSKI, ARIADNA DUMITRESCU, TEODOR DYAKOV, ANNE HAUBO DYHRBERG, MICHAŁ DZIELIŃSKI, ASLI EKSI, IZIDIN EL KALAK, SASKIA TER ELLEN, NICOLAS EUGSTER, MARTIN D. D. EVANS, MICHAEL FARRELL, ESTER FELEZ‐VINAS, GERARDO FERRARA, EL MEHDI FERROUHI, ANDREA FLORI, JONATHAN T. FLUHARTY‐JAIDEE, SEAN D. V. FOLEY, KINGSLEY Y. L. FONG, THIERRY FOUCAULT, TATIANA FRANUS, FRANCESCO FRANZONI, BART FRIJNS, MICHAEL FRÖMMEL, SERVANNA M. FU, SASCHA C. FÜLLBRUNN, BAOQING GAN, GE GAO, THOMAS P. GEHRIG, ROLAND GEMAYEL, DIRK GERRITSEN, JAVIER GIL‐BAZO, DUDLEY GILDER, LAWRENCE R. GLOSTEN, THOMAS GOMEZ, ARSENY GORBENKO, JOACHIM GRAMMIG, VINCENT GRÉGOIRE, UFUK GÜÇBILMEZ, BJÖRN HAGSTRÖMER, JULIEN HAMBUCKERS, ERIK HAPNES, JEFFREY H. HARRIS, LAWRENCE HARRIS, SIMON HARTMANN, JEAN‐BAPTISTE HASSE, NIKOLAUS HAUTSCH, XUE‐ZHONG (TONY) HE, DAVIDSON HEATH, SIMON HEDIGER, TERRENCE HENDERSHOTT, ANN MARIE HIBBERT, ERIK HJALMARSSON, SETH A. HOELSCHER, PETER HOFFMANN, CRAIG W. HOLDEN, ALEX R. HORENSTEIN, WENQIAN HUANG, DA HUANG, CHRISTOPHE HURLIN, KONRAD ILCZUK, ALEXEY IVASHCHENKO, SUBRAMANIAN R. IYER, HOSSEIN JAHANSHAHLOO, NAJI JALKH, CHARLES M. JONES, SIMON JURKATIS, PETRI JYLHÄ, ANDREAS T. KAECK, GABRIEL KAISER, ARZÉ KARAM, EGLE KARMAZIENE, BERNHARD KASSNER, MARKKU KAUSTIA, EKATERINA KAZAK, FEARGHAL KEARNEY, VINCENT VAN KERVEL, SAAD A. KHAN, MARTA K. KHOMYN, TONY KLEIN, OLGA KLEIN, ALEXANDER KLOS, MICHAEL KOETTER, ALEKSEY KOLOKOLOV, ROBERT A. KORAJCZYK, ROMAN KOZHAN, JAN P. KRAHNEN, PAUL KUHLE, AMY KWAN, QUENTIN LAJAUNIE, F. Y. ERIC C. LAM, MARIE LAMBERT, HUGUES LANGLOIS, JENS LAUSEN, TOBIAS LAUTER, MARKUS LEIPPOLD, VLADIMIR LEVIN, YIJIE LI, HUI LI, CHEE YOONG LIEW, THOMAS LINDNER, OLIVER LINTON, JIACHENG LIU, ANQI LIU, GUILLERMO LLORENTE, MATTHIJS LOF, ARIEL LOHR, FRANCIS LONGSTAFF, ALEJANDRO LOPEZ‐LIRA, SHAWN MANKAD, NICOLA MANO, ALEXIS MARCHAL, CHARLES MARTINEAU, FRANCESCO MAZZOLA, DEBRAH MELOSO, MICHAEL G. MI, ROXANA MIHET, VIJAY MOHAN, SOPHIE MOINAS, DAVID MOORE, LIANGYI MU, DMITRIY MURAVYEV, DERMOT MURPHY, GABOR NESZVEDA, CHRISTIAN NEUMEIER, ULF NIELSSON, MAHENDRARAJAH NIMALENDRAN, SVEN NOLTE, LARS L. NORDEN, PETER O'NEILL, KHALED OBAID, BERNT A. ØDEGAARD, PER ÖSTBERG, EMILIANO PAGNOTTA, MARCUS PAINTER, STEFAN PALAN, IMON J. PALIT, ANDREAS PARK, ROBERTO PASCUAL, PAOLO PASQUARIELLO, LUBOS PASTOR, VINAY PATEL, ANDREW J. PATTON, NEIL D. PEARSON, LORIANA PELIZZON, MICHELE PELLI, MATTHIAS PELSTER, CHRISTOPHE PÉRIGNON, CAMERON PFIFFER, RICHARD PHILIP, TOMÁŠ PLÍHAL, PUNEET PRAKASH, OLIVER‐ALEXANDER PRESS, TINA PRODROMOU, MARCEL PROKOPCZUK, TALIS PUTNINS, YA QIAN, GAURAV RAIZADA, DAVID RAKOWSKI, ANGELO RANALDO, LUCA REGIS, STEFAN REITZ, THOMAS RENAULT, REX W. RENJIE, ROBERTO RENO, STEVEN J. RIDDIOUGH, KALLE RINNE, PAUL RINTAMÄKI, RYAN RIORDAN, THOMAS RITTMANNSBERGER, IÑAKI RODRÍGUEZ LONGARELA, DOMINIK ROESCH, LAVINIA ROGNONE, BRIAN ROSEMAN, IOANID ROŞU, SAURABH ROY, NICOLAS RUDOLF, STEPHEN R. RUSH, KHALADDIN RZAYEV, ALEKSANDRA A. RZEŹNIK, ANTHONY SANFORD, HARIKUMAR SANKARAN, ASANI SARKAR, LUCIO SARNO, OLIVIER SCAILLET, STEFAN SCHARNOWSKI, KLAUS R. SCHENK‐HOPPÉ, ANDREA SCHERTLER, MICHAEL SCHNEIDER, FLORIAN SCHROEDER, NORMAN SCHÜRHOFF, PHILIPP SCHUSTER, MARCO A. SCHWARZ, MARK S. SEASHOLES, NORMAN J. SEEGER, OR SHACHAR, ANDRIY SHKILKO, JESSICA SHUI, MARIO SIKIC, GIORGIA SIMION, LEE A. SMALES, PAUL SÖDERLIND, ELVIRA SOJLI, KONSTANTIN SOKOLOV, JANTJE SÖNKSEN, LAIMA SPOKEVICIUTE, DENITSA STEFANOVA, MARTI G. SUBRAHMANYAM, BARNABAS SZASZI, OLEKSANDR TALAVERA, YUEHUA TANG, NICK TAYLOR, WING WAH THAM, ERIK THEISSEN, JULIAN THIMME, IAN TONKS, HAI TRAN, LUCA TRAPIN, ANDERS B. TROLLE, M. ANDREEA VADUVA, GIORGIO VALENTE, ROBERT A. VAN NESS, AURELIO VASQUEZ, THANOS VEROUSIS, PATRICK VERWIJMEREN, ANDERS VILHELMSSON, GRIGORY VILKOV, VLADIMIR VLADIMIROV, SEBASTIAN VOGEL, STEFAN VOIGT, WOLF WAGNER, THOMAS WALTHER, PATRICK WEISS, MICHEL VAN DER WEL, INGRID M. WERNER, P. JOAKIM WESTERHOLM, CHRISTIAN WESTHEIDE, HANS C. WIKA, EVERT WIPPLINGER, MICHAEL WOLF, CHRISTIAN C. P. WOLFF, LEONARD WOLK, WING‐KEUNG WONG, JAN WRAMPELMEYER, ZHEN‐XING WU, SHUO XIA, DACHENG XIU, KE XU, CAIHONG XU, PRADEEP K. YADAV, JOSÉ YAGÜE, CHENG YAN, ANTTI YANG, WOONGSUN YOO, WENJIA YU, YIHE YU, SHIHAO YU, BART Z. YUESHEN, DARYA YUFEROVA, MARCIN ZAMOJSKI, ABALFAZL ZAREEI, STEFAN M. ZEISBERGER, LU ZHANG, S. SARAH ZHANG, XIAOYU ZHANG, LU ZHAO, ZHUO ZHONG, Z. IVY ZHOU, CHEN ZHOU, XINGYU S. ZHU, MARIUS ZOICAN, REMCO ZWINKELS

In statistics, samples are drawn from a population in a data‐generating process (DGP). Standard errors measure the uncertainty in estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence‐generating process (EGP). We claim that EGP variation across researchers adds uncertainty—nonstandard errors (NSEs). We study NSEs by letting 164 teams test the same hypotheses on the same data. NSEs turn out to be sizable, but smaller for more reproducible or higher rated research. Adding peer‐review stages reduces NSEs. We further find that this type of uncertainty is underestimated by participants.